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Abstract

We present a non-iterative Schur complement method for the solution of a fluid-structure

interaction problem, employing projection-based reduced order models (ROMs) on one or both

subdomains. The formulation is strongly coupled, using a Lagrange multiplier to represent the

interfacial stress, and solving a Schur complement equation allows for the independent solution

of the subdomain equations at each time step. The inclusion of ROMs in this scheme provides a

more robust framework and makes the technique more computationally appealing. Utilizing the

supremizer enrichment technique, we offer detailed investigations into the performance of this

method with respect to the use of supremizers and with respect to the basis sizes of the reduced

order variables. Results indicate that the ROM-ROM coupled formulation yields results that agree

well with the full order solution in a shorter computational time and with a large reduction in

the size of the algebraic system.
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1. Introduction

Fluid-structure interaction (FSI) problems often require solutions on highly refined meshes in

order to obtain accurate results, which comes at a high computational cost in terms of storage

and time. A common solution to this issue is the introduction of reduced order models (ROMs)

into the framework. In multi-query contexts for design, shape, or parameter optimization or in

applications requiring real time parameter estimation, reduced order modeling provides
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invaluable speed-ups in computational time and reductions in system size. Successful

application of ROMs to FSI problems includes areas such as aeroelastics [17], [36] and

haemodynamics [13], [30].

The type of model order reduction we consider involves the development of a computational

model of the original partial differential equation (PDE) system using a finite element or finite

volume method, for example, and then simplifying the model by reducing the size of the

resulting linear system.

In what follows, we refer to the reduced computational model as the reduced order model (ROM)

and to the solution by the finite element method (FEM) of the FSI system as the full order model,

although one could consider an alternate method to develop the full order model. We focus on

projection-based methods for our ROMs, specifically proper orthogonal decomposition (POD)-

Galerkin ROMs, as they tend to be commonly used in fluid and mechanical engineering

applications.

1.1. Proper orthogonal decomposition

The POD method has been widely used in fluid mechanics problems [2], [3], [5], [6], [23], [50]

since its introduction by Lumley [37], producing a set of basis functions which are optimal in

terms of energy decomposition. Particularly, POD is employed to develop bases for time-

dependent problems, while greedy reduced basis methods are often applied for parameter-

dependent problems [31], [45]. In POD, the original variables of the FEM system, which may have

an intractably large number of degrees of freedom (DoFs) for a realistic computation, are

represented by a small number of dominant global modes that retain most of the energy present

in the original unknowns. This is accomplished through a spectral decomposition, extracting

eigenvectors or singular vectors of a particular full order representation of the original state

variables that correspond to dominant eigenvalues or singular values. Most often, the POD basis

functions are obtained by using the method of snapshots [50], as extracting eigenmodes directly

from the PDE system itself is expensive [35]. The eigenvalues or singular values must decay

rapidly enough so that the main behavior of the system may be represented by retention of the

dominant modes. For example, advection-dominated problems experience slow decay of

singular values, as represented by the Kolmogorov n-width; these problems require extra pre-

processing steps or the use of an alternative method to POD [42], [31]. Examination of these

types of problems is beyond the scope of this paper. For in depth explanations of POD and its

mathematical properties, see [8], [9], [11], [35], [45], [46].
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1.2. Application of reduced order models to fluid problems

In extending the Schur complement coupling technique for FSI problems, presented in [16], to

include a reduced order model on one or both subdomains, the main issues that arise will be on

the fluid side. Thus, we first review existing techniques and best practices for applying ROMs to

fluid problems. One of the foremost concerns for ROMs in a fluid context is pressure stability, as

it may not be guaranteed in the reduced system even if the original FEM spaces and formulation

satisfy inf-sup stability properties.

Frequently when implementing a POD ROM for an incompressible fluid, the pressure variable is

dropped; as the problem data used to produce the ROM is discretely divergence-free, the reduced

velocity space also enjoys divergence-free properties, negating the need for the pressure variable

[11], [31].

If the pressure is not included in the ROM but is needed for later calculations or results, it can be

recovered by solving a pressure Poisson equation, which requires an appropriate Neumann

boundary condition, or by solving the original momentum equation using a supremizer

enrichment technique [28]. Overall, the latter seems to enjoy a higher accuracy and does not

require additional boundary conditions, but its reliability is subject to an appropriate inf-sup

condition and other information relating to the velocity and supremizer spaces [28]. See [28] for

stability and error analyses of these approaches.

However, the need for pressure in physical simulations and applications, the inclusion of

pressure in some boundary conditions, and the possible loss of discrete divergence-free

properties in certain discretizations of the fluid equations suggest that retaining the pressure in

the reduced formulation may be necessary and often can provide better solutions [11].

Additionally, the use of Galerkin projection does not guarantee the fulfillment of the reduced inf-

sup condition [2].

For these reasons, we choose to retain the pressure in our formulation and briefly survey a few

common techniques used by others to address a stable approximation of the pressure. These

include the application of a stabilized projection method such as Chorin-Temam [34], [40], the

addition of extra stabilization terms into the formulation (such as [49] for Local Projection

Stabilization, [27] for Ghost Penalty stabilization, [2] for pressure-Poisson stabilized Galerkin,

[53] for variational multiscale), or the supremizer enrichment technique [40]. Additional

investigations into the stability of ROMs for Navier-Stokes equations (NSE) may be found in [1],

[24].
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We utilize the supremizer enrichment technique, as it is heavily used in ROMs for fluids, does not

require inserting additional terms for stability into the weak form, and is more flexible in terms

of geometric variation in the domain [5]. The exact supremizer method uses pressure basis

functions to compute supremizer functions which are guaranteed to satisfy inf-sup conditions,

while the approximate supremizer method uses pressure snapshots, obtained from solving a

FEM, to compute similar functions [25]. The approximate method is almost exclusively utilized in

practice, but stability properties can only be rigorously proven for the exact supremizer method

[5], [25]. For problems which are not parameter dependent, using the approximate method to

calculate the supremizers once during the offline stage produces acceptable results; more care

should be taken with parameter dependent problems [28]. Bounds on the inf-sup constant with

supremizers may be proven for parameter dependent problems, as seen in [38], [48], [47].

