2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS) | 979-8-3315-1674-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/FOCS61266.2024.00089

2024 1IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)

Strong vs. Weak Range Avoidance and the Linear
Ordering Principle

Oliver Korten
Department of Computer Science
Columbia University
New York City, USA
oliver.korten @columbia.edu

Abstract—In a pair of recent breakthroughs [1], [2] it was
shown that the classes S5, ZPENY, and ¥ require exponential
circuit complexity, giving the first unconditional improvements
to a classical result of Kannan [3]. These results were obtained by
designing a surprising new algorithm for the total search problem
Range Avoidance: given a circuit C : {0,1}™ — {0,1}"", find an
n+1-bit string outside its range. Range Avoidance is a member of
the class TFX), of total search problems in the second level of the
polynomial hierarchy, analogous to its better-known counterpart
TFNP in the first level. TFE5 was only recently introduced in [4]
and its structure is not well understood. We investigate here the
extent to which algorithms of the kind in [1], [2] can be applied
to other search problems in this class, and prove a variety of
results both positive and negative.

On the positive side we show that Li’s Range Avoidance algo-
rithm [2] can be improved to give a reduction from Range Avoid-
ance to a natural total search problem we call the Linear Ordering
Principle or “LOP”: given a circuit <: {0,1}" x{0,1}" — {0,1}
purportedly defining a total order on {0,1}", find either a
witness that < is not a total order or else a minimal element
in the ordering. The problem LOP is quite interesting in its
own right, as it defines a natural syntactic subclass “L5” of S5
which nonetheless maintains most of the interesting properties
of S5; in particular we show that L5 contains MA and that its
exponential analogue L5 requires 2" /n size circuits. Both of these
are consequences of our reduction from Range Avoidance to LOP.

On the negative side we prove that the algorithms developed
in [1], [2] cannot be extended to Strong Range Avoidance, a
problem considered in the same paper which first introduced
Range Avoidance [4]. In this problem we are given a circuit
C:{0,1}"\{0"} — {0,1}", and once again seek a point outside
its range. We give a separation in the decision tree (oracle) model
showing that this problem cannot be solved in FPZZ, which in
particular rules out all of the new kinds of algorithms considered
in [1], [2]. This black box separation is derived from a novel depth
3 ACP circuit lower bound for a fotal search problem, which we
believe is of independent interest from the perspective of circuit
complexity: we show that unlike previous depth 3 lower bounds,
ours cannot be proven by reduction from a decision problem,
and thus requires new techniques specifically tailored to total
search problems. Proving lower bounds of this kind was recently
proposed by Vyas and Williams in the context of the original
(Weak) Avoid problem [5].

Index Terms—circuit complexity; total function complexity;

Supported by NSF Grant CCF 2212135

Toniann Pitassi
Department of Computer Science
Columbia University
New York City, USA
tonipitassi@gmail.com

I. INTRODUCTION

One of the central problems in complexity theory is to prove
strong lower bounds on the size of boolean circuits computing
some explicit function f : {0,1}" — {0,1}; by a classical
result of Shannon, most such functions f require circuits
of size 2"/n. In the original formulation of this problem,
“explicit” meant f € NP, since in this case case proving a
lower bound n“(") would separate the classes P and NP. It
was soon realized that this problem remains difficult even for
much weaker definitions of “explicit,” i.e. if we broaden our
search for high circuit complexity functions to a much larger
uniform complexity class than NP.

Obviously there are decidable problems with maximal
circuit complexity, since a Turing machine with sufficient
resources may search for the hardest function f, : {0,1}" —
{0, 1} by brute force given n, and then compute that function
fn on a given input of length n. Kannan [3] was the first to
investigate the precise complexity upper bound of this brute-
force construction of a hard language: he observed that the
class EEE, which denotes 2°(")_time machines with access
to an oracle for a Zzp complete language, contains a function
of maximum circuit complexity, precisely because this class
possesses sufficient resources to diagonalize over all low-
complexity functions of a given input length. The question
of finding the smallest uniform complexity class containing an
exponentially hard boolean function came to more prominence
following the seminal works of Nisan, Wigderson and Impagli-
azzo [6], [7], who showed that if one could improve Kannan’s
upper bound from EZ2 (o E, it would imply BPP = P, i.e.
universal derandomization of all polynomial time algorithms.

A recent line of work on the Range Avoidance problem
(“Avoid”) has reformulated this topic in the language of
search problems [1], [8]. Consider the so-called “truth table
generator” TT,, : {0,1}* — {0,1}?" which takes as input the
description of a circuit C' : {0,1}" — {0,1} of size s, and
outputs the truth table of the function it computes. If s << 27,
then a standard argument shows that we may encode C in a
direct way using < 2™ bits, so that { < 2" and the function
TT, is computable in 29" time. Therefore, to produce a
function of high circuit complexity, it suffices to find a string
y € {0, 1}2" outside the range of C. This general problem,

2575-8454/24/$31.00 ©2024 IEEE 1388
DOI 10.1109/FOCS61266.2024.00089
Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

where we are given a circuit with more output bits then input
bits and wish to find a string outside its range, is called Range
Avoidance. By the pigeonhole principle, it is a total search
problem, meaning it always has solutions. Viewing TT,, as
an instance of the Range Avoidance problem we can observe
that if Avoid has a polynomial time algorithm then E requires
exponential-size circuits. For larger complexity classes, it was
shown in [8] (based on an earlier result in [9]) that solving
Avoid and proving circuit lower bounds are actually equivalent
problems: for exponential-time classes at least as large as ENP,
proving an exponential circuit lower bound is equivalent to
solving Avoid in the polynomial-time analogue of that class.
Beyond constructing hard boolean functions, algorithms for
Range Avoidance have a host of further applications in explicit
constructions of pseudorandom objects [8], [10].

This perspective was crucially used in recent breakthrough
works of Chen, Hirahara, Ren and Li [1], [2], who gave the
first unconditional improvement to Kannan’s classical result!.
These works showed that the classes 52P C ZPENP C ZE all
contain a function of circuit complexity 2" /n, which is within
a (1+o(1)) factor of the maximum possible circuit complexity
of a boolean function. The results are established by giving
a new algorithm for Avoid which runs in the class F52P , the
functional variant of the decision class S5.

The authors of [1], [2] made progress on a classical lower
bound problem by discovering a new kind of algorithm
for the total search problem Range Avoidance. This search
problem lies in an unusual complexity class which was only
first investigated a few years ago by [4]: it is a member
of TFZS , the class of total search problems in the second
level of the polynomial hierarchy. Since the introduction of
TFXF in [4], there has been no follow up work developing
a structural classification of the problems therein, despite
the considerable attention that has been devoted to Range
Avoidance [1], [8], [10], [12]-[16] and explicit construction
problems more generally. The work of [1], [2] indicates that
some problems in TFXY admit highly nontrivial algorithms,
algorithms which have consequences in seemingly unrelated
areas of complexity. Do such algorithms exist for all search
problems in TFX5? What more can we say about the relation
of Avoid to other problems in this class? The purpose of
this work is to address these two questions in particular, and
more broadly to further the systematic study of TFX5 beyond
its introduction in [4], with an emphasis both on inclusions
and black box separations. Prior to our work, no non-trivial
separations between problems in TFZ5 were known.

TFXY has a more famous cousin one level down in the
polynomial hierarchy, the class TFNP of total NP search
problems. In contrast to TFX5, TFNP has received a thorough
investigation over the past three decades and its structure is

!"This is the first improvement on finding the smallest complexity class with
an exponential circuit lower bound. If the goal is to prove merely superpolyno-
mial lower bounds, lower bounds for smaller classes can be established using
Karp-Lipton theorems [11], an approach pioneered in Kannan’s original paper
[3]. This method can at best show “sub-half-exponential” lower bounds, and
only for infinitely many input lengths.

1389

rather well understood in comparison. A major distinction we
reveal between TFX5 and TFNP is that the former has a
plethora of resource-constained subclasses, many of which can
be separated from one another by explicit and natural search
problems. By “resource-constrained subclass” we mean a class
of search problems characterized by the existence of some
resource-constrained algorithm which can find a solution. One
example we will see is the class psFZPPNP, the class of
problems where for every input z, there is a canonical solution
1y, which is output with high probability by some '\golynomial
time NP-oracle algorithm. Another class is FP=2 "M con-
sisting of those problems which can be solved in polynomial
time with oracle access to a language in 5 NM5. We will
introduce and study several other such subclasses, and exhibit
four natural search problems which exhibit separations (in the
decision tree model) between them. This situation is in stark
contrast to the known structure of TFNP: while FNP does
contain some intermediate resource-constrained classes, such
as psFZPP and FPNPN<NP (these are roughly analogous to
psFZPPNP and FPZ2 M mentioned above), it is known that
in the decision tree model all of these classes collapse to FP.
As a result in the decision tree model, the only resource-
based distinctions amongst the standard TFNP problems is
the distinction between FP and the rest of TFNP.

A. Overview of Main Results

A search problem is defined by a relation R C {0,1}* x
{0,1}*, where for each “instance” x we say y is a “solution
for 7 if (z,y) € R; the relevant task is to find a solution
given an instance. We say that a search problem is fotal if
every instance has a solution. A defining feature of search
problems which distinguishes them from decision problems
is that a given instance may have many different solutions.
Indeed, if a search problem has a unique solution on every
instance, then it may be equivalently phrased as a decision
problem: given (z, 1), output the i*" bit of the unique solution
for x. For many search problems of interest it is not clear how
to reduce them to a decision problem of the same complexity.
For example given total search problem R we may define the
decision problem LexFirstr, where given an instance (z,1)
we must output the i*" bt of the lexicographically first solution
to z. While LexFirstr is clearly at least as hard as R, in many
cases it will be much harder and a reduction does not seem
to exist in the opposite direction.

Say that A is a deterministic algorithm solving some search
problem R. Then A naturally associates to each instance x a
canonical solution vy, := A(x) which it outputs. In particular
we can think of A as defining a second search problem R’
with (z,y) € R iff A(z) = y; if A solves the original search
problem R, then R is reducible to R’ since (z,y) € R’ —
(z,y) € R. Now, if the algorithm A lies in some restricted
complexity class, then this places the same complexity upper
bound derived search problem R’. The point of this is that
when we have some nontrivial deterministic algorithm solving
a search problem R, we may think of it as giving a reduction
from R to a search problem with unique solutions.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

For most of the classical problems in the class TFNP it
is believed that there is no decision problem which captures
their complexity precisely, a conjecture supported by black
box separations [17]. More generally it is believed that for
most of the standard problems R € TFNP, any unique-
solution problem R’ which we can reduce R to must lie
outside of TFNP2. The new results in [1], [2] reveal that the
situation for Range Avoid is different: because their Range
Avoidance algorithms are deterministic and are upper bounded
inside TFXY, they imply that Range Avoidance is reducible
to a problem in TFX5 with unique solutions. To make this
discussion more formal we need to define the class TFZ5 and
its unique solution subclass TFUXE:

Definition 1 (TFX5 and TFUXY). A polynomially-bounded®
search problem R lies in TFXY if it is a total search problem,
and there exists a coNP verifier V so that (x,y) € R if and
only if V(z,y) = 1. We say R € TFUXS if moreover every
instance has a unique solution.

In this terminology Li’s result implies the following: Range
Avoidance is polynomial-time reducible to a problem in
TFUX5. His result is in fact a significant strengthening of
this, but for now we focus on this particular consequence,
which seems quite unintuitive on the surface: given an instance
f :{0,1}* — {0,1}"*! of Range Avoidance, there are at
least 2™ distinct solutions, and it is not clear how to narrow
down to any particular solution which is “more special” then
the others. Our first contribution is to clarify this result in the
following way: we introduce a natural TFX5 search problem,
whose containment in TFUXS is obvious from the definition,
and then show that Range Avoidance reduces to this problem:

Definition 2 (Linear Ordering Principle (LOP)). Given <:
{0,1}™ x {0,1}™ — {0,1} specified by a boolean circuit,
find a witness that < does not define a total ordering on
{0,1}", or else find the minimal element in the ordering it
defines. A witness that < does not define a total order consist
of x,y,z € {0,1}"™ such that one of the following holds: (a)
x <z, (b)xFy Ay andy L x (c)xr <y <z and
T A 2.

While this problem does not literally have unique solutions
as stated, it has a property which we show is morally equiv-
alent. Observe that one type of solution in this problem is
easier to verify then the other: a witness that < fails to define
a linear order can be verified in polynomial time, whereas
a candidate minimum element can only be verified in coNP.
Moreover, if an instance has no easily verifiable solutions, then
it has a unique solution. This follows from the fact that every
linear order has a unique minimal element. We summarize this
by saying that LOP has essentially unique solutions; a very
easy argument (Section II, Lemma 3) shows that any problem

2This is equivalent to saying that we believe these standard problems, e.g.
PPAD or PPP, not to lie in FPNPNcoNP

3The “polynomially bounded” condition just means we are restricting
attention to search problems whose solutions have polynomially bounded
length.

with essentially unique solutions is reducible to a problem in
TFUZS. We then prove:

Theorem 1. Range Avoidance is polynomial time reducible to
LOP.

