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ABSTRACT

Scheduling in multi-channel wireless communication system presents
formidable challenges in effectively allocating resources. To address
these challenges, we investigate a multi-resource restless matching
bandit (MR-RMB) model for heterogeneous resource systems with
an objective of maximizing long-term discounted total rewards
while respecting resource constraints. We have also generalized to
applications beyond multi-channel wireless. We discuss the Max-
Weight Index Matching algorithm, which optimizes resource allo-
cation based on learned partial indexes. We have derived the policy
gradient theorem for index learning. Our main contribution is the
introduction of a new Deep Index Policy (DIP), an online learning
algorithm tailored for MR-RMB. DIP learns the partial index by
leveraging the policy gradient theorem for restless arms with convo-
luted and unknown transition kernels of heterogeneous resources.
We demonstrate the utility of DIP by evaluating its performance
for three different MR-RMB problems. Our simulation results show
that DIP indeed learns the partial indexes efficiently.
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1 INTRODUCTION

Scheduling in wireless communication systems is a critical aspect
that plays a pivotal role in optimizing resource utilization and en-
hancing system performance. The importance of scheduling stems
from the inherent limitations and complexities of wireless chan-
nels, including limited bandwidth, varying channel conditions, and
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the presence of interference. Effective scheduling strategies en-
able efficient allocation of scarce resources, such as bandwidth
and transmission slots, to users or applications, thereby maximiz-
ing system throughput, minimizing latency, and enhancing overall
network performance [26]. Scheduling problems have been exten-
sively studied in the literature in various applications such as Age
of Information (Aol) [14], Quality of Experience (QoE) [2], Mobile
Edge Computing (MEC) for wireless Virtual Reality (VR) [36] and
opportunistic scheduling problems for downlink data traffic [1].

Most modern wireless systems, such as those employing or-
thogonal frequency-division multiple access (OFDMA), have the
capability to schedule different users for transmissions on different
channels or subcarriers simultaneously. Scheduling problems in
such multi-channel wireless networks are especially difficult be-
cause a user may experience different channel qualities on different
channels. Hence, a controller of the system needs to decide not only
whom to schedule, but also which channels to schedule each user
on.

In this paper, we investigate a multi-resource restless matching
bandit (MR-RMB) model to address challenges in multi-channel
scheduling problems. This model considers each user as a restless
arm whose state, such as queue status, packet delay, recent de-
liveries, evolves according to both application behaviors and the
perceived network services. In each time step, a controller observes
the states of all restless arms and then matches each restless arm
to a resource (channel), subject to the capacity of the resource. In
addition to multi-channel scheduling problems, we also show that
the MR-RMB model can be applied to a wide range of applications
such as advertisement placements on social media websites and
call center scheduling.

The MR-RMB model extends the restless bandit problem, which
is a special case with a single resource. The restless bandit problem is
intractable due to its exponentially growing state space. To address
this challenge, we adopt the technique in Zou et al. [38], which
proposes a partial index policy for minimizing Aol in multi-channel
wireless networks. This policy calculates a partial index between
each restless arm n and each resource k. An important feature of the
partial index is that it only depends on the state of the restless arm
n and is independent of the states of all other restless arms. This
feature makes calculating the partial index tractable. We generalize
this policy for generic MR-RMB models.

An important limitation of the partial index policy is that it re-
quires the complete knowledge of the transition kernel of each
restless arm, which, in the case of multi-channel scheduling, con-
sists of the application behaviors and channel qualities of each user,
to calculate the partial index. In practice, such knowledge may not
be available. We propose using deep reinforcement learning for the
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controller to learn the partial indexes on the fly without any prior
knowledge about the transition kernel of each restless arm. We
show that finding the partial indexes is equivalent to finding the
optimal control policy for a family of auxiliary Markov decision
processes (MDP). We further derive the policy gradient theorem
for the entire family of auxiliary MDPs.

Based on the policy gradient theorem, we propose Deep Index
Policy (DIP), a new deep reinforcement learning policy that learns
the partial indexes by using actor-critic networks. The utility of DIP
is comprehensively evaluated in three different MR-RMB problems,
two problem are scheduling problems in multi-channel wireless
networks and the third one is an advertisement placement problem
in social media websites. For scenarios where partial indexes can
be calculated, DIP indeed converges to partial indexes efficiently.
For other scenarios, DIP significantly outperforms other policies.

Our primary contributions are the introduction of DIP, which
generalizes the partial index policy for generic MR-RMB models,
and the development of a learning algorithm that efficiently com-
putes the partial index without requiring prior knowledge of the
system. Zou et al. [38] define partial index but calculating the par-
tial index requires a full knowledge about the system, which may
not be available in practice. In contrast, we have a learning algo-
rithm that can efficiently find the partial index without knowing
anything about the system in advance. Additionally, we advance
the policy gradient theorem by incorporating multiple resources, a
more complex scenario than the single-resource setting explored by
Nakhleh and Hou [24]. Unlike the restless bandit problem, where
the comparison is between activation and idle, our work involves
comparing activation on resource h with activation on any other
resource. This complexity makes a policy gradient theorem more
challenging to drive.

The rest of the paper is organized as follows: Section 2 reviews
recent studies on wireless scheduling and restless bandits. Section 3
introduces the model for MR-RMB. Section 4 discusses the partial
index policy for MR-RMB. Section 5 establishes the policy gradient
theorem for finding partial indexes. Section 6 introduces the deep
index policy that finds partial indexes through deep reinforcement
learning. Section 7 presents the simulation results. Finally, Section 8
concludes the paper.