The following references provide a more detailed investigation into supremizer enrichment:

parameterized Stokes [38], [47], parameterized steady and unsteady NSE [18], [27], [38], pressure

recovery formulations [28], monolithic FSI formulations [6], [40], inverse problems for FSI [30],

[48], and alternate formulations and orthonormalization techniques [48]. In the context of

domain decomposition for the NSE, [44] presented initial comparisons between ROM and FEM

couplings with respect to performance and accuracy.

In this paper, we choose to compute separate POD modes for the pressure, following work such

as [7], [25]; alternative formulations utilize the velocity POD modes to compute a ROM for the

pressure [19], [39]. Caiazzo et al. offer a comparison of these types of formulations [11].

Several works provide helpful examinations of the properties and performance of formulations

that stabilize offline and online calculations and/or include supremizer enrichment. Ali et al. find

that stabilization in both the offline and online phases is most important for FE spaces for Stokes

and NSE which are not inf-sup compliant, such as , while for , supremizers

improve the accuracy of the pressure approximation [2], [3]. Stabile et al. provide a comparison

between a supremizer enrichment and a pressure Poisson equation method to stabilize the

pressure approximation in the NSE, finding that the supremizer approach may suffer from

numerical instabilities over long time integration scales [52].

1.3. Application of reduced order models to FSI systems

We briefly review existing methods and results for applying ROMs in the context of FSI.

The Chorin-Temam projection scheme, developed by Chorin and Temam in 1968 for fluid

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0050
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0250
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0050
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0250
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0280
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0380
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0480
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0470
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0380
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0470
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0180
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0270
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0380
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0280
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0060
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0400
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0300
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0480
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0480
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0440
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0070
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0250
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0190
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0390
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0110
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0020
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0030
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0520


7/26/24, 7:33 PMReduced order modeling for a Schur complement method for fluid-structure interaction - ScienceDirect

Page 6 of 46https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author

problems [12], [21], [54], is a semi-implicit scheme which allows the discrete velocity and

pressure spaces not to satisfy the inf-sup condition [34], [40]. However, Guermond et al. find

scenarios in which Chorin-Temam schemes have a stability dependent on the time step ∆t,

allowing spurious pressure modes to arise if ∆t becomes too small [20]. The Chorin-Temam

scheme has been extended to FSI problems using a Robin-Neumann coupling condition in works

such as [7], [40], [41]. It requires an explicit step to compute fluid velocity and an implicit step to

compute fluid pressure and structural displacement which iterates until convergence. For an

alternative approach to implicitly coupled FSI problems with black box fluid and structural

solvers, see [55].

In contrast, the scheme presented in this paper requires no iterations between subproblems; it is

“one-shot” in the sense that once the Schur complement equation is solved for the Lagrange

multiplier (LM) and pressure, each of the fluid and structure subdomain problems may be

updated separately at each time step.

Previous works for ROMs for FSI problems include applications such as investigation of a

haemodynamics problem using a reduced version of the PDE system [13], reduced modeling of

an aircraft configuration by interpolating the angle between two POD subspaces for different

Mach numbers [36], an inverse FSI problem [30], and a stabilized formulation in the case of a

linearized compressible inviscid flow and a flat linear von Kármán plate [26]. Additional works

include an investigation into three different ROM formulations without supremizers [11], a

monolithic scheme employing a LM [40], a fictitious domain approach [35], parametric coupling

utilizing the steady Stokes equations [32], Chorin-Temam schemes [7], [40], [41], and a FETI-local

method with additional penalty weight added [33]. In the latter, domain decomposition is used

as a tool to facilitate parallel computation.

For our ROM development, we retain the pressure variable in our formulation and calculate

separate POD modes, choosing to address the instability issues through supremizer enrichment.

We investigate the unsteady Stokes equations coupled with the linear elasticity equations using a

partitioned approach. Our coupling scheme differs from the other FSI ROM works listed above, as

we follow the Lagrange multiplier technique for FSI problems outlined in [16], which is based on

the Schur complement approach of [43], [51]. Our formulation is strongly coupled, as a precise

expression of the LM is calculated using a Schur complement equation and then passed to each

subdomain solver, instead of requiring iterations between subdomains to establish interface

boundary conditions.

For some iterative methods, one has to serially compute the solutions for each subdomain and
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iterate between the subdomains to solve for the interface condition at each time step. The Schur

complement method, on the other hand, allows for parallel computation of the subproblems at

each time step as the Schur complement equation provides a “one-shot” solution to the interface

boundary condition. We expect that the advantages of parallel computation of decoupled

subproblems and a non-iterative solve for the interface boundary condition will prove beneficial

in general, provided the Schur complement equation is equipped with an appropriate

preconditioner. Additionally, the use of strongly coupled subproblems generally has better

stability properties, which is useful when solving problems plagued by the added mass effect.

See [14], [16] for more details. The main contribution of this work is the extension of the

partitioned coupling scheme in [16], which requires no subdomain iterations, to the more robust

framework of coupling a ROM on one subdomain to a ROM or a FEM on another subdomain. We

demonstrate this method's performance by showing its ability to obtain solutions as accurate as

the FEM-FEM coupling with reduced expenses in computational time.