We believe this result goes a long way in explaining the new
upper bounds for Range Avoidance. In particular our reduction
isolates the two key steps in Li’s algorithm which allow us
to single out a special low complexity canonical solution for
Range Avoidance: the first step prepares a special subset
of solutions using a certain tree-like iteration construction,
and the second step singles out a fixed canonical solution
among these by defining a certain fofal ordering on these
special solutions. Recall our comment under Definition 1 that
Li’s result is in fact stronger than a reduction from Range
Avoidance to a problem in TFUX5: more generally he shows
that Range Avoidance lies in the complexity class FS5 (we will
review the definition of this class in Section II). Our result
subsumes this upper bound as well, since another very direct
argument shows that LOP lies in FS5. Thus our result gives the
current best upper bound on the Range Avoidance problem,
and hence on the Kannan’s classical problem of constructing
the truth table of a hard boolean function.

At this point we have seen that there are search problems
in TFXY which seem on the surface to have no distinguished
solutions, but which nonetheless can be reduced to problems
in TFUZY by some highly non-obvious means. This naturally
points to the following question: are all problems in TFX5
reducible to TFUX5? We give a negative answer in the deci-
sion tree model. Our separation is exhibited by the following
relative of Range Avoidance which was introduced originally
in [4].

Definition 3 (Strong Avoid). Given f : {0,1}"\ {0"} —
{0,1}", find y € {0,1}" \ range()

From now on we will refer to Range Avoidance as “Weak
Avoid” to distinguish it from Strong Avoid. Our black box
separation will be significantly stronger than just showing that
Strong Avoid is not reducible to a problem in TFUXY; we will
show more generally that Strong Avoid cannot be solved by
making non-adaptive queries to any language in X5, which
is equivalent to proving size lower bounds for depth-3 ACy
circuits solving Strong Avoid:

The(P)rem 2. In the decision tree model, Strong Avoid is not in
FPﬁQ. More specifically, let C: {0,1}(N=DleeN _, 0 1}N°
be a depth-3 circuit of size 2N° and let D : {0,1}V° —
{O,l}logN be an arbitrary postprocessing function, where
N = 2" = [{0,1}"|. Then provided € is sufficiently small,
D o C cannot solve Strong Avoid: there must be some input
f + [N —1] — |[N] so that D(C(f)) fails to find a
y ¢ range(f)

This immediately implies non-reducibility to TFUX}, since
any problem R € TFUX5 with unique solutions can be solved
with non-adaptive queries to the language {(z,%) | (z,y) €

1390

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

R — y; = 1} which lies in 5. The connection of these kinds
of separations to depth 3 AC® lower bounds was spelled out in
a recent paper of Vyas and Williams [5] for the case of Weak
Avoid: their work established that nontrivial upper bounds for
Weak Avoid are equivalent to certain depth 3 circuits solving
the so-called “Missing String” problem: given an explicit list
of 2"~ n-bit strings, output a string not in the list. The
input size here is ~ N = 2™, and the question is whether
a depth 3 circuit exists of size polynomial or quasipolynomial
in N. Note that the Missing String problem is simply the
black-box variant of Weak Avoid. Li’s result showed that
quasipolynomial size depth-3 circuits for this problem actually
do exist, solving the original question of Vyas and Williams
in the positive. We show that if the problem is modified so
that the list of strings has length /N — 1 rather then % then
depth-3 circuits require exponential size to solve this problem.
We note that our lower bound holds against a stronger class
of circuits than what was originally considered by Williams
and Vyas: in their model the depth 3 circuit is of the form
C:{0,1}(N=DlogN _, £ 111o8 N and must output the exact
solution to Avoid. Here we allow C to output an arbitrary
string in {0, 1}V °, which can then be postprocessed arbitrarily
to construct a solution to Avoid.

By a simple reduction, we also obtain quasipolynomial
depth-3 circuit size lower bounds even for moderately weak
Avoid instances with domain [N] and codomain [N +
N/ log? M N]. This result gives a complete characterization
of the degree of “Weakness” necessary to obtain quasipoly-
nomial size depth 3 circuits: if the codomain has size N +
N/ logo(l) N then circuits of quasipolynomial size suffice,
and if its size is N + N/ log“Y) N then they do not; see
Lemma 9 for details.

Our last main result exhibits a more fine-grained separation
amongst the subclasses of TFX5. Above we have highlighted
one important distinction, between the problems which are
reducible to TFUXY and those which aren’t. However both of
the problems we’ve seen so far which reduce to TFUZS also
have an additional property: they are solvable by a polynomial
time randomized algorithm using a NP oracle. For Weak Avoid
this follows from its definition, while for LOP it follows from
its containment in the class FS5. We show that this is not
possible for all problems reducible to TFUXS. Our separation
is exhibited by the following natural search problem:

~
~

Definition 4 (Strong 1-1 Avoid). Given f: {0,1}"\ {0"} —
{0,1}", find a pair x # y in {0,1}™\ {0"} such that f(z) =
f(y), or else y € {0,1}™ \ range(f),

Observe that Strong 1-1 Avoid enjoys the same property as
LOP of having essentially unique solutions: it is easy to verify
the collision solutions f(z) = f(y) Az # y, and any instance
with no collision solutions has a unique solution. This follows
from the fact that any injective function f : [N] — [N + 1]
misses exactly one point in its codomain. Hence, like Weak
Avoid and LOP, the problem Strong 1-1 Avoid is reducible to
TFUXY. However we prove the following lower bound:

1391

P

FP FPVP FS§ psFZPP"P ppTinn; FP}?
A » A
i) :
! Linear Ordering Principle Strong Avoid
Weak Avoid Strong 1 — 1 Avoid j

Fig. 1. Inclusion diagram of relevant classes and search problems. Solid
arrows represent the inclusion of the class at the base of the arrow into the
class at its tip. Dotted arrows indicate non-inclusion of the base class into
the tip class in the decision tree model. The main linear axis of classes along
the top are all included from left to right, indicated by the long solid arrow
above them. Our major results are the separations marked with @, & and the
inclusion marked with ¢. TFU):2P essentially corresponds to FPZE nng , see
Lemma 2.

Theorem 3. In the decision tree model, Strong 1-1 Avoid is
not solvable in FBPPNP,

Aside from revealing further the structure of TFZE , this
result yeilds a new separation for decision classes which was
not previously known:

Theorem 4. In the decision tree model, 5 N N5 ¢ BPPNP,
In particular ¥5 N N5 ¢ S5.

In the next two subsections we will describe these main
results in some more technical detail. A diagram of the struc-
ture of TFZH and our main results is given in Figure 1; some
classes in this diagram will not be defined until Section II-A.

B. Bounded Depth Circuit Lower Bounds and Class Separa-
tions

Our two main separations show that Strong Avoid has no
non-trivial upper bound inside of TFX5 (Theorem 2), and
that Strong 1-1 Avoid has no randomized NP-oracle algorithm
(Theorem 7). The first lower bound is the more involved of
the two, and requires proving a novel depth 3 AC? circuit
lower bound for a total search problem, which appears to be
the first circuit lower bound of this kind.

Theorem 2 yields a very fine-grained separation for the
Strong Avoid problem. It is easy to construct a depth 4 circuit
C : {0,1}(N=DMog NT _, £ 11 NT 5olving Strong Avoid,
where moreover the bottom fan-in is only O(log N) [5]. More
strongly, it is possible to construct a depth O(log N) decision
tree, which at each step queries a depth 3, poly(N) size
circuit on the input f, and at each leaf outputs a correct
solution y ¢ range(f). Our lower bound can be interpretted as
saying that if such a decision tree is forced to be non-adaptive,
then either the circuits it queries at each step must grow to
exponential size, or else the number of queries must grow
to N1 This also contrasts the situation with Weak Avoid,
where as mentioned above, Li’s construction gives depth-3
AC, circuits of size NOU°gN) for solving Weak Avoid.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

We believe our lower bound is of independent interest in
circuit complexity. In particular, we give a very precise depth-3
lower bound for a fotal search problem. 1t is of course possible
to construct contrived examples of total search problems which
are hard for AC’ circuits, for example “given = € {0,1}"
output b € {0, 1} such that Parity(x) = b;” in such examples
we can derive hardness of the search problem by reduction
from a decision problem. In contrast, the lower bound we show
here cannot be established by reduction from any decision
problem. This follows from the fact that any decision problem
which is reducible to a TFZ5 search problem lies in =5 N 5.
In the decision tree model, this means that any language which
can be solved by a small depth decision tree querying instances
of Strong Avoid has both £’ and IIZ" circuits. However, the
lower bound we are trying to show for Strong Avoid rules out
the existence of any FpT2NM: algorithm for Strong Avoid.
Phrased more succinctly, our lower bound establishes that
Strong Avoid is harder then any decision problem which can
be reduced to it, which by definition means we cannot establish
the lower bound itself by reduction from a decision problem.
In light of this, to prove Theorem 2 we must develop new AC°
lower bound techniques which are specially tailored to total
search problems.

Our second main lower bound (Theorem 3) places Strong
1-1 Avoid outside of FBPPNP. Recall that Strong 1-1 Avoid
has the property of having essentially unique solutions and is
thus reducible to a problem in TFUX5. We will see (Lemma
2) that this means it is reducible to a decision problem in
% N M. Combining this with the above lower bound we
obtain Theorem 4, which separates the decision tree class
2 NN from BPPNP and in particular from S5. This is in
contrast to the situation for NP N coNP, which is known to
collapse to P in the decision tree model. This improves a
previous result of Fortnow and Yamakami [18] who showed
that £5 N MY ¢ PNP in the decision tree model.

1) Lower Bound Methods: A main technical ingredient in
both lower bounds is a new Switching Lemma (Lemma 6)
specialized for Avoid. Switching lemmas have been used for
both circuit lower bounds for computing functions, and in
proof complexity to prove lower bounds on the size of proofs
of hard tautologies (e.g., [19]-[21]). Between the two, our
argument bears a stronger resemblance to the second, however
there are some key conceptual differences. The basic idea
behind all switching lemmas is to show that under a random
restriction p (from a suitable distribution) a low-width DNF is
likely to be represented by a low-depth decision tree. Since a
low-depth decision tree representation for a function f implies
that both f as well as its negation can be represented by low-
width DNFs, this in turn allows us to collapse an AND of
low-width DNFs into a single low-width DNF, thus reducing
the circuit depth by 1.

A major difference between various switching lemmas is the
choice of distribution over restrictions, and the way in which
the decision tree represents a DNF. In the original Switching
Lemmas used to prove ACy lower bounds for parity, the
restrictions are simply uniformly random partial restrictions,

1392

and the notion of represents is with respect to every input.
That is, the decision tree computes the same function as the
DNE.

In the case of switching lemmas used in proof complexity
to prove ACO-Frege lower bounds for the [N] — [N + 1]
pigeonhole principle, we think of the input as specifying a
purported 1-1 function from [N] to [N + 1] (which cannot
actually exist if N is finite). The chosen distribution over
restrictions are partial 1-1 matchings from [N] to [N + 1],
and a low-depth “PHP decision tree” in this context can make
queries to a pigeon or to a hole at each vertex, and every
path in the tree corresponds to a partial matching. Since, in
reality, no 1-1 function from [N] to [N + 1] exists, these
trees do not represent the original DNF in any standard way.
However, if the input variables instead corresponded to a total
1-1 assignment from [N] to [IN] (which do exist), then we
can apply the same PHP Switching Lemma to prove that
under a random partial 1-1 restriction, a low-width DNF is
likely to convert to a low-depth PHP decision tree, which now
represents the DNF in the sense that it agrees with the DNF
on all input assignments that correspond to 1-1 mappings from
[N] to [N].

In the case of Avoid, we have to modify the way of
constructing a decision tree associated with a DNF so that the
decision tree represents the original DNF in the sense that they
are truth-functionally equivalent with respect to all 1-1 input
functions from [N] to [M], where now M is strictly larger
than N. To achieve this, we modify the notion of pigeonhole
decision trees as follows. As in the original PHP Switching
Lemma in proof complexity, each node of our decision tree
will query either a pigeon or a hole. When a pigeon is queried
at a node, we allow edges for all possible holes that it could
be mapped to. But when a hole is queried, now we have
to allow for the possibility that this hole is unmapped: in
addition to allowing edges for each pigeon that could map
to this hole, we allow an extra edge corresponding to the case
where nothing maps to this hole. With this modification, our
pigeonhole decision trees will represent the original DNF with
respect to all 1-1 inputs from [N] to [M].

Another crucial distinction is how we use the Switching
Lemma to reduce the depth of the circuit by one. In the proof
complexity setting for the pigeonhole principle lower bounds,
we think of N as infinite, and therefore with respect to 1-
1 inputs, a DNF can be written as a low-width matching
disjunction, where each term in the disjunction corresponds
to a partial 1-1 function (or matching) from [N] to [N].
After applying the PHP Switching Lemma and a union bound,
each matching disjunction f (under p) becomes a low-depth
“matching decision tree”, enabling a reduction in the overall
circuit depth by one. To summarize, in the classical PHP
Switching Lemma, the underlying depth-2 subcircuits are
always low-width matching disjunctions, both before and after
each application of the PHP Switching Lemma. In our case,
the underlying depth-2 subcircuits are not of the same type
before and after applying our Pigeonhole Switching Lemma;
a consequence is that our Switching Lemma cannot be applied

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

twice. This is not a defect of our method, but rather a necessary
feature of any technique here, since our search problem can
be solved by circuits of one higher depth. More specifically,
we show that initially the bottom depth-2 subcircuits of C can
be expressed as low-width matching disjuncdtions. But after
applying the Pigeonhole Switching Lemma, and subsequent
depth reduction, the new depth-2 subcircuits become hole
disjunctions which are a generalization of matching disjunc-
tions, where now each term in the DNF can specify not only
a partial 1-1 matching, but also a subset of holes that are
unmapped. With these appropriate modifications, our proof of
the switching lemma is similar to previous proofs.