1.1 Notations

Throughout this paper, we use X to denote the vector containing
[x1,x2,...]. We use X_;, to denote the vector X without x,, i.e.,
[x1, X2, -+ +» Xm—1, Xm+1, - - - |, and use [X_p,, y] to denote the vector
X with xp, being replaced by y, i.e., [x1,X2, ..., Xm—1, Y> Xm+1 - - - |

2 RELATED WORK

Scheduling problems have been extensively studied in wireless
networks, with many focusing on scenarios with a single shared
resource [14, 36], potentially limiting the generalizability of their
findings. However, significant research has also been investigated
in multi-channel wireless networks [6, 8, 16, 19, 32]. Gopalan, Cara-
manis and Shakkottai explore an online scheduling algorithm to
allocate multiple channels for a queueing system [11]. Krishnasamy
et al. examine the optimization of energy costs in systems with
multiple Base Stations (BSs) [17]. Bodas et al. focus on the allocation
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of multiple channels for the downlink of cellular wireless networks
[4]. Additionally, Sombabu and Moharir [28], Xu et al. [35], Talak,
Karaman and Modiano [29], Li and Duan [20] and Fountoulakis
et al. [9] address the Aol minimization problem to enhance reli-
ability under unstable conditions. All these studies assume that
the application behaviors and channel conditions are known in
advance.

Some researchers have explored learning approach for sched-
uling problems with unknown application behaviors or channel
conditions. Huang et al. optimize task offloading in the downlink
of mobile edge computing systems [13]. Leong et al. optimize sen-
sor transmission scheduling for remote state estimation in cyber-
physical systems.[18]. Zakeri et al. develop transmission scheduling
policies to minimize Aol [37]. Naderializadeh et al. study resource
management in the downlink of a wireless network with multiple
access points (APs) transmitting data to user equipment devices
(UE), where each UE can only be served by one AP at a time during
scheduling [23]. These studies focus on learning scheduling strate-
gies for a single shared resource. They cannot be easily extended
to multi-channel wireless networks.

Scheduling problem has frequently been formulated as a Restless
Multi-armed Bandit (RMAB) problem [7, 34]. RMAB is notoriously
hard to solve as the size of its state space grows exponentially with
the number of arms. The Whittle index is widely embraced as a
scalable solution for addressing RMAB problems and has been ex-
tensively studied in various applications [5, 22, 24, 30]. We note
that in the RMAB literature there is also a line of work on multi-
action bandits considering a single resource [12, 15]. Some of the
researcher also considered multiple resources. Wu et al. [33] cal-
culate the index via brute force, which is not feasible for larger
state spaces or unknown system behaviors. Simchi-Levi, Sun and
Wang [27] do not consider states of the user. Gai, Krishnamachari
and Liu [10] consider states, but during the assignment, it does
not look at the states. Assignments are made based on the best
performance for the long-term reward, and then these assignments
are maintained. Therefore, it is only looking for a stationary assign-
ment not based on states. Zou et al. [38] study the heterogeneous
and unreliable channels to minimize the Aol problem where they
have considered multiple dual costs of each resources. In contrast,
our work is more general and is applicable to any problem that
admits heterogeneous resources.

3 SYSTEM MODEL

In this section, we explore the generic MR-RMB model and its
application to various networked systems, including multi-channel
wireless networks.

We consider a system composed of N restless arms (wireless
clients), numbered by n = 1,2,..., N, H heterogeneous resources
(wireless channels), numbered as h = 1,2, ..., H, and a controller
(cellular base station) in charge of matching resources to restless
arms. Each resource h has a capacity of serving up to Cy, restless
arms in each time step. To simplify notation, we also introduce a
Null resource h = 0 with infinite capacity, i.e., Cy = 0. In each
time step ¢, a controller observes the state of each arm n, denoted
by sn+ € Sp, and then chooses a resource a,; € A, where A =
{0,1,2,...,H}, to serve each arm n such that at most c;, arms are
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served by resource h. If an ; = 0, then arm n is not served by any
resource in time step t. After being served by resource an ¢, arm n
generates a reward rp, ; and changes its state to s, 41 in the next
time step. We assume that the reward and state evolution of each
arm follows a MDP . Specifically, when arm n is in state s, and is
being served by resource ap, then it generates a random reward
with unknown mean Ry (sy, an) and changes its state to state s},
with unknown probability Py, (s}, |sn, an)-

There are many real-world scenarios where the controller needs
to decide not only which restless arms to serve, but also which
resource to use for each arm. We demonstrate three examples of
such systems below

Example 1: In multi-channel wireless systems, a base station
(BS) serves N data flows (restless arms) with H heterogeneous chan-
nels (resources) and p,, , represents the channel quality between
user n and channel h. The model for state and reward of a data
flow is specified by its application and can be defined based on, for
example, queue status, packet delay, data freshness, etc. Each data
flow experiences different p,, ;, on different channels. In each time
step, the BS chooses data flows to transmit over each channel.

Example 2: In social media website advertisement, the website
has three places to display advertisements: the overhead banner,
the sidebar, and the newsfeed. Hence, H = 3 and C}, represents the
number of spots in each place. Each restless arm is an advertisement
whose state includes the time and place it was last displayed. In each
time step, the website administrator determines whether and where
to display each advertisement. The reward of each advertisement,
measured in terms of the click-through rate, depends on the state
of the advertisement and the place that it is displayed in.

