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ABSTRACT
Large Language Models (LLMs) have demonstrated remark-
able success across various domains. However, despite their
promising performance in numerous real-world applications,
most of these algorithms lack fairness considerations. Con-
sequently, they may lead to discriminatory outcomes against
certain communities, particularly marginalized populations,
prompting extensive study in fair LLMs. On the other hand,
fairness in LLMs, in contrast to fairness in traditional ma-
chine learning, entails exclusive backgrounds, taxonomies,
and fulfillment techniques. To this end, this survey presents
a comprehensive overview of recent advances in the exist-
ing literature concerning fair LLMs. Specifically, a brief
introduction to LLMs is provided, followed by an analysis
of factors contributing to bias in LLMs. Additionally, the
concept of fairness in LLMs is discussed categorically, sum-
marizing metrics for evaluating bias in LLMs and existing
algorithms for promoting fairness. Furthermore, resources
for evaluating bias in LLMs, including toolkits and datasets,
are summarized. Finally, existing research challenges and
open questions are discussed.

1. INTRODUCTION
Large language models (LLMs) have demonstrated remark-
able capabilities in addressing problems across diverse do-
mains, ranging from chatbots [52] to medical diagnoses [147]
and financial advisory [123]. Notably, their impact extends
beyond fields directly associated with language processing,
such as translation [160] and text sentiment analysis [99].
LLMs also prove invaluable in broader applications includ-
ing legal aid [166], healthcare [126], and drug discovery [117].
This highlights their adaptability and potential to stream-
line language-related tasks, making them indispensable tools
across various industries and scenarios.
Despite their considerable achievements, LLMs may face
fairness concerns stemming from biases inherited from the
real world and even exacerbate them [172]. Consequently,
they could lead to discrimination against certain popula-
tions, especially in socially sensitive applications, across var-
ious dimensions such as race [5], age [43], gender [72], nation-
ality [139], occupation [71], and religion [1]. For instance,
an investigation [141] revealed that when tasked with gen-
erating a letter of recommendation for individuals named
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Kelly (e.g., a common female name) and Joseph (e.g., a
common male name), ChatGPT, a prominent instance of
LLMs, produced paragraphs describing Kelly and Joseph
with random traits. Notably, Kelly was portrayed as warm
and amiable (e.g., a well-regarded member), whereas Joseph
was depicted as possessing greater leadership and initiative
(e.g., a natural leader and role model). This observation
indicates that LLMs tend to perpetuate gender stereotypes
by associating higher levels of leadership with males.
To this end, the research community has made many e↵orts
to address bias and discrimination in LLMs. Nevertheless,
the notions of studied fairness vary across di↵erent works,
which can be confusing and impede further progress. More-
over, di↵erent algorithms are developed to achieve various
fairness notions. The lack of a clear framework mapping
these fairness notions to their corresponding methodologies
complicates the design of algorithms for future fair LLMs.
This situation underscores the need for a systematic survey
that consolidates recent advances and illuminates paths for
future research. In addition, existing surveys on fairness
predominantly focus on traditional ML fields such as graph
neural networks [32, 41], computer vision [134, 87], natural
language processing [9, 21], which leaves a noticeable gap in
comprehensive reviews specifically dedicated to the fairness
of LLMs. To this end, this survey aims to bridge this gap by
o↵ering a comprehensive and up-to-date review of existing
literature on fair LLMs. The main contributions of this
work are: i) Introduction to LLMs: The introduction of
fundamental principles of the LLM, its training process, and
the bias stemming from such training sets the groundwork
for a more in-depth exploration of the fairness of LLMs. ii)
Comprehensive Metrics and Algorithms Review: A com-
prehensive overview of three categories of metrics and four
categories of algorithms designed to promote fairness in
LLMs is provided, summarizing specific methods within
each classification. iii) Rich Public-Available Resources:
The compilation of diverse resources, including toolkits and
evaluation datasets, advances the research and development
of fair LLMs. iv) Challenges and Future Directions:
The limitations of current research are presented, pressing
challenges are pointed out, and open research questions are
discussed for further advances.
The remainder of this paper is organized as follows: Sec-
tion 2 introduces the proposed taxonomy. Section 3 pro-
vides background information on LLMs to facilitate an un-
derstanding of fairness in LLMs. Following that, Section 4
explores current definitions of fairness in ML and the adap-
tations necessary to address linguistic challenges in defin-
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Figure 1: An overview of the proposed fairness in LLMs taxonomy.

ing bias within LLMs. Section 5 introduces quantification
of bias in LLMs. Discussion on algorithms for achieving
fairness in LLMs is presented in Section 6. Subsequently,
Section 7 summarizes existing datasets and related toolkits.
The exploration of current research challenges and future
directions is conducted in Section 8. Finally, Section 9 con-
cludes this survey.

2. AN OVERVIEW OF THE TAXONOMY
As shown in Figure 1, we categorize recent studies on the
fairness of LLMs according to three distinct perspectives:
i) metrics for quantifying biases in LLMs, ii) algorithms
for mitigating biases in LLMs, and iii) resources for eval-
uating biases in LLMs. Regarding metrics for quantifying
biases in LLMs, they are further categorized based on the
data format used by metrics: i) embedding-based metrics, ii)
probability-based metrics, and iii) generation-based metrics.
Concerning bias mitigation techniques, they are structured
according to the di↵erent stages within the LLMs workflow:
i) pre-processing, ii) in-training, iii) intra-processing, and iv)
post-processing. In addition, we collect resources for eval-
uating biases in LLMs and group them into Toolkits and
Datasets. Specifically for Datasets, they are classified into
two types based on the most appropriate metric type: i)
probability-based and ii) generation-based.

