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ABSTRACT

Machine Learning (ML) security practices include hiding ML model
architectures to protect intellectual property and prevent attacks.
We introduce a novel fingerprinting attack using frequency throttling-
based Side-Channel Attack (SCA) to detect an ML model’s archi-
tecture family by converting power side-channel data into timing
variations. This method involves using adversary kernels and a time
series ML classifier to discern the architecture from execution time
patterns during model operation. We achieved up to 96% accuracy
in identifying known ML models’ architecture families under Ring
0 privileges and we demonstrated its effectiveness across different
platforms. Moreover, our code is publicly available .
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1 INTRODUCTION

The significance of ML model architecture knowledge cannot be
understated, as it serves as a gateway to numerous security threats,
including model inversion attacks and adversarial attacks [17]. In
response, the academic community is engaged in the exploration
of various channels that could potentially leak information [9, 16].

In this study, we present a breakthrough exploration of ML model
architecture fingerprinting attacks through the analysis of power
side-channel leakage. Specifically, our approach introduces a novel
form of ML model fingerprinting attack that harnesses the pas-
sive examination of frequency-throttling side-channel information.
This information, recently discovered in [12], is accessible even
at the user-space level. We explore the potential of leveraging the
frequency throttling SCA and converting the power side channel
to timing information to detect the architecture of an ML model
performing inference tasks. Our proposed approach overcomes the
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limitations of telemetry data by employing a black-box attack strat-
egy. This involves the development of a robust supervised classifier
using timing information obtained from adversary kernels running
concurrently with popular ML models.

Unlike telemetry data, which can potentially be restricted or fil-
tered through software controls, frequency-throttling side-channel
leakage cannot be neutralized by imposing access limitations or
applying filtering-based mitigation patches. This is due to the fact
that any malicious software can monitor its execution time by read-
ing system timers. It is important to note that even low-precision
timing information (in order of 100 microseconds) is enough to
have high-accuracy fingerprinting results. Furthermore, unlike pre-
ceding work [16], our proposed fingerprinting attack does not re-
quire access to the victim’s system-level trace information such as
CPU, GPU, and memory utilization, marking a distinctive contri-
bution in our approach. An additional advantage of our proposed
approach, when compared to contention-based timing side-channel
(such as execution port) techniques [7], lies in the use of frequency-
throttling side-channel leakage which effectively operates across
different CPU cores. Moreover, it does not depend on the Simul-
taneous Multi-Threading (SMT) feature of CPUs to achieve high-
accuracy results [18]. This aspect is crucial in cloud environments
where SMT features could be disabled on the shared instances [1].

Our proposed ML fingerprinting attack process consists of two
key steps: 1) Gathering Timing Information: We collect the execution
time of an adversary kernel while a given ML model is actively
running on the same processor, performing inference on a batch
of inputs. This allows us to observe the unique timing patterns
associated with each ML model architecture. Furthermore, this
step involves initiating the frequency throttling side-channel effect
and converting it into timing information. 2) Machine Learning
Classification: Following the acquisition of the timing data, we
construct an effective supervised classifier customized to discern
and accurately identify the architecture of the victim’s ML model.

Considering the versatility of ML models, we investigate the
transferability of our proposed attack, particularly with unseen
model variants—those belonging to the model’s family that were
not present in our classifier’s training set. Our findings showcase the
effectiveness of our approach in accurately identifying a known ML
architecture family with 98% accuracy. Additionally, when applied
to architectures that were never encountered during the training
process, our attack still achieved a commendable 89% accuracy in
identifying the corresponding architectures’ family. Furthermore,
to demonstrate the platform portability of the proposed ML finger-
printing attack, we targeted three prominent platforms, including
two Intel CPUs, and an AMD CPU paired with an Nvidia GPU.
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2 BACKGROUND AND RELATED WORKS

Frequency throttling, a power management technique adopted on
Intel and AMD CPU, is a result of the dynamic adjustment of the
CPU frequency when the execution of a workload causes specific
electrical or thermal system parameters to surpass predefined limits.
In such situations, the power management architecture reactively
takes action to throttle the CPU frequency to a lower value, ensuring
the system operates within safe and sustainable conditions [11],
while Dynamic Voltage and Frequency Scaling (DVFS) proactively
adjusts the voltage and frequency of a CPU in response to real-
time workload demands. This study specifically concentrates on
the reactive limits that trigger the frequency-throttling side channel
as a new source of side-channel information.

