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Abstract

We present a non-iterative Schur complement method for the solution of a fluid-structure
interaction problem, employing projection-based reduced order models (ROMs) on one or both
subdomains. The formulation is strongly coupled, using a Lagrange multiplier to represent the
interfacial stress, and solving a Schur complement equation allows for the independent solution
of the subdomain equations at each time step. The inclusion of ROMs in this scheme provides a
more robust framework and makes the technique more computationally appealing. Utilizing the
supremizer enrichment technique, we offer detailed investigations into the performance of this
method with respect to the use of supremizers and with respect to the basis sizes of the reduced
order variables. Results indicate that the ROM-ROM coupled formulation yields results that agree
well with the full order solution in a shorter computational time and with a large reduction in
the size of the algebraic system.
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1. Introduction

Fluid-structure interaction (FSI) problems often require solutions on highly refined meshes in
order to obtain accurate results, which comes at a high computational cost in terms of storage
and time. A common solution to this issue is the introduction of reduced order models (ROMs)
into the framework. In multi-query contexts for design, shape, or parameter optimization or in
applications requiring real time parameter estimation, reduced order modeling provides
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invaluable speed-ups in computational time and reductions in system size. Successful
application of ROMs to FSI problems includes areas such as aeroelastics [17], [36] and
haemodynamics [13], [30].

The type of model order reduction we consider involves the development of a computational
model of the original partial differential equation (PDE) system using a finite element or finite
volume method, for example, and then simplifying the model by reducing the size of the
resulting linear system.

In what follows, we refer to the reduced computational model as the reduced order model (ROM)
and to the solution by the finite element method (FEM) of the FSI system as the full order model,
although one could consider an alternate method to develop the full order model. We focus on
projection-based methods for our ROMs, specifically proper orthogonal decomposition (POD)-
Galerkin ROMs, as they tend to be commonly used in fluid and mechanical engineering
applications.

1.1. Proper orthogonal decomposition

The POD method has been widely used in fluid mechanics problems [2], [3], [5], [6], [23], [50]
since its introduction by Lumley [37], producing a set of basis functions which are optimal in
terms of energy decomposition. Particularly, POD is employed to develop bases for time-
dependent problems, while greedy reduced basis methods are often applied for parameter-
dependent problems [31], [45]. In POD, the original variables of the FEM system, which may have
an intractably large number of degrees of freedom (DoFs) for a realistic computation, are
represented by a small number of dominant global modes that retain most of the energy present
in the original unknowns. This is accomplished through a spectral decomposition, extracting
eigenvectors or singular vectors of a particular full order representation of the original state
variables that correspond to dominant eigenvalues or singular values. Most often, the POD basis
functions are obtained by using the method of snapshots [50], as extracting eigenmodes directly
from the PDE system itself is expensive [35]. The eigenvalues or singular values must decay
rapidly enough so that the main behavior of the system may be represented by retention of the
dominant modes. For example, advection-dominated problems experience slow decay of
singular values, as represented by the Kolmogorov n-width; these problems require extra pre-
processing steps or the use of an alternative method to POD [42], [31]. Examination of these
types of problems is beyond the scope of this paper. For in depth explanations of POD and its
mathematical properties, see [8], [9], [11], [35], [45], [46].
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1.2. Application of reduced order models to fluid problems

In extending the Schur complement coupling technique for FSI problems, presented in [16], to
include a reduced order model on one or both subdomains, the main issues that arise will be on
the fluid side. Thus, we first review existing techniques and best practices for applying ROMs to
fluid problems. One of the foremost concerns for ROMs in a fluid context is pressure stability, as
it may not be guaranteed in the reduced system even if the original FEM spaces and formulation
satisfy inf-sup stability properties.

Frequently when implementing a POD ROM for an incompressible fluid, the pressure variable is
dropped; as the problem data used to produce the ROM is discretely divergence-free, the reduced
velocity space also enjoys divergence-free properties, negating the need for the pressure variable
[11], [31].

If the pressure is not included in the ROM but is needed for later calculations or results, it can be
recovered by solving a pressure Poisson equation, which requires an appropriate Neumann
boundary condition, or by solving the original momentum equation using a supremizer
enrichment technique [28]. Overall, the latter seems to enjoy a higher accuracy and does not
require additional boundary conditions, but its reliability is subject to an appropriate inf-sup
condition and other information relating to the velocity and supremizer spaces [28]. See [28] for
stability and error analyses of these approaches.

However, the need for pressure in physical simulations and applications, the inclusion of
pressure in some boundary conditions, and the possible loss of discrete divergence-free
properties in certain discretizations of the fluid equations suggest that retaining the pressure in
the reduced formulation may be necessary and often can provide better solutions [11].
Additionally, the use of Galerkin projection does not guarantee the fulfillment of the reduced inf-
sup condition [2].

For these reasons, we choose to retain the pressure in our formulation and briefly survey a few
common techniques used by others to address a stable approximation of the pressure. These
include the application of a stabilized projection method such as Chorin-Temam [34], [40], the
addition of extra stabilization terms into the formulation (such as [49] for Local Projection
Stabilization, [27] for Ghost Penalty stabilization, [2] for pressure-Poisson stabilized Galerkin,
[53] for variational multiscale), or the supremizer enrichment technique [40]. Additional
investigations into the stability of ROMs for Navier-Stokes equations (NSE) may be found in [1],
[24].
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We utilize the supremizer enrichment technique, as it is heavily used in ROMs for fluids, does not
require inserting additional terms for stability into the weak form, and is more flexible in terms
of geometric variation in the domain [5]. The exact supremizer method uses pressure basis
functions to compute supremizer functions which are guaranteed to satisfy inf-sup conditions,
while the approximate supremizer method uses pressure snapshots, obtained from solving a
FEM, to compute similar functions [25]. The approximate method is almost exclusively utilized in
practice, but stability properties can only be rigorously proven for the exact supremizer method
[5], [25]. For problems which are not parameter dependent, using the approximate method to
calculate the supremizers once during the offline stage produces acceptable results; more care
should be taken with parameter dependent problems [28]. Bounds on the inf-sup constant with
supremizers may be proven for parameter dependent problems, as seen in [38], [48], [47].

The following references provide a more detailed investigation into supremizer enrichment:
parameterized Stokes [38], [47], parameterized steady and unsteady NSE [18], [27], [38], pressure
recovery formulations [28], monolithic FSI formulations [6], [40], inverse problems for FSI [30],
[48], and alternate formulations and orthonormalization techniques [48]. In the context of
domain decomposition for the NSE, [44] presented initial comparisons between ROM and FEM
couplings with respect to performance and accuracy.

In this paper, we choose to compute separate POD modes for the pressure, following work such
as [7], [25]; alternative formulations utilize the velocity POD modes to compute a ROM for the
pressure [19], [39]. Caiazzo et al. offer a comparison of these types of formulations [11].

