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ABSTRACT

This paper studies multi-stage systems with end-to-end bandit
feedback. In such systems, each job needs to go through multiple
stages, each managed by a different agent, before generating an
outcome. Each agent can only control its own action and learn the
final outcome of the job. It has neither knowledge nor control on
actions taken by agents in the next stage. The goal of this paper
is to develop distributed online learning algorithms that achieve
sublinear regret in adversarial environments.

The setting of this paper significantly expands the traditional
multi-armed bandit problem, which considers only one agent and
one stage. In addition to the exploration-exploitation dilemma in the
traditional multi-armed bandit problem, we show that the consid-
eration of multiple stages introduces a third component, education,
where an agent needs to choose its actions to facilitate the learn-
ing of agents in the next stage. To solve this newly introduced
exploration-exploitation-education trilemma, we propose a simple
distributed online learning algorithm, e~EXP3. We theoretically
prove that the e—~EXP3 algorithm is a no-regret policy that achieves
sublinear regret. Simulation results show that the e—~EXP3 algo-
rithm significantly outperforms existing no-regret online learning
algorithms for the traditional multi-armed bandit problem.
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1 INTRODUCTION

In many modern applications, a job consists of multiple stages that
need to be performed by different agents, and the decision made
in each stage can impact the performance of the job. For example,
consider a mobile edge computing application where a mobile user
offloads video analytic jobs to nearby edge servers, and each edge
server is equipped with multiple video analytic neural networks
with different precision and latency. To process a video analytic
job, the mobile user needs to first decide which edge server to
forward this job to. After the mobile user forwards the job to an
edge server, the edge server needs to decide which neural network
to employ for this job. The performance of the job depends on the
accuracy of the result and the end-to-end latency, which includes
both communication and computation delays. As another example,
consider packet deliveries in multi-hop networks consisting of
multiple routers. Upon receiving a packet, a router needs to decide
which router to forward the packet to. The performance of the
packet depends on the end-to-end latency.

This paper studies the problem of designing distributed online
learning algorithms under which all agents jointly learn the optimal
decisions with minimum coordination, even when the outcomes of
decisions are determined by an adversary. Developing such algo-
rithms are challenging due to three major reasons. First, in most
computer and network systems, it is desirable to employ distributed
algorithms where each agent can only make decisions of its own
action and has neither knowledge nor control on the actions taken
by agents in the next stages. Second, in many systems, an agent
can only observe the end-to-end outcome of the joint effects of all
stages, but cannot know how actions taken in each individual stage
contribute to the end-to-end outcome. Finally, an agent can only
learn the outcome of its chosen action, which is typically referred
to as the bandit feedback in the literature.

We note that the traditional multi-armed bandit problem is a
special case of multi-stage systems when there is only one stage.
The main challenge of the traditional multi-armed bandit problem
is to balance between learning the outcomes of each possible action
(exploration) and choosing the action with the best historic out-
comes (exploitation). The general problem of multi-stage systems
is even more challenging because agents in the next stage are also
learning agents and their ability to learn depends on actions taken
by the agent in the previous stage. In the example of mobile edge
computing, an edge server can only process a job and learn the out-
come when it receives a job from the mobile user. When a mobile
user receives a poor outcome from an edge server, it may be because
the edge server has yet to learn the optimal action and chooses a
bad neural network, rather than because the edge server has no
good options. To ensure that all edge servers can learn the optimal
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actions, the mobile user needs to educate edge servers by forward-
ing a sufficient number of jobs to each of them. Thus, the mobile
user is facing an exploration-exploitation-education trilemma.

To study the online learning problem in multi-stage systems, we
propose an analytical model that captures both the distributed deci-
sion making and the end-to-end bandit feedback. We first consider
the simplified case when each agent can observe the outcomes of all
its actions, including those not taken. We show that we can achieve
sublinear regret by making all agents employ the Normalized Ex-
ponential Gradient (normalized-EG) algorithm independently in a
distributed fashion.

Next, we study the multi-stage system with only end-to-end
bandit feedback, that is, an agent can only observe an outcome if
it receives a job and it can only observe the outcome of its chosen
action. To address the exploration-exploitation-education trilemma,
we propose a simple distributed online learning algorithm called
€—EXP3. The e-~EXP3 algorithm has two operation modes, a uni-
form selection mode in which the agent chooses actions uniformly
at random to provide equal education to agents in the next stage,
and an EXP3 mode where the agent employs a variation of the
EXP3 algorithm to balance the tradeoff between exploration and
exploitation. By randomly alternating between these two modes,
the e—EXP3 algorithm explicitly address all three of exploration,
exploitation, and education. We theoretically prove that, when ap-
plying e—~EXP3 on a system with L stages, the regret accumulated
over T rounds is at most O(Tﬁ) =o(T).

To understand the fundamental regret lower bounds and the
role of education in multi-stage systems, we study a class of time-
homogeneous oracle policies. These policies assume that each node
can know the outcome of all actions before making a decision.
Therefore, there is no need to explore and each node only faces an
education-exploitation dilemma. We show that the regret of these
policies is at least @(T%), which is only slightly better than the
regret of e~EXP3.

The utility of the e—~EXP3 algorithm is further evaluated by
simulations. The simulation results show that the regret of the

€—EXP3 algorithm indeed scales as O(Tﬁ ). We also evaluate two
other policies that are no-regret policies for the traditional one-
stage bandit problem. Surprisingly, we show that their regrets scale
as 0(T) even when the system has only two stages. The simulation
results demonstrate that the education component is indeed critical
in multi-stage systems.

