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Abstract—This paper introduces a general framework to an-
alyze and optimize age-of-information (AoI) in CSMA protocols
for distributed uplink transmissions. The proposed framework
combines two theoretical approaches. First, it employs second-
order analysis that characterizes all random processes by their
respective means and temporal variances and approximates AoI
as a function of the mean and temporal variance of the packet
delivery process. Second, it employs mean-field approximation to
derive the mean and temporal variance of the packet delivery
process for one node in the presence of interference from others.
To demonstrate the utility of this framework, this paper applies
it to the age-threshold ALOHA policy and identifies parameter
settings that outperform those previously suggested as optimal
in the original work that introduced this policy. Simulation
results demonstrate that our framework provides precise AoI
approximations and achieves significantly better performance,
even in networks with a small number of users.

Index Terms—Age-of-Information, AoI, Random Access Net-
work, CSMA protocol

I. INTRODUCTION

The growing demand for real-time communication in dis-
tributed systems, such as Internet of Things (IoT) networks,
wireless sensor networks, and other time-sensitive applica-
tions, has increased the focus on optimizing data freshness.
While traditional metrics such as throughput and reliability
remain important, they often fail to capture the need for timely
updates of information. The Age-of-Information (AoI) metric
addresses this challenge by measuring the freshness of data
at the receiver, quantifying the time elapsed since the most
recent update was received [1]. As a result, AoI has become
a key performance indicator for networks where timely data
delivery is critical.

Optimizing AoI in random access networks that use slotted
Carrier Sense Multiple Access (CSMA) protocols presents
significant challenges. These networks require multiple users
to share a communication channel, where each transmission
attempt is only successful if no other user transmits in the same
time slot. Each user’s transmission strategy is governed by a
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Markov process, with state transitions depending on the results
of channel sensing or the reception of an acknowledgment
(ACK).

In slotted CSMA networks, the use of sensing mechanisms
and ACKs introduces dependencies between users’ transmis-
sion decisions, as each user’s decision is influenced by the de-
cisions of other uses in the previous slot. These dependencies
complicate the analysis because it becomes necessary to track
the state of each user, rendering traditional analytical methods
intractable as the number of users increases. This complexity
contrasts with previous studies, such as those by Yates et al.
[2] and Talak et al. [3], which assume independent user actions
and focus on simpler protocols like slotted ALOHA.

To date, much of the existing research has focused on
specific strategies for AoI optimization in random access
networks, such as age-threshold policies or other age-aware
transmission strategies. For instance, Chen et al. [4] proposed
an age-sensitive random access protocol where nodes trans-
mit only when their instantaneous AoI exceeds a predefined
threshold, an approach later extended to CSMA networks by
Yavascan et al. [5]. Similarly, Chen et al. [6] introduced a
distributed transmission strategy based on an age-gain metric,
quantifying the reduction in AoI following successful packet
delivery. Further approaches include the index-prioritized ran-
dom access scheme by Sun et al. [7] and the minislotted
threshold ALOHA protocol analyzed by Ahmetoglu et al. [8],
which is designed for high payload scenarios. Moradian et
al. [9] considered dynamic frame slotted ALOHA with an
age-gain threshold. Kadota et al. [10] developed a framework
to optimize average AoI in networks with stochastic packet
generation, while Wang et al. [11] employed stochastic hybrid
systems (SHS) to analyze AoI in CSMA networks.

Despite these advances, a unified framework that accommo-
dates arbitrary Markov process-based transmission strategies
for optimizing AoI in slotted CSMA remains a challenge.
Many existing works are limited to special cases, such as
when the number of users approaches infinity. A more general
approach is needed to extend the analysis and optimization of
AoI to a wider variety of CSMA protocols and network sizes.