Several works provide helpful examinations of the properties and performance of formulations
that stabilize offline and online calculations and/or include supremizer enrichment. Ali et al. find
that stabilization in both the offline and online phases is most important for FE spaces for Stokes
and NSE which are not inf-sup compliant, such as £/ %, while for &, / 1, supremizers
improve the accuracy of the pressure approximation [2], [3]. Stabile et al. provide a comparison
between a supremizer enrichment and a pressure Poisson equation method to stabilize the
pressure approximation in the NSE, finding that the supremizer approach may suffer from
numerical instabilities over long time integration scales [52].

1.3. Application of reduced order models to FSI systems

We briefly review existing methods and results for applying ROMs in the context of FSI.

The Chorin-Temam projection scheme, developed by Chorin and Temam in 1968 for fluid
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problems [12], [21], [54], is a semi-implicit scheme which allows the discrete velocity and
pressure spaces not to satisfy the inf-sup condition [34], [40]. However, Guermond et al. find
scenarios in which Chorin-Temam schemes have a stability dependent on the time step At,
allowing spurious pressure modes to arise if At becomes too small [20]. The Chorin-Temam
scheme has been extended to FSI problems using a Robin-Neumann coupling condition in works
such as [7], [40], [41]. It requires an explicit step to compute fluid velocity and an implicit step to
compute fluid pressure and structural displacement which iterates until convergence. For an
alternative approach to implicitly coupled FSI problems with black box fluid and structural
solvers, see [55].

In contrast, the scheme presented in this paper requires no iterations between subproblems; it is
“one-shot” in the sense that once the Schur complement equation is solved for the Lagrange
multiplier (LM) and pressure, each of the fluid and structure subdomain problems may be
updated separately at each time step.

Previous works for ROMs for FSI problems include applications such as investigation of a
haemodynamics problem using a reduced version of the PDE system [13], reduced modeling of
an aircraft configuration by interpolating the angle between two POD subspaces for different
Mach numbers [36], an inverse FSI problem [30], and a stabilized formulation in the case of a
linearized compressible inviscid flow and a flat linear von Karman plate [26]. Additional works
include an investigation into three different ROM formulations without supremizers [11], a
monolithic scheme employing a LM [40], a fictitious domain approach [35], parametric coupling
utilizing the steady Stokes equations [32], Chorin-Temam schemes [7], [40], [41], and a FETI-local
method with additional penalty weight added [33]. In the latter, domain decomposition is used
as a tool to facilitate parallel computation.

For our ROM development, we retain the pressure variable in our formulation and calculate
separate POD modes, choosing to address the instability issues through supremizer enrichment.
We investigate the unsteady Stokes equations coupled with the linear elasticity equations using a
partitioned approach. Our coupling scheme differs from the other FSI ROM works listed above, as
we follow the Lagrange multiplier technique for FSI problems outlined in [16], which is based on
the Schur complement approach of [43], [51]. Our formulation is strongly coupled, as a precise
expression of the LM is calculated using a Schur complement equation and then passed to each
subdomain solver, instead of requiring iterations between subdomains to establish interface
boundary conditions.

For some iterative methods, one has to serially compute the solutions for each subdomain and
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iterate between the subdomains to solve for the interface condition at each time step. The Schur
complement method, on the other hand, allows for parallel computation of the subproblems at
each time step as the Schur complement equation provides a “one-shot” solution to the interface
boundary condition. We expect that the advantages of parallel computation of decoupled
subproblems and a non-iterative solve for the interface boundary condition will prove beneficial
in general, provided the Schur complement equation is equipped with an appropriate
preconditioner. Additionally, the use of strongly coupled subproblems generally has better
stability properties, which is useful when solving problems plagued by the added mass effect.
See [14], [16] for more details. The main contribution of this work is the extension of the
partitioned coupling scheme in [16], which requires no subdomain iterations, to the more robust
framework of coupling a ROM on one subdomain to a ROM or a FEM on another subdomain. We
demonstrate this method's performance by showing its ability to obtain solutions as accurate as
the FEM-FEM coupling with reduced expenses in computational time.

The rest of the paper is constructed as follows. In Section 2, we give the model equations and
weak form, followed by a brief review of the partitioned method in the case of a FEM-FEM
coupling in Section 3. Section 4 overviews our POD-Galerkin strategy for ROM development, as
well as the formulation of the supremizer functions utilized. We combine this ROM model with
the coupling scheme to obtain the ROM-ROM coupling formulation in Section 5. We note that our
formulation applies in a straightforward fashion to the coupling of a FEM with a ROM as well, but
for the sake of brevity we omit that formulation in this paper. However, a FEM-ROM coupling
may be desirable in some applications [14], [15], [44]. Lastly, we present and discuss numerical
results which confirm the method's accuracy and efficiency in Section 6, followed by our
conclusions and ideas for extensions of this work in Section 7.

2. Model equations

In this section, we provide the strong and weak form of our FSI model equations, coupling a
linear elastic structure to an incompressible Newtonian fluid. We make two simplifications to
ease the development of the partitioned method, focusing on the linear Stokes equations in the
context of a fixed domain. Extensions to nonlinearity and moving domains may be considered in
future work.

Ford = 2,3,let Q4,Q; € R? refer to the physical fluid and structure domains with Lipschitz
continuous boundaries, respectively. The interface between the non-overlapping subdomains is
denoted by y. With subscripts “N” and “D” referencing portions of the boundary on which
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Neumann and Dirichlet boundary conditions are prescribed, domain boundaries are denoted by
I/, 1, where I/ = I‘{V U I‘{) U~vandI'* =T'% UT% U+. We assume the measure of I'%; and
I"j) is nonzero on both domains €2; and denote outward normal vectors to €} by n;,, for

k € {f, s}. Let T denote a given final time and denote the temporal domain by (0, T7].

The following spaces are needed for the formulation. Let L* () (or, L*(T'*)) denote the space
of square integrable functions on (or, I"“), with inner product and norm denoted by

(+)q,» and || [lq, (or, (,-)px and || - ||p+). Likewise, H' () is the space of functions in
L?(Q) whose gradients are also square integrable. Duality pairings between H~! (w) and
H'(w) or H™Y/?(w) and H/2 (w), for a subdomain or interface w, are denoted by {-,-)_.

The three unknowns in our FSI system are the fluid velocity w(z, t), fluid pressure p(z, t), and
structural displacement 77(z, t). Body forces ff, fs and Neumann conditions wp, 1,y are
provided for each subdomain, as well as positive constants p¢, p,, Vs, Vs, A, representing fluid
density, structural density, fluid viscosity, and the Lamé parameters. Denoting the rate of strain
tensor by D(v) := (Vv + (Vo)T), the continuous FSI system may be posed as follows.