The rest of the paper is organized as follows. Section 2 surveys
existing studies on adversarial bandit problems, mobile edge com-
puting, and multi-hop networks. Section 3 introduces our system
model and problem definition. Section 4 studies the simplified case
with complete one-hop feedback. Section 5 introduces and analyzes
the e—~EXP3 algorithm for systems with end-to-end bandit feedback.
Section 6 establishes a regret lower bound for time-homogeneous
oracle policies. Section 7 presents our simulation results. Finally,
Section 8 concludes the paper.

2 RELATED WORK

No-regret bandit learning. The multi-armed bandit problem has
attracted significant research interests because it elegantly captures
the trade-off between exploration and exploitation. In adversarial
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environments, the celebrated EXP3 algorithm has been proved to

achieve a regret bound of O(T%) [5]. This bound has later been
shown to be tight [3]. There have been many studies on variations
and improvements of the EXP3 algorithm [4, 22, 28, 29]. All these
studies only consider systems with one agent.

There have been considerable recent efforts on cooperative learn-
ing [1, 8, 16, 18, 19, 21, 23] where agents help each other find the
optimal action. These studies assume that the reward of an agent
only depends on the action of that agent. In contrast, our work al-
lows different agents to have different sets of actions and considers
that the reward in each round depends on the actions of all agents.
Singla, Hassani, and Krause [27] has studied a distributed learning
problem in two-stage systems. It is limited to the special case of
two stages and requires the root node to have the ability to block
feedback information.

Mobile edge computing. One emerging application of mobile
edge computing is cloud/edge robotics where a robot offloads its
computation tasks to nearby edge servers. An important challenge
for cloud/edge robotics is that the performance of a job depends
on both the quality of the outcome and the end-to-end delay. To
enable flexible trade-off between quality and latency, Jiang et al.
[15] has proposed a controller that dynamically select the suitable
neural network configuration. Wu et al. [30] has modeled the prob-
lem of adaptive configuration as an integer programming problem
and proposed a heuristic for it. He et al. [13] has employed a rein-
forcement learning approach for adaptive configuration. Zhang et
al. [32] has employed Lyapunov optimization to learn the optimal
configuration over time. These studies only study the decisions of
edge servers and they only consider stationary systems. Chinchali
et al. [9] has proposed using deep reinforcement learning for the
offloading decisions of robots, but it does not consider the adap-
tive configuration of edge servers. To the best of our knowledge,
no existing work has jointly optimized the offloading decision of
robots and the adaptive configuration of edge servers in unknown
and time-varying environments.

Multi-hop networks. There have been significant interests in
employing online learning or reinforcement learning techniques
for multi-hop networks, but few of them have been able to charac-
terize end-to-end delay and enforcing end-to-end deadline. Bhorkar
and Javidi [6] has proposed a no-regret learning policy for min-
imizing end-to-end transmission cost. Park, Kang, and Joo [24]
has proposed a UCB-based algorithm for throughput-optimality in
multi-hop wireless networks. Al Islam et al. [2] has considered the
problem of end-to-end congestion control problem in multi-hop
networks as a multi-armed bandit problem. Zhang, Tang, and Wang
[31] has studied the problem of relay selection to minimize energy
consumption in two-hop networks. None of the aforementioned
studies consider end-to-end delay or end-to-end deadline.

Mao, Koksal, and Shroff [20], Deng, Zhao, and Hou [10], and
Gu, Liu, Shen [11] have all studied online scheduling and routing
algorithms for multi-hop networks with end-to-end deadlines, but
they require precise knowledge on the capacity and latency of each
link. HasanzadeZonuzy, Kalathil, and Shakkottai [12] has proposed
amodel-based reinforcement learning algorithm for real-time multi-
hop networks but it only works for stationary systems. Both Lin
and van der Schaar [17] and Shiang, and van der Schaar [26] employ
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reinforcement learning to serve delay-sensitive traffic by modeling
multi-hop networks as stationary MDPs with unknown kernels. To
the best of our knowledge, no existing work has studied the regret
of delay-sensitive multi-hop networks in adversarial environments.

3 SYSTEM MODEL

We represent a multi-stage system as a tree with depth L + 1. We
denote the root node by r and the set of leaf nodes by £. We use
C; to denote the set of children of a non-leaf node i. In each round
t, the root node r receives a job. It selects a child node f[r, t] € Cr,
possibly at random, and forwards the job to it. Likewise, every
non-leaf node i randomly selects a child node f[i,t] € C; and, if
i receives a job in round t, forwards the job to f[i,t]. When the
job reaches a leaf node j, it generates a cost of ¢[j, t] € [0, 1]. The
value of c[j, t] is revealed to all nodes between the root and the
leaf node j through an end-to-end feedback message.

We note that each node only has limited feedback information
in this setting. In particular, if a node receives a job in round ¢,
then it will only know its own choice and the final cost. It has
neither knowledge nor control on the choices made by its children.
This is to reduce coordination overhead and to protect privacy. If a
node does not receive a job in a round, then it will not receive any
feedback information.

To see how our model can be used to capture mobile edge com-
puting, we can consider the example shown in Fig. 1(a). In this
system, a robot chooses one of two edge servers to offload its video
analytic jobs. Each edge server has two neural networks to choose
from. This system can be modeled as a tree with L = 2 as shown
in Fig. 1(b). In Fig. 1(b), the robot is the root that chooses between
child A and child B. Each of these child nodes corresponds to an
edge server, and each child node chooses between two leaf nodes.
Each leaf node is labeled by X : n, where X indicates the edge server
chosen by the robot, and n indicates the neural network chosen
by the edge server. The cost of a leaf node is chosen to reflect the
delay and the quality of the outcome of the video analytic job.