3. BACKGROUND
This section initially introduces some essential preliminaries
about LLMs and their training process, laying the ground-
work for a clear understanding of the factors contributing to
bias in LLMs that follow.

3.1 Large Language Models
Language models are computational models with the capac-

ity to comprehend and generate human language [115, 93].
The evolution of language models progresses from statisti-
cal language models to neural language models, pre-trained
language models, and the current state of LLMs [27]. Initial
statistical language models, like N-gram models [67], esti-
mate word likelihood based on the preceding context. How-
ever, N-gram models face challenges such as poor general-
ization ability, lack of long-term dependence, and di�culty
capturing complex linguistic phenomena [108]. These limi-
tations constrained the capabilities of language models until
the emergence of transformers [138], which largely addressed
these issues. Specifically, transformers became the backbone
of modern language models [144], attributable to their ef-
ficiency—an architecture free of recurrence that computes
individual tokens in parallel—and e↵ectiveness—attention
facilitates spatial interaction across tokens dynamically de-
pendent on the input itself. The advent of transformers
has significantly expanded the scale of LLMs. These models
not only demonstrate formidable linguistic capabilities but
also rapidly approach human-level proficiency in diverse do-
mains such as mathematics, reasoning, medicine, law, and
programming [17]. Nevertheless, LLMs frequently embed
undesirable social stereotypes and biases, underscoring the
emerging necessity to address such biases as a crucial un-
dertaking.

3.2 Training Process of LLMs
Training LLMs require careful planning, execution, and
monitoring. This section provides a brief explanation of the
key steps required to train LLMs.
Data preparation and preprocessing. The foundation
of big language modeling is predicated on the availability
of high-quality data. For LLMs, this entails the necessity
of a vast corpus of textual data that is not only extensive
but also rich in quality and diversity, which requires accu-
rately representing the domain and language style that the
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model is aiming to grasp. Simultaneously, the datasets need
to be large enough to provide su�cient training data for
LLMs, and representative enough so that the models can
adapt well to new and unseen texts [120]. Furthermore,
the dataset needs to undergo a variety of processes, with
data cleansing being a critical step involving the review and
validation of data to eliminate discrimination and harmful
content. For example, popular public sources for finding
datasets, such as Kaggle1, Google Dataset Search2, Hug-
ging Face3, Data.gov4, and Wikipedia database5, could all
potentially harbor discriminatory content. This inclusion of
biased information can adversely impact decision-making if
fairness considerations are disregarded [86]. Therefore, it is
imperative to systematically remove any discriminatory con-
tent from the dataset to e↵ectively reduce the risk of LLMs
internalizing biased patterns.
Model selection and configuration. Most existing
LLMs utilize transformer deep learning architectures, which
have emerged as a preferred option for advanced natural lan-
guage processing (NLP) tasks, such as Metas’s LLaMa [136]
and DeepAI’s GPT-3 [16]. Several key elements of these
models, such as the choice of the loss function, the num-
ber of layers in transformer blocks, the number of attention
heads, and various hyperparameters, need to be specified
when configuring a transformer neural network. The config-
uration of these elements can vary depending on the desired
use case and the characteristics of the training data. It is
important to recognize that the model configuration directly
influences the training duration and the potential introduc-
tion of bias during this process. One common source of bias
amplification during the model training process is the se-
lection of loss objectives mentioned above [61]. Typically,
these objectives aim to enhance the accuracy of predictions.
However, models may capitalize on chance correlations or
statistical anomalies in the dataset to boost precision (e.g.,
all positive examples in the training data happened to come
from male authors so that gender can be used as a discrim-
inative feature) [58, 112]. In essence, models may produce
accurate results based on incorrect rationales, resulting in
discrimination.
Instruction Tuning. Instruction tuning represents a nu-
anced form of fine-tuning where a model is trained using
specific pairs of input-output instructions. This method al-
lows the model to learn particular tasks directed by these
instructions, significantly enhancing its capacity to inter-
pret and execute a variety of NLP tasks as per the guide-
lines provided [28]. Despite its advantages, the risk of in-
troducing bias is a notable concern in instruction tuning.
Specifically, biased language or stereotypes within instruc-
tions can influence the model to learn and perpetuate biases
in its responses. To mitigate bias in instruction tuning, it
is essential to carefully choose instruction pairs, implement
bias detection and mitigation methods, incorporate diverse
and representative training data, and evaluate the model’s
fairness using relevant metrics.
Alignment with human. During training, the model is
exposed to examples such as “What is the capital of India?”

1https://www.kaggle.com/
2https://datasetsearch.research.google.com/
3https://huggingface.co/datasets
4https://data.gov/
5https://en.wikipedia.org/wiki/Database

paired with the labeled output “Delhi,” enabling it to learn
the relationship between input queries and expected output
responses. This equips the model to accurately answer simi-
lar questions, like “What is the capital of France?” resulting
in the answer “Paris”. While this highlights the model’s ca-
pabilities, there are scenarios where its performance may fal-
ter, particularly when queried like “Whether men or women
are better leaders?” where the model may generate biased
content. This introduces concerns about bias in the model’s
responses. For this purpose, InstructGPT [104] designs an
e↵ective tuning approach that enables LLMs to follow the
expected instructions, which utilizes the technique of rein-
forcement learning with human feedback (RLHF) [26, 104].
RLHF is an ML technique that uses human feedback to op-
timize LLMs to self-learn more e�ciently. Reinforcement
learning techniques train the model to make decisions that
maximize rewards, making their outcomes more accurate.
RLHF incorporates human feedback in the rewards function,
so the LLMs can perform tasks more aligned with human
values such as helpfulness, honesty, and harmlessness. No-
tably, ChatGPT is developed based on a similar technique
as InstructGPT and exhibits a strong ability to generate
high-quality, benign responses, including the ability to avoid
engaging with o↵ensive queries.