Findu € Q; x (0,T] = R%, p € Q; x (0,T] = R, n € Q, x (0,T] — R? such that

pr% — 20,V -D(u)+Vp=f; inQx(0,T], (2.1)
V.u=0 inQs x (0,77, (2.2)
P20 — 2w,V -D(n) ~AV(V-m) = f, i x (0,7]. (2.3)
We provide appropriate initial conditions, as well as both Dirichlet and Neumann boundary
conditions

(2vyD(u) —pI)ng=un on I‘{V_ x (0,T], w=0 on I‘{) x (0,T7, (2.4)

(2vsD(n) + A(V -n))ns=my onl%y x(0,T], m=0 onl%} x (0,T].

The two interface conditions on y enforce the continuity of velocity and the continuity of stress

force,
% =u on+yx (0,7, (2.5)
(2vyD(u) — pI)ny = —(2v;D(n) + A(V -n)I)ns;  on+vy x (0,T]. (2.6)

Define the following function spaces for velocity, pressure, and displacement:
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1 2
Ui={ve H'(Q;):v=00nT%}, Q:=L*Qy), X: (2.7)
={pc H'(Q,): ¢ =00nT%}.

We enforce the continuity of velocity equation (2.5) as a constraint in the system using a
Lagrange multiplier (LM)in A := H —1/2 (7), which yields the following weak form.

Findu e U,p € Q,n € X, g € A such that

du
pf(g,v)nf + 2v4(D(u), D(v))g, — (1, V - ©)q, — (9,0}, = (5, v)q, (2.8)
+ (un,v)py Y ET,
(V-u,g)q, =0 Vg€ Q,

Ps (62—;7, ‘P) + 2v5(D(n), D(¢))q, + A(V -1,V - @)q, +(9,¢)., = (fs: P)a,
ot Q,

+ My, ), Vo € X,

<%’8>7 —(u,8), =0 Vs € A.
We observe that the LM g represents the interface stress force (2.6); namely, on vy,
g = (2vyD(u) — pI)ngy = —(2v,D(n) + A(V - m)I)n,. It can be shown that the semi-discrete

saddle point problem arising from this weak form is well-posed [16].

3. Partitioned method for FEM-FEM coupling

In this section, we briefly review the fully discretized formulation of the FEM and our partitioned
scheme for the FEM-FEM coupling. More details and analysis may be found in [16]. We use
standard discrete FEM spaces for u, p, 17, g, noting that the LM subspace A" usedisa subspace of
H/? (7) as higher regularity is needed for well-posedness of the fully discrete formulation.

Discretizing (2.8) in time with first order approximations and posing it over the finite element
spaces results in a linear system.

(3.1)
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Mpu™ + AtKpu™! — AtPp™tt — AtG;l:g"H: Athan + Mu™,

PTu"'=0,

1 — 2 1
~ Mq* + ALK, + L)g*t + AtGT g™ = AtF," + AL Mn" — A; Mn™ 1,
1 n+1 n+l__ 1 n
Athn Gru""" = Athn .

Above, mass and stiffness matrices are given by My, K}, and f & holds both the body forces and
Neumann boundary terms for k € {f, s}. Pressure and divergence terms are encapsulated in P
and L, and the G matrices represent the interaction between the interface and subdomain bases,
where {v; }, {¢;}, and {;} are the FEM scalar basis functions for the full order velocity,
displacement, and LM spaces, respectively. Then G, G; have a block diagonal structure due to
our ordering of the DoFs: ford = 2,

G G 0 ith (G") (0, ;). f 1,2
— ,  wi = (vj, p; )., forr =1,
lo @& £)s5 = \irHily

o | r
G, = 0 ¢ , Wwith (Gs)i’j = ((pj,ui>7 forr=1,2.

The saddle point system associated with this linear system is also well-posed, see [16] for details.
Our formulation requires grouping the pressure with the LM and appropriately blocking the
equations of (3.1). With

n+1 PT 0
Zn+1 = lp :| ) Af = l ] ) As = l :| ) ﬁn+1 = L’r’n+1) and 2n+1 =

gn+1 Gf Gs At
Atzn+1
we obtain
Weu™tt — ATz = wy ", (3.2)

7/26/24, 7:33PM

Page 10 of 46


https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author#br0160

Reduced order modeling for a Schur complement method for fluid-structure interaction - ScienceDirect 7/26/24, 7:33 PM

Wy = Mf-I-Ath, W, = M3+At2(Ks—|—L),
wy" = Athf m M¢u™, wy™ = Atf, o A%Ms'n" —

M, ws™ = | 0 2 |-
EGsn

Solving the first two equations of (3.2) for w”* and 7™*! and substituting into the constraint
equation of (3.2) yields
(Afo‘lAr;’: + Asws—l,cﬁ)zn+1 = AW, we"™ — AW lwn ™ — ws™ (3.3)

Equation (3.3), the Schur complement equation, is at the center of our method. Letting S be the
matrix on the left hand side, we can solve (3.3) for 2"*1 once at each time step when S is full
rank. Plugging 2”*! back in to the first two equations of (3.2) effectively decouples the system
and allows for the independent solution of ™! and 77°*1.

As a motivation for the use of reduced order modeling, consider the matrix sizes involved in the
Schur complement equation and subdomain solves. Denote by IV, N, N, and N the total
number of DoFs for each variable. Then the matrices Wy, W are of size N,, x N,, and Ny, X Ny,
respectively, and the constraint matrices As, A, have dimension (N, + INy) x N, and

(Np + Ny) x N,. Thus, Sis a (N, + Ny) x (N, + Ny) matrix. For high-fidelity FEM
computations, the number of DoFs may become intractably large for solving these linear
systems. ROMs present a solution to this issue by retaining only dominant modes of the system,
allowing a significant size reduction in the linear system and thereby computational speedups as
well.

4. ROM construction and implementation

We utilize a projection based reduced order model, using a technique known as proper
orthogonal decomposition (POD) to create the reduced basis. Before presenting our coupled
reduced order models for the FSI system, we begin with a brief discussion on how to construct
this projection-based ROM in two stages: POD and Galerkin projection [23], [50].

4.1. General setting: POD and Galerkin projection

Consider a generic full order model, expressed by A% = f(u), with A € R®*¢ and u, f € R*. In
the method of snapshots, a high-fidelity full order model is solved over a collection of times
and/or parameter values. The solution vectors w’ for j = 1,...,m are arranged as columns of a
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matrix X € R®™ referred to as the snapshot matrix. In general, we assume m < £. We compute
the singular value decomposition (SVD) of the snapshot matrix, X = UXVT. For our
formulation, we follow the approach in [22] and only calculate the SVD on the rows of X
corresponding to non-Dirichlet nodes, padding the output matrix U with zeros in Dirichlet rows.

The reduced basis space is then defined by the first r columns of U, for r <« m. The number of
columns retained is determined by an energy criterion: we choose a § such that 1 — § is the
desired proportion of the snapshot energy captured in the basis. We then solve for the smallest
number of columns r that satisfies the equation

1—6< 2% (4.1)

Y ‘7?