Previous studies have utilized various side-channel information
to target different attack objectives, including model architecture
identification [16], model inputs [6], and parameters extraction [10].
The typical sources of side-channel leakage consist of cache [22],
memory access [10], electromagnetic (EM) emission and power
[21], timing [6], and GPU statistics [19].

Wei et al. [19] developed an attack called Leaky DNN, which
exploits the GPU context-switching penalty to extract the victim’s
model architecture and it requires access to shared GPU profiling
information. In [16], the authors proposed employing shared em-
bedded GPU memory traces on edge devices to identify the model
architecture. However, their method can be circumvented with a
straightforward memory isolation technique.

Hong et al. [8] utilized the Flush+Reload SCA to extract the DNN
architecture by observing specific function calls during inference.
On the other hand, Torrellas et al. [22] employed the Flush+Reload
and Prime+Probe techniques to monitor special functions, enabling
them to infer the model architecture. These techniques are prone to
cache partitioning. Cache-based fingerprinting attacks require high-
precision timers and access to shared cache. Several defenses have
been already implemented against these types of attacks [15]. Batina
etal. [4] utilized power and electromagnetic (EM) side-channel to re-
verse engineer models’ architecture. However, collecting EM/power
traces requires physical access to the target device.

Table 1 shows a comparison of our work to existing works. Pat-
wari et al. [16] predicts the DNN architecture family based on
shared memory usage of CPU and GPU, but this method is vulner-
able to isolation defenses and cannot differentiate between specific
model architectures. In contrast, EZClone [20] identifies model ar-
chitectures using GPU kernel features via the PyTorch profiler and,
therefore is susceptible to access restriction defenses.

Unlike prior research efforts, our innovative fingerprinting tech-
nique can passively and remotely gather timing information ex-
clusively about its own kernel execution time, while a black-box
victim ML application operates on a separate core. Consequently,
it obviates the need for any GPU profiling data or shared resource
usage information. Moreover, we are the first work to fingerprint
the transformer-based models (BERT, and ViT).

3 THREAT MODEL

Our proposed approach operates under a closed-world scenario;
thus, the attacker possesses knowledge of the potential ML model
architectures and the processors running them. Leveraging this
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Table 1: Comparison with related works

GPU Shared Isolation | Access restr. | Target of prediction
Methodes . . . .
profiling trace | memory info | resistance | resistance (Accuracy)

[19] Yes Yes X X Model (95.2%)

8] No Yes X v Model (97.4%)

[22] No Yes X v Model (No report)

[16] No Yes x v Family (99%)

[20] Yes No v X Family/Model (100%)
Our work No No v v Family/Model (96%)

awareness, an attacker can create a labeled dataset to train its clas-
sifier using a supervised learning technique, in an offline manner.

The primary objective of the adversary in our attack is to deter-
mine the victim’s ML model architecture (fingerprinting), enabling
them to launch a more potent downstream attack. For fingerprint-
ing, the attacker adopts a remote and passive approach, solely
measuring its carefully crafted adversary kernel’s execution time.
If frequency throttling is triggered, the timing information reveals
the model architecture.

Our attack is based on four fundamental assumptions:
1) The attacker should have the knowledge of victim’s platform.
The adversary can use a similar processor to run ML models and
collect timing information to mimic the victim’s CPU behavior.

2) The victim processor runs one ML model at a time and the
inference task is performed on a random batch of inputs (1000 in
our case). This is to ensure that the collected timing information
reflects the targeted model being executed. For each execution, a
new batch of inputs will be loaded. Hence, the probability of using
the same image multiple times (for both training and testing) is low.
In this way, we make sure that fair sets of inputs are fed to models
to prevent input bias on models’ behavior.