3.3 Factors Contributing to Bias in LLMs
Language modeling bias, often defined as “bias that re-
sults in harm to various social groups” [56], presents itself
in various forms, encompassing the association of specific
stereotypes with groups, the devaluation of certain groups,
the underrepresentation of particular social groups, and the
unequal allocation of resources among groups [36]. Here,
three primary sources contributing to bias in LLMs are in-
troduced:
i) Training data bias. The training data used to develop
LLMs is not free from historical biases, which inevitably
influence the behavior of these models. For instance, if
the training data includes the statement “all programmers
are male and all nurses are female,” the model is likely to
learn and perpetuate these occupational and gender biases
in its outputs, reflecting a narrow and biased view of soci-
etal roles [15, 20]. Additionally, a significant disparity in
the training data could also lead to biased outcomes [124].
For example, Buolamwini and Gebru [18] highlighted signif-
icant disparities in datasets like IJB-A and Adience, where
predominantly light-skinned individuals make up 79.6% and
86.2% of the data, respectively, thereby biasing analyses to-
ward underrepresented dark-skinned groups [91].
ii) Embedding bias. Embeddings serve as a fundamen-
tal component in LLMs, o↵ering a rich source of semantic
information by capturing the nuances of language. How-
ever, these embeddings may unintentionally introduce bi-
ases, as demonstrated by the clustering of certain profes-
sions, such as nurses near words associated with feminin-
ity and doctors near words associated with masculinity.
This phenomenon inadvertently introduces semantic bias
into downstream models, impacting their performance and
fairness [50, 9]. The presence of such biases underscores the
importance of critically examining and mitigating bias in
embeddings to ensure the equitable and unbiased function-
ing of LLMs across various applications and domains.
iii) Label bias. In instruction tuning scenarios, biases can
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arise from the subjective judgments of human annotators
who provide labels or annotations for training data [121].
This occurs when annotators inject their personal beliefs,
perspectives, or stereotypes into the labeling process, inad-
vertently introducing bias into the model. Another potential
source of bias is the RLHF approach discussed in Section 3,
where human feedback is used to align LLMs with human
values. While this method aims to improve model behav-
ior by incorporating human input, it inevitably introduces
subjective notions into the feedback provided by humans.
These subjective ideas can influence the model’s training
and decision-making processes, potentially leading to biased
outcomes. Therefore, it is crucial to implement measures to
detect and mitigate bias when performing instruction tun-
ing, such as diversifying annotator perspectives, and evalu-
ating model performance using fairness metrics.

4. ML BIAS QUANTIFICATION AND LIN-
GUISTIC ADAPTATIONS IN LLMs

This section reviews the commonly used definitions of fair-
ness in machine learning and the necessary adaptations to
address linguistic challenges when defining bias in the con-
text of LLMs.

4.1 Group Fairness
Existing fairness definitions [60, 44] at the group level aim
to emphasize that algorithmic decisions neither favor nor
harm certain subgroups defined by the sensitive attribute,
which often derives from legal standards or topics of social
sensitivity, such as gender, race, religion, age, sexuality, na-
tionality, and health conditions. These attributes delineate
a variety of demographic or social groups, with sensitive at-
tributes categorized as either binary (e.g., male, female) or
pluralistic (e.g., Jewish, Islamic, Christian). However, exist-
ing fairness metrics, developed primarily for traditional ma-
chine learning tasks (e.g., classification), rely on the avail-
ability of clear class labels and corresponding numbers of
members belonging to each demographic group for quan-
tification. For example, when utilizing the German Credit
Dataset [7] and considering the relationship between gender
and credit within the framework of statistical parity (where
the probability of granting a benefit, such as credit card ap-
proval, is the same for di↵erent demographic groups) [140],
machine learning algorithms like decision trees can directly
produce a binary credit score for each individual. This en-
ables the evaluation of whether there is an equal probability
for male and female applicants to obtain a good predicted
credit score. However, this quantification presupposes the
applicability of class labels and relies on the number of mem-
bers from di↵erent demographic groups belonging to each
class label, an assumption that does not hold for LLMs.
LLMs, which are often tasked with generative or interpre-
tive functions rather than simple classification, necessitate
a di↵erent linguistic approach to such demographic group-
based disparities; Instead of direct label comparison, group
fairness in LLMs involves ensuring that word embeddings,
vector representations of words or phrases, do not encode
biased associations. For example, the embedding for “doc-
tor” should not be closer to male-associated words than to
female-associated ones. This would indicate that the LLM
associates both genders equally with the profession, with-
out embedding any societal biases that might suggest one

gender is more suited to the profession than the other.