Equipped with the Pigeonhole Switching Lemma, we can
give the high level view of both proofs. We start with Theorem
2. To prove Theorem 2, we would like to restrict attention to
the class of 1-1 input functions from [N] to [N + 1]. However
if we truly restrict ourselves to 1-1 functions, then a lower
bound is not possible by Lemma 4: for these inputs, there
is a unique solution, and therefore a polynomial-size depth-
3 circuits can easily check whether the unique solution has
its i** bit equal to 1 or to 0 and hence solve the problem
unconditionally. To circumvent this barrier, we will prove a
strengthening of Theorem 2, by giving a lower bound for
Avoid on input functions f : [N] — [M], where M is larger
than N + 1. By enlarging the range of f, we can focus our
attention of f’s that are 1-1 since now for every input, there
are at least M — N distinct solutions. Note that this implies
the lower bound stated above (with M = N + 1), since there
is a direct reduction from Avoid on instances [N] — [M] to
instances [N] — [N + 1]: we simply map every element of
[M]\ [N +1] to the element N + 1. Observe that this reduction
does not preserve injectivity.

Now assume there exists small-size s depth-3 circuit C
computing Strong Avoid on 1-1 functions from [N] to [M],
M >> N. We can first apply a standard argument (the Width
Reduction Lemma 8) so that we can assume that the bottom-
level fanin of C is at most O(log s). After this step, we can
assume that C is a size-s, depth-3 circuit, where the bottom
depth-2 subcircuits are low-width matching disjunctions. Next
we apply our Pigeonhole Switching Lemma (as discussed
above) which will guarantee that there exists a matching re-
striction p such that under p, all depth-2 matching disjunctions
in C will convert to low-depth pigeonhole decision trees. This
will allow us to reduce the overall circuit depth by 1, and
afterwards each output bit of C will be computed by a low-
width hole disjunction. As discussed above, a hole disjunction
is a type of DNF that generalizes matching disjunctions:
each term ¢ in the hole disjunction can be viewed as partial
information about the input f. The partial information consists
of two parts: (i) first, ¢; specifies a small partial matching,
pairing up some pigeons in [N] to some holes in [V + 1]; (ii)
secondly, to specifies a small set of holes (disjoint from the
holes mentioned in ¢; that are not in the range of f). It remains
to prove a lower bound for circuits C for solving Avoid, where
each output bit is specified by a low-width hole disjunction.
This is also accomplished using a kind of restriction, but rather

1393

then choosing it at random we apply a careful deterministic
process involving a novel covering argument. This step is
somewhat reminiscent of early proofs of the Switching Lemma
(e.g., [22], [23]).

The proof of Theorem 3 again uses the Pigeonhole Switch-
ing Lemma, together with a direct argument. We want to
prove depth lower bounds for FBPPNP, which informally
are randomized decision trees of small height which, instead
of querying variables, are allowed to query the value of an
arbitrary low-width DNF over the inputs. By Yao’s minimax
principle, it suffices to prove that any low-depth PNP decision
tree cannot solve Avoid with probability 2/3, with respect to
the uniform distribution of 1-1 functions. We think of this dis-
tribution in the following way: first sample a uniform partial 1-
1 assignment p, then sample a uniform extension of p to a total
assignment. Applying our Pigeonhole Switching Lemma and
a union bound, we can argue that with high probability over
the first choice of p, all of the NP queries in our PNP decision
tree T' can be simplified to small depth pigeonhole decision
trees, which overall allows 7' to be replaced by a low depth
pigeonhole decision tree. It then remains only to argue that a
pigeonhole decision tree of low depth cannot solve 1-1 Strong
Avoid with non-trivial probability on a uniform extension f
of p, which can be accomplished with a direct argument.

C. Linear Ordering Principle

We now discuss in more detail our results on the newly
defined Linear Ordering Principle problem, abbreviated LOP.
Recall that our main result here is Theorem 1, which says that
Weak Avoid is polynomial time reducible to LOP. The proof
follows much of the high level structure of Li’s result placing
Weak Avoid in FSY, with some key modifications. Roughly
speaking, Li’s proof shows that given an instance of Avoid
f:{0,1}™ — {0,1}™*!, we can define a comparison relation
C on {0,1}P°Y(™) 5o that for some unique distinguished
element * € {0,1}P°Y(™) we have 7* C n for all T # 7%,
and 7* contains a solution to the original Avoid instance.
In our case we need to define a similar comparison relation,
which in addition globally acts as a total order on {0, 1}P°W (™),
To explain the argument more clearly we split the reduction
into two parts. We first introduce an intermediate search
problem called Forest Termination and reduce Weak Avoid
to this problem, then we reduce Forest Termination to LOP.
We note that our proof, as well as Li’s, also bears a strong
resemblance to the work of [24] who gave the first proof of the
weak pigeonhole principle in the bounded arithmetic theory
Ts.

Our subsequent results show some appealing structural
properties of the complexity class defined by reducibility to
LOP. We start by proving closure under a broad class of
reductions:

Theorem 5. Any search problem which has a polynomial time
PNP Turing reduction to LOP also has a polynomial time
many-one reduction to LOP.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

Combining this closure property with the fact that LOP has
essentially unique solutions, we are able to conclude that LOP
is equivalent in complexity to a decision problem. In particular
we can define a decisional complexity class L5 for which LOP
is the “complete problem” (despite being a search problem
and not a language). We start by presenting a machine-based
definition of L5:

Definition 5. A language L is in the complexity class L if
there is a polynomial time relation R : ({0,1}*)® — {0,1}
and a polynomial p, so that for all x, R(x,-,-) defines a total
order on {0,1}P") whose minimal element a has a; = L(z).

We then have the following equivalent characterizations:

Theorem 6. The following are equivalent for a language L:
1) Lelf
2) L is polynomial time many-one reducible to LOP.
3) L is PNP-Turing reducible to LOP.
Conversely, the search problem LOP is polynomial time truth
table reducible* to a language in LY.

We mentioned in passing before that LOP is easily shown
to lie in the class FSP, the functional analogue of the decision
class S5 (this will be shown in Lemma 5. The same reason
shows that L5 C SF. For those unfamiliar with the somewhat
unconvential class S5, this is a complexity class introduced
independently by Russell-Sundaram and Canetti [25], [26].
Their goal was to identify the smallest class in the polynomial
hierarchy which is sufficient to capture randomized algorithms,
in particular BPP and MA. Beyond this purpose the class
rarely appears, and so far no natural problems have been
exhibited which lie in S5 and not one of its more traditional
subclasses (such as BPP or NP). In addition it seems that
SY does not have a complete problem, due to its definition
involving a promise. We have identified here a subclass L5 of
SP, which is characterized exactly by a simple and natural
total search problem, and which nonetheless maintains the
interesting properties that motivated the original definition of

Sk
Theorem 7.
1) PNP C LS and BPP C MA C LY
2) LES contains a language of circuit complexity 2" /n.

In each case, the result stated for LY was previously known
to hold for S5 and is now shown to be inherited by the
more natural subclass LS. The only interesting property that
is known of S5 which we were unable to prove for LY is the
Karp-Lipton theorem; we discuss this further Sections I-D and
Iv.

D. Open Problems

We conclude our introduction with a few interesting prob-
lems which remain open. The first is rather broad:

4This is essentially the most restrictive reduction possible when reducing a
search problem to a language.

B LE is the exponential-time analogue of L2P , where we replace “polynomial
time” with 29(") time” in its definition

1394

Problem 1. Show any additional inclusions or black-box
separations which are not implied by the arrows in Figure 1.

We specifically highlight the following:

Problem 2. Is there an FPNP Turing reduction from LOP to
Weak Avoid?

Our interest in this problem is the following observation:

Observation 1. Say that Linear Ordering Principle is FPNP

Turing reducible to Weak Avoid. Then there is a particular
language L of circuit complexity > 2™ /n, and a deterministic
NP oracle algorithm A running in time 2°), such that given
oracle access to any language L' of circuit complexity 22",
AL computes L.

This follows by composing the reduction of Weak Avoid to
LOP, which produces a unique solution, with the (purported)
second reduction from LOP back to Weak Avoid. Such a
consequence would be rather surprising and interesting purely
from the perspective of circuit complexity.

Next we highlight the problem of better clarifying the
relationship between L5 and S5:

Problem 3. Does L5 = S5? Can they be separated in the
decision tree model? Does L2P satisfy a Karp-Lipton theorem?

For this problem, we would say L5 “satisfies a Karp-Lipton
theorem” if one could unconditionally prove the implication
“NP € P/poly — PH = L5.” A notable property of S5 is that
it is the smallest complexity class for which this statement is
known to hold.

The next problem we highlight is in the realm of depth 3
circuits:

Problem 4. Does Weak Avoid have depth 3 circuits of poly-
nomial size?

Recall that Li’s upper bound is only quasipolynomial, of
size around N'°8 V. This problem seems intimately connected
to the long-standing open question in proof complexity of
whether the Weak Pigeonhole Principle has polynomial size
bounded depth Frege proofs; a quasipolynomial upper bound
was shown by Paris Wilkie and Woods [24] using a very sim-
ilar technique to Li’s, and [27] give a different bounded-depth
Frege upper bound of lower depth, but still quasipolynomial
size. Despite the strong aesthetic similarities we do not know a
formal connection in either direction between these problems.

Lastly, the search problems discussed here have other con-
nections to bounded arithmetic. In particular, the LOP princi-
ple has been investigated in several papers, defined explicitly
for the first time in [28] and studied mostly within the context
of characterizing the strength of Jerebek’s bounded arithmetic
theory of approximate counting relative to weaker theories,
and also as a new avenue for approaching the longstanding
problem of separating Buss’ 75 hierarchy by sentences of fixed
complexity. Buss, Kolodziejczyk and Thapen [29] observe that
the LOP principle is provable in both 7% and in APCs, and
ask whether or not LOP is provable in the weaker theory

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

T} + sWPHP, where sWPHP is the surjective weak
pigeonhole principle, and corresponds to the search problem
Weak Avoid. Atserias and Thapen [30] resolve this question,
proving that in the relativized setting, sW P H P does not prove
the LOP principle over T4. In fact they prove a stronger
result, that sSW PHP cannot prove the HOP principle over
T}, where HOP is a % version of LOP. It seems possible that
the techniques here could be used to give a negative answer
to Problem 2. A relatively unexplored area that is likely to
be fruitful is to discover more relationships between natural
search problems lying in the second level of the polynomial
hierarchy (and higher) and corresponding systems of bounded
arithmetic.

II. PRELIMINARIES
A. Search Problems, Complexity Classes, and Basic Inclusions

We define here a variety of subclasses inside of TFXP,
classified according to the computational resources necessary
to solve a search problem. We then prove some of the more
basic results relating these classes to eachother and to the four
main search problems of interest in this work.

Definition 6 (FPNP, FPZ:NM:, FPﬁ;). Let R be a search

problem and C a class of decision problems. We say R € FPC¢
if there is a language L € C and a polynomial time algorithm
making queries to L which “solves R:” given x it outputs y
such that (z,y) € R. We say R € FPﬁ if there is such an
algorithm, which moreover makes its queries nonadaptively:
given an input x it computes in polynomial time a list of
queries 21, ...,Zm, uses its L-oracle to test in unit time the
membership of each z; in L, and then uses the oracle responses
to output an answer in polynomial time.

We include for reference the following class considered in

(11, [2]:

Definition 7 (svFX5). svFYY is the class of search problems
having “singled-valued” FZS> algorithms. We say R lies in this
class if there is a choice of canonical solution {(x,y,) € R |
x} for each input x, a second relation R' € TFZS’, and a
polynomial time function f so that whenever (z,z) € R/,

In Lemma 1 we relate this class to the others we have
defined here. Beyond this we will not need to reference this
class further: every time we prove an upper bound for a search
problem it will be in a class lower then svF¥5, and our
separation for Strong Avoid will hold even against the larger

o
class FP‘X‘2

Definition 8 ((ps)FZPPNP, (ps)FBPPNP). A relation R is
in FBPPNP if there exists a randomized polynomial time
algorithm with access to a SAT oracle which, given x, outputs
y such that (x,y) € R with probability > 2/3. If the algorithm
always outputs a valid answer or 1 and answers L with
probability < é this places R in the subclass FZPPNP,

For a search problem R where each x may have many
solutions y, it is possible that a randomized algorithm outputs

D svF¥P. We next review the randomized classes:

1395

different correct answers on the same input x as a function of
its random coin tosses. If for each x there exists a canonical
Yo with (z,y.) € R and some randomized algorithm computes
T > Yy, with high probability, we say that algorithm is
pseudodeterministic; we use the prefix ps— to denote the
pseudodeterministic analogue of a randomized class.