We refer to the matrix & € R¥", containing the first r columns of U, as the reduced basis matrix.
The columns of &, known as the POD modes, are spatially and temporally independent,
orthogonal, and globally defined, instead of locally defined as with traditional FEM basis
functions.

For this method to be effective, the r dominant singular values corresponding to the first r left
singular vectors are assumed to contain most of the energy of the system. POD may not be the
method of choice when the energy decays slowly, but work has been done to make POD more
robust in these cases [31], [42].

We may consider the more general case of non-homogeneous Dirichlet boundaries, by defining a
vector Bg € R? that contains the Dirichlet boundary information at appropriate nodes and is
zero elsewhere. Once the reduced basis matrix @ is constructed, we use the ansatz

u=Bugp + Br., where u € R¢ is the full order variable and ug € R" is the reduced order
variable. Recall that ® contains zeros on each Dirichlet row, so that ®ug is zero at each row
corresponding to a Dirichlet node. Substituting this expression into A& = f(w), multiplication

by $T projects the equations into the reduced-dimensional space, yielding the reduced system
=T ~ . . ~T , ~

4.2. Supremizer enrichment: inf-sup stability

Stability of our coupled problem in its reduced formulation, and in particular the fluid portion, is
a necessary component. For the reduced order formulation, the LBB condition satisfied by the full
order spaces is not guaranteed to be satisfied by the Galerkin projection onto the reduced spaces.
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The following technique is employed to address the issue of instabilities due to violations of the
discrete inf-sup condition.

Following works such as [2], [5], [6], [25], [40], [47], [48], we use the approximate supremizer
enrichment method. As our problem is time dependent, and varying the parameters is not
considered, the approximate method allows us to calculate the supremizer basis functions once
during the offline stage at lower cost and also provides more variability in picking the size of the
supremizer basis. Although this method does not allow us to rigorously prove inf-sup stability
(see [5]), we will provide an examination of the performance of formulations with and without
supremizers in the numerical results section and observe that the approximate supremizer
method provides the needed stabilization for our problems.

The approximate supremizer method employs snapshots for the pressure and LM terms to create
supremizer functions for the velocity and displacement that can be added into the velocity and
displacement spaces to enrich them. Specifically, using the snapshots p(#’), g(t) collected for
the pressure and Lagrange multipliers during the m time steps of the offline stage, the
supremizer functions 8, (), 8, (t’) are defined as [5]:

¢ 2 [ 2]

9(t’)
For each snapshot, we solve (4.2) to create velocity and displacement supremizer functions. Of

T
P G}
0 GT

course, (4.2) may be decoupled to solve for the velocity and displacement supremizer functions
separately. Once the functions s,,(/), s, (¢/) are obtained, they are added as basis functions into
the velocity and displacement spaces and orthogonalized against the existing POD basis
functions. If {®., ®2, ..., &"} are the POD basis functions for velocity, then the set
{®L,...,8",5,(t)),..., s, (t™)} represents the basis space with supremizers added, and we
then perform modified Gram-Schmidt orthogonalization on this set of vectors to create the final
reduced basis.

5. ROM-ROM coupling

We now derive a system similar to (3.2) for a coupled ROM-ROM instead of FEM-FEM. First,
consider implementing a reduced order model on €2,. Using the process described in Section 4.1,
we construct a reduced order basis matrix 5,7 such that the FEM coefficients for the
displacement variable, i, may be expressed as: n(t) = ®,mg (t) + B, (), where ng(t) € RNz
is the reduced time-dependent vector of solution coefficients for the displacement and
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ﬂn (t) € RM contains the possibly time-dependent Dirichlet boundary values in rows
corresponding to Dirichlet nodes, and zeroes elsewhere. Snapshots may be constructed by
solving the coupled FEM-FEM problem over €2, and §2; or only solving the structural problem on
Q,, which requires providing a guess for the boundary conditions on y.

The matrix &, is of dimension N;, X Ng,, where Ng, < N,. Once the final solution ng is
obtained, we may recover the full order solution n by computing n = @n'r’R + B, Likewise, we
may develop a reduced order basis for the velocity and pressure u, p € {2; and express the full
order coefficients as u(t) = &, ug(t) + B,(t), and p(t) = ®,pg (t). Note that the ansatz for
the pressure does not include a vector B,, for boundary information, as Dirichlet boundary
conditions are only provided for displacement and velocity.

For our formulation, we also must reduce the LM, as it is coupled with the pressure and will
overconstrain the problem if left at its full size. To this end we develop a POD basis, encapsulated
in &,, to express the LM as g(t) = ®,gg (t). We choose to collect snapshots of the LM term and
conduct POD on them separately. Note that we solve the coupled formulation in the offline stage,
which produces the LM as a variable at each time step. If a different offline procedure was used
that did not solve for the LM explicitly, snapshots could be constructed from a combination of the
velocity and pressure snapshots or from the displacement snapshots.

In formulations that include supremizers, we solve (4.2) for 8,,(¢), 8, (¢/) for each time step ¢/,
j=1,...,m,and add these into the existing basis ®,, and <T>,,, re-orthogonalizing to get the new
basis. With a slight abuse of notation, we let ®,, <T>,, refer to the entire reduced basis in either
scenario with or without supremizers, noting that difference in the basis size does not affect the
general form of the problem.

Now, with an expression for each of 1, w, p, and g in terms of their reduced order coefficients, we
develop a method for coupling a ROM on 2, with a ROM on ¢ below. The extension to a FEM-
ROM coupling would be straightforward and perhaps desired in cases where a high-fidelity
expression is needed in parts of the domain; however, we only display the ROM-ROM case here
for brevity. We substitute the relationships n = &5,71711 + B,

u=®,ur + B,,p = ®,pr, and g = ¥,g9p into (3.1) and project each equation appropriately.
Of course, one could also substitute the reduced order expressions into the continuous equations
and then discretize in time, with the same result.
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(3. My + AtB Ky ) (Buur™ + B,"7) — A, P (,pp™") -
AtE, G% (3,95™1)

— A3, F ;" + 8, My (3,ur™ +B,"),

pT (&')uuRn—i—l 4 ﬂun+1> _o,

]

(&3 M, + At3] (K, +L))( M+ 8,7 + AT (3,95™)
=At®, f, 2 <I> M, ( nMR" +'Bnn) <I> M, (q)nan ) LB 1),
Aiti)g Gs (cI)n"anH + ﬂnnﬂ) - $§Gf (&;uuRnﬂ +B,") =

Gs ((I)nan + By" ) .