3) The adversary assumption is that the victim ML model is a
derivative of the known families. However, the attacker does not
require any prior knowledge of hyper-parameters. The models can
even be fine-tuned for specific tasks.

4) The x86 architecture uses four privilege levels (Rings 0 to 3) to
implement a form of protection called "privilege level separation".
The adversary can operate as a user-space attacker with Ring 3
privilege or as an adversary hypervisor/root-user with Ring 0 privi-
lege, while the victim could be an application running on the same
processor (they are not required to run on the same core).

Various isolation techniques can be employed on the system
under attack. To initiate frequency throttling, a Ring 3 attacker can
run a stressor code alongside the victim application, surpassing the
system’s default power consumption limits. Alternatively, a Ring
0 attacker can modify the reactive limit of the processor package,
prompting the system to trigger throttling activity.

4 PROPOSED METHODOLOGY
4.1 Attack Overview

In our research, we utilize timing information to fingerprint widely
used ML model architectures deployed from Hugging Face [3]. A
typical ML model inference pipeline involves the following steps:
1) Loading the ML model hyperparameters, 2) Loading the inputs
to apply the ML model, and 3) The inference task, that entails
performing a forward pass of the input through the model to obtain
predictions. It is essential to highlight that in our fingerprinting
attack, we deliberately mimic a real-world scenario by solely relying
on runtime information collected during step 3 of an ML application.
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This means that in our experiments the ML model is already loaded
into the main memory of the processor and prepared for inference.
However, previous works, have relaxed this assumption [16].

Our approach comprises two main phases including the Offline
phase and the Online phase. 1) Offline Phase: During this phase, the
adversary runs the crafted kernels along with the victim ML model,
captures timing information, processes them (normalization and
smoothing), and creates a labeled dataset. The collected dataset is
then used to train a fingerprinting classifier. 2) Online Phase: In the
online phase, the actual attack is executed. The adversary employs
the pre-trained fingerprinting classifier from the Offline phase for
runtime ML architecture fingerprinting.

4.2 Selection of ML Model Architectures

During the offline phase, the attacker is tasked with creating a
dataset that associates the necessary timing information with each
known model. For this study, we utilize the Hugging Face library
and its pipelines. Consequently, we select a pool of machine learning
models suitable for image and text classification tasks. Our selection
is based on the most commonly used families. To develop a realistic
inference pipeline (loading data, loading model, and performing
inference), we select the batch of inputs from popular datasets to
make sure the dataset used for each model is consistent across
models performing the same tasks. For image classification and
image segmentation, we used ImageNet-1K and COCO validation
sets, respectively. For the text classification task, we used the Yelp
review dataset. However, the images used for the vit-age-classifier
are the images with a person from the COCO dataset.

Table 2 shows the models and families chosen for our research.
These selected models serve as the foundation for building the
dataset, which will be instrumental in training the ML classifier to
effectively identify each ML model’s architecture during the online
phase of our fingerprinting attack. After selecting the models, the
next step in building the dataset is to find a set of features for each
model that can be used later for architecture fingerprinting.

4.3 Adversary Kernels

Advanced Vector Extensions (AVX) instructions are power-intensive
and can significantly raise a processor’s power consumption. Addi-
tionally, different types of AVX instructions have varying execution
times. This motivates us to use a combination of AVX instructions
as an adversary kernel alongside the ML application. With this
approach, we can consider the execution time of each kernel as
a feature. It is essential to highlight that AVX support is not a
mandatory prerequisite, and our methodology remains applica-
ble to platforms that do not possess this parallelism feature. In
such instances, a combination of alternative instructions, including
RDRAND, RDSEED, XSAVE, XRSTOR, and AES-NI instructions
(AESENC, etc.), can be utilized.