To address these challenges, we propose a general frame-
work that combines second-order analysis and mean-field
approximation to model and optimize AoI in random access
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networks using CSMA protocols. The second-order analysis
approximates AoI by considering both the mean and tempo-
ral variance of packet delivery processes, transforming the
problem of AoI optimization into one of optimizing these
two metrics. The mean-field approximation models user in-
terference, enabling the derivation of the mean and variance
of the packet delivery process for each user while accounting
for dependencies introduced by sensing and acknowledgment
mechanisms. This combined approach allows for flexible
analysis and optimization across various CSMA protocols,
including those with age-threshold policies and other Markov-
based strategies.

Our primary contribution is the development of the scal-
able and flexible framework for analyzing and optimizing
Age-of-Information (AoI) in random access networks under
arbitrary CSMA protocols. This framework offers improved
flexibility and performance in AoI minimization. We apply
the framework specifically to the age-threshold policy and
demonstrate its accuracy in scenarios with small numbers of
users, extending beyond the limitations of asymptotic analyses
in previous works. Simulation results confirm that the parame-
ters derived from our approach consistently outperform those
proposed in [5], particularly in practical settings with fewer
users, underscoring the effectiveness and robustness of our
method.

The remainder of this paper is structured as follows. Sec-
tion II introduces the system model and problem formulation.
In Section III, we detail our framework, which combines
second-order analysis and mean-field approximation to opti-
mize AoI. Section IV presents the practical results of applying
the proposed approach to parameter settings in recently pro-
posed policies, showcasing its effectiveness. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

We analyze a random access network consisting of N
symmetric users and a single receiver. The goal is to ana-
lyze how users manage their transmissions and how network
performance can be optimized when users interfere with each
other. The network operates in slotted time, where each time
slot provides an opportunity for users to transmit their packets
and each packet transmission is completed within a single time
slot. If only one user transmits during a slot, the transmission
is successful; otherwise, a collision occurs, resulting in no data
received by the receiver. Figure 1 illustrates the network setup.

Fig. 1. Network Model Example.

In this setup, users follow a slotted CSMA protocol, with
their behavior modeled as a Markov process that consists of
two kinds of states: a transmission state and several idle states,
whose behaviors are described below:

• Idle states: When a user is in one of the idle states, it does
not make any transmission. The user senses the channel
to see if there are any other transmissions going on. Based
on the sensing result, the user transition to another state.

• Transmission state: When a user is in the transmission
state, it transmits a packet containing its latest informa-
tion. The user then waits for an ACK. Based on whether it
receives an ACK or not, the user transitions to a different
state.

For simplicity, we assume each user can be in one of S
states, where the first state is the transmission state, and the
others are idle states. The transition dynamics between these
states are crucial for balancing network load and minimizing
collisions.

The users transition between these states based on the
sensing results, which influence their Markov process tran-
sitions. A user’s decision to transmit or remain idle depends
on whether the channel is sensed as idle or busy, and this
decision is captured by the parameter α, defined as follows:

• α = 0: The channel is sensed as idle (i.e., no other
user transmitted) or the user received an ACK from the
previous time slot. In this case, the user follows the
Markov transition matrix M0, which may increase the
likelihood of transitioning to a transmission state.

• α = 1: Another user transmitted in the previous time slot,
leading to a collision if the user transmitted. The user then
follows the transition matrix M1, which likely keeps the
user in an idle or backoff state to avoid collisions.

This setup models the user’s state evolution as a function
of the sensing results and internal protocol dynamics, with
multiple idle and transmission states.

Each user’s performance is evaluated by its Age of Infor-
mation (AoI). Every user generates a new packet in each time
slot, and the AoI of user n at time t is recursively defined as:

AoIn,t :=


1, if users n successfully delivers

a packet at time t,
AoIn,t−1 + 1, otherwise.

To demonstrate this concept, consider a specific strategy
known as the age-threshold ALOHA policy, introduced in
recent literature [5] to minimize AoI. In this strategy, each
user pauses its transmissions until the AoI of the user exceeds
a predefined threshold H . Once the AoI surpasses H , the
user begins transmitting with a constant probability p in each
slot until a successful transmission occurs. After the success,
the user pauses transmissions again until the AoI exceeds
the threshold H . This process can be described as a Markov
process, as shown in Figure. 2.

