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ABSTRACT
This paper studies multi-stage systems with end-to-end bandit

feedback. In such systems, each job needs to go through multiple

stages, each managed by a different agent, before generating an

outcome. Each agent can only control its own action and learn the

final outcome of the job. It has neither knowledge nor control on

actions taken by agents in the next stage. The goal of this paper

is to develop distributed online learning algorithms that achieve

sublinear regret in adversarial environments.

The setting of this paper significantly expands the traditional

multi-armed bandit problem, which considers only one agent and

one stage. In addition to the exploration-exploitation dilemma in the

traditional multi-armed bandit problem, we show that the consid-

eration of multiple stages introduces a third component, education,

where an agent needs to choose its actions to facilitate the learn-

ing of agents in the next stage. To solve this newly introduced

exploration-exploitation-education trilemma, we propose a simple

distributed online learning algorithm, 𝜖−EXP3. We theoretically

prove that the 𝜖−EXP3 algorithm is a no-regret policy that achieves

sublinear regret. Simulation results show that the 𝜖−EXP3 algo-

rithm significantly outperforms existing no-regret online learning

algorithms for the traditional multi-armed bandit problem.
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1 INTRODUCTION
In many modern applications, a job consists of multiple stages that

need to be performed by different agents, and the decision made

in each stage can impact the performance of the job. For example,

consider a mobile edge computing application where a mobile user

offloads video analytic jobs to nearby edge servers, and each edge

server is equipped with multiple video analytic neural networks

with different precision and latency. To process a video analytic

job, the mobile user needs to first decide which edge server to

forward this job to. After the mobile user forwards the job to an

edge server, the edge server needs to decide which neural network

to employ for this job. The performance of the job depends on the

accuracy of the result and the end-to-end latency, which includes

both communication and computation delays. As another example,

consider packet deliveries in multi-hop networks consisting of

multiple routers. Upon receiving a packet, a router needs to decide

which router to forward the packet to. The performance of the

packet depends on the end-to-end latency.

This paper studies the problem of designing distributed online

learning algorithms under which all agents jointly learn the optimal

decisions with minimum coordination, even when the outcomes of

decisions are determined by an adversary. Developing such algo-

rithms are challenging due to three major reasons. First, in most

computer and network systems, it is desirable to employ distributed

algorithms where each agent can only make decisions of its own

action and has neither knowledge nor control on the actions taken

by agents in the next stages. Second, in many systems, an agent

can only observe the end-to-end outcome of the joint effects of all

stages, but cannot know how actions taken in each individual stage

contribute to the end-to-end outcome. Finally, an agent can only

learn the outcome of its chosen action, which is typically referred

to as the bandit feedback in the literature.

We note that the traditional multi-armed bandit problem is a

special case of multi-stage systems when there is only one stage.

The main challenge of the traditional multi-armed bandit problem

is to balance between learning the outcomes of each possible action

(exploration) and choosing the action with the best historic out-

comes (exploitation). The general problem of multi-stage systems

is even more challenging because agents in the next stage are also

learning agents and their ability to learn depends on actions taken

by the agent in the previous stage. In the example of mobile edge

computing, an edge server can only process a job and learn the out-

come when it receives a job from the mobile user. When a mobile

user receives a poor outcome from an edge server, it may be because

the edge server has yet to learn the optimal action and chooses a

bad neural network, rather than because the edge server has no

good options. To ensure that all edge servers can learn the optimal

41

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3641512.3686369
https://doi.org/10.1145/3641512.3686369
https://doi.org/10.1145/3641512.3686369
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641512.3686369&domain=pdf&date_stamp=2024-10-01


MOBIHOC ’24, October 14–17, 2024, Athens, Greece I-Hong Hou

actions, the mobile user needs to educate edge servers by forward-

ing a sufficient number of jobs to each of them. Thus, the mobile

user is facing an exploration-exploitation-education trilemma.

To study the online learning problem in multi-stage systems, we

propose an analytical model that captures both the distributed deci-

sion making and the end-to-end bandit feedback. We first consider

the simplified case when each agent can observe the outcomes of all

its actions, including those not taken. We show that we can achieve

sublinear regret by making all agents employ the Normalized Ex-

ponential Gradient (normalized-EG) algorithm independently in a

distributed fashion.

Next, we study the multi-stage system with only end-to-end

bandit feedback, that is, an agent can only observe an outcome if

it receives a job and it can only observe the outcome of its chosen

action. To address the exploration-exploitation-education trilemma,

we propose a simple distributed online learning algorithm called

𝜖−EXP3. The 𝜖−EXP3 algorithm has two operation modes, a uni-

form selection mode in which the agent chooses actions uniformly

at random to provide equal education to agents in the next stage,

and an EXP3 mode where the agent employs a variation of the

EXP3 algorithm to balance the tradeoff between exploration and

exploitation. By randomly alternating between these two modes,

the 𝜖−EXP3 algorithm explicitly address all three of exploration,

exploitation, and education. We theoretically prove that, when ap-

plying 𝜖−EXP3 on a system with 𝐿 stages, the regret accumulated

over 𝑇 rounds is at most 𝑂 (𝑇
𝐿

𝐿+1 ) = 𝑜 (𝑇 ).
To understand the fundamental regret lower bounds and the

role of education in multi-stage systems, we study a class of time-

homogeneous oracle policies. These policies assume that each node

can know the outcome of all actions before making a decision.

Therefore, there is no need to explore and each node only faces an

education-exploitation dilemma. We show that the regret of these

policies is at least Θ(𝑇
𝐿−1
𝐿 ), which is only slightly better than the

regret of 𝜖−EXP3.
The utility of the 𝜖−EXP3 algorithm is further evaluated by

simulations. The simulation results show that the regret of the

𝜖−EXP3 algorithm indeed scales as 𝑂 (𝑇
𝐿

𝐿+1 ). We also evaluate two

other policies that are no-regret policies for the traditional one-

stage bandit problem. Surprisingly, we show that their regrets scale

as 𝜃 (𝑇 ) even when the system has only two stages. The simulation

results demonstrate that the education component is indeed critical

in multi-stage systems.

The rest of the paper is organized as follows. Section 2 surveys

existing studies on adversarial bandit problems, mobile edge com-

puting, and multi-hop networks. Section 3 introduces our system

model and problem definition. Section 4 studies the simplified case

with complete one-hop feedback. Section 5 introduces and analyzes

the 𝜖−EXP3 algorithm for systems with end-to-end bandit feedback.

Section 6 establishes a regret lower bound for time-homogeneous

oracle policies. Section 7 presents our simulation results. Finally,

Section 8 concludes the paper.

2 RELATEDWORK
No-regret bandit learning. The multi-armed bandit problem has

attracted significant research interests because it elegantly captures

the trade-off between exploration and exploitation. In adversarial

environments, the celebrated EXP3 algorithm has been proved to

achieve a regret bound of 𝑂 (𝑇
1

2 ) [5]. This bound has later been

shown to be tight [3]. There have been many studies on variations

and improvements of the EXP3 algorithm [4, 22, 28, 29]. All these

studies only consider systems with one agent.

There have been considerable recent efforts on cooperative learn-

ing [1, 8, 16, 18, 19, 21, 23] where agents help each other find the

optimal action. These studies assume that the reward of an agent

only depends on the action of that agent. In contrast, our work al-

lows different agents to have different sets of actions and considers

that the reward in each round depends on the actions of all agents.

Singla, Hassani, and Krause [27] has studied a distributed learning

problem in two-stage systems. It is limited to the special case of

two stages and requires the root node to have the ability to block

feedback information.

Mobile edge computing. One emerging application of mobile

edge computing is cloud/edge robotics where a robot offloads its

computation tasks to nearby edge servers. An important challenge

for cloud/edge robotics is that the performance of a job depends

on both the quality of the outcome and the end-to-end delay. To

enable flexible trade-off between quality and latency, Jiang et al.

[15] has proposed a controller that dynamically select the suitable

neural network configuration. Wu et al. [30] has modeled the prob-

lem of adaptive configuration as an integer programming problem

and proposed a heuristic for it. He et al. [13] has employed a rein-

forcement learning approach for adaptive configuration. Zhang et

al. [32] has employed Lyapunov optimization to learn the optimal

configuration over time. These studies only study the decisions of

edge servers and they only consider stationary systems. Chinchali

et al. [9] has proposed using deep reinforcement learning for the

offloading decisions of robots, but it does not consider the adap-

tive configuration of edge servers. To the best of our knowledge,

no existing work has jointly optimized the offloading decision of

robots and the adaptive configuration of edge servers in unknown

and time-varying environments.