The last standard complexity class we examine is the
functional analogue of SP. defined as follows:

Definition 9 (FSB). A search problem R is in FSY if there
exists polynomial time algorithm V taking three inputs, so
that for all x there exists y, with (x,y,) € R so that:

1) There exists m such that for all o, V(z,m1,m2) = Yq.
2) There exists wo such that for all w1, V(x, 71, 72) = Ya-

a) Search Problems vs. Function Problems:: As dis-
cussed in the introduction, some kinds of algorithms for search
problems have the property that they associate to each input
a fixed solution which the algorithm produces on that input.
With the exception of the non-pseudodeterministic randomized
classes FBPPNP and FBPPNP, each of the classes we have
just defined describes algorithms of this sort. These classes
are arranged nicely in the following hierarchy, as indicated in
Figure 1:

Lemma 1. FP C FPNP C FSY C psFZPPNP C FPEoAng

-
sVFYE C PP

Proof: All inclusions follow directly from the definition,
with the exceptions of FPNP C F52P which is due to Russell-
Sundaram [25] and FSE> C psZPPNP which is due to Cai [31].

|

Recall the class TFUZQP , referenced heavily in the introduc-

tion, consisting of those TFE} search problems with unique

solutions. This class is directly associated to FPZ2M: in this
hierarchy:

Lemma 2. The following are equivalent for any R € TFX5:

1) R is polynomial time reducible to a problem in TFULY.
2) ReFp=nm:,

Proof: Say R is polynomial time reducible to R €
TFUX5. So there are polynomial time functions so that for
all z, if (f(z),y) € R’ then (z,g(z,y)) € R. Consider the
language L defined as follows: (z,) € L iff for the unique y
with (f(z),y) € R/, we have y; = 1. Then L € ¥5 N MY and
g yeilds a reduction from R to L.

In the other direction note that any language L € ¥5 N MY
defines a search problem in TFUXE: given = find b € {0,1}
so that L(xz) = b. The result follows directly from this fact.

|

Recall from the introduction that the problems LOP and
Strong 1-1 Avoid do not quite have unique solutions, but
come very close. We define this property of having essentially
unique solutions as follows:

Definition 10 (Essentially Unique Solutions). We say that
a total search problem R & TFZzP has “essentially unique

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

solutions” if there are verifiers V1, Vo such that:

1) Vi is testable in polynomial time, while V is testable
in coNP.

2) For all x, either there exists y so that Vi(x,y) = 1 and
(z,y) € R, or else there exists a unique y such that
Va(z,y) =1 and (z,y) € R.

We then have:

Lemma 3. If R has essentially unique solutions then it is
polynomial time reducible to a search problem R' € TFULY
which actually has unique solutions. By Lemma 2 this is
equivalent to the statement R € FPEzON;,

Proof: Let V1, Vy witness that R has essentially unique
solutions. Consider the search problem R’: given z, output
either the lexicographically first y such that Vi (z,y) = 1, or
else the unique y such that Vo(z,y) = 1. By the definition of
V1, Vay we see that R’ is a total search problem with unique
solutions. Clearly R is polynomial time reducible to R’. We
need to show that R’ € FX5. For a fixed z, say that there
exists y with Vi (z,y) = 1, and let yo be the lexicographically
first such y. Then we can confirm that (z,yo) € R’ in coNP
by confirming Vi (z,30) = 1 and that for all ¥/ < yo we
have Vi(z,y’) = 0. On the other hand say that there is no
y with Vi (z,y) = 1, and let y* be the unique element with
Va(x,y*) = 1. Then we can confirm that (x,y*) € R’ in
coNP by checking that for all y we have Vi(z,y) = 0, and
using Vs to confirm Vsy(z,y*) = 1 (recall that Vs is in coNP
by definition). u

We now state formally the claim made in the introduction
that LOP and Strong 1-1 Avoid have essentially unique solu-
tions:

Lemma 4. Linear Ordering Principle and Strong 1-1 Avoid

have essentially unique solutions; hence both problems lie in
FPZ;’HH;

Proof: Any injective function f : [N] — [N + 1] leaves

a unique point in [N + 1] out of its range. Every total linear

order on a finite set has a unique minimal element.]

We next prove formally that LOP is contained in the class
FSP, which follows quite directly from the definitions:

Lemma 5. Linear Ordering Principle is in FSZP.

Proof: Let <: {0,1}" x {0,1}™ — {0, 1} be an instance
of Linear Ordering Principle. We construct the FS5 solver
V for < as follows. Let X = {0,1}>"*! be partitioned
so that the first 2" elements A are identified with {0,1}",
and the remaining > 23" elements B are identified with
potential witnesses that < fails to define a linear order. Given
w1, e € X, V(<, 7, m2) behaves as follows:

1) If m; € B codes a witness that < does not define a linear
order for some i € {1,2}, we output 7;; if both do then
we output the lexicographically first between them.

2) Say m; € B and my € A for {i,i'} = {1,2}, and m; is
not a witness that < fails to define a linear order. In this
case we output 7.

1396

3) If both m,m2 € A, we think of them as representing
elements ay,as of {0,1}" and compare them according
to <. If a; < a2 we output 71, otherwise we output 5.

First say that < is not a total order. Among all witnesses to
this let 7 € B be the lexicographically first. Then for all
' € X, we have V(<,m,7') = V(<,n',m) = 7. On the
other hand say < is a total order and let 7 € A correspond
to its unique minimal element. Then again for all 7’ € X,
we have V(=<,m,7’") = V(<,7’,m) = 7. Thus in all cases V
gives an FS2P algorithm solving the Linear Ordering Principle
problem on input <. u

Finally, amongst the 4 search problems studied here we
have the two following obvious inclusions which we haven’t
mentioned yet:

Observation 2. Weak Avoid and Strong 1-1 Avoid are poly-
nomial time reducible to Strong Avoid.

B. Oracle Separations and the Decision Tree Model

All of the upper bounds and inclusions we show in this
paper are unconditional and hold relative to every oracle. Since
showing any unconditional separations amongst the classes we
have identified would imply P # NP, we can only hope to
establish separations in a restricted model. As is standard, our
restricted model will correspond to the “decision tree model”
of complexity classes, which can be framed either in terms
of oracles and Turing machines, or more directly in terms of
decision trees and bounded depth circuits, c.f. [32]. We choose
here the latter terminology.

All of our search problems are defined in terms of a function
or relation specified by a boolean circuit. Take for example
the Weak Avoid problem, whose instance is a boolean circuit
computing f : {0,1}* — {0,1}"*!. Clearly this problem
remains total if f were not represented by a small circuit,
but instead was an arbitrary function f : [2"] — [2"H1]. In
the decision tree model, the relevant search problem has as its
input an arbitrary function f : [N] — [2N] where N = 2". For
example, the decision tree variant of the simplest complexity
class FP then corresponds to algorithms which can access
f only by querying its on poly(n) = poly(log N) different
inputs © € [N]. If we imagine f : [N] — [2N] is specified
by an assignment o : {0, 1}2" X[+ where o, ; = f(2)s,
then this is equivalent to allowing the algorithm to query
poly(n) = poly(log N) variables of the assignment c.

Decision tree analogues of other complexity classes can be
defined similarly. It is a standard result that a decision tree
separation implies a a separation of the associated Turing
machine classes relative to an oracle; more specifically it
is equivalent to a separation relative to a so-called “generic
oracle” [33].

Most of the definitions in our decision tree models will
be standard, e.g. bounded depth formulae and DNFs. One
decision tree model we study whose definition and notation
is less standardized is a FPNP decision tree:

Definition 11 (FPNP Decision Trees). Let f : {0,1}" — A
be a function where A is some set. A PN decision tree T

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

computing f is defined by a binary tree, with each internal
node labeled by a DNF formula on the variables {x; | i < n}
and each leaf labeled by a value y € A. On an input x €
{0,1}™, we traverse T starting at the root. At each internal
node associated to a DNF D, we test if D(x) = 1; if so we
proceed to the right child of the current node, otherwise we
proceed to the left. When we reach a leaf we output the value
associated to it; T computes f if the value reached is f(x).
We say that T' has complexity < r if its depth as a tree is at
most r, and each DNF associated to its nodes has width at
most r.

b
We next define the decision tree variant of FP™2 which is
the subject of our main lower bound Theorem 2:

Definition 12. Let R C {0, 1}V x [M] black-box (relativized)
search problem. We say that R is in FPﬁg if there exist 5
circuits ®q,..., P, with k < polylog(N) and an arbitrary
post-processing function S : {0,1}¥ — [M] so that for all
inputs f € {0,1}Y, (f,S(®1(f),...,Px(f))) € R. A £F
circuit is a 2P°Y1°8 N _size depth 3 circuit with bottom fanout
< polylog N.

In our case the input will be some f € {0,1}Vle¥
representing a function f : [N] — [N + 1], and the relevant
search problem is to output some y € [N +1] outside its range.
The fact that this captures the relativized version of FP>?
is based on the well known equivalence between relativized
levels of the polynomial hiearchy and quasipolynomial size
bounded depth circuits [22]; in particular the ZZP circuits
®q,...,P; above correspond to a sequence of non-adaptive
¥P oracle queries.

Note on b(;ttom fanin: The depth 3 circuit model which
captures FP? has the additional restriction that the bottom
level of each depth 3 circuit has fanin poly log V. Our lower
bound will apply also to the stronger model in which the depth
3 circuits are only constrained in their size and not their bottom
fanin.

Finally, we make note of one separation indicated in Fig-
ure 1 which was shown prior to our work:

Lemma (Wilson and Vyas-Williams [34] [5]). In the decision
tree model, Weak Avoid is not in FPNP,

III. LOWER BOUNDS FOR PIGEONHOLE PRINCIPLES
A. Pigeonhole Principle Basics

We will be concerned here with search problems where the
input is a function f : [N] — [M] with M > N, and the goal
is to find an empty pigeonhole of f.

Definition 13. We use [M]IN! to refer to the set of all functions
f : [N] = [M]. We define a set of propositional variables,
referred to as “bit variables”, given by

BITSN,]M = {fr,z | S [N],Z S H_IOgM-H}

We associate each truth assignment o : BITSy pr — {0,1}
with the function fo : [N] — [M], where where the value o

1397

assigns to f. ; indicates the i'" bit of f.(z) in binary; if M is
not a power of two then we think of all strings in {0, 1} o8 M1
of binary value exceeding M as being redundant representa-
tions of the element M. Similarly we associate every function
[+ [N] — [M] with the assignment oy : BITSy p — {0,1}
using the same correspondence.

For a conjunction of literals (term) T over the varaibles
BITSn, a1, we define its pigeon-width fo be the size of the set
{z € [N]| fa,i or —~fs: occurs in T for some i}.

From now on we will often not refer explicitly to as-
signments « BITSy,» — {0,1}, only to functions
f : [N] — [M]. The relevance of this definition is that,
when defining circuits/computational devices whose input is
a function f : [M] — [N], we must specify how the device is
able to access/read the input f: typically this will correspond
to the ability to read the bits BITSy »s.

For the vast majority of this section we will restrict our
attention to functions f : [N] — [M] which are 1-1 (injective):
consequently when we speak about the evaluation of a formula
which takes f as an input, we will typically only care about
the behavior of that formula on this special class of inputs.
We use the following notation to express this:

Definition 14. Let Fy n; C [M]IN] denote the set of all 1-1
functions [N] — [M]. For two predicates F,G : [M]IN —
{0,1}, we say that F is equivalent to G (with respect to all
1-1 functions), denoted by F = G, if F(f) = G(f) for all
feFnu.

We now introduce notation for describing partial informa-
tion about an input f. A natural such unit of partial information
is a partial assignment p : BITSy ar — {0, 1, x}, however for
our purposes it will be useful to define additional types of
partial information as well:

Definition 15 (Matchings and Hole Restrictions). A partial
matching w is a partially defined 1-1 function from [N] to
[M]. We use dom(w),range(m) to refer to the domain and
range of m, and nodes(r) dom(7) U range(rw). More
generally a “hole restriction” T = (7, E) consists of a partial
matching w and a set E C [M)] satisfying range(m) N E = (.
Let nodes(7) = nodes(m) U E. We use |T| to refer to the
value |r| + |E|. We think of the hole restriction (w, E) as
describing the following partial information about a function
f o [N] = [M]: “f(x) n(z) for all x € dom(m),
and y ¢ range(f) for all y € E.” For a total assignment
f € Fn.m, we say f is compatible with (7, E), written
fl{m, E), if the above statement holds. For two hole re-
strictions 71 = (m, E1), 70 = (ma, Es), we say they are
consistent, written T1 || T2, if there is a total assignment f which
is compatible with both. We say T, extends To, written 7, 2 T,
if 1 D mo and Ey O E5. We will think of a partial matching
w as a special kind of hole restriction of the form {m,(), and a
total 1-1 assignment f as a special hole restriction of the form
(f,Tange(f)), where Tange(f) = [M]\ range(f). In this way
we will use the above terminology to define relations between
matchings, hole restrictions and total 1-1 assignments, e.g.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

fllm and = C 1.

The main subject of this section is circuits C
{0, 1}IBITS~xarl 5 £ 13108 M1 which solve Avoid, in the
sense that C(f) ¢ range(f) for all f, where C(f) denotes
feeding C' the representation of f as an assignment to its
bit variables. We thus need some notation for basic kinds of
circuits computing a function of f, which will be hole and
matching disjunctions:

Definition 16 (Matching and Hole Disjunctions). A hole
disjunction ¢ = \/;7; over [M]IN is defined by a collection of
hole restrictions [N] — [M], which we refer to as the “terms”
of ¢. We say ¢(f) = 1, or “f satisfies ¢,” if f||7; for some
term T; of ¢. In this way each hole disjunction is associated
with a boolean function Fy p — {0,1}. If || < w for all i
we say that ¢ has width w. We call ¢ a matching disjunction
if all T; are partial matchings.