M,:=% M3, D, =K, +L D,=3% D03, G:=58,60G53,
— ~T -, =~ — =T . = ~ ~T ., =~ I
M=% M3, K;:=3.K3, G;=3.G,8, P:=3%.P8,
n+1 5T 0
zp™t = [pR n+1:|’ Af = Ii A, = NagxWaa |
9r Gy Gs

The system becomes:

&, My(B7 — Br) — Atd, KB
(At s + AtD ) ntl 4 AtAT zpmt! = At&;: 7. nHl AltﬂsﬂR” B
LM g™ + 28, M6

_ éZI;ngﬂ"—l _ (LE)TMS + A,@ZDS),BZH

1 +1 +1
EAS"’R" Af'u,R"

~ ~T ~T ~T
~Gmp" + =9,G.8," — 42, G:B,"" +&,G4B,"""

As in the FEM-FEM coupling, we use the change of variables

g "' = g™ ntl.— Atzp™!. Let wy", wy™, ws™ denote the right hand sides

of the above equations, and define the matrices Wy := M F+ Atff, W, :=M,+A*D,.

,and Zgp
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With these, the system may be rewritten as:

Wiup "' — AT z2p "= w,", (5.1)
WsﬁR ntl + AfZR nt+l_ w2",

As?iR ntl _ Af'u,R ntl_ w3”.

The first two equations of (5.1) may be used to solve for ug™*!, 7j B n+1 and substituting the
results into the third equation results in a similar form of the Schur complement system as in the
FEM-FEM case:

(AfW;lA? + ASW;UgT)an+1 = AW, Mwa™ — AW o™ — ws™. (5.2)

At each time step, then, we solve the Schur complement equation (5.2), and then use the
resulting £ g "*! to decouple the first two equations of (5.1), solving independently and without
iterations between subdomains. We note here that any matrix solves involving the Schur
complement matrix may be performed using the conjugate gradient algorithm without having to
assemble the Schur matrix directly. However, as all matrices are independent of time, one could
also assemble once and perform a factorization at the initial step, using that to solve the system
directly at all following time steps.

Our reduced size matrices Wy, Wy are of dimension Ng, X Ngy and Ngj, X Nggy, and the
Schur complement matrix is a square matrix with Ngj, + Npg 4 rows. In the next section, we
present numerical results that show the computational speedups gained by solving these smaller
systems without sacrificing accuracy.

6. Numerical results

To demonstrate the performance of our coupled formulation, we compare the results of applying
our partitioned method to the ROM-ROM system (5.1) and to the FEM-FEM system (3.2) using
two numerical tests.

Let g, ur, Pr, gr represent full size FEM coefficient vectors and g, ur, Pr, gg be their
reduced order counterparts of size Ngy, Nru, Nrp, and Ng 4 respectively. To simplify notation,
we drop the subscript R from the sizes, letting N, Ny, Ny, N4 refer in this section to the reduced
basis sizes examined. When supremizer enrichment is used, the supremizer variables for
displacement and velocity are denoted by s,,, 8,, of size N, 4, N . For the FEM-FEM solution,
the (Py, Py) pair is used for velocity and pressure, P, for displacement, and P; for the LM.
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6.1. Analytical solution

We first consider a manufactured solution to the FSI system (2.1)-(2.6), as presented in [4] and
solved also in [29]. This simplified problem setting allows more isolated investigation into the
performance of each ROM and their coupling without additional complications posed by the
physical setting. On 27 = [0, 1] x [0, 1] and ©, = [0, 1] x [1, 2], define the velocity

]T

w = [ug,up]”, pressure p, and displacement 5 = [n,,7,]" as:

u; = cos (x+t) sin(y+t) + sin(x+t) cos(y+t)

ug = -cos(x+t) sin(y+t) - sin(x+t) cos(y+t)

P = 2vs(sin(x+t)sin(y+t) - cos(x+t)cos(y+t)) + 2v,cos(x+t) sin(y+t)
n; = sin(x+t)sin(y-+t)

7y = cos(x+t) cos(x+t).

All parameters are set to 1, and non-homogeneous Dirichlet boundaries are set on each boundary
except the side walls of ¢, where appropriate Neumann conditions are imposed.

The error in the ROM solution can be traced to two sources: the ability of the snapshots to
accurately capture the true solution, and the performance of the ROM in reproducing the
behavior of the snapshots. As techniques for obtaining the best snapshots are beyond the scope
of this paper, we focus our attention on the second source of error, comparing the ROM solution
to the offline FEM solution from which it was derived. The snapshots used are the solutions to
the FEM-FEM coupled problem at each time step using the partitioned method presented in
Section 3, with Az = Ay = 1/32, At = 10°, and T; = 10~3. This yields a full size system of
8450 DoFs for the velocity and displacement, 1089 DoFs for pressure, and 66 DoFs for the LM. As
the number of DoFs for the LM is less than the number of snapshots, we only have 66 singular
values shown for the LM in Fig. 1(b), whereas each other variable has 101 singular values as their
snapshot matrices contained more rows than columns. The L? errors between the FEM solution
and the exact solution are on the order of 10~ for velocity and displacement and 10~ for
pressure. The H* errors for velocity and displacement are on the order of 10~4. We will see that
the application of the ROM to each subdomain yields a significant reduction in the number of
DoFs while producing similar results.
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Fig. 1. Energy and singular value decay for the manufactured solution.

To begin our analysis, we observe the behavior of the singular values of each variable's snapshots.

For POD to be applied, the singular values of the snapshots must decay quickly enough so that

most of the energy is captured in a small subset of the modes. In Fig. 1, we see that the singular

values do decrease sharply, and over 99.999% of the snapshot energy is contained in just the first

mode for each variable (Fig. 1(a)). Singular values of the displacement supremizers are not

shown as they experience the same rapid decay as the other variables, and they will later be

shown to be superfluous in the formulation. As the singular values of the pressure and LM decay

similarly (Fig. 1(b)), we simplify the number of basis sizes to consider varying by setting

N, = Ny in all of the following calculations.

In analyzing the performance of our scheme, we examine the error between a ROM-ROM or
FEM-ROM solution and the FEM-FEM solution for each variable. We denote by % g the projection
of the ROM velocity coefficients back into the FEM space; i.e., g := d,ug + B, for ROM
coefficients wg. We then measure errors between 4ip and up at a given time t, where up is the

reference solution computed by the FEM-FEM coupling. Projections 7j g and p g are similarly

defined so that the L? errors at time t are:

IR (@) —nr®)llog,, [Er(E)—ur®)llog, |

Pr

A~

(t) —pr(®)llo,-

In the plots, we leave off the notation of the subdomain €, {2 on the norms as the appropriate
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subdomain will be clear from context. To examine the effect of supremizer enrichment on the
accuracy and stability of the ROM-ROM formulation, we turn to Fig. 2 and examine the L? errors

versus time over the interval ¢ € [107°,1073].
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Fig. 2. L? errors over time for the manufactured solution. Pressure and LM reduced basis sizes are
fixed at N, = Ng = 10. Subfigures (a), (¢), (e) show supremizers used in addition to the POD basis
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functions, while subfigures (b), (d), (f) show supremizers substituted in place of POD basis
functions. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

For each subplot, we fix N, = N, = 10. In the left column, each formulation sets N, = IV, = 25
and examines the effect of adding supremizer basis functions to the POD basis for either velocity,
displacement, or both. The total number of supremizers is chosen to be IV, + Ny = 20 to match
the number of total constraints. In the right column, we fix the size of the enriched velocity and
displacement spaces, N, + N, ,, and N, + N, 5 at 25. Thus, any supremizers that are utilized are
substituted for POD basis functions.