4.2 Individual fairness
Individual fairness represents a nuanced approach focusing
on equitable treatment at the individual level, as opposed to
the broader strokes of group fairness [44]. Specifically, this
concept posits that similar individuals should receive simi-
lar outcomes, where similarity is defined based on relevant
characteristics for the task at hand. Essentially, individual
fairness seeks to ensure that the model’s decisions, recom-
mendations, or other outputs do not unjustly favor or disad-
vantage any individual, especially when compared to others
who are alike in significant aspects. However, individual
fairness shares a common challenge with group fairness: the
reliance on available labels to measure and ensure equitable
treatment. This involves modeling predicted di↵erences to
assess fairness accurately, a task that becomes particularly
complex when dealing with the rich and varied outputs of
LLMs. In the context of LLMs, ensuring individual fairness
involves careful consideration of how sensitive or potentially
o↵ensive words are represented and associated. A fair LLM
should ensure that such words are not improperly linked
with personal identities or names in a manner that perpet-
uates negative stereotypes or biases. To illustrate, a term
like “whore,” which might carry negative connotations and
contribute to hostile stereotypes, should not be unjustly as-
sociated with an individual’s name, such as “Mrs. Apple,” in
the model’s outputs. This example underscores the impor-
tance of individual fairness in preventing the reinforcement
of harmful stereotypes and ensuring that LLMs treat all in-
dividuals with respect and neutrality, devoid of undue bias
or negative association.

5. QUANTIFYING BIAS IN LLMs
This section presents criteria for quantifying the bias
of language models, categorized into three main groups:
embeddings-based metrics, probability-based metrics, and
generation-based metrics.

5.1 Embedding-based Metrics
This line of e↵orts begins with Bolukbasi et al. [15] con-
ducting a seminal study that revealed the racial and gen-
der biases inherent in Word2Vec [92] and Glove [110], two
widely-used embedding schemes. However, these two em-
bedding schemes primarily provide static representations
for identical words, whereas contextual embeddings o↵er a
more nuanced representation that adapts dynamically ac-
cording to the context [89]. To this end, the following
two embedding-based fairness metrics specifically consider-
ing contextual embeddings are introduced:
Word Embedding Association Test (WEAT) [20].
WEAT assesses bias in word embeddings by comparing two
sets of target words with two sets of attribute words. The
calculation of WEAT can be seen as analogies: M is to A
as F is to B, where M and F represent the target words,
and A and B represent the attribute words. WEAT then
uses cosine similarity to analyze the likeness between each
target and attribute set, and aggregates the similarity scores
for the respective sets to determine the final result between
the target set and the attribute set. For example, to ex-
amine gender bias in weapons and arts, the following sets

SIGKDD Explorations Volume 26, Issue 1 37



can be considered: Target words: Interests M : {pistol, ma-
chine, gun, . . . }, Interests F : {dance, prose, drama, . . . },
Attribute words: terms A: {male, boy, brother, . . . }, terms
B: {female, girl, sister, . . . }. WEAT thus assesses biases in
LLMs by comparing the similarities between categories like
male and gun, and female and gun. Mathematically, the
association of a word w with bias attribute sets A and B in
WEAT is defined as:

s(w, A,B) =
1
n

X

a2A

cos(w,a)� 1
n

X

b2B

cos(w, b) (1)

Subsequently, to quantify bias in the sets M and F , the
e↵ect size is used as a normalized measure for the association
di↵erence between the target sets:

WEAT (M,F,A,B) =
mean m2Ms(m, A,B)

stddevw2M[F s(w, A,B)
(2)

� mean f2F s(f , A,B)
stddevw2M[F s(w, A,B)

where meanm2Ms(m, A,B) represents the average of
s(m,A,B)for m in M , while stddevw2M[F s(w, A,B) de-
notes the standard deviation across all word biases of m in
M .
Sentence Embedding Association Test (SEAT) [89].
Contrasting with WEAT, SEAT compares sets of sentences
rather than sets of words by employing WEAT on the vec-
tor representation of a sentence. Specifically, its objective
is to quantify the relationship between a sentence encoder
and a specific term rather than its connection with the con-
text of that term, as seen in the training data. In order to
accomplish this, SEAT adopts musked sentence structures
like “That is [BLANK]” or “[BLANK] is here”, where the
empty slot [BLANK] is filled with social group and neutral
attribute words. In addition, employing fixed-sized embed-
ding vectors encapsulating the complete semantic informa-
tion of the sentence as embeddings allows compatibility with
Eq.(2).

5.2 Probability-based Metrics
Probability-based metrics formalize bias by analyzing the
probabilities assigned by LLMs to various options, often pre-
dicting words or sentences based on templates [11, 116] or
evaluation sets [48]. These metrics are generally divided into
two categories: masked tokens, which assess token probabil-
ities in fill-in-the-blank templates, and pseudo-log-likelihood
is utilized to assess the variance in probabilities between
counterfactual pairs of sentences.
Discovery of Correlations (DisCo) [156]. DisCo uti-
lizes a set of template sentences, each containing two empty
slots. For example, “[PERSON] often likes to [BLANK]”.
The [PERSON] slot is manually filled with gender-related
words from a vocabulary list, while the second slot [BLANK]
is filled by the model’s top three highest-scoring predictions.
By comparing the model’s candidate fills generation-based
on the gender association in the [PERSON] slot, DisCo eval-
uates the presence and magnitude of bias in the model.
Log Probability Bias Score (LPBS) [73]. LPBS
adopts template sentences similar to DisCO. However, un-
like DisCO, LPBS corrects for the influence of inconsistent
prior probabilities of target attributes. Specifically, for com-

puting the association between the target gender male and
the attribute doctor, LPBS first feeds the masked sentence
“[MASK] is a doctor” into the model to obtain the proba-
bility of the sentence “he is a doctor”, denoted as Ptarmale .
Then, to correct for the influence of inconsistent prior proba-
bilities of target attributes, LPBS feeds the masked sentence
“[MASK] is a [MASK]” into the model to obtain the proba-
bility of the sentence “he is a [MASK]”, denoted as Pprimale .
This process is repeated with “he” replaced by “she” for the
target gender female. Finally, the bias is assessed by com-
paring the normalized probability scores for two contrasting
attribute words, and the specific formula is defined as:

LPBS(S) = log
ptari
pprii

� log
ptarj
pprij

(3)

CrowS-Pairs Score. CrowS-Pairs score [97] di↵ers from
the above two methods that use fill-in-the-blank templates,
as it is based on pseudo-log-likelihood (PLL) [118] calculated
on a set of counterfactual sentences. PLL approximates the
probability of a token conditioned on the rest of the sentence
by masking one token at a time and predicting it using all
the other unmasked tokens. The equation for PLL can be
expressed as:

PLL(S) =
X

s2S

logP (s|S\s; ✓) (4)

where S represents is a sentence and s denotes a word within
S. The CrowS-Pairs score requires pairs of sentences, one
characterized by stereotyping and the other less so, utilizing
PLL to assess the model’s inclination towards stereotypical
sentences.

5.3 Generation-based Metrics
Generation-based metrics play a crucial role in addressing
closed-source LLMs, as obtaining probabilities and embed-
dings of text generated by these models can be challenging.
These metrics involve inputting biased or toxic prompts into
the model, aiming to elicit biased or toxic text output, and
then measuring the level of bias present. Generated-based
metrics are categorized into two groups: classifier-based and
distribution-based metrics.
Classifier-based Metrics. Classifier-based metrics utilize
an auxiliary model to evaluate bias, toxicity, or sentiment
in the generated text. Bias in the generated text can be
detected when text created from similar prompts but fea-
turing di↵erent social groups is classified di↵erently by an
auxiliary model. As an example, multilayer perceptrons,
frequently employed as auxiliary models due to their robust
modeling capabilities and versatile applications, are com-
monly utilized for binary text classification [8, 68]. Subse-
quently, binary bias is assessed by examining disparities in
classification outcomes among various classes. For example,
gender bias is quantified by analyzing the di↵erence in true
positive rates of gender in classification outcomes in [6].
Distribution-based Metrics. Detecting bias in the gen-
erated text can involve comparing the token distribution
related to one social group with that of another or nearby
social groups. One specific method is the Co-Occurrence
Bias score [98], which assesses how often tokens co-occur
with gendered words in a corpus of generated text. Math-
ematically, for any token w, and two sets of gender words,
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e.g., female and male, the bias score of a specific word w
is defined as follows:

bias(w) = log(
P (w | female)
P (w | male)

), P (w | g) = d(w, g)/⌃id (wi, g)
d(g)/⌃id (wi)

(5)
where P (w | g) represents the probability of encountering
the word w in the context of gendered terms g, and d(w, g)
represents a contextual window. The set g consists of gen-
dered words classified as either male or female. A positive
bias score suggests that a word is more commonly associated
with female words than with male words. In an infinite con-
text, the words “doctor” and “nurse” would occur an equal
number of times with both female and male words, resulting
in bias scores of zero for these words.

6. MITIGATING BIAS IN LLMs
This section discusses and categorizes existing algorithms
for mitigating bias in LLMs into four categories based on
the stage at which they intervene in the processing pipeline.

6.1 Pre-processing
Pre-processing methods focus on adjusting the data pro-
vided for the model, which includes both training data
and prompts, in order to eliminate underlying discrimina-
tion [31].
i) Data Augmentation. The objective of data augmen-
tation is to achieve a balanced representation of training
data across diverse social groups. One common approach
is Counterfactual Data Augmentation (CDA) [156, 175, 82],
which aims to balance datasets by exchanging protected at-
tribute data. For instance, if a dataset contains more in-
stances like “Men are excellent programmers” than “Women
are excellent programmers,” this bias may lead LLMs to fa-
vor male candidates during the screening of programmer re-
sumes. One way CDA achieves data balance and mitigates
bias is by replacing a certain number of instances of “Men
are excellent programmers” with “Women are excellent pro-
grammers” in the training data. Numerous follow-up studies
have built upon and enhanced the e↵ectiveness of CDA. For
example, Maudslay et al. [156] introduced Counterfactual
Data Substitution (CDS) to alleviate gender bias by ran-
domly replacing gendered text with counterfactual versions
at certain probabilities. Moreover, Zayed et al. [167]) dis-
covered that the augmented dataset included instances that
could potentially result in adverse fairness outcomes. They
suggest an approach for data augmentation selection, which
initially identifies instances within augmented datasets that
might have an adverse impact on fairness. Subsequently, the
model’s fairness is optimized by pruning these instances.
ii) Prompt Tuning. In contrast to CDA, prompt tun-
ing [76] focuses on reducing biases in LLMs by refining
prompts provided by users. Prompt tuning can be cat-
egorized into two types: hard prompts and soft prompts.
The former refers to predefined prompts that are static and
may be considered as templates. Although templates pro-
vide some flexibility, the prompt itself remains mostly un-
changed, hence the term “hard prompt.” On the other hand,
soft prompts are created dynamically during the prompt
tuning process. Unlike hard prompts, soft prompts can-
not be directly accessed or edited as text. Soft prompts are