Recall that we are primarily concerned here with the values
a formula takes on 1-1 assignments f € Fn, . In such a
setting we can simplify any circuit so that the bottom two
logical layers are a set of matching disjunctions:

Observation 3. Let D be a DNF formula on the bit variables
BITSn, . Then there is a matching disjunction ¢ so that
D = ¢. Moreover if D has pigeon-width w and size s, then
¢ will have width at most w and size at most sM™.

Proof: Say that D = V; A; {; ; is a DNF where each /; ;
is a literal on BITSy 5. For each term ¢; = Aj¢; ; we may
replace it by the matching disjunction:

V

mE€match(t;)

0;

™

where match(¢;) is the set of minimal partial matchings 7 so
that for each literal ¢; ; = (=)%f, in t; (with £ € {0,1}),
there is an edge (z,y) € m with y, = —¢. Clearly we have
that 0;(f) = t;(f) for all 1-1 assignments f, and thus we may
replace D with the matching disjunction V,;6; without affecting
its behavior on 1-1 assignments. Recall that the pigeon-width
of a term over BITSy »s is the total number of pigeons x €
[N] mentioned in the term; clearly the width of 6; is at most
the pigeon width of ¢; since it only mentions the < w pigeons
relevant to ¢;; for this same reason we may bound its size
(number of terms) by M"™, the number of mappings from these
< w pigeons onto the M available holes. |

Definition 17. Let ¢ = 71 V ...V 75 be a hole disjunction
with 7; = {(m;, E;) and let k = (0,U) be a hole restriction.
We define ¢ restricted by T, denoted by ¢ | k, as follows: (i)
First, any term T; € ¢ that is inconsistent with k is set to 0 by
K and thus these terms disappear from ¢ | k (we also say they
are “killed” by k). If all terms are set to 0, then ¢ | Kk = 0.
(ii) Otherwise for any term T; consistent with k, we replace
mowith 7 | k= (m\ o, E;\U). If 7; | & = (0,0) this means
K already satisfies this term; if this happens for any of the T;
then we set ¢ | Kk = 1.

1398

The last basic computational model acting on inputs f €
Fn,m we consider is a “pigeonhole decision tree”:

Definition 18. A pigeonhole decision tree T over Fn ar is
defined by a rooted tree with fanout < M, with leaves labeled
by values from some finite set Z. Each internal node v € T
is labelled by either a “pigeon query” or a “hole query”.
Pigeon nodes (those that make a pigeon query) are labeled
by a query q(v) € [N] and have < M outgoing edges each
labeled by a distinct element (q(v),y) € [N] x [M]. Hole
nodes are labeled by a query q(v) € [M] and have < N + 1
outgoing edges, which are either labelled by a distinct element
(x,q(v)) € [N] x [M] or by q(v) € [M]. (The label q(v)
corresponds to nothing mapping to pigeon q(v).) In this way,
we can associate each node v € T to some (7, E) with m C
[N] x [M], E C [M], consisting of the labels of all edges on
the path from the root to v in T'. We then require that this pair
(m, E) associated to v is a hole disjunction.

T is said to be a complete pigeonhole decision tree if for
every f € Fn u there is a (unique) root to leaf path in T
that is consistent with f. In the case that T is complete we
may associate T with a function T : Fn oy — Z, where
T(f) is the value at the leaf of T consistent with f. The
depth of T is the length of the longest root to leaf path. We
will sometimes define pigeonhole decision trees without having
specific associated leaf values in mind; in this case we refer
to the tree as “unlabeled.”

Note: The queries in a pigeonhole decision tree do not
correspond directly to queries of the underlying bit variables
BITSn, as. While it is possible to query log M of the variables
BITSy,am to determine f(z) for some z € [N], if we want
to determine the preimage of y € [M] under f (or determine
it has no preimage), we would need to query ~ N log M
variables of BITSy s to make this determination directly.
Instead, a pigeonhole decision tree corresponds more directly
to a special kind of PNP decision tree on the bit variables.

We next observe that if 7" is a complete depth d pigeonhole
decision tree with binary leaf values, then we may represent
both 7" and =7 by a width d hole disjunction:

Observation 4. Let F' : Fy r — {0,1} be some predicate.
If F =T for some complete pigeonhole decision tree T' of
depth d, then there exist hole disjunctions ¢1, ¢ of width < d
so that F' = ¢1 and —=F = ¢o.

We will need the following variant of the Switching Lemma,
which says that for any low-width matching disjunction ¢,
is we sample a random partial matching p, then with high
probability ¢ [p will have a low-depth, complete pigeonhole
decision tree. The proof is left to the full version of this paper.

Definition 19 (Distribution of Partial Restrictions). Let
M%’M be the set of all partial matchings [N] — [M] with
exactly N — K edges. We use p ~ M%’M to denote a sample
from the uniform distribution on this set. When N, M are clear

from context we write M as shorthand for M%M

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

Lemma 6 (Pigeonhole Switching Lemma). Let M, N,d €
N. Let ¢ be a width-w matching disjunction over [M]N. If
M-N<K<Z % and N, K, d,w sufficiently large, then

NP\E [¢ I p has no depth < d pigeonhole decision tree | < exp
P

B. Depth 3 Lower Bound for Strong Avoid

In this section we prove the following circuit lower bound,
which is a restatement of Theorem 2.

(d(log wk®—log Nl/2+()(1)))

K

Theorem (Theorem 2 Restated). There is some absolute
constant € > 0 so that the following holds. Let ®y,..., Dy
be depth 3, size < s unbounded fanout formulas over the bit
variables BITSn n41. Provided k < N and s < 2N there
exists a string z € {0,1}* so that for all y € [N + 1), there
exists an assignment [: [N] — [N + 1] such that:

1) ®;(f) =z foralli

2) y € range(f)

In particular it is not possible to determine an empty pigeon-
hole of f by reading the values of ®1(f),...,Pr(f).

Overview of Proof. As mentioned in Section I-B1, we want to
prove Theorem 2 by restricting attention to the class of inputs
that correspond to 1-1 functions, and in order to do this we
will need to prove a strengthening of Theorem 2, by proving
the lower bound for Avoid on input functions f : [N] — [M],
where M is larger than N + 1. As discussed in Section I[-B1,
this implies the lower bound stated above (with M = N + 1).
Thus we assume for sake of contradiction that there exist
depth-3 AND-of-OR-of-AND circuits @4, ..., Py of total size
at most s that solves Avoid on all one-to-one instances f :
[No] = [Mo], where My = Ny + N, for some 0 < € < 1.

1) The first step is to argue that there exists a matching
restriction p such that after applying p, all depth-2
subcircuits (which are DNFs) have pigeon-width at most
w =~ log s. This is accomplished in the Width Reduction
Lemma (8) by a standard Chernoff argument and a union
bound. Composing this with Observation 3, we can then
convert all of the depth two subcircuits to matching
disjunctions of the same width w, without affecting
their behavior on 1-1 assignments. Overall, we are left
with depth-3 circuits ®1,..., P, which are ANDs of
matching disjunctions of width at most w = clog s for
some constant ¢ > 0, and there size is at most sM¢1°8 %,
These circuits still solve Avoid but now with respect to
1-1 functions on the reduced domain and range, [/V1],
[M;], where Ny = Q(Np), and M; = Ny + N¥.

At this point each ®; is an AND of low-width matching
disjunctions, i.e. we have ®; = A;¢; ; where the ¢; ;
are width w matching disjunctions. The next step is
to apply our Pigeonhole Switching Lemma (6) which
will tell us that there exists a matching restriction p
such that for all 4,7, ¢;; | p simplifies to a depth d
pigeonhole decision tree. We will be able to choose
the parameters in our switching lemma so that after
the second restriction, there are N, remaining pigeons

2)

1399

and Mo 2N, remaining holes, with d?k? < Na.
By Observation 4, this allows us to rewrite —¢; ; as a
width=d hole disjunction, and thus —=®; as width d hole
disjunction. The simplified circuits = ®4,..., P still
solve Avoid, but now with respect to 1-1 functions on the
reduced domain and range leftover after this restriction,
i.e. on instances [No] — [2Ng].

The final step is to prove that if ¢q, ..., ¢ are width-d
hole disjunctions that solve Avoid with respect to all 1-1
functions from [N3] to [2Ns], then we must have d2k? >
N. This is accomplished by Lemma 7. The proof is a
novel argument based on coverings. Recall that our goal
is to give some sequence of values 21, ...,z € {0,1},
so that for all yo € [2N3] we can find a 1-1 instance
f o [N2] = [2N2] so that ¢1(f) = z1,..., dk(f) = 2k,
but yq is not an Avoid solution for f. This indicates that
the values ¢1(f), ..., ¢r(f) are insufficient to determine
an Avoid solution. To construct zi,..., 2, we start
by repeatedly searching for some ¢; whose underlying
terms have a small hitting set, which is a small set of
pigeons and holes so that every term of ¢; mentions at
least one of them. If some ¢; is found, we apply a partial
restriction p to the hitting set variables, which reduces
the width of ¢; by 1. Since there are k ¢;’s, and each
has width at most d, after dk iterations, each ¢; either
has been set to a constant, or is promised to have no
small hitting set. We set z; = 1 or z; = 0 for all the ¢;
which have been forced to a constant by our restriction
p in this process, and set z; = 1 for all the unkilled ¢,.
Then to finish the proof, we need to show that for any yo
we can find an instance f||p so that yy € range(f), and
@i(f) = 1 for every ¢; which was unkilled in the first
step. Let yo € [2N2] be given. Starting with the partial
assignment p, we extend it so some unmapped pigeon
zo goes to Yo, and then we iterate over each unkilled
¢; and try extend p to satisfy one of its terms greedily.
The correctness will follow from the fact that none of
the unkilled ¢; have a small hitting set.

3)

We now formalize the above, which relies on the three
Lemmas mentioned in the proof overview. Two of these
Lemmas (Lemmas 8 and 7) will then be proven, while the
more involved Lemma 6 is omitted form this extended abstract
and can be found in the full version of the paper.

Proof of Theorem 2: Fix some ¢, ¢ to be specified later.
Let Ny be sufficiently large, and let My = No + IV§. Assume
towards a contradiction that ®4, ..., &, are depth-3, size s =
9Ns"* cireuits so that for all assignments f : [No] — [Mo],
we may determine an empty pigeonhole for f by reading the
values ®1(f),...,®x(f), and that k < Ng/s. Without loss of
generality we may assume:

;= /\Di;
J

where D; ; is a DNF over the variables BITS y,, az,. Obviously
if ®1(f),...,Pr(f) could determine an empty pigeonhole on

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

all assignments f then it would do so on all 1-1 assignments;
we will derive a contradiction already from this fact.

Applying the width reduction lemma (Lemma 8) with w =
clog s for a sufficiently large constant ¢ > 1, and a union
bound over 4, j, we can find a partial matching pg leaving Ny
pigeons unmapped, where N7 = 0Ny, such that for all ¢, j,
D; ; | po has pigeon-width w. We then convert each D; ; to
matching disjunction ¢; ; using Observation 3; the width of
the matching disjunctions is at most w, and their number is
at most s’ := s - MS'°%* < 2N5. At this point each circuit
®,; has been reduced to a conjunction of width w matching
disjunctions of size s’. The reduced circuits still solve Avoid
with respect to all 1-1 functions f with domain N; = 6Ny
and range M; = N; + N§.

Next we apply our Switching Lemma (Lemma 6) with the
following choice of parameters:

N = N1
M = M1 :N1+N5
K = N§
w = clogs = c¢Ng
d:=KY% = N§/°
Choosing e sufficiently small, it follows that for all ¢, 5:
1
< ks’
Thus by a union bound over 7, j, we conclude that there exists
a partial matching p so that for each i, j there is a pigeonhole
decision tree T; ; of depth d such that ¢; ; =, T; ;.

Applying Observation 4 we can find hole disjunctions); ;
of width d so that —~¢; ; =, 1;;, and therefore —=®; =,
\/j 1;,; which is a width d hole disjunction. By the conditions
on the original @1, ..., @y, for all 1-1 assignments f extending
p we must be able to determine an empty pigeonhole of f by
reading the values =@ (f),..., ~®(f).

After applying p, we are left with a reduced domain and
range [N2] and [Ms], where No = K = N§, and Mo
M, — (N7 — K) = 2K = 2N,. Therefore on the smaller
input size [2N5]IV2], we have found a sequence of k width-d
hole disjunctions such that on all 1-1 assignments g : [N3] —
[2N2], we can determine an empty pigeonhole of g by reading
the values of these hole disjunctions applied to g. At this point
we reach a contradiction with Theorem 7, since by our choice
of parameters we have 4k%d®> < N is satisfied (recall that
k< NS/ ® by assumption).

Proc s (T, ;1o has depth > d]

]

Equipped with the Pigeonhole Switching Lemma (Lemma 6,

it is left to prove Lemmas 8 and 7. We will first prove Lemma
7 followed by a proof of Lemma 8.

Lemma 7. Let ¢1,...,¢r be hole disjunctions of width w
over [2N]IN. Then provided N > 4k*w?, there exists a string
2 € {0,1}* so that for all y € [2N), there exists a 1-1 function
[[N] — [2N] such that:

1400

1) ¢i(f) = zi for all i

2) y € range(f)
In particular it is not possible to determine an empty pigeon-
hole of [from ¢1(f),...,ox(f) for all 1-1 assignments f.

To prove this we need the following definition:

Definition 20 (Hitting Sets). If ¢ is a hole disjunction and
A C [N]U[M], we say that A is a hitting set for ¢ if AN
nodes(7) # 0 for all terms T € ¢.