Example 3: Within a Maternal and Child Health Program, call
center services employ live voice scheduling to provide timely pre-
ventive care information to expecting and new mothers throughout
pregnancy and up to one year post-birth. Call center has H callers
available, each caller has a different language expertise and can call
up to Cp, expecting/new mothers each week. Each expecting/new
mother is a restless arm with her own language preference, and her
state is either engaged in preventive care or not. Each time step,
the call center determines which caller to contact to increase her
engagement in preventive care. The effectiveness of a call depends
on the mother’s state and whether the caller’s language expertise
matches the mother’s. A recent study [31] has studied the special
case when all callers have the same language expertise.

The controller employs a matching policy 7 to match arms to re-
sources. Let Sy == [s1,1, 52,4, ..., SN,¢] and G; == [a1,s, ag¢, ..., an ],
then the matching policy can be viewed as a function 7 that de-
termines d; = 7(5¢) = [m1(5¢), m2(5¢), .. . |. We evaluate 7 by its
long-term discounted total reward. Specifically, let S be the discount
factor and let I(-) be the indicator function, then the controller’s
goal is to find the optimal 7 for the following optimization problem:

o N
SYSTEM: maXE ZZﬁ (s, 70 (51))]

(1)
t=0 n=1
N
s.t. Z I(2(3) = h) < Cp, V5, h, ®)
n=1
and 7, (3) € {0,1,2,...,H}, Vs, n. 3)
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4 PRELIMINARY: DECOMPOSITION AND
INDEX POLICY

The problem SYSTEM is intractable to solve because the state space
of § is the product of the state spaces of s, and its size increases
exponentially with N. A recent study [38] has employed a decom-
position technique to develop an index policy for the problem of
minimizing Aol in multi-channel wireless systems. In this section,
we generalizes its result for generic MR-RMB problems.

4.1 Lagrange Decomposition

To simplify the SYSTEM problem, we first relax the per-5 constraint
(2) to an average constraint:

ZZﬁtH(ﬂn(s?hh)} Zﬁ’ch Ch Yh o (4)
=0 n=1

Ag] for
this relaxed constraint. We can view A as a shadow price so that
the controller needs to pay A, for every arm that is matched to
resource h. The Lagrangian of the relaxed problem is then

ZZﬁ (Rn Snt,”n(st)) ,rn(gt))},

t=0 n=1
s.t. ﬂn(g) € {0, L2,...,

and then introduce a Lagrange multiplier 1= [A1, A2, .o,

Lagr().) max E

H}, Vs, n. (5)

An important feature of Lagr(/f) is that it can be decomposed into
N subproblems, one for each arm. Specifically, let o j(’) be the

optimal solution to the Army, (Z) problem,

Armn(/l) max E

Zﬁ (Rn Snt,O'n(Snt)) a,,(sn,,))],

t=0

s.t.on(sp) €{0,1,2,...,H}, Ysp, (6)

then choosing 7, () = o ﬁ(sn) solves Lagr(/l)

There are three 1mportant advantages of the above decompo-
sition. First, this decomposition addresses the curse of dimen-
sionality since each Arm, (1) problem only involves the state
space of arm n. Second, the decomposition preserves optimal-
ity. Specifically, when A is chosen as the minimizer of L(1) :=
mini max; E[Z;‘;O Z{:’Zl Bt (Rn (s,,,t, ”n(gt)) - Aﬂn(gt))]’ then the
optimal solution to Armn(j.) problem is also the optimal solution
to SYSTEM with the relaxed constraint Eq. (4). Finally, the mini-

mizer of L(/T) can be found iteratively through a simple gradient
algorithm:

A}(lkﬂ) [ 25 +Pk( iiﬁ’ﬂ(an,gn(sn,t) =h)] - 1C__hﬁ)]+

=0 n=1
7)

I

where A}(zk) is the value of Ay, in the k—th iteration, py is a properly
chosen step size, and [x]* := max{x, 0}.
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Algorithm 1 Max-Weight Index Matching

Initialize 1

fort=0,1,2,... do
Calculate wy, p (snz, /T_h) for alln, h
Create a bipartite graph with N arm nodes and H + 1 resource
nodes R
Add an edge with weight w,, j, (sn,r, A_) between arm node n
and resource node h
Find the max-weight matching and match arms to resources

accordingly

> +
2 [+ pi( Za T (onidon) > An) = Cu) | v
end for

4.2 Partial Index and Max-Weight Index
Matching

One important drawback of Lagrange decomposition is that it needs
to relax the per-5 constraint (2). For the special case when there
is only one resource, i.e., H = 1, the Whittle index overcomes
this drawback by producing a policy that both satisfies the per-
§ constraint (2) and is asymptotically optimal under some mild
conditions. Following the approach in Zou et al. [38], one can define
a partial index for each arm n, each state s,, and each resource h.
For a given arm n, it defines a partial index for each state s, of n

and each resource h, denoted by w, j, (sn, i 1), as the following:

Definition 4.1. [Partial Index] Given an arm n and a Lagrange

multiplier 7, the partial index for state s, and resource h is defined
as

-

W h(sns A-p) 1= sup{ylo” - (sn) = h}. ®)
n[2n.y]