The pathway to identifying each ML model architecture involves
establishing a correlation between the execution time of adversary
kernels and the architecture of the ML models. However, finding
this correlation is not straightforward unless frequency throttling
is triggered. For this, our approach relies on the influence of power
side channel leakage, which directly affects the timing. This method
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Table 2: Pool of ML models from Hugging Face

# Model set 1 Family Task

1 google/vit-base-patch16-224

2 facebook/deit-tiny-patch16-224 VIT

3 google/vit-hybrid-base-bit-384

4 nateraw/vit-age-classifier

5 facebook/convnext-large-224 convnext

6 microsoft/resnet-50

7 microsoft/resnet-101 ResNet

8 microsoft/resnet-152 Image

9 google/mobilenet_v2_1.4_224 Classification

10 google/mobilenet_v2_0.75_160 Mobilenet

11 Matthijs/mobilenet_v1_1.0_224

12 inception_v3.tf_adv_inlk Inception

13 | inception_v3.gluon_inlk P

14 | vggll.tv_inlk

15 | vggl3.tv_inlk VGG

16 | vggl9.tv_inlk

17 | nvidia/mit-b0 MIT Image

18 | nvidia/mit-b2 Segmentation

19 distilbert-base-uncased-finetuned Text
-sst-2-english BERT lassificati

20 | textattack/bert-base-uncased-QNLI classification

Table 3: AVX Instruction sets used

Instruction 1 Instruction 2

Kernel 1 | _mm256_mul_ps

_mm256_mul_ps
Kernel 2 | _mm256_div_ps -

Kernel 3 | _mm256_mul_ps _mm256_div_ps
Kernel 4 | _mm256_add_ps _mm256_sub_ps
Kernel 5 | _mm256_fmadd_ps _mm256_fmadd_ps

Kernel 6 | _mm256_permute_ps | _mm256_permute_ps

allows us to ensure that the execution time of the kernel is de-
pendent on the power consumption of other applications running
alongside, thereby achieving our objective. This dependency en-
ables us to effectively fingerprint each model based on the unique
timing patterns of kernels.

In our approach, we employed a set of six different kernels (im-
plemented in C), each containing a loop with two instructions, as
outlined in Table 3. For example, Kernel 4 consists of add and sub
instructions performing the operation on 256-bit vectors containing
floats (ps stands for packed single-precision). Within each kernel,
the loop executes AVX instructions 10,000 times. At the beginning
of the loop, the adversary kernel reads the system time, and upon
completion of the loop, it calculates the time taken to finish the
iteration. This time measurement represents one point of timing
data. The kernel repeats this process 20,000 times, resulting in a
time series of data consisting of 20,000 data points, which is then
saved to a file. Consequently, for each ML model, we possess six
traces of timing information obtained from our adversary kernels.
These six time-series data collectively form a training sample point
for each ML architecture. The collection of these samples creates
our dataset. To generate the train set and test set, we use an 80:20
train-test split ratio. We divided our dataset to include 160 samples
per model for training and 40 samples per model for the test time.

4.4 Converting Power Side-Channel to Timing
information
To convert the power side channel to the timing information, we

propose a method that utilizes reactive limit-induced throttling
to introduce variations in the execution time of the program. For
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our specific attack, we induce variations in the execution time
of our adversary kernels based on the ML model architecture. In
this way, we can effectively convert the power side channel into
timing information. This adaptation is crucial to the success of our
fingerprinting attack, as it allows us to uniquely identify each ML
model architecture based on its power consumption behavior and
corresponding timing signatures.

Figures 1 illustrate our proposed approach to convert the fre-
quency throttling side effect into model-dependent runtime infor-
mation. Let’s consider two models, M1 and M2. The model can
run on a core separate from our adversary program. Although the
adversary cannot directly monitor the execution time of the ML
models, it can measure the execution time of its own kernels even
with a low-resolution timer.

In the provided examples, the adversary runs three different
kernels, each with its unique power profile and execution time.
When executing these kernels in parallel with the ML application
and if the package power limit is not exceeded, the execution time
of each kernel remains the same, regardless of the running model.