Neural network 1

= =

‘ Server A ‘

‘ Server B ‘

Neural network 2

| | || P2

(a) System illustration

T chooses
server
................. -
'

he robot
one edge

Server B chooses
one neural network

Server A chooses
one neural network

(b) Tree model

Figure 1: A mobile edge computing system and its tree model
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This model can also be used to capture multi-hop networks. In
multi-hop networks, the root is the source that generates packets
to be delivered. Each non-leaf node corresponds to the path used to
transfer a packet to an intermediate router. The choice of that non-
leaf node corresponds to choosing the next-hop by the intermediate
router. Each leaf node is a complete path from the source to the
destination and its cost can be chosen to reflect end-to-end delay.
We note that we do not require the topology of the multi-hop
networks to be trees. Even when the topology of a network is not a
tree, the set of all loop-free paths from the source to the destination
can still be represented as a tree.

Each non-leaf node i employs a distributed online policy that
determines the probability of forwarding a job to a child node j
in round ¢, denoted by x[i, j, t] := Prob(f[i,t] = j), in the event
that i receives a job. We have x[i, j,t] > 0 and ;e ¢, x[i. j,t] = 1.
Node i needs to determine the values of x[i, j, ] using only the
information available up to round t — 1.

We now characterize the performance of a distributed online
policy after it determines the values of x[i, j, t] and selects f[i, t] ac-
cordingly. Let y[i, t] be the random variable indicating the amount
of cost that would be incurred if node i receives a job in round ¢,
under the probability distribution of f[i, t]. By definition, we have
ylJj, t] = c[J, t] for each leaf node j € L. For each non-leaf node i,
y[i, t] can be calculated recursively through y[i, ] = y[f[i, t], t].
Also, let w[i, t] = E[y[i, t]“Ht_l] be the conditional expected
amount of cost incurred if node i receives a job in round ¢, given
all events up to round ¢ — 1, denoted by H;_;. The value of wli, ¢]
can then be calculated recursively by w[j,t] = c[j, ] for each
leaf node j and w[i,t] = ¥ ;cc, x[i, j, t]w[j, t] for each non-leaf
node i. The total expected cost incurred by the distributed online
policy over a time horizon of T rounds can then be written as
ZtT:IE[y[r, t]] - ZthlE[w[r, t]].

We compare the cost of a distributed online policy against a
stationary policy where each node selects the same child node in
each round ¢, i.e, f[i, t] = f;, Vt. Under a stationary policy, all jobs
will reach the same leaf node j*, and hence the total cost incurred by
the stationary policy is ZLI c[j*, t]. The optimal stationary policy
is the one that has a minimum cost among all stationary policies
and its cost is min j¢ s Zthl c[j, t]. We therefore define the regret of

a distributed online policy as Zthl E[y[r, t]] —minje r Zthl cl[j. t].
Our goal is to design a no-regret policy whose regret is sublinear in
T under all possible vectors of c[j, t]:

DEFINITION 1. A distributed online policy is said to be a no-regret
policy ithTzl E[y[r, t]] —minje p Zthl clj, t] = o(T).

4 PRELIMINARY: POLICY WITH COMPLETE
ONE-HOP FEEDBACK

In this section, we first study the simplified case where each non-leaf
node has complete one-hop feedback from its children. Specifically,
each non-leaf node i, regardless whether it receives a job or not, will
be able to learn the values of y[j, t] for each of its children j € C;
after i chooses f[i, t]. Node i can then use these values to update
the values of x[i, j, t + 1]. We emphasize that the communication
overhead between a child node j and its parent node contains
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only one single scalar y[j, ] in each round. Hence, the feedback
information that a non-leaf node has is still limited. For example,
a non-leaf node has neither knowledge nor control over actions
taken by its children.

We consider that each non-leaf node i independently employs
the Normalized Exponential Gradient (normalized-EG) algorithm, a
special case of the Online Mirror Descent algorithm and the Follow-
the-Regularized-Leader algorithm. Under the normalized-EG algo-
rithm, each non-leaf node i maintains a variable 63, j, t] for each
J € Ci by setting 0[i, j, 1] = 0and 0[i, j, t] = 0[i, j,t—1]—y[j, t—1]

. 0li.j.t]
forall ¢ > 1.1t then chooses x|i, j, t] = enifl %7 ineach round

Skec, €1
t, where n; is a constant whose value will be determined later. The

normalized-EG algorithm is an online policy because 0[i, j, t] can
be calculated only based on y[j, 1], y[j,2],...,y[j,t — 1]. A formal
description of the normalized-EG algorithm is presented in Alg. 1.

noend 1 Distributed Normalized Exponential Gradient

1: n; < a pre-determined constant
2: 0[1,]] — O,Vj € C;
3: for each round t do

) .. eniflij]
& x[i ]« s <o, enoran Y € Ci

Select a child f[i] with Prob(f[i] = j) = x[i, j]
for each j € C; do
Obtain y|[j] from child j
015 j1 < 0[5 j1 - ylj]
ylil < ylf[ill
Report y[i] to the parent node

R R AL

-
<

The regret of the normalized-EG algorithm has been extensively
studied for the special case when L = 1. We will further show that
the normalized-EG algorithm is a no-regret policy for the general
case L > 1. It is important to note that the values of y[j, ] observed
by i under the normalized-EG algorithm can be different from those
under the optimal stationary policy. This is because the values
of y[j,t] depend on the decisions made by children nodes j. To
distinguish between these two policies, we let y, [ j, t] be the values
of y[j,t] under the normalized-EG algorithm and let y.[J, t] be
those under the optimal stationary policy.