Intuitively, wy, , (sn, A ) can be viewed as the highest shadow
price that arm n is willing to pay to be matched to resource h, instead
of any other resources, when its state is s,. Hence, arm n should
prefer resource h over others as long as A, < wy, j(sn, /T_h). Armn
is said to be indexable when it indeed exhibits such a behavior:

Definition 4.2. [Indexability] An arm n is indexable if, for any s,

/T, and h, we have, for any y < wy, ,(sp, /_1'_;1), o* . (sn) = h.
’ n[A-p,y]

We now discuss the matching algorithm. Given 7., the algorithm
first calculates the partial index for each n, s, and h. In each time
step t, the algorithm creates a bipartite graph with N + H + 1
nodes, such that each arm and each resource is a node. There is
an edge between each arm n and each resource h with weight
Wi.p (Sn,t» /T_h). The algorithm then finds the max-weight matching
between the nodes, with the constraint that each resource h can
be matched to at most Cj, arms. We describe the algorithm along
with a simplified update rule for 7 in Alg. 1. Zou et al. [38] has
proved that Alg. 1 is asymptotically optimal for a specific wireless
scheduling problem of Aol minimization. However, to calculate
the partial index, one needs to know the transition kernels of each
restless arms. In the next two sections, we will introduce an online
reinforcement learning algorithm that learns the partial index for
restless arms with convoluted and unknown transition kernels.
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Figure 1: An illustration of Corollary 5.1

5 POLICY GRADIENT THEOREM FOR INDEX
LEARNING

In this section, we study the fundamental properties of the partial
index w,, j, (sn, )_L'_h). We will show that wy, p, (sn, X_h) is the optimal
solution to an auxiliary MDP. Nakhleh and Hou [24] has derived
the policy gradient theorem for finding the Whittle index, which
is equivalent to the special case of H = 1 in our paper. We expand
Nakhleh and Hou [24] to address the more general case of multiple
resources and derive the corresponding policy gradient theorem.

Throughout this section, we will focus on studying wy, , (sn, I n)
for fixed n, h, and X_ h- We also assume that the partial indexes for
all other resources, that is, W (sn, 17 y ) for all B # h, are known
and given. We drop the subscript n from all notations for better
clarity.

Let w¢"

h
dicts the partial index wy(s,A_). For a given resource h of an

(s) be a function with parameter vector ¢y, that pre-

Armn([/_{_ h» Anl) problem, we can construct the following policy,
which we denote by Uf: (s): First, the policy compares w,q:h (s) with

Ap and sets GZ’ (s) = hif w;’:" (s) = Ap. Second, if w;’:" (s) < Ap,

then the policy finds the largest i’ # h with wy (8, X W) = Ay and

n
h

forall A" # h, then policy sets O'f: (s)=0.

sets oﬁ’: (s) =h. Finally, if w;™ (s) < A and wy (s, Z_hr) < Ay
We can now define the state-action function of applying Uj}f: (s)

to Armn([)_[_h, An]) problem, which we denote by Q% (s, a, An)-
The Bellman equation of Q% (s, a, Ap) is defined as:

Q% (s,a,2) =R(s,a) — Aq
B Y P(s s, Q% (5,03 (), An))

s'es

©)

We then have the following Corollary:

Corollary 5.1. If arm n is indexable, then setting wf:h (s) to be its
partial index wy, (s, I_h) maximizes Q® (s, a, ) for any Ap.

Proor. If wih (s) = wp(s, A_p), then af: (s) = ¢ if and only if

Ag < wy(s, /T_g) for any g. By Definition 4.2, J;}fh (s)=o". (s)
h [A-n.An]
for all A; and s. Since O'EZ N ](s) is the optimal solution to the
~hAn

Armn([i_h, Apl) problem, setting w;’fh (s) = wy(s, Z_h) maximizes
Q% (s,a, Ayp). O
To understand the implication of Corollary 5.1, consider the

reinforcement learning problem as illustrated in Fig. 1 that contains
an agent and an environment called Eno(Ay). In each time step,
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the agent observes the state s; and chooses a real number as its
control decision. When Env(A;) receives the control decision, it

first treats the control decision as w¢ (st) and employs 0'¢" to

determine a;. It then feeds a; to the restless arm to generate the
next state s;11 and the net reward r; — A4,. The agent’s goal is to
find a control policy that can maximize the long-term average net
reward, >72 BYE[r: — Aq,]. Corollary 5.1 states that the partial
index wy, (s, e 1) is the optimal control policy for Env(Ay) for all
Ap-

Based on Corollary 5.1, we define the objective function for
learning ¢y, as

]¢h_z//1

seS

M (s, G¢h(s) A)dAp, (10)

where M is a sufficiently large constant such that A, € [-M, +M].
If J%4 has a unique maximizer, then maximizing J Pn is equivalent

to finding ¢y, such that wf:" (+) is the partial index. We therefore

seek to find the partial index by finding ¢}, that maximizes J P We
will find V¢h J 91 as shown in Theorem 5.2 below.