Multi-hop networks. There have been significant interests in

employing online learning or reinforcement learning techniques

for multi-hop networks, but few of them have been able to charac-

terize end-to-end delay and enforcing end-to-end deadline. Bhorkar

and Javidi [6] has proposed a no-regret learning policy for min-

imizing end-to-end transmission cost. Park, Kang, and Joo [24]

has proposed a UCB-based algorithm for throughput-optimality in

multi-hop wireless networks. Al Islam et al. [2] has considered the

problem of end-to-end congestion control problem in multi-hop

networks as a multi-armed bandit problem. Zhang, Tang, andWang

[31] has studied the problem of relay selection to minimize energy

consumption in two-hop networks. None of the aforementioned

studies consider end-to-end delay or end-to-end deadline.

Mao, Koksal, and Shroff [20], Deng, Zhao, and Hou [10], and

Gu, Liu, Shen [11] have all studied online scheduling and routing

algorithms for multi-hop networks with end-to-end deadlines, but

they require precise knowledge on the capacity and latency of each

link. HasanzadeZonuzy, Kalathil, and Shakkottai [12] has proposed

a model-based reinforcement learning algorithm for real-timemulti-

hop networks but it only works for stationary systems. Both Lin

and van der Schaar [17] and Shiang, and van der Schaar [26] employ
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reinforcement learning to serve delay-sensitive traffic by modeling

multi-hop networks as stationary MDPs with unknown kernels. To

the best of our knowledge, no existing work has studied the regret

of delay-sensitive multi-hop networks in adversarial environments.

3 SYSTEM MODEL
We represent a multi-stage system as a tree with depth 𝐿 + 1. We

denote the root node by 𝑟 and the set of leaf nodes by L. We use

C𝑖 to denote the set of children of a non-leaf node 𝑖 . In each round

𝑡 , the root node 𝑟 receives a job. It selects a child node 𝑓 [𝑟, 𝑡] ∈ C𝑟 ,
possibly at random, and forwards the job to it. Likewise, every

non-leaf node 𝑖 randomly selects a child node 𝑓 [𝑖, 𝑡] ∈ C𝑖 and, if
𝑖 receives a job in round 𝑡 , forwards the job to 𝑓 [𝑖, 𝑡]. When the

job reaches a leaf node 𝑗 , it generates a cost of 𝑐 [ 𝑗, 𝑡] ∈ [0, 1]. The
value of 𝑐 [ 𝑗, 𝑡] is revealed to all nodes between the root and the

leaf node 𝑗 through an end-to-end feedback message.

We note that each node only has limited feedback information

in this setting. In particular, if a node receives a job in round 𝑡 ,

then it will only know its own choice and the final cost. It has

neither knowledge nor control on the choices made by its children.

This is to reduce coordination overhead and to protect privacy. If a

node does not receive a job in a round, then it will not receive any

feedback information.

To see how our model can be used to capture mobile edge com-

puting, we can consider the example shown in Fig. 1(a). In this

system, a robot chooses one of two edge servers to offload its video

analytic jobs. Each edge server has two neural networks to choose

from. This system can be modeled as a tree with 𝐿 = 2 as shown

in Fig. 1(b). In Fig. 1(b), the robot is the root that chooses between

child 𝐴 and child 𝐵. Each of these child nodes corresponds to an

edge server, and each child node chooses between two leaf nodes.

Each leaf node is labeled by𝑋 : 𝑛, where𝑋 indicates the edge server

chosen by the robot, and 𝑛 indicates the neural network chosen

by the edge server. The cost of a leaf node is chosen to reflect the

delay and the quality of the outcome of the video analytic job.

Neural network 1

Neural network 2

Server A Server B

(a) System illustration

The robot chooses 
one edge server

Server A chooses 
one neural network

Server B chooses 
one neural network

(b) Tree model

Figure 1: A mobile edge computing system and its tree model

This model can also be used to capture multi-hop networks. In

multi-hop networks, the root is the source that generates packets

to be delivered. Each non-leaf node corresponds to the path used to

transfer a packet to an intermediate router. The choice of that non-

leaf node corresponds to choosing the next-hop by the intermediate

router. Each leaf node is a complete path from the source to the

destination and its cost can be chosen to reflect end-to-end delay.

We note that we do not require the topology of the multi-hop

networks to be trees. Even when the topology of a network is not a

tree, the set of all loop-free paths from the source to the destination

can still be represented as a tree.

Each non-leaf node 𝑖 employs a distributed online policy that

determines the probability of forwarding a job to a child node 𝑗

in round 𝑡 , denoted by 𝑥 [𝑖, 𝑗, 𝑡] := 𝑃𝑟𝑜𝑏 (𝑓 [𝑖, 𝑡] = 𝑗), in the event

that 𝑖 receives a job. We have 𝑥 [𝑖, 𝑗, 𝑡] ≥ 0 and

∑
𝑗∈C𝑖 𝑥 [𝑖, 𝑗, 𝑡] = 1.

Node 𝑖 needs to determine the values of 𝑥 [𝑖, 𝑗, 𝑡] using only the

information available up to round 𝑡 − 1.
We now characterize the performance of a distributed online

policy after it determines the values of 𝑥 [𝑖, 𝑗, 𝑡] and selects 𝑓 [𝑖, 𝑡] ac-
cordingly. Let 𝑦 [𝑖, 𝑡] be the random variable indicating the amount

of cost that would be incurred if node 𝑖 receives a job in round 𝑡 ,

under the probability distribution of 𝑓 [𝑖, 𝑡]. By definition, we have

𝑦 [ 𝑗, 𝑡] = 𝑐 [ 𝑗, 𝑡] for each leaf node 𝑗 ∈ L. For each non-leaf node 𝑖 ,

𝑦 [𝑖, 𝑡] can be calculated recursively through 𝑦 [𝑖, 𝑡] = 𝑦 [𝑓 [𝑖, 𝑡], 𝑡].
Also, let 𝑤 [𝑖, 𝑡] := 𝐸

[
𝑦 [𝑖, 𝑡]

���H𝑡−1
]
be the conditional expected

amount of cost incurred if node 𝑖 receives a job in round 𝑡 , given

all events up to round 𝑡 − 1, denoted byH𝑡−1. The value of𝑤 [𝑖, 𝑡]
can then be calculated recursively by 𝑤 [ 𝑗, 𝑡] = 𝑐 [ 𝑗, 𝑡] for each
leaf node 𝑗 and 𝑤 [𝑖, 𝑡] = ∑

𝑗∈C𝑖 𝑥 [𝑖, 𝑗, 𝑡]𝑤 [ 𝑗, 𝑡] for each non-leaf

node 𝑖 . The total expected cost incurred by the distributed online

policy over a time horizon of 𝑇 rounds can then be written as∑𝑇
𝑡=1 𝐸

[
𝑦 [𝑟, 𝑡]

]
=
∑𝑇
𝑡=1 𝐸

[
𝑤 [𝑟, 𝑡]

]
.

We compare the cost of a distributed online policy against a

stationary policy where each node selects the same child node in

each round 𝑡 , i.e., 𝑓 [𝑖, 𝑡] ≡ 𝑓𝑖 ,∀𝑡 . Under a stationary policy, all jobs

will reach the same leaf node 𝑗∗, and hence the total cost incurred by
the stationary policy is

∑𝑇
𝑡=1 𝑐 [ 𝑗∗, 𝑡]. The optimal stationary policy

is the one that has a minimum cost among all stationary policies

and its cost ismin𝑗∈L
∑𝑇
𝑡=1 𝑐 [ 𝑗, 𝑡]. We therefore define the regret of

a distributed online policy as

∑𝑇
𝑡=1 𝐸

[
𝑦 [𝑟, 𝑡]

]
−min𝑗∈L

∑𝑇
𝑡=1 𝑐 [ 𝑗, 𝑡].

Our goal is to design a no-regret policy whose regret is sublinear in

𝑇 under all possible vectors of 𝑐 [ 𝑗, 𝑡]:

Definition 1. A distributed online policy is said to be a no-regret

policy if
∑𝑇
𝑡=1 𝐸

[
𝑦 [𝑟, 𝑡]

]
−min𝑗∈L

∑𝑇
𝑡=1 𝑐 [ 𝑗, 𝑡] = 𝑜 (𝑇 ).