Since the normalized-EG algorithm is updated with respect to
ynlJ, t], we let Ypli,t] == {ynlj.z],Vj € Ci,t € [1,¢t]} be the
sequences of costs of all children of i up to round ¢ and have the
following from existing studies:

LEmMA 1 ([25], THEOREM 2.22). Ifyn[j, 7] = 0 forall j € C; and
€ [1,T], then the expected total cost incurred by i given Yy [i] is
upper-bounded by:

T
ZE[yn[l t]

t=1

log |G|
ni

T
+ni 0 > xli g tlynlj 112
t=1 jeC;

T
Yaliot]| <min >yl 1]+
=1
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Moreover, ify,[j, 7] € [0,1],Vj € Ci,T € [1,

\,loglCll yields:
T
ZE[yn i, ]|\ Mn i, t]] < mmZyn J.t] +24/Tlog |Ci].

t=1 jeCiiH

T], then setting n; =

Under the optimal stationary policy, each node will choose to
forward the job to the child that incurs the least cost through all T
rounds. Hence, we have Zthl y:[i,t] = minje, Zthl Y« [j, t]. We
now prove that the normalized-EG algorithm is still a no-regret
policy for the multi-stage system:

THEOREM 1. If each non-leaf node has as most D children, then,

by setting n; = 4/ —=—— loglGil IC,\ , Vi, the expected cost incurred by the root
noder is upper-bounded by:

T
> E|ynlr.]

t=1

T
Smian[j,t]+2L TlogD. 1)

jeLiH
ProoOF. Please see the technical report [14]. O

5 POLICY WITH END-TO-END BANDIT
FEEDBACK

In this section, we consider the case where each non-leaf node only
has bandit feedback. Specifically, if a node does not receive a job in
round ¢, then it will not get any feedback. If a node receives a job
and forwards it to a child node j = f[i, ], then it will only learn the
value of y[j, t]. As discussed in earlier sections, online policies with
end-to-end bandit feedback faces a trilemma between exploration,
i.e., choosing a child to learn its cost, exploitation, i.e., choosing a
child to incur low cost, and education, i.e., choosing a child so that
it has a chance to learn and improve its policy.

We propose a simple distributed online learning policy to ad-
dress the exploration-exploitation-education trilemma called the
e—EXP3 algorithm. Under the e~EXP3 algorithm, each non-leaf
node i maintains a variable 01, j, t] for each j € C;, which it will
use to determine x[i, j, t]. When a node i sends a job to a child node
J = fli, t], node i also includes a variable o[ j, t] indicating the prob-
ability that the child node j receives a job in round ¢. Since a node j
will receive a job if its parent node i receives a job and node i chooses
J, the value of v[j, t] can be calculated by v[j, t] = v[i, t]x[i, j, t].

We now discuss how a non-leaf node i decides f[i, t] in each
round ¢. There are two modes for choosing f[i, ¢] and node i ran-
domly decides which mode to operate in in each t. Each node i is
assigned two pre-determined constants €; and ;. With probability
€i, node i is in the uniform selection mode and it chooses f[i, t]
uniformly at random from its children, that is, Prob(f[i, t] = j) =
1/|Ci|,¥j € C;i. With probability 1 — €;, node i is in the EXP3 mode

0l[i,j,t]
and it chooses f[i,t] = j with probability %.

We use
mli, t] € {U, E} to denote the mode of node i, where U is the uni-

form selection mode and E is the EXP3 mode. Combining these two
7;01i.j.t]
i) Zk:c» enifliktl:
After choosing f[i, t] for each node i, we can set ye[i, t] = c[i, t]
for each leaf node and set ye[i, t] = ye[f[i, t], t] for each non-leaf

node, where the subscript € is to highlight that this corresponds

modes and we have x[i, j, t] = eiﬁ +(1-¢
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to the values of y[j, t] under the e—~EXP3 algorithm. We note that,
even if node i does not receive a job in round ¢, the value of ye[i, ]
is still well-defined, but node i does not know its value.

Finally, we discuss how node i determines 6[i, j, t]. Node i ini-
tializes 6[i, j,1] = 0 for all children j. If node i receives a job
in round t, then it learns the value of y.[f[i, t],t]. Node i sets

2[flit],t] = M if m[i,t] = U, and sets z[f[i,t], ¢] =
yelfli

ni0lik.t]
u[]z t]]ilj:)ﬁjet] »if mi,t] = E. Node i sets z[j,t] = 0

for all j # f[i,t]. On the other hand, if node i does not receive
a job in round ¢, then it sets z[j, t] = 0,Vj € C;. Finally, it sets
0li,j,t+1] =0[i,j, t] —z[j,t],Vj € Ci.