The transition matrices M0 and M1 for this process are of
size (H + 2) × (H + 2) and are defined as follows, where
state 1 is the transmission state (TX), state 2 is the idle state
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Fig. 2. Markov Process for the TA Policy.

for ALOHA, and states 3 to H + 2 are pausing states with
different ages.

M0 =



p 1− p 0 0 0 ... 0 0
p 1− p 0 0 0 ... 0 0
0 0 0 1 0 ... 0 0
0 0 0 0 1 ... 0 0
... ... ... ... ... ... ... ...
0 0 0 0 0 ... 0 1
p 1− p 0 0 0 ... 0 0


,

M1 =



0 0 1 0 0 ... 0 0
p 1− p 0 0 0 ... 0 0
0 0 0 1 0 ... 0 0
0 0 0 0 1 ... 0 0
... ... ... ... ... ... ... ...
0 0 0 0 0 ... 0 1
p 1− p 0 0 0 ... 0 0


.

Finally, our objective is to minimize the expected AoI for all
users. Specifically, let AoI represent the steady-state AoI of a
user as a random variable. We seek to optimize the parameters
of the Markov transition matrices M0 and M1 by solving the
following optimization problem:

min F (M0,M1) := E[AoI], (1)

where E[·] denotes the expectation function.
With the system’s key parameters defined, we now turn

to the next step of developing a solution framework that
effectively models and minimizes AoI.

III. ANALYSIS THROUGH SECOND-ORDER MEAN-FIELD
APPROXIMATION

Optimizing Age of Information (AoI) in random access
networks presents significant challenges due to the complex
interaction between users competing for transmission oppor-
tunities. To address this, we propose to combine second-
order analysis with mean-field approximation. This method
efficiently models and minimizes AoI while maintaining com-
putational feasibility, ensuring both accuracy and practicality.

A. Second-Order Approximation of AoI
In the first step, we apply the second-order approximation

method, as outlined in Guo et al. [12] and Fan et al. [13],
[14], to capture both the mean and temporal variance of packet
deliveries. Since AoI is closely linked to the frequency and
consistency of successful packet transmissions, this method
approximates AoI by considering these two factors.

The packet delivery process for each user is represented
by an indicator function Dn(t), where Dn(t) = 1 if user n
successfully transmits at time t, and Dn(t) = 0 otherwise.
In a symmetric network, all users exhibit similar statistical
transmission patterns, enabling us to define two key quantities:

• Mean success rate m: the long-term average rate at which
a user successfully transmits a packet.

• Temporal variance v2: the variability in packet deliveries
over time.

These quantities are mathematically expressed as:

m := lim
T→∞

∑T
t=1 Dn(t)

T
,

v2 := lim
T→∞

E

(∑T
t=1 Dn(t)− Tm√

T

)2
 .

With these values, we approximate the expected AoI using
the formula derived from Theorem 2 in [13]:

E[AoI] ≈ 1

2

(
v2

m2
+

1

m

)
+

1

2
. (2)

This approximation incorporates both the mean rate of
successful transmissions and their variability, providing a more
accurate estimate of the AoI. The remaining task is to compute
m and v2 based on the transition matrices M0 and M1, which
we achieve in the next step using mean-field approximation.

B. Mean-Field Approximation of the Delivery Process
In the second step, we focus on calculating the mean m and

variance v2 by addressing the complexity of user interactions
among users in large random access networks. As the number
of users N increases, directly modeling the behavior of each
user becomes computationally intractable.

To address this, we apply the mean-field approximation,
which simplifies the analysis by replacing the interactions
between individual users with the aggregate effect of the
remaining N − 1 users. This approximation assumes that as
the number of users increases, the impact of each user on the
system diminishes.