The rest of the paper is constructed as follows. In Section 2, we give the model equations and

weak form, followed by a brief review of the partitioned method in the case of a FEM-FEM

coupling in Section 3. Section 4 overviews our POD-Galerkin strategy for ROM development, as

well as the formulation of the supremizer functions utilized. We combine this ROM model with

the coupling scheme to obtain the ROM-ROM coupling formulation in Section 5. We note that our

formulation applies in a straightforward fashion to the coupling of a FEM with a ROM as well, but

for the sake of brevity we omit that formulation in this paper. However, a FEM-ROM coupling

may be desirable in some applications [14], [15], [44]. Lastly, we present and discuss numerical

results which confirm the method's accuracy and efficiency in Section 6, followed by our

conclusions and ideas for extensions of this work in Section 7.

2. Model equations

In this section, we provide the strong and weak form of our FSI model equations, coupling a

linear elastic structure to an incompressible Newtonian fluid. We make two simplifications to

ease the development of the partitioned method, focusing on the linear Stokes equations in the

context of a fixed domain. Extensions to nonlinearity and moving domains may be considered in

future work.

For , let  refer to the physical fluid and structure domains with Lipschitz

continuous boundaries, respectively. The interface between the non-overlapping subdomains is

denoted by γ. With subscripts “N” and “D” referencing portions of the boundary on which
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Neumann and Dirichlet boundary conditions are prescribed, domain boundaries are denoted by

, where  and . We assume the measure of  and

 is nonzero on both domains  and denote outward normal vectors to  by , for

. Let T denote a given final time and denote the temporal domain by .

The following spaces are needed for the formulation. Let   denote the space

of square integrable functions on  , with inner product and norm denoted by

. Likewise,  is the space of functions in

 whose gradients are also square integrable. Duality pairings between  and

 or  and , for a subdomain or interface ω, are denoted by .

The three unknowns in our FSI system are the fluid velocity , fluid pressure , and

structural displacement . Body forces  and Neumann conditions  are

provided for each subdomain, as well as positive constants , representing fluid

density, structural density, fluid viscosity, and the Lamé parameters. Denoting the rate of strain

tensor by , the continuous FSI system may be posed as follows.

Find  such that

We provide appropriate initial conditions, as well as both Dirichlet and Neumann boundary

conditions

The two interface conditions on γ enforce the continuity of velocity and the continuity of stress

force,

Define the following function spaces for velocity, pressure, and displacement:

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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We enforce the continuity of velocity equation (2.5) as a constraint in the system using a

Lagrange multiplier (LM) in , which yields the following weak form.

Find  such that

We observe that the LM g represents the interface stress force (2.6); namely, on γ,
. It can be shown that the semi-discrete

saddle point problem arising from this weak form is well-posed [16].

3. Partitioned method for FEM-FEM coupling

In this section, we briefly review the fully discretized formulation of the FEM and our partitioned

scheme for the FEM-FEM coupling. More details and analysis may be found in [16]. We use

standard discrete FEM spaces for , noting that the LM subspace  used is a subspace of

 as higher regularity is needed for well-posedness of the fully discrete formulation.

Discretizing (2.8) in time with first order approximations and posing it over the finite element

spaces results in a linear system.

(2.7)

(2.8)

(3.1)

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0160
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0160
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Above, mass and stiffness matrices are given by , and  holds both the body forces and

Neumann boundary terms for . Pressure and divergence terms are encapsulated in P

and L, and the G matrices represent the interaction between the interface and subdomain bases,

where , and  are the FEM scalar basis functions for the full order velocity,

displacement, and LM spaces, respectively. Then  have a block diagonal structure due to

our ordering of the DoFs: for ,

The saddle point system associated with this linear system is also well-posed, see [16] for details.

Our formulation requires grouping the pressure with the LM and appropriately blocking the

equations of (3.1). With

we obtain

where

(3.2)

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0160
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Solving the first two equations of (3.2) for  and  and substituting into the constraint

equation of (3.2) yields

Equation (3.3), the Schur complement equation, is at the center of our method. Letting S be the

matrix on the left hand side, we can solve (3.3) for  once at each time step when S is full

rank. Plugging  back in to the first two equations of (3.2) effectively decouples the system

and allows for the independent solution of  and .

As a motivation for the use of reduced order modeling, consider the matrix sizes involved in the

Schur complement equation and subdomain solves. Denote by  the total

number of DoFs for each variable. Then the matrices  are of size  and ,

respectively, and the constraint matrices  have dimension  and

. Thus, S is a  ×  matrix. For high-fidelity FEM

computations, the number of DoFs may become intractably large for solving these linear

systems. ROMs present a solution to this issue by retaining only dominant modes of the system,

allowing a significant size reduction in the linear system and thereby computational speedups as

well.

4. ROM construction and implementation

We utilize a projection based reduced order model, using a technique known as proper

orthogonal decomposition (POD) to create the reduced basis. Before presenting our coupled

reduced order models for the FSI system, we begin with a brief discussion on how to construct

this projection-based ROM in two stages: POD and Galerkin projection [23], [50].

4.1. General setting: POD and Galerkin projection

Consider a generic full order model, expressed by , with  and . In

the method of snapshots, a high-fidelity full order model is solved over a collection of times

and/or parameter values. The solution vectors  for  are arranged as columns of a

(3.3)

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0230
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0500
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matrix , referred to as the snapshot matrix. In general, we assume . We compute

the singular value decomposition (SVD) of the snapshot matrix, . For our

formulation, we follow the approach in [22] and only calculate the SVD on the rows of X

corresponding to non-Dirichlet nodes, padding the output matrix U with zeros in Dirichlet rows.