Alg. 2 describes the e—~EXP3 algorithm in detail, where we stream-
line some of the steps for easier implementation.

noend 2 e-EXP3
1: 1j, € < pre-determined constants
2 0[i, j] < 0,VjeC
3: for each round t do
4. if Node i receives a job and v[i, t] from its parent then

L. i01ij]
s xlig] — angy+ (1-6) 5 Vi € G
6: o[j, t] « o[i, t]x[i, j],Vj € C;
7: Randomly select m[i] € {U, E} with Prob(m[i] =U) =¢;
8: if m[i] = U then
9 Select a child f[i] € C; uniformly at random
10: Forward the job and o[ f[i], t] to child f[i] and obtain
yel £lil] from f[i] o
1 0L, f1il] « 0Li, f11]] - YeLLIIG
12: Return ye[i] < ye[f[i]] to the parent
13: else
14: Select a child f[i] € C; with Prob(f[i] = j) =
n;0[i.j]
Zk:c eNiOlik]
15: Forward the job and o[ f[i], t] to child f[i] and obtain
Ye[f1il] from fTi] N
Cr prs e[f1i]] Zkec, "0
16 OLi, f1iT] — O, f1i)] - S 20
17: Return ye [i] « ye[f[i]] to the parent

REMARK 1. The reason that the e—EXP3 algorithm has two different
modes to choose f[i,t] is to address the exploration-exploitation-
education trilemma. When node i is in the uniform selection mode, its
goal is to provide equal education to all its children. Hence, it selects
i, t] uniformly at random so that each child node has the same
chance of receiving a job and learning from its outcome. When node
i is in the EXP3 mode, its goal is to balance the trade-off between
exploration and exploitation. Hence, it employs a very similar way
of choosing fi, t] as the EXP3 algorithm. The value of ¢; determines
the portion of time that node i dedicate to education. On the other
hand, the value of n; determines the trade-off between exploration
and exploitation when node i is in the EXP3 mode, where larger n;
means more emphasis on exploitation. The values of €; and n; will be
determined later.

We now analyze the regret of e~EXP3. Our first step is to es-
tablish some properties of z[j, t]. We let Yc[i, t] == {yelj, 7], Vj €
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Ci, T € [1,t]} be the sequences of costs of all children of i up to
round ¢ and let Z[i,t] := {z[j,7],Vj € Ci,t € [1,t]} be all the
values of z[ j, 7] that has been observed by i up to round ¢. We then
have the following:

LEmMMA 2. For any non-leaf node i,

E[el t1|Veli o], Z it = 11 = yel. 1l @
and
E[z[j, 2|Vl 1], Z e - 1]]
Skeg, €MOR g, 12
=(ailcil+ (1 - e) ) O
ProoF. Please see the technical report [14]. O

Next, we show that, if node i is in the EXP3 mode at round ¢,
then its expected cost is the same as the expected cost of running
the normalized-EG algorithm against the sequence z[}, t].

LEMMA 3. By considering a sequence yn|j, 7] = z[j,7],Vj €
Ci, 7 € [1,T] for the normalized-EG algorithm,

[yezt|m =E Yelit], Z[i,t—l]]
:E[E[yn[i, ] Zli, t]”,

where the outer expectation on the right hand side is taken with respect
to z[j, t].

yn [l, t] =

ProoOF. Please see the technical report [14]. O

Our next step is to bound the difference between ZtT:I E [ye [i,t] ]

and mine, Zthl Ye[j, t] under any given given sequence of
Yelj, 1],...,ye[J, T], for all j € C;.

LEmMMA 4. If each non-leaf node has at most D children, then
T

> E[weli 1|l
t=1

log D L D
< ) T i ,
]neth‘yE] T e

t=1

for all non-leaf node i. Moreover, if the depth of the tree is L + 1, then
setting n; = T- 14 for all i and setting €; to be 0 if C; ¢ L, and
DT~ T otherwise yields

T
D E|veliit]

t=1

Melt]

min z weli

(D+logD)TL+1 ifCic L,
(2D +logD)TT+ T else.
ProoF. Please see the technical report [14]. O

REMARK 2. An explanation for the choice of €; is in order. We set
€; = 0 if all children of node i are leaf nodes. Since leaf nodes do not
have any children to choose from, they have nothing to learn and do
not need education. Hence, node i can operate exclusively in the EXP3
mode. On the other hand, if node i has some children that are non-leaf
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nodes, then node i needs to educate these children. Hence, it operates
in the uniform selection mode with a constant probability.

We will now prove that the e~EXP3 policy is a no-regret policy.

THEOREM 2. If the depth of the tree is L + 1 and each non-leaf
node i has at most D children, then, by using the same settings of n;
and ¢; as in Lemma 4, the regret of e-EXP3 is at most ((2L — 1)D +

Llog D)TT+ = o(T).

Proor. We will prove the theorem by establishing the following
statement: If a node i is (L — h)-hops from the root node r, then
Sy E|ylit]| < X1, weli ]+ ((2h=1)D+hlog D)T T, where
ys«[i, t] is the cost under the optimal stationary policy.

We prove the statement by induction. First, consider the case
h =1, that is, the node i is (L — 1)-hops from r. Since the tree has
depth L + 1, either i is a leaf node or all children of i are leaf nodes.
If i is a leaf node, then y,[i, t] = y«[i,t] = ¢[i,t] € [0,1] and the
statement holds. If all children of i are leaf nodes, then we have
YnlJj, t] = y«[Jj, t] = c[j, t] for all j € C;. Hence, by Lemma 4,

E[ye[i, t]] = ZT:E[ye[i, t]
. t=1
min 2 el

y.[i,t] + (D + log D)T 1,

Ye i, t]]

~

=1

IA
FE.
5

1+ (D +log D)TL+1

1}
M*} g

t
and the statement holds.