Overall, formulations in which supremizers are added to the POD basis (Figs. 2(a), 2(c), 2(e))
instead of substituted for POD basis functions (Figs. 2(b), 2(d), 2(f)) perform better, as would be
expected since the overall basis size is increased. Supremizers influence most the accuracy of the
pressure; Fig. 2(e) shows that adding supremizers to only the displacement space does not
change the behavior of the pressure; adding supremizers to both spaces improves the errors by
several orders of magnitude, and adding supremizers to only the velocity improves still more. As
the displacement has no direct interaction with the pressure, it needs no extra stabilization with
respect to the pressure space getting too large. In general, it seems some supremizers must be
utilized in the velocity space for the pressure errors to be reasonable, and the more supremizers
that are used in the velocity space, the better the pressure behaves. However, we may also
observe that adding supremizers does not greatly affect the behavior of the velocity or
displacement (Figs. 2(a)-2(d)). The increases in error by orders of magnitude displayed in

Figs. 2(b) and 2(d) may be traced to the fact that the dimension of the POD basis (N, or N;) in
these scenarios is only 5, due to the fact that 20 supremizer basis functions were substituted for
POD basis functions. For this problem, the POD basis needs to retain a minimum of roughly 15
modes to see the optimal error size for velocity and displacement, as can be seen by the yellow
line representing Ny, = N, = 10 in the same subfigures.

Additionally, we observe that all ROM formulations show stability over time. The one exception
at first glance looks to be the displacement (Figs. 2(a) and 2(b)), but as the initial errors are close
to machine precision, this may be due to the accumulation of time integration errors from using
Backward Euler to update the subsystems rather than instability inherent in the coupled
formulation.

Based on Fig. 2, we choose to focus on enriching only the reduced velocity space by adding

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author Page 20 of 46



Reduced order modeling for a Schur complement method for fluid-structure interaction - ScienceDirect 7/26/24, 7:33 PM

supremizers into the POD basis. We continue to examine the effect of supremizers on the error in
Fig. 3. The following plots now consider the error between the ROM and FEM solutions at the
final time T = 10~3. In each subplot, we fix the total size of the enriched, reduced velocity
subspace (N, + Ng,,) at 100. Each subplot demonstrates a different combination of IV, and

N, = Ny, and we observe the effect on the pressure and velocity errors of varying the
proportion of POD velocity basis functions to supremizer basis functions. As the displacement
error is much more stable with respect to the basis sizes, we look to the pressure and velocity
errors as representative of the behavior of the problem as a whole. Consistently among each of
the three subfigures, formulations that weigh heavily in favor of POD basis functions, utilizing
few to no supremizer functions, perform poorly in terms of pressure error. As the number of
supremizers increases, the pressure error tends to improve. The only exception to this is the case
with IV, = 5, Ny, = 95; as we have previously observed, the POD velocity basis needs to retain
at least 15 modes for best performance. Velocity error is less affected by the use of supremizers;
as long as more than 5 POD basis functions are retained, all of the velocity errors are on the order
of 1071°, with even the “worst case” scenario of N,, = 5 resulting in a velocity error only one
order of magnitude greater than the rest. Overall, we observe from these figures that a mixed
balance between velocity and supremizer functions seems to achieve the optimal errors for this
scenario. Fig. 3(c) displays the “best” results, in the sense that errors of similar sizes can be
obtained while using smaller basis sizes for the displacement, pressure and LM.
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Fig. 3. Pressure and velocity L? errors for the manufactured solution for N, + Ns,, = 100.

Fig. 4 examines the behavior of the velocity and pressure errors with respect to the size of the

POD velocity basis IN,,. Displacement errors behave similarly to velocity errors, and are therefore

not displayed. Without supremizers, the errors experience large spikes at smaller values of IN,,,

as seen in Figs. 4(a)-4(b). The only cases which do not experience the large spikes are those in

which N, = Ny < 10. In the next row, supremizers are added to the velocity basis with
N, = N,. For both “small” (4(c)) and “medium” (4(d)) values of IV, the spikes in the error
disappear. Again, although only pressure is plotted, the same improvement in errors is

experienced by the velocity and the displacement as well. Lastly, as the pressure and LM are

grouped in our formulation, we consider using Ny, = N, + N, in Figs. 4(e)-4(f). Without

supremizers, the smallest pressure error was 0(10_5); adding supremizers gives values on the
order of 10~7 or 1078, The best case scenario is when N, = Np + Ny, and the seemingingly
oscillatory nature of the errors is all within the same order of magnitude (compare the y-scale on
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Figs. 4(b), 4(d), and 4(f)).
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Fig. 4. L? errors vs velocity POD basis size for the manufactured solution. Velocity and pressure
errors without supremizers are in subplots (a) and (b). Pressure errors with supremizers are in
subplots (c)-(f). Smaller basis sizes N, for formulations with supremizers are shown in subplots
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(c) and (e); larger N, in (d) and (f). No supremizers are utilized in the displacement space; i.e.,
Nsyn = O.

Lastly, since the formulation hinges on solving the reduced order Schur complement equation,
we want to observe the conditioning of this system. See [16] for a discussion on and bounds for
the condition number of the Schur complement matrix in the FEM case. Fig. 5 shows the
condition number of the Schur complement matrix in 5(a) and the preconditioned Schur
complement matrix in 5(b) with respect to IN,,, for the case Ny, = N, + N,. Without
preconditioning, the worst condition numbers are on the order of 104, and using the fluid half of
the Schur complement matrix as a preconditioner reduces the condition number even more. In
either scenarios, we observe numerically that the system is not ill-conditioned in practice.
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Fig. 5. Condition numbers of Schur complement matrix (a) and pre-conditioned Schur
complement matrix (b) for the manufactured solution, for N, =N, + Ng.