The reduced basis space is then defined by the first r columns of U, for . The number of

columns retained is determined by an energy criterion: we choose a δ such that  is the

desired proportion of the snapshot energy captured in the basis. We then solve for the smallest

number of columns r that satisfies the equation

We refer to the matrix , containing the first r columns of U, as the reduced basis matrix.

The columns of , known as the POD modes, are spatially and temporally independent,

orthogonal, and globally defined, instead of locally defined as with traditional FEM basis

functions.

For this method to be effective, the r dominant singular values corresponding to the first r left

singular vectors are assumed to contain most of the energy of the system. POD may not be the

method of choice when the energy decays slowly, but work has been done to make POD more

robust in these cases [31], [42].

We may consider the more general case of non-homogeneous Dirichlet boundaries, by defining a

vector  that contains the Dirichlet boundary information at appropriate nodes and is

zero elsewhere. Once the reduced basis matrix  is constructed, we use the ansatz

, where  is the full order variable and  is the reduced order

variable. Recall that  contains zeros on each Dirichlet row, so that  is zero at each row

corresponding to a Dirichlet node. Substituting this expression into , multiplication

by  projects the equations into the reduced-dimensional space, yielding the reduced system

4.2. Supremizer enrichment: inf-sup stability

Stability of our coupled problem in its reduced formulation, and in particular the fluid portion, is

a necessary component. For the reduced order formulation, the LBB condition satisfied by the full

order spaces is not guaranteed to be satisfied by the Galerkin projection onto the reduced spaces.

(4.1)

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0220
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0310
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0420
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The following technique is employed to address the issue of instabilities due to violations of the

discrete inf-sup condition.

Following works such as [2], [5], [6], [25], [40], [47], [48], we use the approximate supremizer

enrichment method. As our problem is time dependent, and varying the parameters is not

considered, the approximate method allows us to calculate the supremizer basis functions once

during the offline stage at lower cost and also provides more variability in picking the size of the

supremizer basis. Although this method does not allow us to rigorously prove inf-sup stability

(see [5]), we will provide an examination of the performance of formulations with and without

supremizers in the numerical results section and observe that the approximate supremizer

method provides the needed stabilization for our problems.

The approximate supremizer method employs snapshots for the pressure and LM terms to create

supremizer functions for the velocity and displacement that can be added into the velocity and

displacement spaces to enrich them. Specifically, using the snapshots  collected for

the pressure and Lagrange multipliers during the m time steps of the offline stage, the

supremizer functions  are defined as [5]:

For each snapshot, we solve (4.2) to create velocity and displacement supremizer functions. Of

course, (4.2) may be decoupled to solve for the velocity and displacement supremizer functions

separately. Once the functions  are obtained, they are added as basis functions into

the velocity and displacement spaces and orthogonalized against the existing POD basis

functions. If  are the POD basis functions for velocity, then the set

 represents the basis space with supremizers added, and we

then perform modified Gram-Schmidt orthogonalization on this set of vectors to create the final

reduced basis.

5. ROM-ROM coupling

We now derive a system similar to (3.2) for a coupled ROM-ROM instead of FEM-FEM. First,

consider implementing a reduced order model on . Using the process described in Section 4.1,

we construct a reduced order basis matrix  such that the FEM coefficients for the

displacement variable, η, may be expressed as: , where 

is the reduced time-dependent vector of solution coefficients for the displacement and

(4.2)

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0020
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0050
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0060
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0250
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0400
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0470
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0480
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0050
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0050
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 contains the possibly time-dependent Dirichlet boundary values in rows

corresponding to Dirichlet nodes, and zeroes elsewhere. Snapshots may be constructed by

solving the coupled FEM-FEM problem over  and  or only solving the structural problem on

, which requires providing a guess for the boundary conditions on γ.

The matrix  is of dimension , where . Once the final solution  is

obtained, we may recover the full order solution η by computing . Likewise, we

may develop a reduced order basis for the velocity and pressure  and express the full

order coefficients as . Note that the ansatz for

the pressure does not include a vector  for boundary information, as Dirichlet boundary

conditions are only provided for displacement and velocity.

For our formulation, we also must reduce the LM, as it is coupled with the pressure and will

overconstrain the problem if left at its full size. To this end we develop a POD basis, encapsulated

in , to express the LM as . We choose to collect snapshots of the LM term and

conduct POD on them separately. Note that we solve the coupled formulation in the offline stage,

which produces the LM as a variable at each time step. If a different offline procedure was used

that did not solve for the LM explicitly, snapshots could be constructed from a combination of the

velocity and pressure snapshots or from the displacement snapshots.

In formulations that include supremizers, we solve (4.2) for  for each time step ,

, and add these into the existing basis  and , re-orthogonalizing to get the new

basis. With a slight abuse of notation, we let  refer to the entire reduced basis in either

scenario with or without supremizers, noting that difference in the basis size does not affect the

general form of the problem.

Now, with an expression for each of , and g in terms of their reduced order coefficients, we

develop a method for coupling a ROM on  with a ROM on  below. The extension to a FEM-

ROM coupling would be straightforward and perhaps desired in cases where a high-fidelity

expression is needed in parts of the domain; however, we only display the ROM-ROM case here

for brevity. We substitute the relationships ,

 into (3.1) and project each equation appropriately.