4 PRELIMINARY: POLICY WITH COMPLETE
ONE-HOP FEEDBACK

In this section, we first study the simplified casewhere each non-leaf

node has complete one-hop feedback from its children. Specifically,

each non-leaf node 𝑖 , regardless whether it receives a job or not, will

be able to learn the values of 𝑦 [ 𝑗, 𝑡] for each of its children 𝑗 ∈ C𝑖
after 𝑖 chooses 𝑓 [𝑖, 𝑡]. Node 𝑖 can then use these values to update

the values of 𝑥 [𝑖, 𝑗, 𝑡 + 1]. We emphasize that the communication

overhead between a child node 𝑗 and its parent node contains
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only one single scalar 𝑦 [ 𝑗, 𝑡] in each round. Hence, the feedback

information that a non-leaf node has is still limited. For example,

a non-leaf node has neither knowledge nor control over actions

taken by its children.

We consider that each non-leaf node 𝑖 independently employs

the Normalized Exponential Gradient (normalized-EG) algorithm, a

special case of the Online Mirror Descent algorithm and the Follow-

the-Regularized-Leader algorithm. Under the normalized-EG algo-

rithm, each non-leaf node 𝑖 maintains a variable 𝜃 [𝑖, 𝑗, 𝑡] for each
𝑗 ∈ C𝑖 by setting 𝜃 [𝑖, 𝑗, 1] = 0 and 𝜃 [𝑖, 𝑗, 𝑡] = 𝜃 [𝑖, 𝑗, 𝑡−1]−𝑦 [ 𝑗, 𝑡−1]
for all 𝑡 > 1. It then chooses 𝑥 [𝑖, 𝑗, 𝑡] = 𝑒𝜂𝑖𝜃 [𝑖,𝑗,𝑡 ]∑

𝑘∈C𝑖 𝑒
𝜂𝑖𝜃 [𝑖,𝑘,𝑡 ] in each round

𝑡 , where 𝜂𝑖 is a constant whose value will be determined later. The

normalized-EG algorithm is an online policy because 𝜃 [𝑖, 𝑗, 𝑡] can
be calculated only based on 𝑦 [ 𝑗, 1], 𝑦 [ 𝑗, 2], . . . , 𝑦 [ 𝑗, 𝑡 − 1]. A formal

description of the normalized-EG algorithm is presented in Alg. 1.

noend 1 Distributed Normalized Exponential Gradient

1: 𝜂𝑖 ← a pre-determined constant

2: 𝜃 [𝑖, 𝑗] ← 0,∀𝑗 ∈ C𝑖
3: for each round 𝑡 do
4: 𝑥 [𝑖, 𝑗] ← 𝑒𝜂𝑖𝜃 [𝑖,𝑗 ]∑

𝑘∈C𝑖 𝑒
𝜂𝑖𝜃 [𝑖,𝑘 ] ,∀𝑗 ∈ C𝑖

5: Select a child 𝑓 [𝑖] with 𝑃𝑟𝑜𝑏 (𝑓 [𝑖] = 𝑗) = 𝑥 [𝑖, 𝑗]
6: for each 𝑗 ∈ C𝑖 do
7: Obtain 𝑦 [ 𝑗] from child 𝑗

8: 𝜃 [𝑖, 𝑗] ← 𝜃 [𝑖, 𝑗] − 𝑦 [ 𝑗]
9: 𝑦 [𝑖] ← 𝑦 [𝑓 [𝑖]]
10: Report 𝑦 [𝑖] to the parent node

The regret of the normalized-EG algorithm has been extensively

studied for the special case when 𝐿 = 1. We will further show that

the normalized-EG algorithm is a no-regret policy for the general

case 𝐿 > 1. It is important to note that the values of𝑦 [ 𝑗, 𝑡] observed
by 𝑖 under the normalized-EG algorithm can be different from those

under the optimal stationary policy. This is because the values

of 𝑦 [ 𝑗, 𝑡] depend on the decisions made by children nodes 𝑗 . To

distinguish between these two policies, we let 𝑦𝑛 [ 𝑗, 𝑡] be the values
of 𝑦 [ 𝑗, 𝑡] under the normalized-EG algorithm and let 𝑦∗ [ 𝑗, 𝑡] be
those under the optimal stationary policy.

Since the normalized-EG algorithm is updated with respect to

𝑦𝑛 [ 𝑗, 𝑡], we let Y𝑛 [𝑖, 𝑡] := {𝑦𝑛 [ 𝑗, 𝜏],∀𝑗 ∈ C𝑖 , 𝜏 ∈ [1, 𝑡]} be the

sequences of costs of all children of 𝑖 up to round 𝑡 and have the

following from existing studies:

Lemma 1 ([25], Theorem 2.22). If 𝑦𝑛 [ 𝑗, 𝜏] ≥ 0 for all 𝑗 ∈ C𝑖 and
𝜏 ∈ [1,𝑇 ], then the expected total cost incurred by 𝑖 given Y𝑛 [𝑖] is
upper-bounded by:

𝑇∑︁
𝑡=1

𝐸

[
𝑦𝑛 [𝑖, 𝑡]

���Y𝑛 [𝑖, 𝑡]] ≤ min

𝑗∈C𝑖

𝑇∑︁
𝑡=1

𝑦𝑛 [ 𝑗, 𝑡] +
log |C𝑖 |

𝜂𝑖

+ 𝜂𝑖
𝑇∑︁
𝑡=1

∑︁
𝑗∈C𝑖

𝑥 [𝑖, 𝑗, 𝑡]𝑦𝑛 [ 𝑗, 𝑡]2 .

Moreover, if 𝑦𝑛 [ 𝑗, 𝜏] ∈ [0, 1],∀𝑗 ∈ C𝑖 , 𝜏 ∈ [1,𝑇 ], then setting 𝜂𝑖 =√︃
log | C𝑖 |

𝑇
yields:

𝑇∑︁
𝑡=1

𝐸

[
𝑦𝑛 [𝑖, 𝑡]

���Y𝑛 [𝑖, 𝑡]] ≤ min

𝑗∈C𝑖

𝑇∑︁
𝑡=1

𝑦𝑛 [ 𝑗, 𝑡] + 2
√︁
𝑇 log |C𝑖 |.

□

Under the optimal stationary policy, each node will choose to

forward the job to the child that incurs the least cost through all 𝑇

rounds. Hence, we have

∑𝑇
𝑡=1 𝑦∗ [𝑖, 𝑡] = min𝑗∈C𝑖

∑𝑇
𝑡=1 𝑦∗ [ 𝑗, 𝑡] . We

now prove that the normalized-EG algorithm is still a no-regret

policy for the multi-stage system:

Theorem 1. If each non-leaf node has as most 𝐷 children, then,

by setting 𝜂𝑖 =
√︃

log | C𝑖 |
𝑇

,∀𝑖 , the expected cost incurred by the root
node 𝑟 is upper-bounded by:

𝑇∑︁
𝑡=1

𝐸

[
𝑦𝑛 [𝑟, 𝑡]

]
≤ min

𝑗∈L

𝑇∑︁
𝑡=1

𝑐 [ 𝑗, 𝑡] + 2𝐿
√︁
𝑇 log𝐷. (1)

Proof. Please see the technical report [14]. □

5 POLICY WITH END-TO-END BANDIT
FEEDBACK

In this section, we consider the case where each non-leaf node only

has bandit feedback. Specifically, if a node does not receive a job in

round 𝑡 , then it will not get any feedback. If a node receives a job

and forwards it to a child node 𝑗 = 𝑓 [𝑖, 𝑡], then it will only learn the

value of𝑦 [ 𝑗, 𝑡]. As discussed in earlier sections, online policies with

end-to-end bandit feedback faces a trilemma between exploration,

i.e., choosing a child to learn its cost, exploitation, i.e., choosing a

child to incur low cost, and education, i.e., choosing a child so that

it has a chance to learn and improve its policy.