essentially embeddings, a series of numbers, that contain in-
formation extracted from the broader model. As a specific
example of a hard prompt, Mattern et al. [88] introduced an
approach focusing on analyzing the bias mitigation e↵ects
of prompts across various levels of abstraction. In their ex-
periments, they observed that the e↵ects of debiasing be-
came more noticeable as prompts became less abstract, as
these prompts encouraged GPT-3 to utilize gender-neutral
pronouns more frequently. In terms of soft prompt method,
Fatemi et al. [47] focus on achieving gender equality by freez-
ing model parameters and utilizing gender-neutral datasets
to update biased word embeddings associated with occupa-
tions, e↵ectively reducing bias in prompts. Overall, the dis-
advantage of hard prompts is their lack of flexibility, while
the drawback of soft prompts is the lack of interpretability.

6.2 In-training
Mitigation techniques implemented during training aim to
alter the training process to minimize bias. This includes
making modifications to the optimization process by adjust-
ing the loss function and incorporating auxiliary modules.
These adjustments require the model to undergo retraining
in order to update its parameters.
i) Loss Function Modification. Loss function modifi-
cation involves incorporating a fairness constraint into the
training process of downstream tasks to guide the model
toward fair learning. Wang et al. [149] introduced an ap-
proach that integrates causal relationships into model train-
ing. This method initially identifies causal features and spu-
rious correlations based on standards inspired by the coun-
terfactual framework of causal inference. A regularization
technique is then used to construct the loss function, impos-
ing small penalties on causal features and large penalties on
spurious correlations. By adjusting the strength of penalties
and optimizing the customized loss function, the model gives
more importance to causal features and less importance to
non-causal features, leading to fairer performance compared
to conventional models. Additionally, Park et al. [106] pro-
posed an embedding-based objective function that addresses
the persistence of gender-related features in stereotype word
vectors by utilizing generated gender direction vectors dur-
ing fine-tuning steps.
ii) Auxiliary Module. Auxiliary modules involve the ad-
dition of modules with the purpose of reducing bias within
the model structure to help diminish bias. For instance,
Lauscher et al. [74] proposed a sustainable modular debias-
ing strategy, namely Adapter-based DEbiasing of LanguagE
Models (ADELE). Specifically, ADELE achieves debiasing
by incorporating adapter modules into the original model
layer and updating the adapters solely through language
modeling training on a counterfactual augmentation cor-
pus, thereby preserving the original model parameters un-
altered. Additionally, Shen et al. [114] introduces Iterative
Null Space Projection (INLP) for removing information from
neural representations. Specifically, they iteratively train a
linear classifier to predict a specific attribute for removal, fol-
lowed by projecting the representation into the null space of
that attribute. This process renders the classifier insensitive
to the target attribute, complicating the linear separation of
data based on that attribute. This method is e↵ective in re-
ducing bias in word embeddings and promoting fairness in
multi-class classification scenarios.
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6.3 Intra-processing
The Intra-processing focuses on mitigating bias in pre-
trained or fine-tuned models during the inference stage with-
out requiring additional training. This technique includes a
range of methods, such as model editing and modifying the
model’s decoding process.
i) Model Editing. Model editing, as introduced by
Mitchell et al. [94], o↵ers a method for updating LLMs that
avoids the computational burden associated with training
entirely new models. This approach enables e�cient adjust-
ments to model behavior within specific areas of interest
while ensuring no adverse e↵ects on other inputs [161]. Re-
cently, Limisiewicz et al. [79] identified the stereotype rep-
resentation subspace and employed an orthogonal projec-
tion matrix to edit bias-vulnerable Feed-Forward Networks.
Their innovative method utilizes profession as the subject
and “he” or “she” as the target to aid in causal tracing.
Furthermore, Akyürek et al. [3] expanded the application of
model editing to include free-form natural language process-
ing, thus incorporating bias editing.
ii) Decoding Modification. The method of decoding in-
volves adjusting the quality of text produced by the model
during the text generation process, including modifying to-
ken probabilities by comparing biases in two di↵erent out-
put outcomes. For example, Gehman et al. [63] introduced
a text generation technique known as DEXPERTS, which
allows for controlled decoding. This method combines a
pre-trained language model with “expert” and “anti-expert”
language models. While the expert model assesses non-toxic
text, the anti-expert model evaluates toxic text. In this com-
bined system, tokens are assigned higher probabilities only
if they are considered likely by the expert model and un-
likely by the anti-expert model. This helps reduce bias in
the output and enhances the quality of positive results.

6.4 Post-processing
Post-processing approaches modify the results generated by
the model to mitigate biases, which is particularly crucial
for closed-source LLMs where obtaining probabilities and
embeddings of generated text is challenging, limiting the di-
rect modification to output results only. Here, the method
of chain-of-thought and rewriting serve as illustrative ap-
proaches to convey this concept.
i) Chain-of-thought (CoT). The CoT technique enhances
the hope and performance of LLMs toward fairness by lead-
ing them through incremental reasoning steps. The work by
Kaneko et al. [69] provided a benchmark test where LLMs
were tasked with determining the gender associated with
specific occupational terms. Results revealed that, by de-
fault, LLMs tend to rely on societal biases when assign-
ing gender labels to these terms. However, incorporating
CoT prompts mitigates these biases. Furthermore, Dhingra
et al. [39] introduced a technique combining CoT prompts
and SHAP analysis [84] to counter stereotypical language
towards queer individuals in model outputs. Using SHAP,
stereotypical terms related to LGBTQ+6 individuals were
identified, and then the chain-of-thought approach was used
to guide language models in correcting this language.
ii) Rewriting. Rewriting methods refer to identifying dis-
criminatory language in the results generated by models

6https://en.wikipedia.org/wiki/LGBT

and replacing it with appropriate terms. As an illustra-
tion, Tokpo and Calders [135] introduced a text-style trans-
fer model capable of training on non-parallel data. This
model can automatically substitute biased content in the
text output of LLMs, helping to reduce biases in textual
data.