Of course, one could also substitute the reduced order expressions into the continuous equations

and then discretize in time, with the same result.
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Define reduced order matrices, and then form block matrices as before:

The system becomes:

As in the FEM-FEM coupling, we use the change of variables

. Let  denote the right hand sides

of the above equations, and define the matrices .
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With these, the system may be rewritten as:

The first two equations of (5.1) may be used to solve for , and substituting the

results into the third equation results in a similar form of the Schur complement system as in the

FEM-FEM case:

At each time step, then, we solve the Schur complement equation (5.2), and then use the

resulting  to decouple the first two equations of (5.1), solving independently and without

iterations between subdomains. We note here that any matrix solves involving the Schur

complement matrix may be performed using the conjugate gradient algorithm without having to

assemble the Schur matrix directly. However, as all matrices are independent of time, one could

also assemble once and perform a factorization at the initial step, using that to solve the system

directly at all following time steps.

Our reduced size matrices  are of dimension  and , and the

Schur complement matrix is a square matrix with  rows. In the next section, we

present numerical results that show the computational speedups gained by solving these smaller

systems without sacrificing accuracy.

6. Numerical results

To demonstrate the performance of our coupled formulation, we compare the results of applying

our partitioned method to the ROM-ROM system (5.1) and to the FEM-FEM system (3.2) using

two numerical tests.

Let  represent full size FEM coefficient vectors and ,  be their

reduced order counterparts of size , and  respectively. To simplify notation,

we drop the subscript R from the sizes, letting  refer in this section to the reduced

basis sizes examined. When supremizer enrichment is used, the supremizer variables for

displacement and velocity are denoted by  of size . For the FEM-FEM solution,

the  pair is used for velocity and pressure,  for displacement, and  for the LM.

(5.1)

(5.2)
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6.1. Analytical solution

We first consider a manufactured solution to the FSI system (2.1)-(2.6), as presented in [4] and

solved also in [29]. This simplified problem setting allows more isolated investigation into the

performance of each ROM and their coupling without additional complications posed by the

physical setting. On  and , define the velocity

, pressure p, and displacement  as:

All parameters are set to 1, and non-homogeneous Dirichlet boundaries are set on each boundary

except the side walls of , where appropriate Neumann conditions are imposed.

The error in the ROM solution can be traced to two sources: the ability of the snapshots to

accurately capture the true solution, and the performance of the ROM in reproducing the

behavior of the snapshots. As techniques for obtaining the best snapshots are beyond the scope

of this paper, we focus our attention on the second source of error, comparing the ROM solution

to the offline FEM solution from which it was derived. The snapshots used are the solutions to

the FEM-FEM coupled problem at each time step using the partitioned method presented in

Section 3, with , and . This yields a full size system of

8450 DoFs for the velocity and displacement, 1089 DoFs for pressure, and 66 DoFs for the LM. As

the number of DoFs for the LM is less than the number of snapshots, we only have 66 singular

values shown for the LM in Fig. 1(b), whereas each other variable has 101 singular values as their

snapshot matrices contained more rows than columns. The  errors between the FEM solution

and the exact solution are on the order of  for velocity and displacement and  for

pressure. The  errors for velocity and displacement are on the order of . We will see that

the application of the ROM to each subdomain yields a significant reduction in the number of

DoFs while producing similar results.

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0040
https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0290
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Fig. 1. Energy and singular value decay for the manufactured solution.

To begin our analysis, we observe the behavior of the singular values of each variable's snapshots.

For POD to be applied, the singular values of the snapshots must decay quickly enough so that

most of the energy is captured in a small subset of the modes. In Fig. 1, we see that the singular

values do decrease sharply, and over 99.999% of the snapshot energy is contained in just the first

mode for each variable (Fig. 1(a)). Singular values of the displacement supremizers are not

shown as they experience the same rapid decay as the other variables, and they will later be

shown to be superfluous in the formulation. As the singular values of the pressure and LM decay

similarly (Fig. 1(b)), we simplify the number of basis sizes to consider varying by setting

 in all of the following calculations.

In analyzing the performance of our scheme, we examine the error between a ROM-ROM or

FEM-ROM solution and the FEM-FEM solution for each variable. We denote by  the projection

of the ROM velocity coefficients back into the FEM space; i.e.,  for ROM

coefficients . We then measure errors between  and  at a given time t, where  is the

reference solution computed by the FEM-FEM coupling. Projections  and  are similarly

defined so that the  errors at time t are:

In the plots, we leave off the notation of the subdomain  on the norms as the appropriate

https://ars.els-cdn.com/content/image/1-s2.0-S0021999124005308-gr001_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0021999124005308-gr001.jpg
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subdomain will be clear from context. To examine the effect of supremizer enrichment on the

accuracy and stability of the ROM-ROM formulation, we turn to Fig. 2 and examine the  errors

versus time over the interval .

Download: Download high-res image (739KB)

Download: Download full-size image

Fig. 2. L  errors over time for the manufactured solution. Pressure and LM reduced basis sizes are

fixed at N  = N  = 10. Subfigures (a), (c), (e) show supremizers used in addition to the POD basis

2

p g
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functions, while subfigures (b), (d), (f) show supremizers substituted in place of POD basis

functions. (For interpretation of the colors in the figure(s), the reader is referred to the web

version of this article.)

For each subplot, we fix . In the left column, each formulation sets 

and examines the effect of adding supremizer basis functions to the POD basis for either velocity,

displacement, or both. The total number of supremizers is chosen to be  to match

the number of total constraints. In the right column, we fix the size of the enriched velocity and

displacement spaces,  and  at 25. Thus, any supremizers that are utilized are

substituted for POD basis functions.