We propose a simple distributed online learning policy to ad-

dress the exploration-exploitation-education trilemma called the

𝜖−EXP3 algorithm. Under the 𝜖−EXP3 algorithm, each non-leaf

node 𝑖 maintains a variable 𝜃 [𝑖, 𝑗, 𝑡] for each 𝑗 ∈ C𝑖 , which it will

use to determine 𝑥 [𝑖, 𝑗, 𝑡]. When a node 𝑖 sends a job to a child node

𝑗 = 𝑓 [𝑖, 𝑡], node 𝑖 also includes a variable 𝑣 [ 𝑗, 𝑡] indicating the prob-
ability that the child node 𝑗 receives a job in round 𝑡 . Since a node 𝑗

will receive a job if its parent node 𝑖 receives a job and node 𝑖 chooses

𝑗 , the value of 𝑣 [ 𝑗, 𝑡] can be calculated by 𝑣 [ 𝑗, 𝑡] = 𝑣 [𝑖, 𝑡]𝑥 [𝑖, 𝑗, 𝑡].
We now discuss how a non-leaf node 𝑖 decides 𝑓 [𝑖, 𝑡] in each

round 𝑡 . There are two modes for choosing 𝑓 [𝑖, 𝑡] and node 𝑖 ran-

domly decides which mode to operate in in each 𝑡 . Each node 𝑖 is

assigned two pre-determined constants 𝜖𝑖 and 𝜂𝑖 . With probability

𝜖𝑖 , node 𝑖 is in the uniform selection mode and it chooses 𝑓 [𝑖, 𝑡]
uniformly at random from its children, that is, 𝑃𝑟𝑜𝑏 (𝑓 [𝑖, 𝑡] = 𝑗) =
1/|C𝑖 |,∀𝑗 ∈ C𝑖 . With probability 1 − 𝜖𝑖 , node 𝑖 is in the EXP3 mode
and it chooses 𝑓 [𝑖, 𝑡] = 𝑗 with probability

𝑒𝜂𝑖𝜃 [𝑖,𝑗,𝑡 ]∑
𝑘∈C𝑖 𝑒

𝜂𝑖𝜃 [𝑖,𝑘,𝑡 ] . We use

𝑚[𝑖, 𝑡] ∈ {𝑈 , 𝐸} to denote the mode of node 𝑖 , where 𝑈 is the uni-

form selection mode and 𝐸 is the EXP3 mode. Combining these two

modes and we have 𝑥 [𝑖, 𝑗, 𝑡] = 𝜖𝑖
1

| C𝑖 | + (1 − 𝜖𝑖 )
𝑒𝜂𝑖𝜃 [𝑖,𝑗,𝑡 ]∑

𝑘∈C𝑖 𝑒
𝜂𝑖𝜃 [𝑖,𝑘,𝑡 ] .

After choosing 𝑓 [𝑖, 𝑡] for each node 𝑖 , we can set 𝑦𝜖 [𝑖, 𝑡] = 𝑐 [𝑖, 𝑡]
for each leaf node and set 𝑦𝜖 [𝑖, 𝑡] = 𝑦𝜖 [𝑓 [𝑖, 𝑡], 𝑡] for each non-leaf

node, where the subscript 𝜖 is to highlight that this corresponds
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to the values of 𝑦 [ 𝑗, 𝑡] under the 𝜖−EXP3 algorithm. We note that,

even if node 𝑖 does not receive a job in round 𝑡 , the value of 𝑦𝜖 [𝑖, 𝑡]
is still well-defined, but node 𝑖 does not know its value.

Finally, we discuss how node 𝑖 determines 𝜃 [𝑖, 𝑗, 𝑡]. Node 𝑖 ini-
tializes 𝜃 [𝑖, 𝑗, 1] = 0 for all children 𝑗 . If node 𝑖 receives a job

in round 𝑡 , then it learns the value of 𝑦𝜖 [𝑓 [𝑖, 𝑡], 𝑡]. Node 𝑖 sets

𝑧 [𝑓 [𝑖, 𝑡], 𝑡] = 𝑦𝜖 [ 𝑓 [𝑖,𝑡 ],𝑡 ] | C𝑖 |
𝑣 [𝑖,𝑡 ] , if𝑚[𝑖, 𝑡] = 𝑈 , and sets 𝑧 [𝑓 [𝑖, 𝑡], 𝑡] =

𝑦𝜖 [ 𝑓 [𝑖,𝑡 ],𝑡 ]
∑

𝑘∈C𝑖 𝑒
𝜂𝑖𝜃 [𝑖,𝑘,𝑡 ]

𝑣 [𝑖,𝑡 ]𝑒𝜂𝑖𝜃 [𝑖,𝑗,𝑡 ] , if 𝑚[𝑖, 𝑡] = 𝐸. Node 𝑖 sets 𝑧 [ 𝑗, 𝑡] = 0

for all 𝑗 ≠ 𝑓 [𝑖, 𝑡]. On the other hand, if node 𝑖 does not receive

a job in round 𝑡 , then it sets 𝑧 [ 𝑗, 𝑡] = 0,∀𝑗 ∈ C𝑖 . Finally, it sets
𝜃 [𝑖, 𝑗, 𝑡 + 1] = 𝜃 [𝑖, 𝑗, 𝑡] − 𝑧 [ 𝑗, 𝑡],∀𝑗 ∈ C𝑖 .

Alg. 2 describes the 𝜖−EXP3 algorithm in detail, wherewe stream-

line some of the steps for easier implementation.

noend 2 𝜖-EXP3
1: 𝜂𝑖 , 𝜖𝑖 ← pre-determined constants

2: 𝜃 [𝑖, 𝑗] ← 0,∀𝑗 ∈ C𝑖
3: for each round 𝑡 do
4: if Node 𝑖 receives a job and 𝑣 [𝑖, 𝑡] from its parent then
5: 𝑥 [𝑖, 𝑗] ← 𝜖𝑖

1

| C𝑖 | + (1 − 𝜖𝑖 )
𝑒𝜂𝑖𝜃 [𝑖,𝑗 ]∑

𝑘∈C𝑖 𝑒
𝜂𝑖𝜃 [𝑖,𝑘 ] ,∀𝑗 ∈ C𝑖

6: 𝑣 [ 𝑗, 𝑡] ← 𝑣 [𝑖, 𝑡]𝑥 [𝑖, 𝑗],∀𝑗 ∈ C𝑖
7: Randomly select𝑚[𝑖] ∈ {𝑈 , 𝐸} with 𝑃𝑟𝑜𝑏 (𝑚[𝑖] = 𝑈 ) = 𝜖𝑖

8: if 𝑚[𝑖] = 𝑈 then
9: Select a child 𝑓 [𝑖] ∈ C𝑖 uniformly at random

10: Forward the job and 𝑣 [𝑓 [𝑖], 𝑡] to child 𝑓 [𝑖] and obtain

𝑦𝜖 [𝑓 [𝑖]] from 𝑓 [𝑖]
11: 𝜃 [𝑖, 𝑓 [𝑖]] ← 𝜃 [𝑖, 𝑓 [𝑖]] − 𝑦𝜖 [ 𝑓 [𝑖 ] ] | C𝑖 |

𝑣 [𝑖,𝑡 ]
12: Return 𝑦𝜖 [𝑖] ← 𝑦𝜖 [𝑓 [𝑖]] to the parent

13: else
14: Select a child 𝑓 [𝑖] ∈ C𝑖 with 𝑃𝑟𝑜𝑏 (𝑓 [𝑖] = 𝑗) =

𝑒𝜂𝑖𝜃 [𝑖,𝑗 ]∑
𝑘∈C𝑖 𝑒

𝜂𝑖𝜃 [𝑖,𝑘 ]

15: Forward the job and 𝑣 [𝑓 [𝑖], 𝑡] to child 𝑓 [𝑖] and obtain

𝑦𝜖 [𝑓 [𝑖]] from 𝑓 [𝑖]
16: 𝜃 [𝑖, 𝑓 [𝑖]] ← 𝜃 [𝑖, 𝑓 [𝑖]] − 𝑦𝜖 [ 𝑓 [𝑖 ] ]

∑
𝑘∈C𝑖 𝑒

𝜂𝑖𝜃 [𝑖,𝑘 ]

𝑣 [𝑖,𝑡 ]𝑒𝜂𝑖𝜃 [𝑖,𝑗 ]
17: Return 𝑦𝜖 [𝑖] ← 𝑦𝜖 [𝑓 [𝑖]] to the parent

Remark 1. The reason that the 𝜖−EXP3 algorithm has two different
modes to choose 𝑓 [𝑖, 𝑡] is to address the exploration-exploitation-
education trilemma. When node 𝑖 is in the uniform selection mode, its
goal is to provide equal education to all its children. Hence, it selects
𝑓 [𝑖, 𝑡] uniformly at random so that each child node has the same
chance of receiving a job and learning from its outcome. When node
𝑖 is in the EXP3 mode, its goal is to balance the trade-off between
exploration and exploitation. Hence, it employs a very similar way
of choosing 𝑓 [𝑖, 𝑡] as the EXP3 algorithm. The value of 𝜖𝑖 determines
the portion of time that node 𝑖 dedicate to education. On the other
hand, the value of 𝜂𝑖 determines the trade-off between exploration
and exploitation when node 𝑖 is in the EXP3 mode, where larger 𝜂𝑖
means more emphasis on exploitation. The values of 𝜖𝑖 and 𝜂𝑖 will be
determined later.