7. RESOURCES FOR EVALUATING BIAS
7.1 Toolkits
This section presents the following three essential tools de-
signed to promote fairness in LLMs:
i) Perspective API7, created by Google Jigsaw, functions
as a tool for detecting toxicity in text. Upon input of a text
generation, Perspective API produces a probability of toxi-
city. This tool finds extensive application in the literature,
as evidenced by its utilization in various studies [78, 25, 75].
ii) AI Fairness 360 (AIF360) [12] is an open-source toolkit
aimed at aiding developers in assessing and mitigating biases
and unfairness in machine learning models, including LLMs,
by o↵ering a variety of algorithms and tools for measuring,
diagnosing, and alleviating unfairness.
iii) Aequitas [119] is an open-source bias audit toolkit de-
veloped to evaluate fairness and bias in machine learning
models, including LLMs, with the aim of aiding data sci-
entists and policymakers in comprehending and addressing
bias in LLMs.

7.2 Datasets
This section provides a detailed summary of the datasets
referenced in the surveyed literature, categorized into
two distinct groups—probability-based and generation-
based—based on the type of metric they are best suited
for, as shown in Table 1.
i) Probability-based. As mentioned in section 5.2,
datasets aligned with probability-based metrics typically
use a template-based format or a pair of counterfactual-
based sentences. In template-based datasets, sentences in-
clude a placeholder that is completed by the language model
choosing from predefined demographic terms, whereby the
model’s partiality towards various social groups is influenced
by the probability of selecting these terms. Noteworthy ex-
amples of such datasets include WinoBias [173], which as-
sesses a model’s competence in linking gender pronouns and
occupations in both stereotypical and counter-stereotypical
scenarios. WinoBias defines the gender binary in terms of
two specific occupations. Expanding upon this dataset, sev-
eral extensions have introduced a variety of diverse eval-
uation datasets. For example, WinoBias+ [137] enhances
the original WinoBias dataset by employing rule-based and
neural-neutral rewriters to convert gendered sentences into
neutral equivalents. Additionally, BUG [77] broadens the
evaluation of gender bias in machine translation by us-
ing a large-scale real-world English dataset. In contrast,
GAP [157] introduces a gender-balanced tagged corpus com-
prising 8,908 ambiguous pronoun-name pairs, providing a
more balanced dataset for accurately assessing model bias.
Another category of counterfactual-based datasets evaluates
bias by presenting the model with pairs of sentences con-
taining di↵erent demographic terms and assessing their like-

7https://perspectiveapi.com
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Table 1: Dataset for evaluating Bias in LLMs. For each dataset, the dataset size, their corresponding types of bias, and
related work are presented, depending on the suitable type of metric for the dataset. Within the category of probability-based
evaluate metrics, datasets marked with an asterisk (⇤) are denoted counterfactual-based datasets, while datasets without an
asterisk belong to the template-based.

Category Dataset Size Bias Type Reference Works
BEC-Pro* [11] 5,400 gender [74, 100, 130]
BUG* [77] 108,419 gender [46, 80]
BBQ* [107] 58,492 gender, others (9 types) [78, 129, 125]
Bias NLI [37] 5,712,066 gender, race, religion [35, 74, 33, 132]
BiasAsker [142] 5,021 gender, others (11 types) [148, 95, 30]
CrowS-Pairs [97] 1,508 gender, other(9 types) [104, 120, 169, 55, 90]

Equity Evaluation Corpus [70] 4,320 gender, race [29, 13, 89]
GAP* [157] 8,908 gender [2, 61, 73]

Probability GAP-Subjective* [105] 8,908 gender [164]
based StereoSet* [96] 16,995 gender, race, religion, profession [42, 125, 158, 54, 49]

WinoBias* [116] 3,160 gender [25, 129, 81]
WinoBias+* [137] 3,167 gender [4, 83, 122, 128]
Winogender* [173] 720 gender [14, 143, 133, 120]

PANDA [113] 98,583 gender, age, race [165, 19, 174, 4]
REDDITBIAS [10] 11,873 gender, race, religion, queerness [65, 171, 85]
WinoQueer [48] 45,540 sexual orientation [131, 62, 34]
TrustGPT [64] 9 gender, race, religion [131, 146]

Generation HONEST [102] 420 gender [66, 103, 101, 109]
based BOLD [38] 23,679 gender, others (4 types) [111, 22, 145]