Theorem 5.2. Given the parameter vector ¢y, if all statess € S have
distinct values ofwf:h (s), then the gradient of the objective function
Jh with respect to the parameter vector ¢y, is given by:

V¢h]¢” = Z [Q@’ (s, h, wfh (s)) Q% (s, U/lth (s), w;:h (s))]

SeS
Vg, wi (s), (11)
where
0'/'1}1 (s)
o, ifwy (s,2_p) < Ay VB #h,
- max{h’|w, (s,z_h/) > Ay}, otherwise.
(12)
Proor. Taking the gradient of Eq. (10) yields
Vg, P =V, Z / Q¢h (s, af: (), Ap)dA,.  (13)

seS

Renumber all states in S such that wf” (s1s1) > w}qfh (sjs]-1) > - - -

wih (s1). Let MO = —M, MK = w;f" (sg), foreach 1 < k < |S], and

MISIHL = M. Also let Sk be the subset of states {sg, Sg41, cees 8|S I
for each 1 < k < |S|. Then, for any k, S is the subset of states with

wf:h (s) > MF. Hence, for any A, in the interval (Mk,Mk+1), we

have
¢’h h,
" (s) = { o o

Define the policy 5'k+l (s) as the policy that chooses action h

ifs e Sk+1,

(14)

otherwise.

when I(s € Sg,q) = 1 and 0 (s) otherwise. Let Qk+1(s a, Ap)
be the state-action function of applying al)f;l(s). Then, for any

Ay € (MK, Mk, O'f: (s) = &ﬁ'l(s) for all s, and therefore
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Q% (s,a, Ap) = ékﬂ (s,a, Ap) for all s and a. We can now rewrite
Eq. (13) as

|S] A =MK+
k+1
V¢h]¢h = Z Z V¢h / ik Qk+1 (S 0'/1 (S) Ah)d/‘{h (15)
k=0s€S
Applying Leibniz integral rule and we have:
S|
V¢hj¢h :Z Z [Qk+1 (s, O_k+1 (), Mk+1) V Mk+1
k=0s€S

—Qk+1(s 0'k+ (s), Mk)V¢th]

S|

An Mk+1
P [ V@880 A 16
k=0s€eS An=MF

Since ékﬂ(s, 6§:1(s),lh) is constant with respect to ¢y,

7 Qpsi (s, 5'/’1‘;1 (s), Ap) = 0. Moreover, for any k, Eff:l (s) = Effh (s)
for all s except sg.. Hence, we can further simplify Eq. (16) and obtain

V¢h]¢h
S|

:ZZ [Q¢h (s, (}k+1(s) Mk+l)v Mk+1

k=0s€eS
-Q% (5,65 (), MF) V5, MF
|

©

| @7 (51, 6%, (50, 145) = @7 (s, 6577 (50,140 | W, 14

—
& i
= A

| @7 (st b il (51) = @7 (50, 0}, (51, Wi (50| Vg i (51

R‘
,_A

Z[a@l(shw‘ﬁ"(s)) =@ (5,0}, (). W ()| Vg, Wi )

seS

This completes the proof. O

6 DEEP INDEX POLICY

In this section, we introduce DIP, a new Deep Index Policy, for on-
line learning of the partial indexes by leveraging the policy gradient
theorem for index learning (Thm. 5.2). For each restless arm n, DIP
maintains H actor networks, parameterized by ¢n 1, ¢n2,...,and a
critic network, parameterized by ;. Each actor network @n. takes

(sn, A_p) as input and produces a number w¢" (sn, _p) as its out-

put. DIP aims to train ¢,, ;, such that the actor network predicts the
n) = W p(sn, Z_h), for all n and

h. Each critic network 6, takes (sp, an, )_t) as input and produces

partial index, that is, wf';;h (sn, e

a number Qz" (sn, an, Z) DIP aims to train 6, such that the critic
network predicts the state-action function of applying the optimal
policy to the Arm,, (Z) problem, which we denote by Q;; (sp, an, /_t)
The Bellman equation of Qj, (s, an, 7 is

Q;; (sn, an, /_i) =R, (sn, an) - Aa,,
+p Z P(sp|sn, an) maXQ (spoa’, Ap).

spES

(17)
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Algorithm 2 Deep Index Learning

Algorithm 3 Neural Networks Updates

Initialize Z, @n.h> and Oy
Initialize a replay memory M,, for each n
0y, — 6n
fort=0,1,2,... do
x ~U(0,1)
if x < € then
Randomly match arms to resources
else
Create a bipartite graph with N arm nodes and H+1 resource
nodes
Add an edge with weight wf,”'l’h (Sn,ts i ) between arm node
n and resource node h
Find the max-weight matching and match arms to resources
accordingly
- +
A [t o Za T3 (nidp) > 1) = Cu) | vk
end if
Save (Sp,t, An,t> 'n,t» Sn,t+1) to My
Run Alg. 3 to update all neural networks
end for

DIP also maintains a target critic network with parameters 6}, for
each n. The target critic networks are updated at a slower rate
compared to critic parameters 6, to ensure stability and improve
the training process by providing consistent target values for the
critic network [21].

We first provide an overview of the procedure of DIP. In each time
step, DIP employs a exploration-exploitation policy similar to the
e—greedy policy. With probability ¢, DIP randomly assigns restless
arms to resources for the purpose of exploration. With probability
1 — €, DIP employs Max-Weight Index Matching where the weight

between restless arm n and resource h is set to be w?™ (snt>A_p).
nh g h

DIP observes the actions, rewards, and state transitions of all restless
arms and store them in a replay buffer. DIP then updates the value

> > +
of Aby Ay, — [Ah+pt( S w0 (smed_p) > /lh)—Ch)] forall h.