We now analyze the regret of 𝜖−EXP3. Our first step is to es-

tablish some properties of 𝑧 [ 𝑗, 𝑡]. We let Y𝜖 [𝑖, 𝑡] := {𝑦𝜖 [ 𝑗, 𝜏],∀𝑗 ∈

C𝑖 , 𝜏 ∈ [1, 𝑡]} be the sequences of costs of all children of 𝑖 up to

round 𝑡 and let Z[𝑖, 𝑡] := {𝑧 [ 𝑗, 𝜏],∀𝑗 ∈ C𝑖 , 𝜏 ∈ [1, 𝑡]} be all the

values of 𝑧 [ 𝑗, 𝜏] that has been observed by 𝑖 up to round 𝑡 . We then

have the following:

Lemma 2. For any non-leaf node 𝑖 ,

𝐸

[
𝑧 [ 𝑗, 𝑡]

���Y𝜖 [𝑖, 𝑡],Z[𝑖, 𝑡 − 1]] = 𝑦𝜖 [ 𝑗, 𝑡], (2)

and

𝐸

[
𝑧 [ 𝑗, 𝑡]2

���Y𝜖 [𝑖, 𝑡],Z[𝑖, 𝑡 − 1]]
=

(
𝜖𝑖 |C𝑖 | + (1 − 𝜖𝑖 )

∑
𝑘∈C𝑖 𝑒

𝜂𝑖𝜃 [𝑖,𝑘,𝑡 ]

𝑒𝜂𝑖𝜃 [𝑖, 𝑗,𝑡 ]

) 𝑦𝜖 [ 𝑗, 𝑡]2
𝑣 [𝑖, 𝑡] . (3)

Proof. Please see the technical report [14]. □

Next, we show that, if node 𝑖 is in the EXP3 mode at round 𝑡 ,

then its expected cost is the same as the expected cost of running

the normalized-EG algorithm against the sequence 𝑧 [ 𝑗, 𝑡].

Lemma 3. By considering a sequence 𝑦𝑛 [ 𝑗, 𝜏] = 𝑧 [ 𝑗, 𝜏],∀𝑗 ∈
C𝑖 , 𝜏 ∈ [1,𝑇 ] for the normalized-EG algorithm,

𝐸

[
𝑦𝜖 [𝑖, 𝑡]

���𝑚[𝑖, 𝑡] = 𝐸,Y𝜖 [𝑖, 𝑡],Z[𝑖, 𝑡 − 1]
]

=𝐸

[
𝐸

[
𝑦𝑛 [𝑖, 𝑡]

���Y𝑛 [𝑖, 𝑡] = Z[𝑖, 𝑡]] ],
where the outer expectation on the right hand side is taken with respect
to 𝑧 [ 𝑗, 𝑡].

Proof. Please see the technical report [14]. □

Our next step is to bound the difference between

∑𝑇
𝑡=1 𝐸

[
𝑦𝜖 [𝑖, 𝑡]

]
and min𝑗∈C𝑖

∑𝑇
𝑡=1 𝑦𝜖 [ 𝑗, 𝑡] under any given given sequence of

𝑦𝜖 [ 𝑗, 1], . . . , 𝑦𝜖 [ 𝑗,𝑇 ], for all 𝑗 ∈ C𝑖 .

Lemma 4. If each non-leaf node has at most 𝐷 children, then
𝑇∑︁
𝑡=1

𝐸

[
𝑦𝜖 [𝑖, 𝑡]

���Y𝜖 [𝑖, 𝑡]]
≤ min

𝑗∈C𝑖

𝑇∑︁
𝑡=1

𝑦𝜖 [ 𝑗, 𝑡] + 𝜖𝑖𝑇 +
log𝐷

𝜂𝑖
+ 𝜂𝑖

𝑇∑︁
𝑡=1

𝐷

𝑣 [𝑖, 𝑡] ,

for all non-leaf node 𝑖 . Moreover, if the depth of the tree is 𝐿 + 1, then
setting 𝜂𝑖 = 𝑇 −

𝐿
𝐿+1 for all 𝑖 and setting 𝜖𝑖 to be 0 if 𝐶𝑖 ⊂ L, and

𝐷𝑇 −
1

𝐿+1 otherwise yields
𝑇∑︁
𝑡=1

𝐸

[
𝑦𝜖 [𝑖, 𝑡]

���Y𝜖 [𝑖, 𝑡]] − min

𝑗∈C𝑖

𝑇∑︁
𝑡=1

𝑦𝜖 [ 𝑗, 𝑡]

≤
{
(𝐷 + log𝐷)𝑇

𝐿
𝐿+1 , if 𝐶𝑖 ⊂ L,

(2𝐷 + log𝐷)𝑇
𝐿

𝐿+1 else.

Proof. Please see the technical report [14]. □

Remark 2. An explanation for the choice of 𝜖𝑖 is in order. We set
𝜖𝑖 = 0 if all children of node 𝑖 are leaf nodes. Since leaf nodes do not
have any children to choose from, they have nothing to learn and do
not need education. Hence, node 𝑖 can operate exclusively in the EXP3
mode. On the other hand, if node 𝑖 has some children that are non-leaf
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nodes, then node 𝑖 needs to educate these children. Hence, it operates
in the uniform selection mode with a constant probability.

We will now prove that the 𝜖−EXP3 policy is a no-regret policy.

Theorem 2. If the depth of the tree is 𝐿 + 1 and each non-leaf
node 𝑖 has at most 𝐷 children, then, by using the same settings of 𝜂𝑖
and 𝜖𝑖 as in Lemma 4, the regret of 𝜖-EXP3 is at most ((2𝐿 − 1)𝐷 +
𝐿 log𝐷)𝑇

𝐿
𝐿+1 = 𝑜 (𝑇 ).

Proof. We will prove the theorem by establishing the following

statement: If a node 𝑖 is (𝐿 − ℎ)-hops from the root node 𝑟 , then∑𝑇
𝑡=1 𝐸

[
𝑦𝑛 [𝑖, 𝑡]

]
≤ ∑𝑇

𝑡=1 𝑦∗ [𝑖, 𝑡] + ((2ℎ−1)𝐷 +ℎ log𝐷)𝑇
𝐿

𝐿+1 , where

𝑦∗ [𝑖, 𝑡] is the cost under the optimal stationary policy.

We prove the statement by induction. First, consider the case

ℎ = 1, that is, the node 𝑖 is (𝐿 − 1)-hops from 𝑟 . Since the tree has

depth 𝐿 + 1, either 𝑖 is a leaf node or all children of 𝑖 are leaf nodes.

If 𝑖 is a leaf node, then 𝑦𝑛 [𝑖, 𝑡] = 𝑦∗ [𝑖, 𝑡] = 𝑐 [𝑖, 𝑡] ∈ [0, 1] and the

statement holds. If all children of 𝑖 are leaf nodes, then we have

𝑦𝑛 [ 𝑗, 𝑡] = 𝑦∗ [ 𝑗, 𝑡] = 𝑐 [ 𝑗, 𝑡] for all 𝑗 ∈ C𝑖 . Hence, by Lemma 4,

𝑇∑︁
𝑡=1

𝐸

[
𝑦𝜖 [𝑖, 𝑡]

]
=

𝑇∑︁
𝑡=1

𝐸

[
𝑦𝜖 [𝑖, 𝑡]

���Y𝜖 [𝑖, 𝑡]]
≤ min

𝑗∈C𝑖

𝑇∑︁
𝑡=1

𝑦𝜖 [ 𝑗, 𝑡] + (𝐷 + log𝐷)𝑇
𝐿

𝐿+1

=

𝑇∑︁
𝑡=1

𝑦∗ [𝑖, 𝑡] + (𝐷 + log𝐷)𝑇
𝐿

𝐿+1 ,

and the statement holds.