RealToxicityPrompts [51] 100,000 toxicity [53, 127]
HolisticBias [127] 460,000 gender, race, religion, age, others (13 types) [23, 165, 59]

lihood using a pseudo-log-likelihood metric. For instance,
CrowS-Pairs [97] provides 1,508 sentence pairs to assess
stereotypes of historically marginalized social groups, ad-
dressing nine biases related to race, gender, sexual orienta-
tion, religion, age, nationality, disability, physical appear-
ance, and socioeconomic status. Similarly, WinoQueer [48],
developed by the LGBTQ+ community, contains 45,540 sen-
tence pairs designed to gauge anti-LGBTQ+ stereotypes,
encompassing LGBTQ+ identity descriptors and counter-
factual versions without LGBTQ+ identity markers.
ii) Generation-based. As discussed in section 5.3,
datasets aligned with generation-based metrics usually spec-
ify the first few words of a sentence and require the model
to provide a continuation. Noteworthy examples include
RealToxicityPrompts [64] and BOLD [38], both providing
web-based sentence prefixes, such as: “Jaegwon Kim was a
Korean-American philosopher who . . . ”. Specifically, Real-
ToxicityPrompts is one of the largest prompting datasets,
providing 100,000 sentence prefixes curated from web text
with a toxicity score by Perspective API, which can be used
to measure the toxicity of generations given both toxic and
non-toxic prompts. Besides, BOLD presents 23,679 prompts
aimed at assessing bias across professions, genders, races, re-
ligions, and political ideologies. This dataset is compiled by
extracting information from English Wikipedia pages men-
tioning biased groups (e.g., professions) and truncating sen-
tences to generate prompts.

8. CHALLENGES AND FUTURE DIREC-
TIONS

Formulating Fairness Notions. Discrimination within
LLMs can take various forms, necessitating the development
of diverse fairness notions for a comprehensive understand-

ing of bias and discrimination across di↵erent real-world ap-
plications. This complexity of real-world scenarios means
that additional types of biases may exist, each requiring tai-
lored approaches to quantify bias in LLMs. Furthermore,
the definitions of fairness notions for LLMs can sometimes
conflict, adding complexity to the task of ensuring equitable
outcomes. Given these challenges, the process of either de-
veloping new fairness notions or selecting a coherent set of
existing, non-conflicting fairness notions specifically for cer-
tain LLMs and their downstream applications remains an
open question.
Rational Counterfactual Data Augmentation. Coun-
terfactual data augmentation, a commonly employed tech-
nique in mitigating LLM bias, encounters several qualita-
tive challenges in its implementation. A key issue revolves
around inconsistent data quality, potentially leading to the
generation of anomalous data that detrimentally impacts
model performance. For instance, consider an original train-
ing corpus featuring sentences describing height and weight.
When applying counterfactual data augmentation to achieve
balance by merely substituting attribute words, it may result
in the production of unnatural or irrational sentences, thus
compromising the model’s quality. For example, a straight-
forward replacement such as switching “a man who is 1.9
meters tall and weighs 200 pounds” with “a woman who is
1.9 meters tall and weighs 200 pounds” is evidently illog-
ical. Future research could explore more rational replace-
ment strategies or integrate alternative techniques to filter
or optimize the generated data.
Balance Performance and Fairness in LLMs. A key
strategy in mitigating bias involves adjusting the loss func-
tion and incorporating fairness constraints to ensure that
the trained objective function considers both performance
and fairness [159]. Although this e↵ectively reduces bias in
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the model, finding the correct balance between model per-
formance and fairness is a challenge. It often involves man-
ually tuning the optimal trade-o↵ parameter [168]. How-
ever, training LLMs can be costly in terms of both time
and finances for each iteration, and it also demands high
hardware specifications. Hence, there is a pressing need
to explore methods to achieve a balanced trade-o↵ between
performance and fairness systematically.
Fulfilling Multiple Types of Fairness. It is imperative
to recognize that any form of bias is undesirable in real-world
applications, underscoring the critical need to concurrently
address multiple types of fairness. However, Gupta et al. [57]
found that approximately half of the existing work on fair-
ness in LLMs focuses solely on gender bias. While gender
bias is an important issue, other types of societal demo-
graphic biases are also worthy of attention. Expanding the
scope of research to encompass a broader range of bias cat-
egories can lead to a more comprehensive understanding of
bias.
Develop More and Tailored Datasets. A comprehen-
sive examination of fairness in LLMs demands the pres-
ence of extensive benchmark datasets. However, the pre-
vailing datasets utilized for assessing bias in LLMs largely
adopt a similar template-based methodology. Examples of
such datasets, such as WinoBias [173], Winogender [173],
GAP [157], and BUG [77], consist of sentences featuring
blank slots, which language models are tasked with com-
pleting. Typically, these pre-defined options for filling in
the blanks include pronouns like he/she/they or choices re-
flecting stereotypes and counter-stereotypes. These datasets
overlook the potential necessity for customizing template
characteristics to address various forms of bias. This over-
sight may lead to discrepancies in bias scores across di↵er-
ent categories, underscoring the importance of devising more
and tailored datasets to precisely evaluate specific social bi-
ases.

9. CONCLUSION
LLMs have demonstrated remarkable success across various
high-impact applications, transforming the way we inter-
act with technology. However, without proper fairness safe-
guards, they risk making decisions that could lead to dis-
crimination, presenting serious ethical issues and increasing
societal concern. This survey explores current definitions
of fairness in machine learning and the necessary adapta-
tions to address linguistic challenges when defining bias in
the context of LLMs. Furthermore, techniques aimed at
enhancing fairness in LLMs are categorized and elaborated
upon. Notably, comprehensive resources, including toolkits
and datasets, are summarized to facilitate future research
progress in this area. Finally, existing challenges and open-
question areas are also discussed.
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