However, when the adversary reduces the power limit (Ring
0 privilege) or introduces a power stressor (Ring 3 privilege) to
trigger frequency throttling, the execution time of each kernel
becomes dependent on the running ML application. This is due
to the varied behavior exhibited by each ML model’s architecture,
which influences their power profiling. Consequently, this leads to
time variations in the execution time of the kernels. By observing
these time variations in the kernel’s execution time, the adversary
can determine the specific ML model architecture being executed.

Figure 2 demonstrates how we can exploit the conversion of the
power side channel to the timing information for the ML architec-
ture fingerprinting task. To utilize this capability, the adversary
kernel must run concurrently with the victim’s ML application, and
although they do not necessarily have to be on the same core, they
should run on the same system. The adversary then triggers fre-
quency throttling by either impacting the reactive limit or running
a stress code.

For Ring 0, we followed a specific procedure for each proces-
sor. We initially obtained the minimum system power (using the
powerstat command) when running the given models and kernels.
Next, we set the reactive limit to a value lower than the obtained
minimum power to ensure that the processor would activate fre-
quency throttling. The new reactive limit is calculated as follows:

Reactive_Limit = a X Min(Sys_Power(Model;, Kernel;))
where a represents a parameter within the range of (0, 1), which we
determined experimentally to achieve the most distinct behavior.

For Ring 3, the reactive limit remains configured at its default
value. To induce frequency throttling, we needed to execute the
stressor program on a minimum of 2/3 of the processor’s idle cores.
To mitigate any potential interference caused by the stressor pro-
gram with the operation of the ML application and our adversary
kernel, it was essential to restrict its interactions with I/O and
minimize its utilization of the main memory and shared cache. To
achieve this goal, we employed a specialized matrix multiplication
application that was executed in a continuous loop, performing
operations on small arrays. The dimensions of these arrays were
carefully chosen so that they could fit within the L1 and L2 cache,
thereby reducing the need for accessing shared memory resources.
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Figure 2: Exploitation of frequency throttling effect. The
adversary triggers frequency throttling either by reducing
the reactive power limit or running a stressor program.

This approach ensured minimal interference and maximized core
utilization, effectively minimizing any disruptions to the primary
tasks at hand.

Subsequently, the adversary can run the kernel and measure its
execution time. By analyzing these timing patterns obtained during
the inference task, we effectively identify distinct timing signatures
associated with each model architecture that serves as the basis for
identifying the ML models during the online phase.

4.5 Training the Fingerprinting Classifier

The objective of our fingerprinting classifier is to use the collected
timing information as input to predict the ML model’s architecture
and its family when running alongside our adversary kernels. For
our classification task, we leverage the sktime Python library [2]
to construct a machine-learning classifier. This library is a recent
addition to the open-source ecosystem, offering compatibility with
scikit-learn and providing specialized functionalities for time series
tasks. We used the ROCKET [5] model, which stands out for its
high accuracy and relatively fast performance in handling time
series. The dataset for this model must be formatted as follows: 1)
Input Samples: The dataset should be in a 3D numpy array with
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Figure 3: Samples from the dataset for Ring 0 (time series
data for 3 kernels running alongside 2 different models).

dimensions (instance, feature, time point). Each instance represents
a sample, and each sample contains features observed over different
time points. In our study, each kernel’s timing trace is considered a
feature. Hence we have 6 features over 20,000 time-steps per sample.
2) Labels: The corresponding labels for the input samples should
be provided in a one-dimensional numpy array. Each element in
this array represents the label for the corresponding instance in
the input samples. This format ensures that the data is properly
structured for input to the sktime. The hyperparameter for the
ROCKET model is the number of random convolutional kernels
that we set it to 3,000. Figure 3 illustrates six examples of data, each
representing the normalized execution time (Y-axis) of a kernel
running concurrently with a specific model for 20,000 consecutive
data points (X-axis).

Although the attacker uses the input data on the same device as
the victim, it needs to be generalized to handle slight variations. To
achieve this, we normalize the timing values between 0 and 1.