Recall each user in the network follows a Markov pro-
cess to transition between states (e.g., idle, transmission, or
backoff), with transitions governed by the results of carrier
sensing or acknowledgment (ACK) reception. The system’s
state is captured by the steady-state probability vector µ =
{µ1, µ2, . . . , µS}, where µi represents the probability of a user
being in state i in the long run.

The system’s steady-state behavior is then described by the
equation:

γ0µM0 + γ1µM1 = µ. (3)
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Here, γ0 = (1 − µ1)
N−1 represents the probability that the

channel is idle (i.e., no other users are transmitting), and
γ1 = 1−γ0 represents the probability that the channel is busy.
The matrices M0 and M1 describe state transitions when the
channel is idle or busy, respectively.

To solve for µ, we employ a fixed-point iteration method.
Starting with an initial guess for µ, we iteratively update the
value until it converges:

Algorithm 1 Fixed-Point Iteration for Steady-State Probability
Calculation
Input: M0,M1

1: Initialize state distribution, e.g., µ̄ = [1, 0, . . . , 0].
2: Compute γ0 = (1− µ̄1)

N−1.
3: Solve µ′ from equation (3) subject to

∑S
s=1 µ

′
s = 1.

4: if ∥µ̄− µ′∥ ≥ threshold then
5: Set µ̄ = µ′ and return to step 2.
6: else
7: Output µ = µ′.
8: end if

Output: µ

Once the steady-state probability vector µ is obtained, the
mean success rate m can be computed using the following
expression:

m = µ1γ0 = µ1(1− µ1)
N−1. (4)

The temporal variance v2 is calculated by central limit theory
using the covariance of transmission successes across time
steps:

v2 = m−m2 + 2

∞∑
k=2

Cov(Dn(k), Dn(1)).

The covariance term Cov(Dn(k), Dn(1)) measures how
packet transmissions at different times are correlated. It is
expressed as:

Cov(Dn(k), Dn(1))

= E[Dn(1)Dn(k)]− E[Dn(1)]E[Dn(k)]

=
(
Prob(Dn(k) = 1|Dn(1) = 1)− E[Dn(k)]

)
E[Dn(1)]

=
(
OSM0(γ0M0 + γ1M1)

k−2 −m
)
m.

Thus, the temporal variance incorporates both short-term and
long-term dependencies in transmission success, captured by
the covariance across multiple time steps:

v2 = m−m2 + 2
∞∑
k=2

(
OSM0(γ0M0 + γ1M1)

k−2 −m
)
m.

(5)
Substituting results from Algorithm. 1, equations (4) and (5)

into the second-order approximation equation (2), we derive a
highly efficient and accurate method to estimate and minimize
the AoI, even in large-scale networks with complex interaction.

To validate the effectiveness of our proposed solution, we
apply it to the age-threshold ALOHA policy. The following
section presents simulation results and compares the perfor-
mance of our framework against existing parameter settings.

IV. AOI OPTIMIZATION FOR AGE-THRESHOLD ALOHA
STRATEGY

In this section, we optimize the age-threshold ALOHA pol-
icy parameters using our proposed algorithm and benchmark
its performance against that of established parameter settings
from the literature [5]. The two key parameters in the age-
threshold ALOHA policy are the age threshold H and the
ALOHA transmission probability p.

We evaluate three parameter settings for minimizing Age
of Information (AoI). First, our proposed Second-Order and
Mean-field Analysis (SOMA) approach combines second-
order analysis with mean-field approximation, as detailed in
previous sections, to estimate AoI across a range of values
for H (from 1 to 3N ) and p (with a precision of 0.001). In
practice, using k values in (5) between 2 and 1000 provides
sufficient accuracy, with a convergence threshold of 1×10−6.
This method selects the parameters that obtain minimum
calculated AoI.