Overall, formulations in which supremizers are added to the POD basis (Figs. 2(a), 2(c), 2(e))

instead of substituted for POD basis functions (Figs. 2(b), 2(d), 2(f)) perform better, as would be

expected since the overall basis size is increased. Supremizers influence most the accuracy of the

pressure; Fig. 2(e) shows that adding supremizers to only the displacement space does not

change the behavior of the pressure; adding supremizers to both spaces improves the errors by

several orders of magnitude, and adding supremizers to only the velocity improves still more. As

the displacement has no direct interaction with the pressure, it needs no extra stabilization with

respect to the pressure space getting too large. In general, it seems some supremizers must be

utilized in the velocity space for the pressure errors to be reasonable, and the more supremizers

that are used in the velocity space, the better the pressure behaves. However, we may also

observe that adding supremizers does not greatly affect the behavior of the velocity or

displacement (Figs. 2(a)-2(d)). The increases in error by orders of magnitude displayed in

Figs. 2(b) and 2(d) may be traced to the fact that the dimension of the POD basis (  or ) in

these scenarios is only 5, due to the fact that 20 supremizer basis functions were substituted for

POD basis functions. For this problem, the POD basis needs to retain a minimum of roughly 15

modes to see the optimal error size for velocity and displacement, as can be seen by the yellow

line representing  in the same subfigures.

Additionally, we observe that all ROM formulations show stability over time. The one exception

at first glance looks to be the displacement (Figs. 2(a) and 2(b)), but as the initial errors are close

to machine precision, this may be due to the accumulation of time integration errors from using

Backward Euler to update the subsystems rather than instability inherent in the coupled

formulation.

Based on Fig. 2, we choose to focus on enriching only the reduced velocity space by adding
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supremizers into the POD basis. We continue to examine the effect of supremizers on the error in

Fig. 3. The following plots now consider the error between the ROM and FEM solutions at the

final time . In each subplot, we fix the total size of the enriched, reduced velocity

subspace  at 100. Each subplot demonstrates a different combination of  and

, and we observe the effect on the pressure and velocity errors of varying the

proportion of POD velocity basis functions to supremizer basis functions. As the displacement

error is much more stable with respect to the basis sizes, we look to the pressure and velocity

errors as representative of the behavior of the problem as a whole. Consistently among each of

the three subfigures, formulations that weigh heavily in favor of POD basis functions, utilizing

few to no supremizer functions, perform poorly in terms of pressure error. As the number of

supremizers increases, the pressure error tends to improve. The only exception to this is the case

with ; as we have previously observed, the POD velocity basis needs to retain

at least 15 modes for best performance. Velocity error is less affected by the use of supremizers;

as long as more than 5 POD basis functions are retained, all of the velocity errors are on the order

of , with even the “worst case” scenario of  resulting in a velocity error only one

order of magnitude greater than the rest. Overall, we observe from these figures that a mixed

balance between velocity and supremizer functions seems to achieve the optimal errors for this

scenario. Fig. 3(c) displays the “best” results, in the sense that errors of similar sizes can be

obtained while using smaller basis sizes for the displacement, pressure and LM.
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Fig. 3. Pressure and velocity L  errors for the manufactured solution for N  + N  = 100.

Fig. 4 examines the behavior of the velocity and pressure errors with respect to the size of the

POD velocity basis . Displacement errors behave similarly to velocity errors, and are therefore

not displayed. Without supremizers, the errors experience large spikes at smaller values of ,

as seen in Figs. 4(a)-4(b). The only cases which do not experience the large spikes are those in

which . In the next row, supremizers are added to the velocity basis with

. For both “small” (4(c)) and “medium” (4(d)) values of , the spikes in the error

disappear. Again, although only pressure is plotted, the same improvement in errors is

experienced by the velocity and the displacement as well. Lastly, as the pressure and LM are

grouped in our formulation, we consider using  in Figs. 4(e)-4(f). Without

supremizers, the smallest pressure error was ; adding supremizers gives values on the

order of  or . The best case scenario is when , and the seemingingly

oscillatory nature of the errors is all within the same order of magnitude (compare the y-scale on

2
u s,u
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Figs. 4(b), 4(d), and 4(f)).

Download: Download high-res image (798KB)

Download: Download full-size image

Fig. 4. L  errors vs velocity POD basis size for the manufactured solution. Velocity and pressure

errors without supremizers are in subplots (a) and (b). Pressure errors with supremizers are in

subplots (c)-(f). Smaller basis sizes N  for formulations with supremizers are shown in subplots

2

p
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(c) and (e); larger N  in (d) and (f). No supremizers are utilized in the displacement space; i.e.,

N  = 0.

Lastly, since the formulation hinges on solving the reduced order Schur complement equation,

we want to observe the conditioning of this system. See [16] for a discussion on and bounds for

the condition number of the Schur complement matrix in the FEM case. Fig. 5 shows the

condition number of the Schur complement matrix in 5(a) and the preconditioned Schur

complement matrix in 5(b) with respect to , for the case . Without

preconditioning, the worst condition numbers are on the order of 10 , and using the fluid half of

the Schur complement matrix as a preconditioner reduces the condition number even more. In

either scenarios, we observe numerically that the system is not ill-conditioned in practice.

Download: Download high-res image (308KB)

Download: Download full-size image

Fig. 5. Condition numbers of Schur complement matrix (a) and pre-conditioned Schur

complement matrix (b) for the manufactured solution, for N  = N  + N .

6.2. Blood flow example

The second numerical test considered is a pressure wave propagation which demonstrates the

added mass effect (see [10]). We consider both a ROM-ROM and a FEM-ROM coupling for this

problem, dedicating most discussion to the ROM-ROM coupling. The domain considered is

 and , with parameters

. These parameters are

representative of a blood flow problem, and all units are given in the centimeter-gram-second

p

s,η

4

s,u p g
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(CGS) system. On , we enforce homogeneous Dirichlet conditions at  and , and zero

traction forces on the upper boundary . For the fluid domain we impose zero traction

force on the right boundary , homogeneous Dirichlet on , and on the left boundary we

implement a Neumann condition given by a sinusoidal pressure that reaches a maximal

amplitude of  over  seconds, namely . The mesh

size is  with  and . This domain yields

, and 482 DoFs for velocity, displacement, pressure, and LM respectively.