5 EXPERIMENTAL RESULTS AND
EVALUATION

In our experimental setup, we specifically chose to utilize Intel
Xeon CPUs and AMD EPYC processors sourced from x86 machines.
To demonstrate the portability of our proposed attack to different
platforms, we evaluated the effectiveness of our fingerprinting
strategy on two distinct processors with different configurations: 1)
Intel Xeon W-2135 CPU, operating at 3.7 GHz frequency, and having
a Thermal Design Power (TDP) of 140 Watts. 2) Intel Xeon E5-2650
V2 CPU, running at 2.6 GHz frequency, and having 95 Watts TDP.
3) AMD EPYC 7302 CPU, running at 3.0 GHz with 155W TDP; This
platform is equipped with one NVIDIA GeForce RTX 3070 GPU.
All systems were equipped with Ubuntu 20.04.6 LTS and Python
3.11. To ensure optimal performance during the experiments, we
configured the OS scaling governor to the "performance” mode.
In this mode, the clocks are locked at their maximums, unless the
power limit is exceeded. This setting is ideal for ML applications
on the CPU with low latency.

5.1 Parameter Tuning

To tune the hyperparameter a for Ring 0 attacker, we performed an
experiment by sweeping a, and the results are shown in Figure 4.

Based on the optimal accuracy of classifiers, we accordingly set
a to 0.8, 0.75, and 0.65 for CPU1, CPU2, and CPU3-GPU, respec-
tively. Once the classification model is trained, the attacker is ready
for online deployment. While the ML application is running on
the victim’s device, the adversary concurrently runs the kernels

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

—CPU1 —CPU2 CPU3-GPU

100

80
60
40

20

Accuracy (%)

0
Alpha 04 05 06 07 08 09 1 11 12

Figure 4: Classifiers’ accuracy for various « on Ring 0

Table 4: Pool of ML models as unseen models [3]

# | Model set 2 Family Task

1 | ahishamm/vit-base-isic-patch32 VIT

2 | microsoft/resnet-18

3 | microsoft/resnet-34 ResNet

4 | resnet50.tv_inlk Image

5 | facebook/convnext-large-224-22k-1k | convnext | Classification

6 | google/mobilenet_v1_0.75_192 Mobilenet

7 | inception_resnet_v2.tf_ens_adv_inlk | Inception

8 | vgglé.tv_inlk VGG

9 | nvidia/mit-b1 MiT Image
Segmentation

10 | distilbert-base-uncased BERT Text

11 | bert-base-go-emotion BERT classification

and measures their execution time. To ensure that frequency throt-
tling is occurring, the adversary may utilize a power stressor or
manipulate the reactive limit to trigger throttling.

By collecting the timing information during the execution of the
kernels, the trained classifier can be effectively used to pinpoint
the architecture of the ML model or identify its family. The unique
timing patterns captured during the online phase act as the finger-
print that the classifier uses to accurately distinguish and classify
the ML models based on their underlying architecture.

5.2 Transferability Analysis

In order to assess the transferability of our attack and investigate
its ability to classify unseen models (that are not included in the
training dataset), we introduced a new set of 11 models from the
selected families (referred to as Model Set 2, as presented in Table
4). The performance of our developed classifier on both Model Set
1 and Model Set 2 is detailed in Table 5. We reported the accuracy
of both model classification and family classification.

Model classification accuracy is applicable only to Model Set 1,
where the models were used during the training. The results indi-
cate that we achieved an accuracy of over 98% in identifying the
architecture’s family for the known models in Model Set 1. Further-
more, our classifier successfully classified the family of unknown
models in Model Set 2 with an average accuracy of 89.5%. These
findings demonstrate the effectiveness of our proposed classifier in
classifying both known and unknown model families, underscoring
the transferability and portability of our attack.