We now assume that the statement holds when h = g and
consider a node i that is (L — (g + 1))-hops from r. Either i is
a leaf node or all children of i are (L — g)-hops from r. If i is a
leaf node, then the statement clearly holds. If i is not a leaf node,

1l
-

then, by the induction hypothesis, we have Zthl E[ye [J, t]] <

Zthl y«[j, t] + ((29 — 1)D + glogD)Tﬁ, for all j € C;. We can
then use Lemma 4 to establish the following:

ZT:E[ye[i, t]] = E[E[ye[i, Ve [, t]“
t=1 t=1
[ é’Z: ]+(2D+logD)TL+1
T

< min Z y«[j, t] + ((29 — 1)D +g10gD)Tﬁ
JeCiia
+ (2D +log D)T T+
r L
= yulit] + ((2g+ D + (g + 1) log D)TT+1,
t=1
and the statement holds. By induction, the statement holds for all
h.
Since the root node r is 0-hop from itself and Zthl y«|r,t] =

minje p Ztrzl ¢jt, the theorem holds.

Finally, we note that the e~EXP3 algorithm requires the knowl-
edge of T to set €; and ;. When T is not known in advance, we
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can employ the doubling trick to design an anytime algorithm as
shown in Algorithm 3. This anytime algorithm is also a no-regret

policy:

noend 3 Anytime e-EXP3

1: form=0,1,2, ... do
2. Set ¢; and 1; according to Theorem 2, but replace T with 2™
3. RunAlgorithm 2 on the 2 rounds t = 2™,2™+1,. .., 2m+l_y

THEOREM 3. The regret of Algorithm 3 is at most ZLH

((2L -

2L+l -1
1)D + Llog D)TTs.

Proor. The proof is very similar to that in [25, Section 2.3.1],
and is hence omitted. O

6 REGRET LOWER BOUND AND THE NEED
FOR EDUCATION

In this section, we establish a regret lower bound of Q(T%) for a
class of time-homogeneous oracle policies. Under this class of policies,
each node knows the outcomes of each non-leaf child, y[i, t], before
selecting a child to forward a job to. Since the outcomes of each
non-leaf child is known in advance, there is no need for exploration
and each node only faces an education-exploitation dilemma. As
we establish a regret lower bound for this class of policies, we also
establish the need for education.

Figure 2: System illustration for establishing a lower bound

We consider a system with depth L + 1 as shown in Fig. 2. There
are L non-leaf nodes, numbered as 1,2, ..., L, and L + 1 leaf nodes,
numbered as L+ 1,L + 2,..., 2L + 1. Each non-leaf node i has two
children. For each i < L — 1, one child of node i is the leaf node
L + i and the other child is the non-leaf node i + 1. For node L, both
children, node 2L and node 2L + 1, are leaf nodes. When a leaf node
Jj received a job, it generates a cost of 1 with probability p; and a
cost of 0 with probability 1 — p;. Given a small positive constant
5 < 1/2L, we set one of pyr and por4q to be (1 — 2L5)/2 and the
other to be (1+2L8)/2, and then set p; = (1 - (2L — 2/7E71)5) /2
for all the other leaf nodes j = L+ 1,L +2,...,2L — 1. Hence, we
have (1 - zLa)/z < PLe1 < Preg < - < pap—q < (1—2L8)/2 and
minje s Zt 1 [ [, ]] (1- 2L5)T/2 The regret of the system
is

T
ZE (1,1] —(1—2L5)T/2—Z( [y[l,t]]—(l—ZLcS)/Z)A (4)

t=1

We now discuss the policies employed by each non-leaf node.
Since both children of node L are leaf nodes, node L does not need
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to consider education. We consider that node L can run an arbitrary
online learning algorithm with bandit feedback. For all other non-
leafnodes i = 1,2,...,L — 1, we assume that they employ a time-
homogeneous oracle policy defined as follows:

DEFINITION 2. Let iy and iy be the two children of node i, then a
time-homogeneous oracle policy is one that chooses a child to forward
a job to at time t with the following assumptions:

e Al:Nodei can obtain the expected cost of each child, E[y[il, t]]
and E [y[iz, t]], before making the forwarding decision.
e A2: Node i makes its forwarding decision solely based on

E[y[il,t]] - E[y[iz,t]]. Specifically, let { = ‘E[y[il,t]] -
E[y[iz, t]] ‘, then node i will forward the job to the child with

the higher expected cost with probability P; (), and to the other
child with probability 1 — P;({), where P;(-) is an arbitrary
decreasing function chosen by node i.

We note that A1 provides a node with much more information
than is possible in multi-stage systems with bandit feedback, where
a node can only obtain the cost of a child if it forwards a job to
the child, and only after it makes the forwarding decision. Thus,
intuitively, the regret of policies with A1 serves as a natural lower
bound for the regret of policies with end-to-end bandit feedback.
The purpose of A2 is to highlight that a node i only knows the
expected costs, but not the internal variables of its children.

We also note that policies with A1 do not need to explore, since it
knows the expected costs of all children in advance. Hence, policies
with A1 only face an education-exploitation dilemma. The only
reason that a policy may select a child with a higher expected cost,
by choosing P;(n) > 0, is to educate its children.

We first establish a bound for the expected cost of node L, whose
children are both leaf nodes. Let Ny () be the number of times that
node L has received a job from its parent at time ¢. Since node L
can only learn the costs of its children when it receives a job, node
L cannot determine which of its two children has the smaller p;
when N () is small. The following lemma formalizes this intuition.

LEmMMA 5. There exists a positive integer Ns such that, for all t
with NL(t) < Ng, E[y[L.t]] > (1 - (2L - 2E71)8) /2.

Proor. This is a direct result of Lemma 3.6 in [7]. o
We now establish a regret lower bound for the system in Fig. 2.

THEOREM 4. For the system in Fig. 2, the regret is Q (T% ) for any
bandit learning policy employed by node L and any time-homogeneous
oracle policies employed by nodes 1,2, ...,L — 1.