Additionally, a zeroth-order term  is added to the structural equation (2.3) for .

6.2.1. ROM-ROM coupling

The maximum reduced basis size for each variable is 120 since the snapshot matrices contain

120 columns, corresponding to the total number of time steps. As in the manufactured solution,

we reduce the LM to the same size as the pressure, i.e., . Using a full size LM space

produces unreasonably large errors. Likely, this is because the size of the joint pressure/LM is too

large in comparison with the displacement/velocity, causing a discrete inf-sup violation.

In Fig. 6, we check that the snapshot matrix has singular values decaying quickly enough to

justify the use of POD. Fig. 6(b) shows that each of the four variables does experience the

requisite decay; after roughly 50 modes, the singular values are static. Viewed from the

perspective of energy retained by the basis size, we see in Fig. 6(a) that all variables retain

roughly 90% of the energy by 3 modes, and approximately 100% by 6 modes. Thus, we conclude

that implementing POD ROMs for these variables is valid.
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Fig. 6. Energy and singular value decay for the blood flow problem.

In Fig. 7, Fig. 8, we compare profiles of the pressure and the vertical solid deformation at times

t=0.005, 0.010, and 0.015. In the top rows are profiles obtained using the FEM-FEM coupling,

contrasted with the ROM-ROM coupling in the second rows with

. No supremizers are used here as the POD basis sizes used

are large. The third rows show the difference between the ROM-ROM and FEM-FEM solutions,

with the pressure on the order of  or  and the displacement on the order of  or

. The FEM-FEM results may be compared to similar results in papers such as [10].
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Fig. 7. Pressure profiles at t=0.005, t=0.01, and t=0.015 for FEM-FEM and ROM-ROM couplings for

the blood flow problem. ROM-ROM results shown for N  = 90,N  = N  = 40,N  = 50. Subfigures (g)-

(i) show the difference between the ROM and FEM solutions, with the y-axis on the scale of 10

or 10 .
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Fig. 8. Profiles of the solid deformation at t=0.005, t=0.010, and t=0.015 for FEM-FEM and ROM-

ROM couplings for the blood flow problem. ROM-ROM results shown for

N  = 90,N  = N  = 40,N  = 50. All displacements are magnified by a factor of 5. Subfigures (g)-(i)

represent the difference between the ROM and FEM solutions, with the y-axis on the scale of

10  or 10 .

Next, we quantify the errors by observing the behavior of the  errors with respect to the

velocity POD basis size . As in the manufactured solution, displacement errors behave

similarly to the velocity errors but are less affected by changes in basis size, so we omit those

plots here. The first row of Fig. 9 shows velocity and pressure errors without supremizers (9(a)-9

(b)). The error spikes observed without supremizers are remedied by adding 

supremizers to the velocity space, as observed in Figs. 9(c)-9(d). Clearly, supremizers are needed

to address both the velocity and pressure errors, although we note that formulations with a

“small” pressure basis size ( ) did not experience the spikes originally. Figs. 9(d)-9(f)

u p g η

−12 −13

https://ars.els-cdn.com/content/image/1-s2.0-S0021999124005308-gr008_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0021999124005308-gr008.jpg


7/26/24, 7:33 PMReduced order modeling for a Schur complement method for fluid-structure interaction - ScienceDirect

Page 28 of 46https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author

show that any case utilizing supremizers performs rather similarly with regards to the pressure

error and remedies the spikes seen without supremizers. Using  (9(d) and 9(f)), no

meaningful gains are observed by the addition of supremizers to the displacement space. Again,

the best behavior is observed when  in (9(e)), and the size of the displacement

space  still does not meaningfully affect results. Unlike the manufactured solution, we observe

that the larger pressure reduced basis sizes  produce the best results for both

velocity and for pressure. For example, with , roughly  is required to

reach the best errors for that formulation, whereas for , only approximately 30

POD basis functions are needed for reaching the lowest error attainable by that formulation. In

general, we see a trade-off: increasing  will result in a smaller error, but it requires a larger 

to reach that optimal error.
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Fig. 9. L  errors for velocity and pressure with respect to N  for the blood flow problem. The

legend in subfigure (a) applies to each subfigure. Subfigures (a) and (b) display results without

any supremizers; while subfigures (c)-(f) include different combinations of supremizers.
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To further examine the effect of the supremizers, Fig. 10 displays pressure and velocity errors for

various combinations of  and , such that . We fix

, and . Again, we focus on only utilizing supremizers in the

velocity space. From the plot, we observe that weighting the formulation heavily in favor of

supremizers affects both velocity and pressure error negatively; the best errors are achieved with

a combination of POD and supremizer functions in the reduced velocity space. This agrees with

our findings in the manufactured solution; using a combination of POD and supremizer functions

is likely the best choice, but the proper balance between them is problem dependent. Another

point of interest in this plot is the sensitivity of the velocity in this problem; for the

manufactured solution in Fig. 3 the velocity errors are all within an order of magnitude. In this

blood flow example, using  produces much larger errors for the velocity, showing that it

takes more POD modes in this problem to capture the main behavior of the velocity than the

manufactured solution required.
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Fig. 10. Pressure versus velocity errors for the blood flow problem, shown for combinations of

N  + N  = 100. N  = N  = N  = 50; N  = 0.