In Figure 5, we present the confusion matrices corresponding
to the family classifier from the CPU3-GPU platform on model set
2. Our analysis reveals that the MiT family demonstrates the most
robust classification accuracy. Conversely, the ConvNext family ex-
hibits the least accurate performance. We also note that the VGG ar-
chitecture exhibits exceptional distinguishability, positioning itself
as the second-best performer. Furthermore, our analysis highlights
a distinct pattern of misclassifications primarily occurring between
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Table 5: Classifiers accuracy results-rounded (%)

Family classification Model classification

Platform | CPU1 CPU2 | CPU3-GPU | CPU1 CPU2 | CPU3-GPU

Privilege | RO | R3 | RO |R3 | RO | R3 |RO|R3|RO|R3|R0O| R3
Set 1 100 | 93 | 99 | 91 | 90 83 99 | 90 | 95 | 84 | 88 77
Set 2 92 | 8 | 91 | 84 | &9 81 e e e -

Normalized number of predictions (2200 elements) Color Code

ViTmO o 000|001 o

ResNet | 0 (0.8800.12 0 |0 | 0| O | O

>0.90

Conv. | 0 |0.160.79/0.05 0 | 0 | 0 | o

>0.80
Mobil. | 0 U.Ol0.0SMD.OS o|0|o0
>0.70

Incep. 0 |0.04/0.06/0.84/0.06) 0 | 0

>0.10
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Figure 5: Family classification’s confusion matrix: CPU3+GP,
model set 2 (200 samples per model), Ring 0

the ViT and BERT models. This pattern is not surprising, given that
both ViT and BERT belong to the transformer-based model family,
leading to similarities in their classification characteristics.

5.3 Downstream Adversarial Attacks

The objective of adversarial attacks is to deceive ML classifiers by
introducing imperceptible perturbations to inputs, undetectable
by humans. In this context, we illustrate that our proposed model
fingerprinting attack improves the performance of adversarial at-
tacks by transforming the semi-black-box setting into a white-box
setting, utilizing knowledge obtained through fingerprinting. In the
semi-black-box setting, the attacker constructs a substitute model to
generate adversarial examples, with little knowledge about the ML
model. In this scenario, the attacker generates adversarial examples
using an ensemble of models to enhance their success.

As a case study, we employ pre-trained models from PyTorch
and the Adversarial Robustness Toolbox (ART) library [14], for con-
ducting adversarial attacks. Within our experiments, we designate
microsoft/resnet-101 as the target victim model. Specifically, we
utilize the DeepFool attack [13] from the ART library in three dis-
tinct scenarios. We use 2,000 images from the ImageNet validation
set. In the initial scenario, adversarial examples are generated by
using a random ensemble of models. In the second scenario, the
attack is orchestrated utilizing models from the same family as the
victim. Finally, adversarial examples are crafted specifically for the
architecture of the victim model.

Table 6 provides a summary of our findings. The baseline accu-
racy of the victim model on benign examples is 81.7%. Our results
indicate that adversarial examples generated from unrelated model
families exhibit lower effectiveness. Leveraging the adversarial
samples generated from the ResNet family results in a notable 41%
decrease in the accuracy of the victim model. Notably, when con-
sidering adversarial examples tailored to ResNet-101, the victim
model’s accuracy experiences a substantial drop of 68%. Our results
show that with the knowledge of the ML architecture, an adversary
can generate much more effective adversarial examples.
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Table 6: Accuracy drop of models by adversarial examples

. Models used for adv.
Scenario . Accuracy drop (%)
examples generation
VGG19, Inception3, Mobilnet V2 12%
1 Convnext_base, VGG13, DenseNet 121 17%
ResNet 50, VGG16, Convnext_small 23%
2 ResNet 18, ResNet 34, ResNet 152 41%
3 ResNet 101 68%

6 CONCLUSION

This work presents a novel approach to ML models’ fingerprint-
ing. By exploiting the frequency throttling side effects, we extract
timing patterns through the execution of crafted adversary kernels.
Leveraging the time series feature, we develop a classification model
to identify the ML model architecture. The experimental results
demonstrate the effectiveness of our proposed attack achieving a
classification accuracy of 96.3% for known ML model families and
90.6% accuracy for previously unseen models with Ring 0 privilege.
By relying on timing information and avoiding direct access to
the ML models, we open avenues for stronger remote downstream
adversarial attacks on the cloud.
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