Finally, DIP updates all actor networks, critic networks, and target
critic networks. DIP is based on Deep Deterministic Policy Gradient
(DDPG), an off-policy reinforcement learning algorithm, to learn
the partial indexes. This off-policy nature is crucial because it allows
the learning of the partial index that optimizes the fictitious policy
described in Thm. 5.2, while the max-weight matching policy is
being executed. Alg. 2 describes the detailed procedure of DIP.
We now discuss how DIP updates all neural networks. For each n,
DIP randomly samples a batch of transitions (su,z, an,t, 'n,, Sn,t+1)
from the replay buffer and attach a randomly selected I e
[-M, +M]H to each transition. For each transition, DIP calculates

[QG" (5t @t Dhea s W™ (5t A )])
9,1 kY ¢":'1n. 3
Q" (sn,t, 0'/,1““ (s), [/I—an,p Wn,an,,t (sn,ta/l—an,z)])]
(18)

as an approximation of Eq. (11) and uses it to update the actor
networks ¢n,q,, -

¢n,an t e
XV‘}Sn,anJ Wn.an, (sn,t5 A-ay,)

76

forn=1,2,...,Ndo
Sample a mini batch B transitions (sp,s, an, . Tntes Sntry, ) fOr
1 < k < B from memory M.
Randomly sample B different shadow price [Zl, /_{2, e
from [-M, M]T.
Agpp < 0, for all h; AG, 0
fork=1,2,...,Bdo
Set & to be Eq. (18) for the k! element in the batch
A¢n,an,,k — A‘ﬁn,ar,,,k +6
Set § to be Eq. (20) for the k" element in the batch
AOy — N0, +6
end for
Update ¢, j, by A¢y, j, and 6, by A0y
0y, — 10+ (1-1)0,
end for

-

AB ]

DIP then uses the same batch of transitions and 1 to update the

critic network. Based on the Bellman equation of Q}, (sn, an, /T) (Eq.
(17)), DIP defines the loss function of the critic function as

Lgn =E [(an (Sn,t> anyt Z) —Intt /111,,,,

2
% )3
%memmﬁ. (19)

DIP then uses the each transition and A from the batch to estimate
the gradient of the loss function by

0, bg
2 (Qn (Snts ant, A) — gt + Aa,,,t
9"1 , 2 0, -
_ﬁ n}:,lx Qn (Sn,t+1, a, /1)) VB,, Qn (sn,t, an,t, A) (20)

and to update 0. Finally, DIP soft updates the target critic network
by 0;, « 70, + (1 — 7)0;,. The training complexity scales with the
product of the number of arms and the number of resources i.e.,
O(N x H), as each (arm, resource) pair is trained independently.

7 SIMULATIONS

In this section, we present our simulation results that evaluate DIP
in three different MR-RMB problems. The first two problems are
scheduling problems in multi-channel wireless networks with one
on minimizing Aol and the other on minimizing holding cost. The
third problem considers advertisements placements in social media
websites.

We compare the performance of DIP against domain-specific
policies in each problem. We also evaluate DeepTOP [24] in all
problems. DeepTOP is a deep online learning algorithm that finds
the Whittle index when there is only one kind of resource. In order
to incorporate DeepTOP in multi-resource problems, we consider
a policy that selects the restless arms with the highest indexes
to activate, and then randomly matches selected restless arms to
resources. We then train DeepTOP with respect to this policy.

All simulation results are the average of 20 independent runs,
with error bars indicating standard deviations. Each run consists
of 12,000 time steps. For each time step, we obtain the running
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average performance of the past 100 time steps. The value of ]
is updated every 100 time steps and we have set the discounted
factor to 0.99 (i,e., f = 0.99) and the learning rate of 1 t0 0.01 (i.e.,
p = 0.01) for both problems. The learning rates of neural networks
are determined by the ADAM optimizer. All neural networks of
DIP have two fully connected hidden layers with 128 neurons in
each hidden layer. We have use the same setting for DeepTOP.

7.1 Network Setting

We introduce the settings of multi-channel wireless networks that
will be used in both the Aol minimization problem and the hold-
ing cost minimization problem. We consider two types of systems:
heterogeneous channels and homogeneous channels. Each type of
system has two different settings. In all settings, we consider the
challenge that wireless transmissions are not reliable. When a mo-
bile user n is scheduled to transmit on channel A, the transmission
will be successful with probability p,, .

We have two settings for heterogeneous channels, one with two
channels and the other with three channels. For the two-channel
system, we assume that there are 20 mobile users. The first 14 users
have pp 1 = 0.7 and pp, 2 = 0.3. The other 6 users have p,, 1 = 0.3 and
Pn,2 = 0.7. Each channel has a capacity of two, that is, Cj, = 2 for all
h. For the three-channel system, we assume that there are 34 mobile
users. The first 20 users have pp 1 = 0.9, pp2 = 0.5, pp 3 = 0.1, the
next 4 users have pp1 = 0.1, pp2 = 0.9, pp,3 = 0.5, and the last 10
users have pp1 = 0.5,pn2 = 0.1, pp2 = 0.9. Each channel has a
capacity of two.

We also have two settings for homogeneous channels, one with
two channels and the other with three channels. For the two-
channel system, we assume that there are 20 mobile users. The
first 14 users have pp1 = pn2 = 0.7. The other 6 users have
Pn1 = pn2 = 0.3. Each channel has a capacity of two. For the
three-channel system, we assume that there are 34 mobile users.
The first 20 users have pp1 = pn2 = pn3 = 0.9, the next 4
users have pp1 = pn2 = pn3 = 0.7, and the last 10 users have
Pn1 = Pn2 = pn3 = 0.5. Each channel has a capacity of two.