We now assume that the statement holds when ℎ = 𝑔 and

consider a node 𝑖 that is (𝐿 − (𝑔 + 1))-hops from 𝑟 . Either 𝑖 is

a leaf node or all children of 𝑖 are (𝐿 − 𝑔)-hops from 𝑟 . If 𝑖 is a

leaf node, then the statement clearly holds. If 𝑖 is not a leaf node,

then, by the induction hypothesis, we have

∑𝑇
𝑡=1 𝐸

[
𝑦𝜖 [ 𝑗, 𝑡]

]
≤∑𝑇

𝑡=1 𝑦∗ [ 𝑗, 𝑡] + ((2𝑔 − 1)𝐷 + 𝑔 log𝐷)𝑇
𝐿

𝐿+1 , for all 𝑗 ∈ C𝑖 . We can

then use Lemma 4 to establish the following:

𝑇∑︁
𝑡=1

𝐸

[
𝑦𝜖 [𝑖, 𝑡]

]
=

𝑇∑︁
𝑡=1

𝐸

[
𝐸

[
𝑦𝜖 [𝑖, 𝑡]

���Y𝜖 [𝑖, 𝑡]] ]
≤𝐸

[
min

𝑗∈C𝑖

𝑇∑︁
𝑡=1

𝑦𝜖 [ 𝑗, 𝑡]
]
+ (2𝐷 + log𝐷)𝑇

𝐿
𝐿+1

≤ min

𝑗∈C𝑖

𝑇∑︁
𝑡=1

𝑦∗ [ 𝑗, 𝑡] + ((2𝑔 − 1)𝐷 + 𝑔 log𝐷)𝑇
𝐿

𝐿+1

+ (2𝐷 + log𝐷)𝑇
𝐿

𝐿+1

=

𝑇∑︁
𝑡=1

𝑦∗ [𝑖, 𝑡] + ((2𝑔 + 1)𝐷 + (𝑔 + 1) log𝐷)𝑇
𝐿

𝐿+1 ,

and the statement holds. By induction, the statement holds for all

ℎ.

Since the root node 𝑟 is 0-hop from itself and

∑𝑇
𝑡=1 𝑦∗ [𝑟, 𝑡] =

min𝑗∈L
∑𝑇
𝑡=1 𝑐 𝑗,𝑡 , the theorem holds. □

Finally, we note that the 𝜖−EXP3 algorithm requires the knowl-

edge of 𝑇 to set 𝜖𝑖 and 𝜂𝑖 . When 𝑇 is not known in advance, we

can employ the doubling trick to design an anytime algorithm as

shown in Algorithm 3. This anytime algorithm is also a no-regret

policy:

noend 3 Anytime 𝜖-EXP3

1: for m = 0, 1, 2, . . . do
2: Set 𝜖𝑖 and 𝜂𝑖 according to Theorem 2, but replace𝑇 with 2

𝑚

3: RunAlgorithm 2 on the 2
𝑚
rounds 𝑡 = 2

𝑚, 2𝑚+1, . . . , 2𝑚+1−1

Theorem 3. The regret of Algorithm 3 is at most 2

2𝐿
𝐿+1

2

𝐿
𝐿+1 −1

((2𝐿 −

1)𝐷 + 𝐿 log𝐷)𝑇
𝐿

𝐿+1 .

Proof. The proof is very similar to that in [25, Section 2.3.1],

and is hence omitted. □

6 REGRET LOWER BOUND AND THE NEED
FOR EDUCATION

In this section, we establish a regret lower bound of Ω(𝑇
𝐿−1
𝐿 ) for a

class of time-homogeneous oracle policies. Under this class of policies,
each node knows the outcomes of each non-leaf child, 𝑦 [𝑖, 𝑡], before
selecting a child to forward a job to. Since the outcomes of each

non-leaf child is known in advance, there is no need for exploration

and each node only faces an education-exploitation dilemma. As

we establish a regret lower bound for this class of policies, we also

establish the need for education.

…

…

Figure 2: System illustration for establishing a lower bound

We consider a system with depth 𝐿 + 1 as shown in Fig. 2. There

are 𝐿 non-leaf nodes, numbered as 1, 2, . . . , 𝐿, and 𝐿 + 1 leaf nodes,
numbered as 𝐿 + 1, 𝐿 + 2, . . . , 2𝐿 + 1. Each non-leaf node 𝑖 has two

children. For each 𝑖 ≤ 𝐿 − 1, one child of node 𝑖 is the leaf node

𝐿 + 𝑖 and the other child is the non-leaf node 𝑖 + 1. For node 𝐿, both
children, node 2𝐿 and node 2𝐿 + 1, are leaf nodes. When a leaf node

𝑗 received a job, it generates a cost of 1 with probability 𝑝 𝑗 and a

cost of 0 with probability 1 − 𝑝 𝑗 . Given a small positive constant

𝛿 < 1/2𝐿 , we set one of 𝑝2𝐿 and 𝑝2𝐿+1 to be (1 − 2𝐿𝛿)/2 and the

other to be (1 + 2𝐿𝛿)/2, and then set 𝑝 𝑗 = (1 − (2𝐿 − 2𝑗−𝐿−1)𝛿)/2
for all the other leaf nodes 𝑗 = 𝐿 + 1, 𝐿 + 2, . . . , 2𝐿 − 1. Hence, we
have (1 − 2𝐿𝛿)/2 < 𝑝𝐿+1 < 𝑝𝐿+2 < · · · < 𝑝2𝐿−1 < (1 − 2𝐿𝛿)/2 and
min𝑗∈L

∑𝑇
𝑡=1 𝐸

[
𝑐 [ 𝑗, 𝑡]

]
= (1 − 2𝐿𝛿)𝑇 /2. The regret of the system

is

𝑇∑︁
𝑡=1

𝐸
[
𝑦 [1, 𝑡]

]
− (1−2𝐿𝛿)𝑇 /2 =

𝑇∑︁
𝑡=1

(
𝐸
[
𝑦 [1, 𝑡]

]
− (1−2𝐿𝛿)/2

)
. (4)

We now discuss the policies employed by each non-leaf node.

Since both children of node 𝐿 are leaf nodes, node 𝐿 does not need
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to consider education. We consider that node 𝐿 can run an arbitrary

online learning algorithm with bandit feedback. For all other non-

leaf nodes 𝑖 = 1, 2, . . . , 𝐿 − 1, we assume that they employ a time-

homogeneous oracle policy defined as follows:

Definition 2. Let 𝑖1 and 𝑖2 be the two children of node 𝑖 , then a
time-homogeneous oracle policy is one that chooses a child to forward
a job to at time 𝑡 with the following assumptions:
• A1: Node 𝑖 can obtain the expected cost of each child, 𝐸

[
𝑦 [𝑖1, 𝑡]

]
and 𝐸

[
𝑦 [𝑖2, 𝑡]

]
, before making the forwarding decision.

• A2: Node 𝑖 makes its forwarding decision solely based on
𝐸
[
𝑦 [𝑖1, 𝑡]

]
− 𝐸

[
𝑦 [𝑖2, 𝑡]

]
. Specifically, let 𝜁 :=

���𝐸 [𝑦 [𝑖1, 𝑡]] −
𝐸
[
𝑦 [𝑖2, 𝑡]

] ���, then node 𝑖 will forward the job to the child with
the higher expected cost with probability 𝑃𝑖 (𝜁 ), and to the other
child with probability 1 − 𝑃𝑖 (𝜁 ), where 𝑃𝑖 (·) is an arbitrary
decreasing function chosen by node 𝑖 .

We note that A1 provides a node with much more information

than is possible in multi-stage systems with bandit feedback, where

a node can only obtain the cost of a child if it forwards a job to

the child, and only after it makes the forwarding decision. Thus,

intuitively, the regret of policies with A1 serves as a natural lower

bound for the regret of policies with end-to-end bandit feedback.

The purpose of A2 is to highlight that a node 𝑖 only knows the

expected costs, but not the internal variables of its children.

We also note that policies with A1 do not need to explore, since it

knows the expected costs of all children in advance. Hence, policies

with A1 only face an education-exploitation dilemma. The only

reason that a policy may select a child with a higher expected cost,

by choosing 𝑃𝑖 (𝜂) > 0, is to educate its children.

We first establish a bound for the expected cost of node 𝐿, whose

children are both leaf nodes. Let 𝑁𝐿 (𝑡) be the number of times that

node 𝐿 has received a job from its parent at time 𝑡 . Since node 𝐿

can only learn the costs of its children when it receives a job, node

𝐿 cannot determine which of its two children has the smaller 𝑝 𝑗
when 𝑁𝐿 (𝑡) is small. The following lemma formalizes this intuition.