We can observe the following property of hitting sets:

Observation 5. Let w : [N] — [M] be a partial matching, ¢
a nonempty hole disjunction, and A C [N]U[M] a non-empty
hitting set for ¢ | w. Say that ' is an extension of w such that
A C nodes(n’). Then for each term T € ¢ | m, T has strictly
smaller width in ¢ | 7' then it originally did in ¢ | .

We can now prove the main claim:
Proof: To prove this we will construct partial matching
7 [N]— [2N],aset I C [k], and values {z; € {0,1} | i € I}
so that:

1) For all total 1-1 assignments f extending 7, ¢;(f) = 2;
forall i € 1.
2) For all yo € [2N], there exists a total 1-1 assignment
f extending 7 so that ¢;(f) = 1 for all ¢ ¢ I, and
Yo € range(f).
We will initialize # = () and expand it in stages by the
following procedure:

1) If there exists a nonempty A C [N]U[2N],|4| < 2kw+
2 and some i € [k] so that A is a hitting set for ¢; | m,
then extend 7 to a 1-1 map 7’ so that A C nodes(n’). If
none exist then halt the procedure and output the current
.

2) Set 7 := 7’ and return to the previous step.

We claim that we will always be able to extend 7 in the appro-
priate way until no further hitting sets can be found, and that
at the end we will have |7| < kw(2kw + 2) = 2k*w? 4 2kw.
To see this, observe that if ¢ is a hole disjunction of width
w and nodes(7) is a hitting set for ¢, then every term in ¢
will either be killed in ¢ | 7 or else have its width decreased
by 1 by Observation 5. Therefore the above procedure can
only repeat kw times before all the ¢; have been killed. In
each step at most 2kw + 2 edges need to be added to 7 in
order to cover A, so the total size of 7 at any step is at most
kw(2kw + 2) = 2k>w? + 2kw, and therefore there are always
enough available pigeons/holes to extend 7 in the appropriate
way at each step since N > k2w?.

Now we can choose I C [k], which will consist of those
indices 7 so that ¢; | 7 is forced to a constant (i.e. one of its
terms is already satisfied by 7 in which case it is forced to
one, or else all of its terms are killed and it is forced to 0).
For i € I we denote by z; € {0,1} the value it is forced to. It
remains to show that for any given yo € [2N], we can find a
total 1-1 assignment f extending 7 so that yo € range(f) and
¢;(f) =1 for all i ¢ I. To do this we will construct a hole

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

restriction (p, U), where p is another partial matching disjoint
consistent with 7, and U C [2N] satisfying:

1) yo € range(m U p)

2) |p|l < kw, |U| < kw

3) UnNrange(mrUp) =0

4) For each i € [k] \ I there is a term (0, E) € ¢;, so
that for all = € dom(o) we have 7 U p(z) = o(x), and

ECU.

If we can accomplish this then the proof is complete. We
simply extend 7 U p to a total 1-1 assignment f which leaves
U out of its range. By the assumption N > 4k%w? such a
total assignment exists; here we are using the fact that the
total number of holes 2N is larger then the size of U plus the
number of holes filled thus far by 7 U p. By construction we
then have ¢;(f) =1 for all ¢ ¢ I and y € range(f).

Observe that by construction of m, for each ¢ ¢ I we have
that ¢; [7 has no hitting set of size < 2kw + 2. We will
construct p, U in stages. Initially we check if yo € range(n),
if not we initialize p = {(zo,y0)} where zo is an arbitrary
element unmapped in 7, otherwise we initialize p = (. In
addition we initialize U = (). Now we go through each i €
[£]\] in order and do the following. We search for some term
T ={(0,E) € ¢; | (mUp) so that nodes(7) Nnodes({p, U))
(). If found, then we add the nodes in E to U and the edges in
o to p. We claim that it is always possible to find such a term
while maintaining that 7Up is 1-1 and UNrange(7Up) = (. In
particular say that we have gotten to some step ¢ € [k]\[where
this is not possible. Let A = nodes({(p,U)). Observe that by
construction |A| < 2kw + 2. Recall that by construction of
we have that A cannot be a hitting set for ¢; [7. By definition
of a hitting set this implies the existence of the required term
T E ¢;. |

Next, we prove the Width Reduction Lemma:

Lemma 8 (Width Reduction). Let € > 0 be a sufficiently small
constant. Let ¢ be a DNF over BITS y pr with s terms. Say a
partial matching p is sampled as follows: sample A C [N] by
including each element independently with probability 1 — €;
now choose a uniform 1-1 function A — [M].

Pr[D [p has pigeon width > w] < exp(log s — Q(w))
p

Proof: Let ¢ = Aq1,...,As. We will ignore each term
whose pigeon width is already < w; its pigeon width cannot
increase under the restriction. Let A € ¢ be a term of width
> w. We will bound the probability that p does not kill the
term A and then take a union bound over the s terms. Without
loss of generality we may assume A is the literal f, ; if it
were of the form f, ; or —f,; for some ¢ > 1 the argument
is completely symmetric. Let B C M consist of those y € M

1401

whose first bit (in binary) is 1.
Pr[) survives p]
P

18]
M

)\U\

Z Pr[dom(X) Ndom(p) = U] - (

UCdom(\)

<) " Pr[ldom()) N dom(p)| = t] - 27

< 27%/2 L Pr[|dom(\) N dom(p)| < %}
<9 w/2 4 Pr < Y < exp(—Q(w
- El,...,wavBern(l—e)[gg - 2} - p(())

Where the last inequality follows from Chernoft’s bound and
Bern(1 — €) denotes the Bernoulli distribution with expected
value 1 — e. Thus by a union bound

Pr[¢ | p has width > w] < exp(log s — Q(w))
P

u
a) Lower Bounds for Moderately Weak Avoid:: Above
we showed that depth-3 circuits cannot solve the Strong
Avoid problem unless their size is exponential. In contrast,
Li’s construction gives quasipolynomial size depth 3 circuits
which solve the Weak Avoid problem, i.e. Avoid on instances
[N] — [2N] when the codomain is at least twice as large
as the domain. By a standard iteration construction (the
same argument which lets us reduce [N] — [2N] Avoid to
[N] — [N?] Avoid as in [8]), for every constant d we can
obtain quasipolynomial size depth 3 circuits solving Avoid on
instances [N] — [N + N/log? N]. We show here that this is
essentially optimal: for every constant ¢ there exists another
constant d so that [N] — [N + N/log? N] Avoid cannot be
solved by depth 3 circuits of size 2'°2° V. The proof is a simple
reduction to Theorem 2 which is originally due to Razborov
[35].

Lemma 9. For every ¢ € N there exists d € N so that
the following holds. Let ®1,..., P be depth 3 circuits of
size s such that for every assignment f : [N] — [N +
N/log® N), an Avoid solution can be determined from the val-
ues ®1(f), ..., ®x(f). Then either k > log® N or s > 218" N,

Proof: Let ¢ € N be fixed. We will choose M = log? N
for an appropriate choice of d which will be specified later
and which will depend only on c. We then reduce the Avoid
problem on instances [M] — [M + 1] to instances [N] —
[N + N/log® N] as follows: given g : [M] — [M + 1], let
g%+ [M{] — [(M + 1)f] be the map which sends each
block [1, M],...,[M (¢ — 1), M{] to its corresponding block
in[1, M +1],...[(M+1)(¢—1),(M + 1)¢] according to g.
Setting ¢ = 4% we see that g is a map [N] — [N + (], where
{=N/M =N/log"N.

Obviously given g we can generate ¢g®¢ without any compu-
tational overhead by simply substituting variables. In addition,
any Avoid solution to ¢®¢ uniquely determines an Avoid
solution to g, obtained by simply forgetting the block number
and outputting the position within the relevant block. Thus

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

if the circuits ®1(f),...,Px(f) could solve Avoid on inputs
[N] = [N 4 N/log? N] then they can also solve Avoid on
inputs [M] — [M + 1]. By Theorem 2 there is some absolute
constant €, such that for this to be possible we must have
k> M¢€ and s > 2M°, Setting d > ¢ the theorem follows. ®

C. BPPNP Lower Bound for 1-1 Strong Avoid

We restate the main result to be proved:

Theorem 3 In the decision tree model, Strong 1-1 Avoid is
not solvable in FBPPNP,

Recalling the definition of BPPNP (in the decision tree
model), if 1-1 Strong Avoid has BPPNP decision trees of
complexity w, then there is a distribution 7~ over PNP decision
trees of complexity 7, so that for all f : [N] — [N +1] T
outputs a 1-1 Strong Avoid Solution with probability > 2/3.
By Yao’s minimax principle, this implies the existence of a
fixed tree T' € support(7), so that T'(f) succeeds in finding
an empty pigeonhole of f with probability > 2/3 when f is
sampled uniformly from the space of 1-1 functions Fn n41. It
thus suffices to rule out the existence of such a deterministic
tree T. We will use here the notation Fy := Fn n41, and
f ~ Fn to denote a uniform sample from this set. Thus
Theorem 3 follows from the following Theorem:

Theorem 8. There is an absolute constant ¢ > 0 so the
following holds: if T is a PN? decision tree of complexity
N€ over the bit variables BITS 1 and leaves labeled by
elements of [N + 1], then:

Pr [T(f) ¢ range(f)] < N™

Q(1)

The high level idea of the proof is as follows. Observe that
a random f ~ Fpy ar can be sampled by first choosing a
uniform partial matching p of a certain size, and then choosing
a uniform completion of p to a total assignment. Applying our
Switching Lemma, we can argue that with high probability,
after we sample p we can replace all of the NP queries in
our PNP decision tree 7' with small depth pigeonhole decision
trees, which overall allows 7' to be replaced by a low depth
pigeonhole decision tree. It then remains only to argue that a
pigeonhole decision tree of low depth cannot solve 1-1 Strong
Avoid with non-trivial probability on a uniform extension f
of p, which can be accomplished with a direct argument.
Proof of Theorem 8: By definition of a PNP decision
tree, 1" is a binary tree of depth r = N€¢ with each internal
node branching on the value of some DNF of width r over
the bit variables BITSy n41. Let Dy, ..., D, be the set of all
DNF associated to the nodes of T'; so s < 2". As in the proof
of Theorem 2 we may apply Observation 3 and replace all
D; by width rlog N matching disjunctions ¢; since we only
care about their behavior on assignments in Fp. Fix some
parameter K to be specified later. We will consider sampling
f ~ Fn in the following way: first choose a uniform partial
matching p with V— K edges, then a uniform extension f D p
of p to a total 1-1 assignment. We define B as the event that
¢; | p does not have a pigeonhole decision tree of depth < r

1402

for some i < s. Observe in the case p ¢ 15, we may construct
a pigeonhole decision tree 7 of depth r? so that T =, T}
we simply simulate the original computation of 7', and each
time a DNF D; was originally queried, we instead simulate
the depth < r pigeonhole decision which represents ¢;. Let
P4(J) be the maximum, over all pigeonhole decision trees Q)
of depth d on g : [J] — [J+1], of Prgr,[Q(g) ¢ range(g)].
Then we have:

Pr [T(f) ¢ range(f)] = Fr [T(f) & range(f))
<Prpe B+ max PrT(f) ¢ range(f)]

< Pr[p € B] +P,2(K)
P
< 2"max Pr[¢; | p has no p.d.t. of depth < r|+ P,2(K)
iop

where p.d.t. abbreviates pigeonhole decision tree. We will
prove in the next lemma that P.2(K) < K_zH Setting €
sufficiently small and K = 73, we can apply Lemma 6 and
complete the proof. |

It remains to prove the bound on P,2(K). At the cost of
increasing the depth of the tree by 1, we assume that a pigeon-
hole decision tree always queries a hole before outputting it
as a solution.

Lemma 10. Py(N) = 3%

Proof: Let T be a tree witnessing Py ().
Say that 7" first queries a hole y € N, so that

T(f) if f(1) =y

PU= rigy i gov) =
y if y ¢ range(f)
then we have:

Py(N) = PrI(f) ¢ range(f)]

= Prly ¢ range(f)]+

ZPr |+ PrTa(f) ¢ range(f) | f(x) =]

1 N
< 1)
N+1 N+1

Here we are using that fact that a uniform f conditioned on
f(x) = y is equivalent, up to relabeling, to a uniform member
of Fn—_1, and the labeling of pigeons and holes has no effect
on the value of Py_1 (N —1). By the same reasoning if 7" first
queries a pigeon x then we have the simpler bound:

—+]P)d 1(N

P}Y[T(f) ¢ range(f)]
J- Pr(Ty(£) ¢ range(f) | f(2) =]
1)

=2 _Fr

<Py (N -

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

so overall

1 N P
N1 + N1t
Therefore by induction on d we conclude that the optimal
pigeonhole decision tree achieving P4(N) only queries holes,
and without loss of generality queries them in order 1,...,d
(in the base case we use the assumption that 7" must query a
hole before using it as an answer), then outputs the index of
the first empty hole that was queried (if any). Therefore we
have:

Py(N) < max{Pg_1 (N — 1) (N —1)}

Py(N) = ljtr[{l, ...,d} € range(f)] = N1

|

Next we show that Theorem 4, separating the decision class
¥P N N5 from BPPNP, follows as a corollary of Theorem 3.
Proof of Theorem 4: Lemma 4 says that Strong 1-1
Avoid is solvable in FPT"M:_ This result holds relative to
every oracle (and thus in the decision tree model). Hence
relative to every oracle, if ¥5 N M5 C BPPNP then Strong
1-1 Avoid collapses into BPPNP_ The result then follows from
Theorem 3. |

IV. LINEAR ORDERING PRINCIPLE

In this section we investigate the complexity of the Linear
Ordering Principle. We restate the definition in a slightly
different terminology:

Definition (Linear Ordering Principle, Refinement of 2). The
input to LOP is a binary relation < on [N] x [N] specified by
a circuit. The following solutions are sought:
1) A witness that < does not define a total order on [N
(trivial solution)
2) Anelement ag € [N] so that ag < aforall a # ag € [N]
(nontrivial solution)

We say an instance < is nontrivial if it has no trivial solutions.
The trivial solutions are enumerated formally as follows:

1) x such that x < x
2) z,y,z such that v <y <z and © £ z
3) x £y such that v £y and y L x

Note that in the introduction we defined < to be a relation
on {0,1}™ x {0,1}"™. We state it in this more general form
here, since the space we define a linear ordering on in our
main reduction will not have size being a power of two. It is
straightforward to pad an instance of LOP which is defined on
some subset of {0,1}" to the whole space without affecting
the value of the solution.