ProoOF. Let Ty be the time at which N () = Ngs. By Lemma 5,
E[y[L,t]] > (1 - (2L —2L71)8)/2 for any ¢ < Tj.

We first study the system behavior before time Tg. Consider
the forwarding decision of node L — 1 at any time ¢t < T5. Node
L — 1 has two children. One is the leaf node 2L — 1 with E[y[ZL -
1, t]] = por—1 = (1 = (2F = 2L72)8)/2. The other is the non-leaf
node L with E[y[L,t]] > (1 - (2L —2L71)8)/2 = pyr_y +2L736.
By A2, the probability that node L — 1 selects node L is at most
qr-1 = Pr_1(2L736). We also have E[y[L -1, t]] > por—1 =
(1- (2L —2L=2)5) /2.
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We further analyze the forwarding decision of node i < L —1
at any time ¢t < Ts. Using a simple induction argument, it can
be shown that the probability that node i selects node i + 1 is at
most g; := P;(21725), and E[y[i,t]] > pr+;i = (1 - (2F —271)8) /2.
Therefore, at any time ¢ < Ty, we have

E[y[1,t]] - (1 -2L8)/2 > §/2. (5)

Moreover, since node L can only receive a job if, for each i < L-1,
node i selects node i + 1, which happens with probability at most

qi, we have
Ns

M g
Next, we analyze the system behavior after time T. For any time
t > Ts, E[y[L, t]] > min{pyy, par+1} = (1 — 2L'8)/2. Consider the
forwarding decision of node L — 1. Since E [y[ZL -1, t]] =por-1=
(1- (2L -2L=2)8)/2 < E[y[L, t]] + 28735, the probability that
node L — 1 selects node L is at most 1 — Py (2£738) = 1 — qL-1-
Using a simple induction argument, we can further show that the
probability that node i selects node i + 1 is at most 1 — g;, for all
i < L — 1. Hence, the probability that node L receives a job is at
most [—[l.L:_I1 (1—g;).If node L does not receive a job, which happens
with probability at least 1 — H{.“:_ll (1 - g;), then the expected cost

E[Ts] > (6)

.....

have, at any time ¢ > Tg,

L-1
E[yl1,0]] - (1=2"9)/2 > (1- [ [(1-qn)o/2 ()
i=1

Combining Eq. (5), (6), and (7) and we have the following regret
bound

T
> (E[y[l, 0] - - 2L5)/2)
t=1
Ts T L-1
>E[Z§/2+ Z (1—“(1—(11-))5/2]
t=1 t=Ts+1 i=1
é Ns Ns =
2ol g+ (T - )1 -| [A-a))] (®)
2 a Mis' g l}
It is then straightforward to show that g [ ﬁ‘f 7 +(T—- LAI 2 7 )(1-
i=1 9i i=1 9i

L-1
L

]_[lL:_ll(l -q))]=Q(T 1). Moreover, setting q; = @(T_%), for all

. Ns Ns -
i <L -1, makes g[HiL:_l‘} p” +(T - Hf:_ﬁ qi)(l - ]_[lel(l -qi))] =

o(T'T). o

Before closing the section, we note that the lower-bound analysis
in this section is limited to time-homogeneous policies. We make
this assumption to explicitly prevent a parent node from using
history to imply internal variables of its children. Extending our
analysis to time-varying policies will be interesting future work.

7 SIMULATION RESULTS

We present our simulation results in this section. We simulate two
different scenarios. The first scenario is based on trees whose leaf
nodes generate Bernoulli costs. While this scenario is artificially
constructed and may not correspond to real-world applications, its
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Figure 3: Time-average regrets under various system parameters

simulation results provide important insights on how online algo-
rithms behave in distributed multi-stage systems. The second sce-
nario is based on mobile edge computing. We compare our e—~EXP3,
with parameters from Lemma 4, against the standard EXP3 algo-
rithm, where each node runs the EXP3 algorithm independently
from each other, and the Broad-OMD algorithm [29]. Both EXP3
and Broad-OMD are no-regret policies for the special case when
L=1.

7.1 Trees with Bernoulli Costs

We consider systems that can be represented as trees with depth L+1.
Each non-leaf node has D children. Each leaf node j is associated
with a parameter p; € [0, 1]. Whenever a leaf node j receives a job,
its cost c[j, t] is 1 with probability p; and 0 with probability 1 — p;.
The system is run over T rounds. Initially, the values of p; is chosen
so that max; p; = 1 and min; p; = pmin. At round ¢t = T/100, the
leaf with p; = 1 has its value of p; changed into 0. Fig. 4 illustrates
an example. For a given set of parameters D, L, T, and [p;], we
simulate the system for 20 independent runs and calculate the

time-average regret (Zthl y[r,t] —minje ¢ Zthl clj, t])/T under
all evaluated policies.

Simulation results are shown in Fig. 3, with the error bars indi-
cating standard deviations. It can be observed that the time-average
regret of e—~EXP3 approaches 0 over time in all cases. We note
that the convergence rate of e~EXP3 becomes much slower as L
becomes larger. This is consistent with Theorem 2, which shows
that the time-average regret scales as O(1/ "VT). To verify that the
time-average regret of e~EXP3 scales as O(1/ /T), we also plot
the asymptotic trend in Fig. 3. The value of the asymptotic trend for
a particular T is calculated as Rp 1./ KT, where Rp,1 is chosen so
that the value of the asymptotic trend and the time-average regret
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Figure 4: A system with D = 2,L = 2 and pyin = 0.2

of e~EXP3 are the same when T = 5 x 10°, that is, at the mid-point
of the x-axis in the figures. It can be observed that e~EXP3 is close
to the asymptotic trend. This demonstrates that the time-average
regret e-~EXP3 indeed scales as O(1/ IT).