Lemma 5. There exists a positive integer 𝑁𝛿 such that, for all 𝑡
with 𝑁𝐿 (𝑡) < 𝑁𝛿 , 𝐸

[
𝑦 [𝐿, 𝑡]

]
> (1 − (2𝐿 − 2𝐿−1)𝛿)/2.

Proof. This is a direct result of Lemma 3.6 in [7]. □

We now establish a regret lower bound for the system in Fig. 2.

Theorem 4. For the system in Fig. 2, the regret is Ω(𝑇
𝐿−1
𝐿 ) for any

bandit learning policy employed by node𝐿 and any time-homogeneous
oracle policies employed by nodes 1, 2, . . . , 𝐿 − 1.

Proof. Let 𝑇𝛿 be the time at which 𝑁𝐿 (𝑡) = 𝑁𝛿 . By Lemma 5,

𝐸
[
𝑦 [𝐿, 𝑡]

]
> (1 − (2𝐿 − 2𝐿−1)𝛿)/2 for any 𝑡 < 𝑇𝛿 .

We first study the system behavior before time 𝑇𝛿 . Consider

the forwarding decision of node 𝐿 − 1 at any time 𝑡 < 𝑇𝛿 . Node

𝐿 − 1 has two children. One is the leaf node 2𝐿 − 1 with 𝐸
[
𝑦 [2𝐿 −

1, 𝑡]
]
= 𝑝2𝐿−1 = (1 − (2𝐿 − 2

𝐿−2)𝛿)/2. The other is the non-leaf
node 𝐿 with 𝐸

[
𝑦 [𝐿, 𝑡]

]
> (1 − (2𝐿 − 2𝐿−1)𝛿)/2 = 𝑝2𝐿−1 + 2𝐿−3𝛿 .

By A2, the probability that node 𝐿 − 1 selects node 𝐿 is at most

𝑞𝐿−1 := 𝑃𝐿−1 (2𝐿−3𝛿). We also have 𝐸
[
𝑦 [𝐿 − 1, 𝑡]

]
≥ 𝑝2𝐿−1 =

(1 − (2𝐿 − 2𝐿−2)𝛿)/2.

We further analyze the forwarding decision of node 𝑖 < 𝐿 − 1
at any time 𝑡 < 𝑇𝛿 . Using a simple induction argument, it can

be shown that the probability that node 𝑖 selects node 𝑖 + 1 is at
most 𝑞𝑖 := 𝑃𝑖 (2𝑖−2𝛿), and 𝐸

[
𝑦 [𝑖, 𝑡]

]
≥ 𝑝𝐿+𝑖 = (1 − (2𝐿 − 2𝑖−1)𝛿)/2.

Therefore, at any time 𝑡 < 𝑇𝛿 , we have

𝐸
[
𝑦 [1, 𝑡]

]
− (1 − 2𝐿𝛿)/2 ≥ 𝛿/2. (5)

Moreover, since node 𝐿 can only receive a job if, for each 𝑖 ≤ 𝐿−1,
node 𝑖 selects node 𝑖 + 1, which happens with probability at most

𝑞𝑖 , we have

𝐸
[
𝑇𝛿 ] ≥

𝑁𝛿∏𝐿−1
𝑖=1 𝑞𝑖

. (6)

Next, we analyze the system behavior after time𝑇𝛿 . For any time

𝑡 > 𝑇𝛿 , 𝐸
[
𝑦 [𝐿, 𝑡]

]
≥ min{𝑝2𝐿, 𝑝2𝐿+1} = (1 − 2𝐿𝛿)/2. Consider the

forwarding decision of node 𝐿 − 1. Since 𝐸
[
𝑦 [2𝐿 − 1, 𝑡]

]
= 𝑝2𝐿−1 =

(1 − (2𝐿 − 2
𝐿−2)𝛿)/2 ≤ 𝐸

[
𝑦 [𝐿, 𝑡]

]
+ 2𝐿−3𝛿 , the probability that

node 𝐿 − 1 selects node 𝐿 is at most 1 − 𝑃𝐿 (2𝐿−3𝛿) = 1 − 𝑞𝐿−1.
Using a simple induction argument, we can further show that the

probability that node 𝑖 selects node 𝑖 + 1 is at most 1 − 𝑞𝑖 , for all
𝑖 ≤ 𝐿 − 1. Hence, the probability that node 𝐿 receives a job is at

most

∏𝐿−1
𝑖=1 (1−𝑞𝑖 ). If node 𝐿 does not receive a job, which happens

with probability at least 1 −∏𝐿−1
𝑖=1 (1 − 𝑞𝑖 ), then the expected cost

is at least min𝑗∈{𝐿+1,𝐿+2,...,2𝐿−1} 𝑝 𝑗 = (1 − (2𝐿 − 1)𝛿)/2. We then

have, at any time 𝑡 > 𝑇𝛿 ,

𝐸
[
𝑦 [1, 𝑡]

]
− (1 − 2𝐿𝛿)/2 ≥

(
1 −

𝐿−1∏
𝑖=1

(1 − 𝑞𝑖 )
)
𝛿/2. (7)

Combining Eq. (5), (6), and (7) and we have the following regret

bound

𝑇∑︁
𝑡=1

(
𝐸
[
𝑦 [1, 𝑡]

]
− (1 − 2𝐿𝛿)/2

)
≥𝐸

[ 𝑇𝛿∑︁
𝑡=1

𝛿/2 +
𝑇∑︁

𝑡=𝑇𝛿+1

(
1 −

𝐿−1∏
𝑖=1

(1 − 𝑞𝑖 )
)
𝛿/2

]
≥𝛿
2

[ 𝑁𝛿∏𝐿−1
𝑖=1 𝑞𝑖

+ (𝑇 − 𝑁𝛿∏𝐿−1
𝑖=1 𝑞𝑖

)
(
1 −

𝐿−1∏
𝑖=1

(1 − 𝑞𝑖 )
)
] . (8)

It is then straightforward to show that
𝛿
2
[ 𝑁𝛿∏𝐿−1

𝑖=1 𝑞𝑖
+(𝑇− 𝑁𝛿∏𝐿−1

𝑖=1 𝑞𝑖
)
(
1−∏𝐿−1

𝑖=1 (1−𝑞𝑖 )
)
] = Ω(𝑇

𝐿−1
𝐿 ). Moreover, setting 𝑞𝑖 = Θ(𝑇 −

1

𝐿 ), for all
𝑖 ≤ 𝐿 − 1, makes

𝛿
2
[ 𝑁𝛿∏𝐿−1

𝑖=1 𝑞𝑖
+ (𝑇 − 𝑁𝛿∏𝐿−1

𝑖=1 𝑞𝑖
)
(
1 −∏𝐿−1

𝑖=1 (1 − 𝑞𝑖 )
)
] =

Θ(𝑇
𝐿−1
𝐿 ). □

Before closing the section, we note that the lower-bound analysis

in this section is limited to time-homogeneous policies. We make

this assumption to explicitly prevent a parent node from using

history to imply internal variables of its children. Extending our

analysis to time-varying policies will be interesting future work.

7 SIMULATION RESULTS
We present our simulation results in this section. We simulate two

different scenarios. The first scenario is based on trees whose leaf

nodes generate Bernoulli costs. While this scenario is artificially

constructed and may not correspond to real-world applications, its
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(a) 𝐷 = 2, 𝐿 = 2, 𝑝𝑚𝑖𝑛 = 0.2 (b) 𝐷 = 2, 𝐿 = 3, 𝑝𝑚𝑖𝑛 = 0.4 (c) 𝐷 = 2, 𝐿 = 4, 𝑝𝑚𝑖𝑛 = 0.6

(d) 𝐷 = 4, 𝐿 = 2, 𝑝𝑚𝑖𝑛 = 0.2 (e) 𝐷 = 4, 𝐿 = 3, 𝑝𝑚𝑖𝑛 = 0.4 (f) 𝐷 = 4, 𝐿 = 4, 𝑝𝑚𝑖𝑛 = 0.6

Figure 3: Time-average regrets under various system parameters

simulation results provide important insights on how online algo-

rithms behave in distributed multi-stage systems. The second sce-

nario is based on mobile edge computing. We compare our 𝜖−EXP3,
with parameters from Lemma 4, against the standard EXP3 algo-

rithm, where each node runs the EXP3 algorithm independently

from each other, and the Broad-OMD algorithm [29]. Both EXP3

and Broad-OMD are no-regret policies for the special case when

𝐿 = 1.