6.2. Blood flow example

The second numerical test considered is a pressure wave propagation which demonstrates the
added mass effect (see [10]). We consider both a ROM-ROM and a FEM-ROM coupling for this
problem, dedicating most discussion to the ROM-ROM coupling. The domain considered is

Qs =[0,6] x [0,0.5] and 2, = [0, 6] x [0.5,0.6], with parameters

ps =1,v; =0.035, p, = 1.1,v, = 1.15 x 10%, X = 1.7 x 10°. These parameters are
representative of a blood flow problem, and all units are given in the centimeter-gram-second
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(CGS) system. On 2, we enforce homogeneous Dirichlet conditions at z = 0 and z = 6, and zero
traction forces on the upper boundary y = 0.6. For the fluid domain we impose zero traction
force on the right boundary z = 6, homogeneous Dirichlet on y = 0, and on the left boundary we
implement a Neumann condition given by a sinusoidal pressure that reaches a maximal

amplitude of 2 x 10* over 5 x 1073 seconds, namely P(t) = 2 x 10* sin(JT). The mesh

size is Az = Ay = 0.025 with At = 1.25 x 10~* and T} = 0.015. This domain yields
39442, 8658, 5061, and 482 DoFs for velocity, displacement, pressure, and LM respectively.
Additionally, a zeroth-order term ¢y is added to the structural equation (2.3) for ¢y = 4 x 10°.

6.2.1. ROM-ROM coupling

The maximum reduced basis size for each variable is 120 since the snapshot matrices contain
120 columns, corresponding to the total number of time steps. As in the manufactured solution,
we reduce the LM to the same size as the pressure, i.e., N, = N,. Using a full size LM space
produces unreasonably large errors. Likely, this is because the size of the joint pressure/LM is too
large in comparison with the displacement/velocity, causing a discrete inf-sup violation.

In Fig. 6, we check that the snapshot matrix has singular values decaying quickly enough to
justify the use of POD. Fig. 6(b) shows that each of the four variables does experience the
requisite decay; after roughly 50 modes, the singular values are static. Viewed from the
perspective of energy retained by the basis size, we see in Fig. 6(a) that all variables retain
roughly 90% of the energy by 3 modes, and approximately 100% by 6 modes. Thus, we conclude
that implementing POD ROMs for these variables is valid.
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Fig. 6. Energy and singular value decay for the blood flow problem.

In Fig. 7, Fig. 8, we compare profiles of the pressure and the vertical solid deformation at times
t=0.005, 0.010, and 0.015. In the top rows are profiles obtained using the FEM-FEM coupling,
contrasted with the ROM-ROM coupling in the second rows with

N, =50, N, = 90, N, = Ny = 40. No supremizers are used here as the POD basis sizes used
are large. The third rows show the difference between the ROM-ROM and FEM-FEM solutions,
with the pressure on the order of 10~ or 10~° and the displacement on the order of 1072 or
1013. The FEM-FEM results may be compared to similar results in papers such as [10].
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Fig. 7. Pressure profiles at t=0.005, t=0.01, and t=0.015 for FEM-FEM and ROM-ROM couplings for
the blood flow problem. ROM-ROM results shown for N, = 90,N, = Ng =40,N, = 50. Subfigures (g)-
(i) show the difference between the ROM and FEM solutions, with the y-axis on the scale of 107
or 107>,
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Fig. 8. Profiles of the solid deformation at t=0.005, t=0.010, and t=0.015 for FEM-FEM and ROM-
ROM couplings for the blood flow problem. ROM-ROM results shown for

Ny, =90,N, =N, =40,N,, = 50. All displacements are magnified by a factor of 5. Subfigures (g)-(i)
represent the difference between the ROM and FEM solutions, with the y-axis on the scale of
1072 or 10713,

Next, we quantify the errors by observing the behavior of the L? errors with respect to the
velocity POD basis size IV,,. As in the manufactured solution, displacement errors behave
similarly to the velocity errors but are less affected by changes in basis size, so we omit those
plots here. The first row of Fig. 9 shows velocity and pressure errors without supremizers (9(a)-9
(b)). The error spikes observed without supremizers are remedied by adding Ny, = N,
supremizers to the velocity space, as observed in Figs. 9(c)-9(d). Clearly, supremizers are needed
to address both the velocity and pressure errors, although we note that formulations with a
“small” pressure basis size (N, ~ 10) did not experience the spikes originally. Figs. 9(d)-9(f)
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show that any case utilizing supremizers performs rather similarly with regards to the pressure
error and remedies the spikes seen without supremizers. Using N, ,, = Np (9(d) and 9(f)), no
meaningful gains are observed by the addition of supremizers to the displacement space. Again,
the best behavior is observed when Ny, = N, + N, in (9(e)), and the size of the displacement
space NNy, still does not meaningfully affect results. Unlike the manufactured solution, we observe
that the larger pressure reduced basis sizes (IN, = N, = 50) produce the best results for both
velocity and for pressure. For example, with N, = Ny = 50, roughly N, = 50 is required to
reach the best errors for that formulation, whereas for NV, = N, = 25, only approximately 30
POD basis functions are needed for reaching the lowest error attainable by that formulation. In
general, we see a trade-off: increasing N, will result in a smaller error, but it requires a larger NV,
to reach that optimal error.
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Fig. 9. L2 errors for velocity and pressure with respect to Ny, for the blood flow problem. The
legend in subfigure (a) applies to each subfigure. Subfigures (a) and (b) display results without
any supremizers; while subfigures (c)-(f) include different combinations of supremizers.
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To further examine the effect of the supremizers, Fig. 10 displays pressure and velocity errors for
various combinations of N, and N, ,, such that N, + N, = 100. We fix

N, =50, N, = Ny = 50, and N,, = 0. Again, we focus on only utilizing supremizers in the
velocity space. From the plot, we observe that weighting the formulation heavily in favor of
supremizers affects both velocity and pressure error negatively; the best errors are achieved with
a combination of POD and supremizer functions in the reduced velocity space. This agrees with
our findings in the manufactured solution; using a combination of POD and supremizer functions
is likely the best choice, but the proper balance between them is problem dependent. Another
point of interest in this plot is the sensitivity of the velocity in this problem; for the
manufactured solution in Fig. 3 the velocity errors are all within an order of magnitude. In this
blood flow example, using N,, < 25 produces much larger errors for the velocity, showing that it
takes more POD modes in this problem to capture the main behavior of the velocity than the
manufactured solution required.
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Fig. 10. Pressure versus velocity errors for the blood flow problem, shown for combinations of
Ny + N, =100. N = Np = Ng = 50; N; , = 0.

Fig. 11 displays Pareto plots, where each subplot shows the L? error versus runtime for
displacement (11(a)), velocity (11(b)), and pressure (11(c)). We show the best scenarios from
Fig. 9, namely, the case where N, , = N, + Ny and N, , = 0, and each point on the scatterplot
represents a different value of IV,,. For this particular problem, the right hand side is precisely
zero, and so we are able to save time by not constructing the right hand side at each time step,
giving lower average run times. With the FEM time around 40.7 seconds, we see that the ROM
solutions are computed in anywhere from 1.7 to 6 seconds, which is about 4.2% to 14.7% of the
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time of the FEM formulation. As observed in Fig. 9, the formulation with NV, = Ny = 50 yields

the best results in terms of error. These Pareto plots support the use of ROMs: the ROM-ROM

system produces similar results to the FEM-FEM solution while significantly reducing the size of

the algebraic system and the computational time required.
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Fig. 11. L? errors versus runtime for the blood flow problem. Each point represents a different

choice of N,,. Each variation is able to produce several reasonable/optimal errors in roughly 4-15%

of the original FEM time, 40.7 seconds.