We note that the homogeneous channel systems are equivalent
to single-channel systems where the capacity of the channel is HCy,.
Since DeepTOP learns the Whittle index in single-channel systems,
we can use the performance of DeepTOP as that by the Whittle
index policy in homogeneous channel systems.

7.2 Aol Minimization

Aol has gained significant research interests due to its elegance in
capturing information freshness. We define the Aol of a mobile user
recursively as follows: At time ¢ = 0 the Aol of the user is 1. In each
subsequent time step, the Aol increases by 1 if there is no packet
delivery for the user, either because the user is not scheduled or
because the transmission fails, and the Aol becomes 1 if there is a
packet delivery.

We can model the Aol of user n as a MDP where the state of the
user sy ; is its Aol. To ensure a finite state space, we cap the Aol
at 20. If user n is not scheduled to any channel, then its Aol will
increase by one, and hence

(21)

Pr(spt+1 = min{s + 1,20}|s,; = s, an; =0) = 1.
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Figure 2: Aol comparison for multi-channel wireless net-
works with heterogeneous channels

On the other hand, if user n is scheduled to transmit on channel A,
then user n will successfully deliver a packet with probability p,, j,.
Hence, we have

Pn(spt+1 =min{s +1,20}|sp;s = s, ans =h) =1-p,p,  (22)
Pn(sn,t+1 = 1|3n,t =S, an,t = h) = Pnh- (23)
The reward of user n is Ry (Sn,r, an,t) = —Snr+1. The objective is

to minimize the total long-term discounted Aol of all users in the
system.

A recent paper [38] has studied the Aol minimization problem in
multi-channel wireless networks. It has proposed a Sum Weighted
Index Matching (SWIM) policy. SWIM calculates the partial indexes
of all users on all channels and then use max-weight matching to
schedule users. However, SWIM requires the precise knowledge of
all p, j, to calculate the partial indexes. Since our DIP aims to learn
the partial indexes without any prior knowledge of the system, we
can use SWIM as a baseline policy.

Fig. 2 shows the simulation results for heterogeneous multi-
channel wireless networks. It can be observed that the Aol of DIP
converges to the Aol of SWIM in less than 1,000 time steps in
both the two-channel system and the three-channel system. This
shows that DIP has indeed efficiently learned the partial indexes
and the Lagrange multipliers. It can also be observed that DeepTOP
is considerably worse than DIP. This shows the standard Whittle
index, which is designed for systems with only one kind of resource,
does not work well in multi-resource systems.

Simulation results for homogeneous multi-channel wireless net-
works are shown in Fig. 3. As discussed in the previous section,
these systems are equivalent to single-channel systems. In such



MOBIHOC 24, October 14-17, 2024, Athens, Greece

—DIP
250 A - - DeepTOP
1
5200 '\ SWIM
< [}
@ |
@150 1 f
§ _\__.,_‘_i sl e edaacdsrcisocieradasdsry
< 100
50
0
0 2000 4000 6000 8000 10000 12000
Steps
(a) Two-channel system
500
—DIP
400 - —DeepTOP
° ---SWIM
< 300
[
oo
o
g 200
=4 = ——— e
100
0
0 2000 4000 6000 8000 10000 12000
Steps

(b) Three-channel system

Figure 3: Aol comparison for multi-channel wireless net-
works with homogeneous channels.

systems, the Whittle index policy is near-optimal. Indeed, the per-
formance of DeepTOP converges to SWIM. DIP also converges to
SWIM in less than 2,000 time steps.

7.3 Holding Cost Minimization

We consider the problem of minimizing holding costs. In this prob-
lem, the base station maintains a queue of undelivered packets fro
each mobile user. In each time slot, a packet arrives for user n with
probability {j,. A packet is delivered for user n whenever user n has
a successful transmission. In each time slot, each user n incurs a
holding cost of its queue size squared.

We can model this problem as a MDP where the state of user
n, sp,t, is its queue size. To ensure a finite state space, we cap the
queue size at 20. If user n is not scheduled to any channel, then its
queue size will increase if there is a packet arrival, and will remain
the same, otherwise. Hence,

(24)
(25)

If user n is scheduled to channel A, then it will have a packet de-
parture with probability p,, 5. It will have a packet arrival with
probability ¢;,. Hence, we have

Pp(sp,e+1 = min{s + 1,20} |sp ¢ = s, ans = 0) = ¢y,

Pp(sne+1 =slsnt =S, ane =0) =1 - {n.

Pn(spe+1 = min{s + 1,20} |sps = s, ans = h) = (1 - Pn,h)gn, (26)

Pn(sn,t+1 = 5|5n,t =S, an;t = h) = (1 _pn,h)(l - gn) +Pn,h§n,
(27)

Pn(sn,t+1 = max{s — 1, 0}|3n,t =S,an,t = h) = Pn,h(l - g(n) (28)

The reward of user n is Ry (Sn,t, an,t) = —srzl +
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Figure 4: Holding cost comparison for multi-channel wireless
networks with heterogeneous channels

Ansell et al. [3] has studied the scheduling problem for holding
cost minimization for the special case of single-channel wireless
networks. It has derived the Whittle index for this special case. To
employ Ansell et al. [3] for our multi-channel wireless networks,
we first assign each user n to a channel A}, that has the highest
reliability, that is, hy, := argmaxp{p,}. We then calculate the
Whittle index under this channel assignment, which Ansell et al.
has shown to be

3n - Pn,hi,

Pn,h’;l - gn
and schedules users according to their Whittle indexes. We call this
policy the Whittle index policy.