7.1 Trees with Bernoulli Costs
We consider systems that can be represented as treeswith depth𝐿+1.
Each non-leaf node has 𝐷 children. Each leaf node 𝑗 is associated

with a parameter 𝑝 𝑗 ∈ [0, 1]. Whenever a leaf node 𝑗 receives a job,

its cost 𝑐 [ 𝑗, 𝑡] is 1 with probability 𝑝 𝑗 and 0 with probability 1 − 𝑝 𝑗 .
The system is run over𝑇 rounds. Initially, the values of 𝑝 𝑗 is chosen

so that max𝑗 𝑝 𝑗 = 1 and min𝑗 𝑝 𝑗 = 𝑝𝑚𝑖𝑛 . At round 𝑡 = 𝑇 /100, the
leaf with 𝑝 𝑗 = 1 has its value of 𝑝 𝑗 changed into 0. Fig. 4 illustrates

an example. For a given set of parameters 𝐷, 𝐿,𝑇 , and [𝑝 𝑗 ], we
simulate the system for 20 independent runs and calculate the

time-average regret

( ∑𝑇
𝑡=1 𝑦 [𝑟, 𝑡] −min𝑗∈L

∑𝑇
𝑡=1 𝑐 [ 𝑗, 𝑡]

)
/𝑇 under

all evaluated policies.

Simulation results are shown in Fig. 3, with the error bars indi-

cating standard deviations. It can be observed that the time-average

regret of 𝜖−EXP3 approaches 0 over time in all cases. We note

that the convergence rate of 𝜖−EXP3 becomes much slower as 𝐿

becomes larger. This is consistent with Theorem 2, which shows

that the time-average regret scales as𝑂 (1/ 𝐿+1√
𝑇 ). To verify that the

time-average regret of 𝜖−EXP3 scales as 𝑂 (1/ 𝐿+1√
𝑇 ), we also plot

the asymptotic trend in Fig. 3. The value of the asymptotic trend for

a particular 𝑇 is calculated as 𝑅𝐷,𝐿/ 𝐿+1√
𝑇 , where 𝑅𝐷,𝐿 is chosen so

that the value of the asymptotic trend and the time-average regret

𝑝! = 0.2𝑝" = 0.4𝑝# = 0.6𝑝$ = (1, 𝑖𝑓	𝑡 < 𝑇/100
0, 𝑖𝑓	𝑡 ≥ 𝑇/100

Figure 4: A system with 𝐷 = 2, 𝐿 = 2 and 𝑝𝑚𝑖𝑛 = 0.2

of 𝜖−EXP3 are the same when𝑇 = 5 × 106, that is, at the mid-point

of the x-axis in the figures. It can be observed that 𝜖−EXP3 is close
to the asymptotic trend. This demonstrates that the time-average

regret 𝜖−EXP3 indeed scales as 𝑂 (1/ 𝐿+1√
𝑇 ).

On the other hand, it can also be observed that the time-average

regrets of both EXP3 and Broad-OMD converge to 𝑝𝑚𝑖𝑛 in all set-

tings in Fig. 3. This result shows that neither of them is a no-regret

policy in multi-stage systems. To understand why the standard

EXP3 algorithm is not a no-regret policy, consider the system il-

lustrated in Fig. 4. Before round 𝑡 = 𝑇
100

, the optimal strategy for

node 1 is to forward the job to node 4 with 𝑝4 = 0.6. The optimal

strategy for the root is to forward the job to node 2, who then for-

wards the job to node 6 with 𝑝6 = 0.2. Hence, at round 𝑡 = 𝑇
100

and

under the EXP3 algorithm, the root will choose node 2 with a high

probability and node 1 will choose node 4 with a high probability.

Now, consider the first time after round
𝑇
100

when the root forwards

a job to node 1. Since node 1 is unaware that 𝑝3 has become 0, it

chooses node 4 with a high probability and will likely incur a high

cost. This high cost will cause the root to exponentially reduce
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(a) The behavior of 𝜖−EXP3
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(b) The behavior of EXP3

Figure 5: Transient behaviors of the system in Fig. 4 with
𝑇 = 5 × 106.

the probability of choosing node 1 in the future, making it even

harder for node 1 to explore and learn the fact that 𝑝3 has become 0.

This is why the EXP3 algorithm suffers from a time-average regret

of roughly 𝑝6 = 0.2. In contrast, our 𝜖−EXP3 algorithm ensures

that the root always chooses node 1 with at least a constant proba-

bility in each round. This persistent education enables node 1 to

eventually discover that 𝑝3 has become 0.

To demonstrate the behavior discussed in the above paragraph,

we conduct a simulation to show the transient behaviors of the two

algorithms. Specifically, we test the system shown in Fig. 4 with

𝑇 = 5 × 106. The value of 𝑝3 is initially 1, and becomes 0 at round

5×104. For each algorithm, we record the probability that the root 𝑟

would choose node 1 and the probability that node 1 would choose

node 3. Simulation results are shown in Fig. 5, where each data

point represent the average of the previous 1000 rounds. Under the

EXP3 algorithm, the probability that the root would choose node 1

at round 5× 104 is less than 0.05%. Since node 1 rarely receives any

jobs, it cannot improve its performance, which, in turn, makes the

root even less likely to choose node 1. At round 5× 105, probability
that the root would choose node 1 has become less than 0.02%.

In contrast, the 𝜖−EXP3 algorithm offers persistent education to

node 1. Hence, after round 5 × 10
4
, node 1 quickly finds that 𝑝3

has improved and increases its probability of choosing node 3. As

a result, the root also starts increasing its probability of choosing

node 1 after round 10
5
.

7.2 Mobile Edge Computing
We consider a mobile edge computing system. In this system, there

is a mobile robot that generates video analytic jobs for real-time

processing. The robot is connected to 𝐷 edge servers with different

communication media. To process a job, each edge server has 𝐷

different neural networks to choose from. Different neural networks

have different precision and different processing time. There is also

a communication latency of each link. The delay of transmitting

over a link is an exponential function with mean
1

𝜆
. Some links have

a constant 𝜆 while other links have a 𝜆 that increases over time.

This models the time-varying congestion on these links. Fig. 6(a)

illustrates the system when 𝐷 = 2.

The robot requires a strict deadline of one time unit for each

job. If the end-to-end latency, that is, the sum of communication

latency and processing time, exceeds one time unit, then a deadline

violation occurs and the cost is one. If the end-to-end latency is less

than one time unit, then the cost is the miss rate of the employed

neural network.

We have conducted 20 independent runs for each 𝑇 . Simulation

results are shown in Fig. 6. It can be observed that the 𝜖−EXP3
algorithm significantly outperforms the EXP3 algorithm when 𝑇

is sufficiently large. The Broad-OMD algorithm has similar perfor-

mance as 𝜖−EXP3 when 𝐷 = 2, but is much worse than 𝜖−EXP3
when 𝐷 = 3.

7.3 Multi-hop Networks
We consider multi-hop networks as illustrated in Fig. 7(a). In this

system, the source (node 𝑆) is sending packets to the destination

(node 𝐷) through a number of inter-connected relay nodes. Upon

receiving a packet, a node needs to decide which node to forward

the packet to. The delay of transmitting over a link is an exponential

function with mean
1

𝜆
. Some links have a constant 𝜆 while other

links have a 𝜆 that increases over time. We consider that the source

requires a strict end-to-end deadline guarantee of one unit time. If

the end-to-end delay of a packet is more than one unit time, then a

deadline violation occurs.

Let 𝐿 be the number of relay nodes that a packet needs to visit

before reaching the destination. We have tested this system for

different values of 𝐿. Simulation results are shown in Fig. 7. It can

be observed that the 𝜖−EXP3 algorithm is either optimal or near-

optimal in all settings.

8 CONCLUSION
In this paper, we study multi-stage systems with end-to-end ban-

dit feedback. The fundamental challenge of learning the optimal

policy of agents in each stage is a newly introduced exploration-

exploitation-education trilemma. We propose a simple distribute

policy, the 𝜖−EXP3 algorithm, that explicitly addresses this trilemma.

Moreover, we theoretically prove that the 𝜖−EXP3 algorithm is a no-

regret policy. Simulation results show that the 𝜖−EXP3 algorithm
significantly outperforms existing policies.
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