Recall from Section II-A that LOP has “essentially unique
solutions:” the trivial solutions are checkable in polynomial
time, and any instance without trivial solutions has a unique
nontrivial solution. Our primary interest in this problem stems
from the following reduction (stated in the Introduction):

Theorem 1 Weak Avoid is polynomial-time many-one re-
ducible to LOP.

1403

We will describe the reduction in two parts, using an
intermediate search problem called Forest Termination:

Definition 21 (Forest Termination). The input consists of:

1) A function Pred : [M] x [N] x [N] — [M]

2) A function Col : [M] x [N] — {0,1}
specified by boolean circuits. We think of the input as
representing a layered rooted forest F of depth N with
nodes partitioned into sets Ly, ..., Ly, each of size M, with
nodes in Ly being roots and all other nodes in {L;};>1
having a unique parent in L;_i. We say that the function
Pred “validly represents a forest” if the following holds:
for each w € [M], k < j < i € [N], we have that
Pred(Pred(u,i,7),j,k) = Pred(u,i,k). If this holds then
we may think of Pred as representing some forest F' in the
following strong sense: for any node w € L; with i > 1,
the nodes Pred(u,,1),...,Pred(u,,1) form the unique path
from Ly to w in F. Finally for each each u € F with think of
Col(u, %) as coloring the node u € L; red or blue.

We say that u € FU{L} is a termination point of F if the
following holds:

1) w={L} and Ly contains no blue node.
2) w is a node in F, the path from L1 to u in F uses only
blue nodes, and u does not have a blue child in F.

Now the search problem is: given Pred, Col, find a witness
that Pred does not validly represent a forest, or else find a
termination point in the forest it represents.

The totality of this problem follows by starting at at a blue
node in Ly (if one exists) and finding a maximal blue path
through its descendants in F'. We start by giving a reduction
from Weak Avoid to Forest Termination. This is the aspect of
the proof which is very similar to arguments by Li and by
Paris Wilkie and Woods [2], [24].

Lemma 11. Weak Avoid with 2n stretch is polynomial-time
reducible to Forest Termination.

Proof: Let f : {0,1}™ — {0,1}?" be given; we denote
by fo.fi : {0,1}" — {0,1}" the functions obtained by
restricting to the first and last n bits of output respectively.
Let S,, denote the set of all binary strings of length at most
n, including the empty string e. Naturally S,, is associated
with the nodes of a full binary tree of depth n; however since
the Forest Termination instance we construct involves a forest
whose structure and depth differ from that of S,,, we will use
the terminology of binary strings to refer to elements of S,
in order to avoid confusion. We say s C s’ if s is a prefix
of &, and s C &' if it is a proper prefix. We use s - s’ for
concatenation. If s C s’, with s/ = s-p, we use s’ — s to
denote p. We define the “preorder” < on S,, recursively with
respect to prefixes: for a prefix p and two distinct extensions
p-s,p-s with s < s’ (with the relative order of s, s’ defined
recursively), we put p- s < p- s’ < p. In the view of S, as a
depth n perfect binary tree, this corresponds to the recursive
subtree ordering “left subtree < right subtree < root.” Note
that this is a total ordering with e being the greatest element

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

and 0" the least. Finally, for an element s € S,,, we say that
s' is a “left outlet” of s if either s’ = s or s’ = p0 for some
p C s. We use LO(s) to denote its set of left outlets; note
that |LO(s)| < n. Observe that for any s’ < s, there exists a
unique p € LO(s) such that p C s’

For some s € S,, and some value = € {0,1}", define f,(x)
recursively as follows: if s = e then fs(v) = v. If s = bs’ for
some bit b and substring s', fs = fs (fo(x)).

We define a “transcript” as an element 7 € ({0,1}")™. We
say the transcript 7 is valid for some s € S,, if m; = 0™ for all
i > |LO(s)|. In this way the valid transcripts for s are in one-
to-one correspondence with functions LO(s) — {0,1}"™. Thus
for a valid transcript 7 for s and some p € LO(s), we use
7(p) € {0,1}" to denote the value the transcript associates to
D.

For a transcript 7, and strings s’ < s € S,,, we define the
transcript 7’ = Pred(m, s, s’) as follows. We first check if 7 is
valid for s; if not we set 7’ to be some fixed canonical choice
of invalid transcript for s’. Otherwise, for each p € LO(s'),
we set 7'(p) = fp—q(m(q)) where ¢ € LO(s) is the unique
left outlet of s which is an ancestor of p.

We now construct an instance of Forest Termination with
[N] = 2" — 1] = 8, and M = [27°] = ({0,1}")". [N]
is associated naturally to Sy, so that each layer corresponds
to an element of S,, and the layers are ordered according to
<, i.e. Ly is associated to 0" € S, and Ly to € € S,,. [M]
is associated to the set of possible transcripts, so that Lg will
be the set of all possible transcripts for the string s (some
valid and others invalid). We use Pred defined above to give
the Pred function in the instance of Forest Termination. It
should be noted that the depth of the forest defined here is
N = 2"*1 — 1, which is much larger then the depth of tree
naturally associated to S,, (whose depth is n); this is why we
have used the notation of binary strings rather then nodes in a
tree to refer to elements of S,,. It remains to define the node
coloring function Col.

If (m,s) € [M]x[N] are such that 7 is not a valid transcript
for s, then Col(m, s) is red; if 7 is a valid transcript for s and
|s| < n then it is colored blue (|s| denotes its length as a
binary string). Otherwise if 7 is a valid transcript for s and
|s| = n, we check that 7(s) = —f4(s), where — denotes the
string obtained by flipping all bits. If so we color it blue,
otherwise we color it red. Note that since |s| = n, f(s) is
well defined, and thus so is fs(s).

It follows by construction that Pred validly defines a forest
in the sense of Definition 21. It remains to show that given any
termination point we may determine a solution to the original
instance of range avoidance. We first claim that there exists a
blue node in the first layer Lg~, so that the solution to Forest
Termination cannot be L. Observe that LO(0™) = {0"}, thus
the transcript 7 which sets 7(0™) = —fo=(0™) will be blue.
Now, say that m € L, is a termination node. We claim that L
cannot be the last layer, i.e. s # €. Say towards a contradiction
that 7 is a termination node in layer L.. So 7 is a valid
transcript for €, which stores a single value = 7(¢). By the
assumption 7 is a termination point all of its predecessors are

1404

blue. In particular if we view x as a length-n element of S,
then we have that Pred(, €, x) is blue, which by construction
means that f,(z) = =f,(z), which is a direct contradiction.
Now say that 7 is a termination node in layer Ls; where
s # ¢; let s’ be the successor of s in the ordering <. First say
that |s’| = n; in this case (m, s) cannot be a termination point,
since we may construct a blue transcript 7’ for s’ such that
Pred(n’, s’, s) = m by simply appending the value — f,/(u') as
7'(u') to the original transcript 7 for s. Otherwise we have s =
s'1. Let p = s'0; so pis a left-outlet of s, and therefore 7 stores
some values zog = w(p),x; = 7(s). We claim that zoz; must
be a solution to the Avoid instance f. Say this is not true and
there is some = € {0,1}" such that f(x) = zoz1; i.e. fo(x) =
zo and f;(z) = x1. Then we can generate a blue transcript 7’
for s’ as follows. Observe that LO(s") = LO(s) \ {p} U {s'}.
Thus if we remove p from the domain of 7 and set 7/(s") = z
to obtain 7', then 7’ will be a blue transcript for s’ and we
will have Pred(n’, s’, s) = 7, which means (7, s) cannot be a
termination point. To see this, note that in the computation of
Pred(n’,s', s), the only modification made to 7’ to generate
7 will be to compute 29 = fo(7'(s')), 21 = fi(n(s')), and
add zp as the value 7 associates to p and z; as the value it
associates to s. By construction 2y = xg and z; = x1 so we
end up with the original transcript 7.
u

Next we reduce Forest Termination to LOP, which is sim-
pler:

Lemma 12. Forest Termination is polynomial-time many-one
reducible to LOP.

We will prove shortly that any search problem which is PNP-
reducible to LOP is also polynomial-time many-one reducible
to LOP (Theorem 5); therefore it suffices to give a PNP
reduction.

Proof: Let Pred, Col an instance of Forest Termination.
We start by using an NP oracle to search for a witness that
Pred fails to validly represent a forest; if found we output
this as our solution, otherwise we know that the instance
indeed represents a forest F' on the nodes Lq LI-- - L. For
conceptual simplicity, we modify F' into a tree 7" by adding a
virtual blue root node L whose children consist of all nodes
in L;. We use < for the lexicographical ordering on each
L;. We now define a new ordering < on the nodes of 7'
Its definition is given recursively with respect to subtrees of
T as follows: say that u is a node with blue-rooted subtrees
By < ... < Bk and red-rooted subtrees Ry < ... < Ry
ordered lexicographically by their respective roots. Define <
recursively inside each B;, R;; now between them use the
ordering By < ... < Bg < {u} < Ry < ... < Rgs. By
induction on the depth of 7" we see that < is a total ordering.
The relation < will be our instance of LOP output by the
reduction; it remains to show that < is efficiently computable
and that its minimal element yeilds a Forest Termination
solution.

We first show how to compute <. Given ug # u; € T

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Example instance of Forest Termination with M = 4 and N =
3, with virtual root added at the top. Blue nodes are circles and red nodes
are diamonds. We have sorted each layer left to right so that blue nodes
come first, and within each color class the nodes are ordered left to right
lexicographically. The number on each node represents its position in the
ordering <. The nodes numbered 1 and 4 are the termination points of this
instance.

1) If ug is an ancestor of u; then let v be the child of
ug from which ug can be reached. If v is blue then set
uy < ug, else if it is red set ug < ug.

Otherwise let v be the least common ancestor of uy and
u1, and let wg,w; be the children of w from which
up and u; can be reached respectively. We define the
relative ordering of wg, w; in <, which is then inherited
by the pair ug,u;p: if wp is blue and w-; is red for
some b € {0, 1}, then set w;, < w—p. Otherwise use the
lexicographical order < to order the pair wg, w;.

2)

The only nontrivial step here is to compute a least common
ancestor of wj,us, which can be accomplished with binary
search. Say uq,us lie in layers L;, L respectively, with ¢/ > 4.
The using Pred we find the ancestor of uy in L;; call it do. If
Gz = uy then u, is the ancestor of uy. Otherwise let j = [i/2],
and compute the ancestors vy,vy of wuy, o in layer Lj;. If
they are distinct then we repeat the same procedure starting
from v, ve. Otherwise if v; = vy we prune all the layers
Ly,...,L;_; from consideration and repeat the procedure
from wuq, 1o, taking L; to be the root layer with v; = wvo
as its root, and renumbering the layers accordingly. Overall
the number of steps required is O(log N).

Finally it remains to show that any solution to LOP on the
instance < yields a solution to the given Tree Termination
instance, i.e. if w € {L} U Ly U--- U Ly is minimal in the
ordering < then it must correspond to a termination point. Say
that « is not a termination point, then either:

1) There is an edge (v, w) in the path from the root to u so
that w is colored red. In this case we must have v < u.
2) w has a blue child v. In this case we have v < w.

In each case we see that u cannot be the minimal element. An
example of a Forest Termination instance and its correspond-
ing order < is given in Figure 2. []

We now observe some special properties held by the search

1405

problem LOP, the first of which is its strong closure properties
under a wide class of reductions:

Theorem (Theorem 5). Let R be any search problem which
has a polynomial-time, NP-oracle Turing reduction to LOP.
Then R is polynomial-time many-one reducible to LOP.

Proof: Let A be a polynomial time PNP Turing reduction

from some search problem R to LOP. Let x be an instance
of the search problem of length n. We first claim that we can
modify A so that:

1) A(z) only calls the LOP oracle on instances < which

are nontrivial, i.e. they define a true total order.

2) A(zx) does not use its NP oracle.

To achieve the first condition, before each call to the LOP
oracle on an instance <, we first use the NP oracle to check
if < defines a total order, and to find a violation if not. If a
violation is found we no longer need to use the LOP oracle
on this instance; otherwise we know that < is a nontrivial
instance and we use the oracle to solve it. Now to achieve
the second condition, if ¢ is an instance of SAT with m
variables, we define the ordering <, on {0, 1} by: y <4 2 if
¢(y) = LA @(z) = 0 or vice versa, otherwise <, orders them
lexicographically. Clearly < is a nontrivial LOP instance, and
the minimal element of < will tell us if ¢ is satisfiable.