Fig. 4 shows the simulation results for heterogeneous multi-
channel wireless networks, where we set {;, = 0.11 for both the two-
channel system and the three-channel system. It can be observed
that DIP significantly outperforms the Whittle index policy and
DeepTOP. While the Whittle index policy computes the Whittle
index, it can only assign a user to its best channel. On the other hand,
DIP allows a user to be matched to the worse channel when its best
channel is too congested. The big performance gap between the
Whittle index policy and DIP highlights the additional challenges
faced in MR-RMB problems.

Simulation results for homogeneous multi-channel wireless net-
works are shown in Fig. 5. We set {, = 0.1 for the two-channel
system and {, = 0.08 for the three-channel system so that the
arrival rates are close to the boundaries of the capacity regions.
We observe that all three policies converge to the same holding
cost. This is to be expected since these networks are equivalent
to single-channel wireless networks. The fact that DIP converges
to the Whittle index policy suggests that DIP indeed learns the
Whittle index.

+ zpn,h;sn,ta (29)
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Figure 5: Holding cost comparison for multi-channel wireless
networks with homogeneous channels

7.4 Online Advertisement Placement

We consider an online advertisement placement problem on social
media platforms. There are three places where advertisers can dis-
play their ads: newsfeed, overhead banner, and sidebar. At each
time step, the website administrator determines whether and where
to display each advertisement. The consumer interest in a partic-
ular advertisement finishes if they click its link and interest may
gradually recover over time. For example, someone who recently
a purchased a product may not be interested in advertisement for
the same product in the immediate future but their interest might
gradually revive with time. The objective is to strategically display
advertisements in a manner that effectively captures and sustains
consumer interest.

We can model the online advertisement placement problem as a
recovering bandit, first introduced by [25]. The objective of recover-
ing bandits is to capture the evolving behaviors of consumers over
time. The effectiveness of displaying an advertisement depends on
the elapsed time since the advertisement was last displayed and
the placement. At time ¢ = 0, the elapsed time of all advertisements
are set to 1. If the advertisement is not displayed, then elapsed time
increased by 1 and if the advertisement is displayed then it is set to
the 1.

We formulate recovering bandit as a MDP where each arm of
the recovering bandit is the advertisement. The state of the adver-
tisement s, is the elapsed time. To ensure the finite state space,
we cap the elapsed time at 20. If advertisement n is not displayed to
any placement, then its wait time will increase by one, and hence

Pr(spt+1 = min{s + 1,20}|s,; = s, an; =0) = 1. (30)
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ment placement on social media

On the other hand, if advertisement n is scheduled to display on
placement h, then its wait time will set to one, and hence

Pn(sn,t+l = llsn,t =S,an,t = h) =1 (31)

1
The reward of advertisement n is Ry (Sp,z, an,t) = 02 h(l - eenxh's””),

where 6°
nh

The objeétive is to maximize the total long-term discounted reward
of all advertisements in the system.

We consider a setup of 30 advertisements and three advertise-
ment placement (i.e., N = 30, H = 3). Each placement can ac-
commodate up to two advertisements at a time (i.e., Cy, = 2). The
hyperparameters of the first 10 advertisements are 92 =L 92’2 =

s

.and Hrll pare the hyperparameters for the placement .

3, 92,3 = 5,the next 10 advertisements are 02’1 =5, 9’01’2 =1, 0,01’3 =3
and the last 10 advertisements are 92’1 =3, 92’2 =5, 92’3 = 1. Addi-
tionally, the hypeparameter 931’ p = 0.1 for all advertisements n and
all placements h.

Fig. 6 illustrates the simulation results for online advertisement.
It is evident that DIP significantly outperforms DeepTOP. Specif-
ically, DIP demonstrates efficient scheduling of advertisements,
particularly in situations of high competition for display space.
Conversely, DeepTOP tends to prioritize displaying advertisements
in less favorable placements when the preferred placements are con-
gested. This indicates that DeepTOP is limited to handling a single
type of resource and does not perform effectively in multi-resource
systems.

8 CONCLUSION

We address the critical challenges of allocating multiple hetero-
geneous resources in wireless communication systems. We have
derived the policy gradient theorem to learn the index. By lever-
aging policy gradient theorem, we have proposed DIP, an online
reinforcement learning algorithm for MR-RMB. Our results show
that DIP outperforms existing methods such as DeepTOP and Whit-
tle Index policy, highlighting the limitations of Whittle index based
approaches in heterogeneous multi-resource systems. We have also
compared DIP algorithm with SWIM and shows that DIP learned
partial index and dual cost correctly in heterogeneous channels
setting. We have also shown that all the results of different poli-
cies converge in homogeneous channels setting, signifying that
DIP has indeed learned the Whittle index correctly, as homoge-
neous channels mimic the behavior of a single-channel wireless
network. Our findings underscore the versatility of DIP across a
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wide range of scheduling problems, from homogeneous to hetero-
geneous resource settings, when transition kernel is unknown and
convoluted. We have also generalized DIP to applications beyond
multi-channels. For future study, extending the MR-RMB model to
accommodate multiple conflicting objectives could enhance opti-
mization in wireless communication systems.
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