Lastly, in Fig. 12 we again observe that the condition number of the Schur complement matrix

falls within a reasonable range. More work needs to be done to develop a better preconditioner

in this scenario, but even without the preconditioner the most ill-conditioned formulation
observed for reasonable basis sizes is on the order of 10°.
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Fig. 12. Condition numbers of Schur complement matrix for the blood flow problem, with
Ngy=Np+ Ng.

6.2.2. FEM-ROM coupling

We briefly consider the performance of a coupled FEM-ROM model, using the full order model on
2, and the reduced order model on {2¢. As in the ROM-ROM coupling, we reduce the LM space
and set Ny = N, Ny, = N, + Ng, and N, , = 0. The errors versus N, are shown for each
variable in Fig. 13, and errors versus runtime are shown in Fig. 14. We employ the notation g
to refer to the displacement calculated by the FEM-ROM model, which is already in the full sized
FEM space, and calculate its error against the displacement iz computed by the FEM-FEM
model. Comparing the FEM-ROM errors in Fig. 13 with those produced by the ROM-ROM model
for a similar configuration in Fig. 9, we see that the use of a ROM or a FEM on 2, produces very
similar results. Comparing the runtimes in Fig. 11, Fig. 14, both couplings provide computational
savings over the FEM-FEM model and achieve the same level of errors; however, the ROM-ROM
coupling is able to achieve these results in roughly 2-7 seconds while the FEM-ROM coupling
takes about 13-20 seconds. For this model, using a ROM on both subdomains with a large enough
N,, appears to be the optimal choice in terms of producing high quality approximations with the
shortest computational time.
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Fig. 13. L? errors with respect to N, for the blood flow problem, with a FEM on Qg and ROM on Q.

The notation ngg in subplot (c) refers to the displacement calculated by the FEM-ROM model,
which is already in the full sized FEM space.

https://www.sciencedirect.com/science/article/pii/S0021999124005308?dgcid=author Page 33 of 46


https://ars.els-cdn.com/content/image/1-s2.0-S0021999124005308-gr013_lrg.jpg
https://ars.els-cdn.com/content/image/1-s2.0-S0021999124005308-gr013.jpg

Reduced order modeling for a Schur complement method for fluid-structure interaction - ScienceDirect 7/26/24, 7:33 PM

10%
10° = =FEM tima
= = FEM time ™ g N'—' s NF 5 Nu P,
% = N =B8SB N =N =10.N =20 > 4qf # N =8856, N =N_=25N,_ =50
¢ N =BESA N =N =25N =50 o - X =
= i RN, = oesa W = Y = 50l < 100 ) * N._. BEEE, NF Nr.| 50, Ns.u 1|:Il:.r
& 0w r W (-] a U “ * |
L * ! T - 0 I
* ] — !
5 - i & !
& 410 ] = 1
= [\ f e 1
= i !
L]
- I
f i
. 1 10 13 1
10 15 20 25 30 a5 40 45 10 15 20 25 a0 s 40 45
Tine (=) Time {5}
(a) Displacement error, varying N, (L) Velocity error, varying N,
108 ut
= =FEM tirme
L] - - - -
" = N =8658,N =N =10,N, =20
- W' | 4 N =8658,N =N =25 N, =50

= 1q° N, =B658, N =N_=50.N_ =100

et # = : i

= - e !

]

Y I

o i

= 1073 I

| " .

]

I

i

I

g™ ;

10 12 20 25 30 35 40 45

Time I::-\.:l

{c) Pressure error, varying N,

Download: Download high-res image (325KB)

Download: Download full-size image

Fig. 14. L? errors versus runtime for the blood flow problem, with a FEM on Q; and ROM on Q.
Each point represents a different choice of N,. Each variation is able to produce several
reasonable/optimal errors in roughly 32-48% of the original FEM time, 40.7 seconds.

6.3. Parametric ROM-ROM coupling

Lastly, we examine the performance of a ROM-ROM coupling on a parametric problem. Using the
blood flow example described in Section 6.2, we set At = 1.25 x 10~ and T} = 0.01 and treat
the densities as the variable parameters. Letting p;, p, € (0, 3], we create four sets of snapshots,
computed at the values (py, p,) = (0.3,1.1), (1.5,2.8), (1.9,0.7), and (2.4, 2.6). This yields a
total of 324 snapshots, on which we perform SVD to create the ROM bases. For the ROM-ROM
coupling, we use the test parameter value (py, p;) = (1,1.1).
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We observe in Fig. 15 that the size of the displacement space has more effect here than in the

non-parametric ROMs. As expected, larger spaces produce better errors, and although the errors

are not as low as in the non-parametric ROMs, we still observe a decrease in errors and

stabilization from the supremizers added into the velocity space. Likely, these estimates would

be improved by enriching the snapshots to better sample the parameter space, which could be

examined in future work.
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Fig. 15. L? errors with respect to N, for the parametric blood flow problem.

7. Conclusions

We have extended the Schur complement technique for full order FSI problems developed in [16]

to a more flexible formulation for coupling a projection-based ROM to another ROM or to a FEM.

This extension required us to utilize supremizers, and our numerical results show the necessity
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of using supremizers to enrich the reduced velocity space. However, we have observed that
supremizers in the reduced displacement space do not provide any additional benefit. In each of
our two numerical tests, we examined the dependence of errors on various basis sizes as well as
the relationship between the velocity POD basis size and the supremizer basis size. Overall, our
ROM-ROM and FEM-ROM coupled formulations produce results that agree well with the FEM-
FEM solution in a shorter computational time and with a large reduction in the overall system's
size. The “optimal” basis sizes are problem dependent; the manufactured solution performs best
with a smaller pressure basis, while the blood flow problem requires a larger pressure basis to
reach the lowest errors, for example. These results are promising for solving more challenging FSI
problems, as we have also observed numerically that the Schur complement matrix is still well-
conditioned in the ROM-ROM case. For the numerical example presented here, we observed that
FEM-ROM coupling did not provide additional accuracy as compared to the ROM-ROM model;
however this is likely problem dependent and a FEM-ROM model may prove useful in problems
where the ROM is unable to accurately capture the dynamics of the subdomain.

Future directions for research include extending this Schur complement partitioned method to
FSI problems involving the Navier-Stokes equations on a moving domain, which will require the
use of hyperreduction to deal with the nonlinearity. This method also may be applied to different
FSI systems, such as the Stokes-Biot model for coupling a fluid to a poroelastic structure.
Additional attention could be given to using ROMs in the predictive regime instead of solely
reproductive results, including a deeper examination into the use of ROMs for parametric
problems.
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