At this point we have a polynomial time reduction A which
makes adaptive oracle calls to LOP on nontrivial instances,
each of which has a unique solution. We next modify A(z) to
make exactly m calls on all computation paths, and have each
call of the form <: {0,1}™ x{0,1}"™ — {0, 1} for some fixed
value m = poly(n). We can accomplish this easily by padding
the algorithm with dummy queries and padding any instance
of LOP to a larger bit-length. We now define a new instance
<z {071},’”2 x {0,1}™" — {0,1} as follows. An element
of {0,1}™" is given by a sequence (u1,...,uy) with u; €
{0,1}™. To compare two elements & = (u1,...,Up),0 =
(v1,...Um), we find the first index 7 € [m] so that u; # v;.
We simulate A(z) through the first ¢ — 1 queries, plugging
in u; = v; as the answer to the jt" LOP oracle query. Once
we get to the i** query, we look at the instance <; of LOP
defining the next query, and compare u;, v; using <;; we then
order @, v accordingly, e.g. u <, v if u; <; v;. It follows
by construction that < is a total order, and its least element
corresponds to the unique sequence of correct oracle responses
in the computation A(z). Therefore by the correctness of A
we may read off in polynomial time from this sequence the
solution to the search problem R on input z. |

At this point we can prove Theorem 1 that Weak Avoid is
polynomial time many-one reducible to LOP:

Proof of Theorem 1: By [8] there is a PNP reduction from
the general Weak Avoid problem to the special case when the
stretch is 2n. Composing this with the reductions in Lemmas
11 and 12 we obtain a PNP reduction from Weak Avoid to
LOP. Applying Theorem 5 this in turn yields a polynomial-
time many-one reduction. |

Recall that LOP enjoys the special property of having
essentially unique solutions. Together with its closure under

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

PNP reductions, this endows LOP with the unusual property
of being equivalent to a decision problem. We define now a
decisional complexity class LY, possessing a few equivalent
definitions, whose complete problem is equivalent to the
search problem LOP:

Definition (Reminder of Definition 5). A language L is in
the complexity class LY if there is a polynomial time relation
R: ({0,1}*)2 — {0,1} and a polynomial p, so that for all
z, R(x,-,-) defines a total order on {0,1}*"™) whose minimal
element a has a1 = L(x).

Recalling Lemma 5, we have the following upper bound for
this class:

Observation 6. L5 C SP.

At first sight L5 seems to crucially involve a promise,
namely that <, defines a total order for all x, just like the
promise defining the class S5. However it turns out that this
promise can be eliminated and LOP can be given a purely
syntactic characterization. This is summarized in Theorem 6
which we restate here:

Theorem 6 The following are equivalent for a language L:
1) Lelf
2) L is PNP_Turing reducible to LOP.
3) L is polynomial time many-one reducible to LOP.

Conversely, the search problem LOP is polynomial time truth
table reducible to a language in L;.

Proof: If L € L then by definition it is many-one
reducible to LOP which gives (1) — (2). Theorem 5 gives
(2) — (3); inspecting the proof, for each x we may define
< so that the value L(z) is the first bit of the LOP solution
to <, which actually gives (2) — (1). [|

Finally we prove Theorem 7 from the introduction, which
tells us that LY satisfies two of the three most interesting
properties of the larger class S; :

Theorem 7

1) PNP C L and BPP C MA C L

2) LES contains a language of circuit complexity 2™ /n.

Proof: The inclusion PNP C LF follows directly from the

closure of L2P under PNP reductions. For the second inclusion,
we know that every language in MA is PNP-reducible to the
construction of a O(logn)-seed length PRG for O(n)-size
circuits [6]. The explicit construction of such PRGs is in turn
reducible to Weak Avoid [8], and Weak Avoid is reducible to
LOP by Theorem 1. Applying Theorem 5 the result follows.

For the second part, the proof is identical to the case of SE
shown in [2] given our reduction from Weak Avoid to LOP.
Given z € {0,1}" we may produce in 2°(") time an instance
of Weak Avoid C,, : {0,1}* — {0,1}?" so that any solution
is a truth table of a function f : {0,1}" — {0,1} of circuit
complexity 2" /n. By Theorem 1 we may then construct in
20(") time a nontrivial instance of LOP < so that from the

(’Lg is the exponential-time analogue of LF, where we replace “polynomial
time” with 20(") time” in its definition

unique minimal element of < we may read off a uniquely
defined Weak Avoid solution f,, for C,,. We then accept/reject
x based on f,(z). Using the closure properties of L5 the
language {f, }nen thus defined lies in LS. [|

The only interesting property of S5 which we cannot prove
is inherited by its subclass LY is the Karp-Lipton theorem:

Theorem ([31], credited to Sengupta). If NP € P/poly then
PH = S¥.

The proof of this result does not seem to generalize to L2P .

REFERENCES

[1] L. Chen, S. Hirahara, and H. Ren, “Symmetric exponential time requires
near-maximum circuit size,” in 56th Annual Symposium on Theory of
Computing, 2024.

[2] Z.Li, “Symmetric exponential time requires near-maximum circuit size:
Simplified, truly uniform,” in 56th Annual Symposium on Theory of
Computing, 2024.

[3] R. Kannan, “Circuit-size lower bounds and non-reducibility to sparse
sets,” Information and Control, vol. 55, no. 1, pp. 40-56, 1982.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0019995882903825

[4] R. Kleinberg, O. Korten, D. Mitropolsky, and C. Papadimitriou,
“Total Functions in the Polynomial Hierarchy,” in 12th Innovations
in Theoretical Computer Science Conference (ITCS 2021), ser.
Leibniz International Proceedings in Informatics (LIPIcs), J. R.
Lee, Ed., vol. 185. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2021, pp. 44:1-44:18. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2021/13583

[5] N. Vyas and R. Williams, “On Oracles and Algorithmic Methods
for Proving Lower Bounds,” in I4th Innovations in Theoretical
Computer Science Conference (ITCS 2023), ser. Leibniz International
Proceedings in Informatics (LIPIcs), Y. Tauman Kalai, Ed., vol.
251. Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum
fir Informatik, 2023, pp. 99:1-99:26. [Online]. Available: https:
//drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.99

[6] N. Nisan and A. Wigderson, “Hardness vs randomness,” Journal of

Computer and System Sciences, vol. 49, no. 2, pp. 149-167, 1994.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

$0022000005800431

R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential

circuits: Derandomizing the XOR lemma,” in Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing, ser. STOC *97.
New York, NY, USA: Association for Computing Machinery, 1997, p.
220-229. [Online]. Available: https://doi.org/10.1145/258533.258590
[8] O. Korten, “The hardest explicit construction,” in 62nd Annual Sympo-
sium on Foundations of Computer Science, 2021.
[9] E. Jefdbek, “Dual weak pigeonhole principle, boolean complexity, and
derandomization,” Annals of Pure and Applied Logic, vol. 129, no. 1,
pp. 1-37, 2004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0168007204000156
[10] V. Guruswami, X. Lyu, and X. Wang, “Range Avoidance for
Low-Depth Circuits and Connections to Pseudorandomness,” in
Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2022), ser. Leibniz
International Proceedings in Informatics (LIPIcs), A. Chakrabarti
and C. Swamy, Eds., vol. 245. Dagstuhl, Germany: Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022, pp. 20:1-20:21.
[Online]. Available: https://drops-dev.dagstuhl.de/entities/document/10.
4230/LIPIcs. APPROX/RANDOM.2022.20
[11] R. M. Karp and R. J. Lipton, “Some connections between nonuniform
and uniform complexity classes,” in Proceedings of the Twelfth Annual
ACM Symposium on Theory of Computing, ser. STOC *80. New York,
NY, USA: Association for Computing Machinery, 1980, p. 302-309.
[Online]. Available: https://doi.org/10.1145/800141.804678

[12] O. Korten, “Derandomization from time-space tradeoffs,” in Proceedings
of the 37th Computational Complexity Conference, ser. CCC ’22.
Dagstuhl, DEU: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2022. [Online]. Available: https://doi.org/10.4230/LIPIcs.CCC.2022.37

[7

—

1406

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

(23]

(24]

(25]

[26]

[27]

(28]

(291

(30]

Y. Chen, Y. Huang, J. Li, and H. Ren, “Range avoidance, remote
point, and hard partial truth table via satisfying-pairs algorithms,”
in Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, ser. STOC 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1058-1066. [Online]. Available:
https://doi.org/10.1145/3564246.3585147

R. Tlango, J. Li, and R. R. Williams, “Indistinguishability obfuscation,
range avoidance, and bounded arithmetic,” in Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, ser. STOC 2023.
New York, NY, USA: Association for Computing Machinery, 2023,
p. 1076-1089. [Online]. Available: https://doi.org/10.1145/3564246.
3585187

K. Gajulapalli, A. Golovnev, S. Nagargoje, and S. Saraogi, “Range
Avoidance for Constant Depth Circuits: Hardness and Algorithms,”
in Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2023), ser. Leibniz
International Proceedings in Informatics (LIPIcs), N. Megow
and A. Smith, Eds., vol. 275. Dagstuhl, Germany: Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023, pp. 65:1-65:18.
[Online]. Available: https://drops-dev.dagstuhl.de/entities/document/10.
4230/LIPIcs. APPROX/RANDOM.2023.65

Y. Chen and J. Li, “Hardness of range avoidance and remote point for
restricted circuits via cryptography,” Cryptology ePrint Archive, Paper
2023/1894, 2023, https://eprint.iacr.org/2023/1894. [Online]. Available:
https://eprint.iacr.org/2023/1894

P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi, “The
relative complexity of np search problems,” Journal of Computer and
System Sciences, vol. 57, no. 1, pp. 3—19, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000098915756
L. Fortnow and T. Yamakami, “Generic separations,” Journal of
Computer and System Sciences, vol. 52, no. 1, pp. 191-197, 1996.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$002200009690015X

P. Beame, “A switching lemma primer,” Technical Report, Department
of Computer Science, University of Washington, 1994.

A. Razborov, Bounded Arithmetic and Lower Bounds in Boolean Com-
plexity, In Feasible Mathematics II. Birkhauser, 1993.

P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P. Pudlak,
and A. R. Woods, “Exponential lower bounds for the pigeonhole
principle,” in Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, May 4-6, 1992, Victoria, British Columbia,
Canada, S. R. Kosaraju, M. Fellows, A. Wigderson, and J. A.
Ellis, Eds. ACM, 1992, pp. 200-220. [Online]. Available: https:
//doi.org/10.1145/129712.129733

M. L. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the
polynomial-time hierarchy,” Math. Syst. Theory, vol. 17, no. 1, pp.
13-27, 1984. [Online]. Available: https://doi.org/10.1007/BF01744431

”»

M. Ajtai, “le—formulae on finite structures,” Ann. Pure Appl.
Log., vol. 24, no. 1, pp. 1-48, 1983. [Online]. Available: https:
//doi.org/10.1016/0168-0072(83)90038-6

J. Paris, A. Wilkie, and A. R. Woods, “Provability of the pigeonhole
principle and the existence of infinitely many primes,” J. Symb. Log.,
vol. 53, pp. 1235-1244, 1988.

A. Russell and R. Sundaram, “Symmetric alternation captures bpp,”
computational complexity, vol. 7, pp. 152-162, 1998. [Online].
Available: https://api.semanticscholar.org/CorpusID:15331219

R. Canetti, “More on bpp and the polynomial-time hierarchy,”
Information Processing Letters, vol. 57, no. 5, pp. 237-241, 1996.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0020019096000166

A. Maciel, T. Pitassi, and A. R. Woods, “A new proof of the weak
pigeonhole principle,” J. Comput. Syst. Sci., vol. 64, no. 4, pp. 843-872,
2002. [Online]. Available: https://doi.org/10.1006/jcss.2002.1830

M. Chiari and J. Krajivcek, “Witnessing functions in bounded arithmetic
and search problems,” Journal of Symbolic Logic, vol. 63, no. 3, pp.
1095-1115, 1998.

S. R. Buss, L. A. Kolodziejczyk, and N. Thapen, “Fragments of
approximate counting,” J. Symb. Log., vol. 79, no. 2, pp. 496-525,
2014. [Online]. Available: https://doi.org/10.1017/js1.2013.37

A. Atserias and N. Thapen, “The ordering principle in a fragment
of approximate counting,” Electron. Colloquium Comput. Complex.,
vol. TR13-149, 2013. [Online]. Available: https://eccc.weizmann.ac.il/
report/2013/149

1407

[31]

[32]

[33]

[34]

[35]

J-Y. Cai, “S2p in zppnp,” Journal of Computer and System
Sciences, vol. 73, no. 1, pp. 25-35, 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002200000600105X

S. Cook, R. Impagliazzo, and T. Yamakami, “A tight relationship
between generic oracles and type-2 complexity theory,” Information and
Computation, vol. 137, no. 2, pp. 159-170, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0890540197926468

P. Beame, S. A. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi,
“The relative complexity of NP search problems,” J. Comput.
Syst. Sci., vol. 57, no. 1, pp. 3-19, 1998. [Online]. Available:
https://doi.org/10.1006/jcss.1998.1575

C. B. Wilson, “Relativized circuit complexity,” in 24th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1983), 1983, pp. 329—
334.

A. Razborov, “Personal communication.”

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