The second and third approaches are both derived from the
reference paper [5]. Literature-Based Optimal Parameters
(LBOP) is said to be optimal in [5], with recommended
values of H = 2.2N and p = 4.69/N . LBOP assumes a
two-peak behavior, where the system oscillates between two
distinct peaks of active users, balancing collision probability
and channel utilization to achieve optimal performance in
larger networks. In contrast, Single-Peak Guided Parameters
(SPGP), with H = 2.17N and p = 4.43/N , assumes a single-
peak behavior, stabilizing the number of active users around a
single value. This setting is better suited for smaller networks,
where reduced collisions and improved stability lead to better
AoI performance

We evaluate the practical performance of these parameter
settings by simulating the system for 100,000 time slots across
100 independent runs. The key metric is the expected AoI,
averaged over all runs, and the 95% percentile interval is
shown as a gray area, as illustrated in Figure 3.

Fig. 3. Expected AoI Comparison Among SOMA, LBOP, and SPGP.

As shown in Figure 3, our proposed optimal parameters
derived from SOMA consistently outperform LBOP and SPGP
across varying network sizes N . SOMA achieves a signif-
icantly lower expected AoI, demonstrating the effectiveness
of our approach in practical scenarios. Additionally, the 95%
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percentile intervals show that SOMA offers more stable perfor-
mance, while both LBOP and SPGP exhibit higher variability,
further emphasizing the robustness of SOMA.

A very surprising result in Figure 3 is that LBOP and
SPGP perform worse than our setting based on SOMA, despite
that LBOP and SPGP have been shown to be the asymptotic
optimal setting under some assumptions [5]. To gain better
understanding why they perform poorly, we evaluate the per-
formance of the age-threshold ALOHA policy under different
ϵ := p/N while setting H to be 2.2N . Note that LBOP
suggests choosing ϵ = 4.69 and SPGP suggests choosing
ϵ = 4.43.

Simulation results for different H are shown in Figure 4.
It can be observed that the optimal ϵ, that is, the ϵ with the
smallest AoI, indeed converge to somewhere between 4.43
and 4.69. This shows that the analysis in [5] is indeed valid.
However, we also notice that the average AoI starts to increase
sharply once ϵ becomes just a little larger than the optimal
value. As a result, even though the choices of ϵ under LBOP
and SPGP are only a little larger than the optimal values, they
can still result in poor average AoI. In contrast, our setting
based on SOMA is much more robust across different N .

Fig. 4. Expected AoI Comparison for Different ϵ.

Finally, we compare the computational runtime of our pro-
posed algorithm with that of a practical simulation approach,
as shown in Table I. The runtime for practical simulations is
the average of 80 trials, where each trial consists of 100,000
time slots and 100 independent runs.

TABLE I
RUNTIME COMPARISON

N 25 50 75 100
SOMA 0.0025 0.0091 0.0187 0.0298

Practical Simulation 12.1159 22.3107 33.3154 44.6191

As shown in the table, our proposed method is thousands of
times faster than running full practical simulations, highlight-
ing the efficiency of applying our solution for AoI optimization
in real-time applications.

These findings highlight the practical significance of the
proposed framework, which consistently outperforms existing
approaches. The following section summarizes the key contri-
butions of this approach.

V. CONCLUSION

In this paper, we introduce a novel framework to ana-
lyze and optimize Age-of-Information (AoI) in distributed
random access networks utilizing CSMA protocols. By inte-
grating second-order analysis with mean-field approximation,
we develop a tractable approach that approximates AoI while
accounting for complex user interference and supporting a
wider range of transmission strategies, including arbitrary
Markov processes. Through extensive simulations of the re-
cently proposed age-threshold policy, we demonstrate that
our approach’s derived parameters outperform those from
the asymptotic analysis of previous works, highlighting the
adaptability and effectiveness of the proposed framework. This
makes it a valuable tool for both theoretical analysis and
practical implementations in time-sensitive communication
systems.
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