Fig. 11 displays Pareto plots, where each subplot shows the  error versus runtime for

displacement (11(a)), velocity (11(b)), and pressure (11(c)). We show the best scenarios from

Fig. 9, namely, the case where  and , and each point on the scatterplot

represents a different value of . For this particular problem, the right hand side is precisely

zero, and so we are able to save time by not constructing the right hand side at each time step,

giving lower average run times. With the FEM time around 40.7 seconds, we see that the ROM

solutions are computed in anywhere from 1.7 to 6 seconds, which is about 4.2% to 14.7% of the
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time of the FEM formulation. As observed in Fig. 9, the formulation with  yields

the best results in terms of error. These Pareto plots support the use of ROMs: the ROM-ROM

system produces similar results to the FEM-FEM solution while significantly reducing the size of

the algebraic system and the computational time required.
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Fig. 11. L  errors versus runtime for the blood flow problem. Each point represents a different

choice of N . Each variation is able to produce several reasonable/optimal errors in roughly 4-15%

of the original FEM time, 40.7 seconds.

Lastly, in Fig. 12 we again observe that the condition number of the Schur complement matrix

falls within a reasonable range. More work needs to be done to develop a better preconditioner

in this scenario, but even without the preconditioner the most ill-conditioned formulation

observed for reasonable basis sizes is on the order of 10 .
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Fig. 12. Condition numbers of Schur complement matrix for the blood flow problem, with

N  = N  + N .

6.2.2. FEM-ROM coupling

We briefly consider the performance of a coupled FEM-ROM model, using the full order model on

 and the reduced order model on . As in the ROM-ROM coupling, we reduce the LM space

and set , , and . The errors versus  are shown for each

variable in Fig. 13, and errors versus runtime are shown in Fig. 14. We employ the notation 

to refer to the displacement calculated by the FEM-ROM model, which is already in the full sized

FEM space, and calculate its error against the displacement  computed by the FEM-FEM

model. Comparing the FEM-ROM errors in Fig. 13 with those produced by the ROM-ROM model

for a similar configuration in Fig. 9, we see that the use of a ROM or a FEM on  produces very

similar results. Comparing the runtimes in Fig. 11, Fig. 14, both couplings provide computational

savings over the FEM-FEM model and achieve the same level of errors; however, the ROM-ROM

coupling is able to achieve these results in roughly 2-7 seconds while the FEM-ROM coupling

takes about 13-20 seconds. For this model, using a ROM on both subdomains with a large enough

 appears to be the optimal choice in terms of producing high quality approximations with the

shortest computational time.
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Fig. 13. L  errors with respect to N  for the blood flow problem, with a FEM on Ω  and ROM on Ω .

The notation η  in subplot (c) refers to the displacement calculated by the FEM-ROM model,

which is already in the full sized FEM space.
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Fig. 14. L  errors versus runtime for the blood flow problem, with a FEM on Ω  and ROM on Ω .

Each point represents a different choice of N . Each variation is able to produce several

reasonable/optimal errors in roughly 32-48% of the original FEM time, 40.7 seconds.

6.3. Parametric ROM-ROM coupling

Lastly, we examine the performance of a ROM-ROM coupling on a parametric problem. Using the

blood flow example described in Section 6.2, we set  and  and treat

the densities as the variable parameters. Letting , we create four sets of snapshots,

computed at the values , and . This yields a

total of 324 snapshots, on which we perform SVD to create the ROM bases. For the ROM-ROM

coupling, we use the test parameter value .
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We observe in Fig. 15 that the size of the displacement space has more effect here than in the

non-parametric ROMs. As expected, larger spaces produce better errors, and although the errors

are not as low as in the non-parametric ROMs, we still observe a decrease in errors and

stabilization from the supremizers added into the velocity space. Likely, these estimates would

be improved by enriching the snapshots to better sample the parameter space, which could be

examined in future work.
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Fig. 15. L  errors with respect to N  for the parametric blood flow problem.

7. Conclusions

We have extended the Schur complement technique for full order FSI problems developed in [16]

to a more flexible formulation for coupling a projection-based ROM to another ROM or to a FEM.

This extension required us to utilize supremizers, and our numerical results show the necessity
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of using supremizers to enrich the reduced velocity space. However, we have observed that

supremizers in the reduced displacement space do not provide any additional benefit. In each of

our two numerical tests, we examined the dependence of errors on various basis sizes as well as

the relationship between the velocity POD basis size and the supremizer basis size. Overall, our

ROM-ROM and FEM-ROM coupled formulations produce results that agree well with the FEM-

FEM solution in a shorter computational time and with a large reduction in the overall system's

size. The “optimal” basis sizes are problem dependent; the manufactured solution performs best

with a smaller pressure basis, while the blood flow problem requires a larger pressure basis to

reach the lowest errors, for example. These results are promising for solving more challenging FSI

problems, as we have also observed numerically that the Schur complement matrix is still well-

conditioned in the ROM-ROM case. For the numerical example presented here, we observed that

FEM-ROM coupling did not provide additional accuracy as compared to the ROM-ROM model;

however this is likely problem dependent and a FEM-ROM model may prove useful in problems

where the ROM is unable to accurately capture the dynamics of the subdomain.

Future directions for research include extending this Schur complement partitioned method to

FSI problems involving the Navier-Stokes equations on a moving domain, which will require the

use of hyperreduction to deal with the nonlinearity. This method also may be applied to different

FSI systems, such as the Stokes-Biot model for coupling a fluid to a poroelastic structure.

Additional attention could be given to using ROMs in the predictive regime instead of solely

reproductive results, including a deeper examination into the use of ROMs for parametric

problems.
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