On the other hand, it can also be observed that the time-average
regrets of both EXP3 and Broad-OMD converge to pmip in all set-
tings in Fig. 3. This result shows that neither of them is a no-regret
policy in multi-stage systems. To understand why the standard
EXP3 algorithm is not a no-regret policy, consider the system il-
lustrated in Fig. 4. Before round ¢ = %, the optimal strategy for
node 1 is to forward the job to node 4 with p4 = 0.6. The optimal
strategy for the root is to forward the job to node 2, who then for-
wards the job to node 6 with ps = 0.2. Hence, at round ¢ = % and
under the EXP3 algorithm, the root will choose node 2 with a high
probability and node 1 will choose node 4 with a high probability.
Now;, consider the first time after round % when the root forwards
a job to node 1. Since node 1 is unaware that p3 has become 0, it
chooses node 4 with a high probability and will likely incur a high
cost. This high cost will cause the root to exponentially reduce



Distributed No-Regret Learning for Multi-Stage Systems with End-to-End Bandit Feedback

H

— Prob(root chooses node 1)

0.8 0.8
- - Prob(node 1 chooses node 3)
=06 =06
3 s
fo04 So4 |
& & \

0.2 —Prob(root chooses node 1) 0.2 \

Prob(node 1 chooses node 3
o ( ) 0 L\
0 100 200 300 400 500 0 100 200 300 400 500

t(*1000) 1(*1000)

(a) The behavior of e—EXP3 (b) The behavior of EXP3

Figure 5: Transient behaviors of the system in Fig. 4 with
T =5x 10%.

the probability of choosing node 1 in the future, making it even
harder for node 1 to explore and learn the fact that p3 has become 0.
This is why the EXP3 algorithm suffers from a time-average regret
of roughly ps = 0.2. In contrast, our e~EXP3 algorithm ensures
that the root always chooses node 1 with at least a constant proba-
bility in each round. This persistent education enables node 1 to
eventually discover that p3 has become 0.

To demonstrate the behavior discussed in the above paragraph,
we conduct a simulation to show the transient behaviors of the two
algorithms. Specifically, we test the system shown in Fig. 4 with
T =5 x 10°. The value of p3 is initially 1, and becomes 0 at round
5x 10%. For each algorithm, we record the probability that the root r
would choose node 1 and the probability that node 1 would choose
node 3. Simulation results are shown in Fig. 5, where each data
point represent the average of the previous 1000 rounds. Under the
EXP3 algorithm, the probability that the root would choose node 1
at round 5 x 10* is less than 0.05%. Since node 1 rarely receives any
jobs, it cannot improve its performance, which, in turn, makes the
root even less likely to choose node 1. At round 5 X 10°, probability
that the root would choose node 1 has become less than 0.02%.
In contrast, the e—~EXP3 algorithm offers persistent education to
node 1. Hence, after round 5 x 104, node 1 quickly finds that p3
has improved and increases its probability of choosing node 3. As
a result, the root also starts increasing its probability of choosing
node 1 after round 10°.

7.2 Mobile Edge Computing

We consider a mobile edge computing system. In this system, there
is a mobile robot that generates video analytic jobs for real-time
processing. The robot is connected to D edge servers with different
communication media. To process a job, each edge server has D
different neural networks to choose from. Different neural networks
have different precision and different processing time. There is also
a communication latency of each link. The delay of transmitting
over a link is an exponential function with mean % Some links have
a constant A while other links have a A that increases over time.
This models the time-varying congestion on these links. Fig. 6(a)
illustrates the system when D = 2.

The robot requires a strict deadline of one time unit for each
job. If the end-to-end latency, that is, the sum of communication
latency and processing time, exceeds one time unit, then a deadline
violation occurs and the cost is one. If the end-to-end latency is less
than one time unit, then the cost is the miss rate of the employed
neural network.
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We have conducted 20 independent runs for each T. Simulation
results are shown in Fig. 6. It can be observed that the e~EXP3
algorithm significantly outperforms the EXP3 algorithm when T
is sufficiently large. The Broad-OMD algorithm has similar perfor-
mance as e—EXP3 when D = 2, but is much worse than e—EXP3
when D = 3.

7.3 Multi-hop Networks

We consider multi-hop networks as illustrated in Fig. 7(a). In this
system, the source (node S) is sending packets to the destination
(node D) through a number of inter-connected relay nodes. Upon
receiving a packet, a node needs to decide which node to forward
the packet to. The delay of transmitting over a link is an exponential
function with mean % Some links have a constant A while other
links have a A that increases over time. We consider that the source
requires a strict end-to-end deadline guarantee of one unit time. If
the end-to-end delay of a packet is more than one unit time, then a
deadline violation occurs.

Let L be the number of relay nodes that a packet needs to visit
before reaching the destination. We have tested this system for
different values of L. Simulation results are shown in Fig. 7. It can
be observed that the e—~EXP3 algorithm is either optimal or near-
optimal in all settings.

8 CONCLUSION

In this paper, we study multi-stage systems with end-to-end ban-
dit feedback. The fundamental challenge of learning the optimal
policy of agents in each stage is a newly introduced exploration-
exploitation-education trilemma. We propose a simple distribute
policy, the e~EXP3 algorithm, that explicitly addresses this trilemma.
Moreover, we theoretically prove that the e~EXP3 algorithm is a no-
regret policy. Simulation results show that the e~EXP3 algorithm
significantly outperforms existing policies.
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