
Strong vs. Weak Range Avoidance and the Linear

Ordering Principle

Oliver Korten

Department of Computer Science

Columbia University

New York City, USA

oliver.korten@columbia.edu

Toniann Pitassi

Department of Computer Science

Columbia University

New York City, USA

tonipitassi@gmail.com

Abstract—In a pair of recent breakthroughs [1], [2] it was
shown that the classes S

E

2 ,ZPE
NP, and Σ

E

2 require exponential
circuit complexity, giving the first unconditional improvements
to a classical result of Kannan [3]. These results were obtained by
designing a surprising new algorithm for the total search problem
Range Avoidance: given a circuit C : {0, 1}n → {0, 1}n+1, find an
n+1-bit string outside its range. Range Avoidance is a member of
the class TFΣP

2 of total search problems in the second level of the
polynomial hierarchy, analogous to its better-known counterpart
TFNP in the first level. TFΣP

2 was only recently introduced in [4]
and its structure is not well understood. We investigate here the
extent to which algorithms of the kind in [1], [2] can be applied
to other search problems in this class, and prove a variety of
results both positive and negative.

On the positive side we show that Li’s Range Avoidance algo-
rithm [2] can be improved to give a reduction from Range Avoid-
ance to a natural total search problem we call the Linear Ordering
Principle or “LOP”: given a circuit z: {0, 1}n×{0, 1}n → {0, 1}
purportedly defining a total order on {0, 1}n, find either a
witness that z is not a total order or else a minimal element
in the ordering. The problem LOP is quite interesting in its
own right, as it defines a natural syntactic subclass “LP

2 ” of S
P

2

which nonetheless maintains most of the interesting properties
of S

P

2 ; in particular we show that L
P

2 contains MA and that its
exponential analogue L

E

2 requires 2n/n size circuits. Both of these
are consequences of our reduction from Range Avoidance to LOP.

On the negative side we prove that the algorithms developed
in [1], [2] cannot be extended to Strong Range Avoidance, a
problem considered in the same paper which first introduced
Range Avoidance [4]. In this problem we are given a circuit
C : {0, 1}n\{0n} → {0, 1}n, and once again seek a point outside
its range. We give a separation in the decision tree (oracle) model

showing that this problem cannot be solved in FP
Σ
P

2

|| , which in

particular rules out all of the new kinds of algorithms considered
in [1], [2]. This black box separation is derived from a novel depth
3 AC

0 circuit lower bound for a total search problem, which we
believe is of independent interest from the perspective of circuit
complexity: we show that unlike previous depth 3 lower bounds,
ours cannot be proven by reduction from a decision problem,
and thus requires new techniques specifically tailored to total
search problems. Proving lower bounds of this kind was recently
proposed by Vyas and Williams in the context of the original
(Weak) Avoid problem [5].

Index Terms—circuit complexity; total function complexity;

Supported by NSF Grant CCF 2212135

I. INTRODUCTION

One of the central problems in complexity theory is to prove

strong lower bounds on the size of boolean circuits computing

some explicit function f : {0, 1}n → {0, 1}; by a classical

result of Shannon, most such functions f require circuits

of size 2n/n. In the original formulation of this problem,

“explicit” meant f ∈ NP, since in this case case proving a

lower bound nÉ(1) would separate the classes P and NP. It

was soon realized that this problem remains difficult even for

much weaker definitions of “explicit,” i.e. if we broaden our

search for high circuit complexity functions to a much larger

uniform complexity class than NP.

Obviously there are decidable problems with maximal

circuit complexity, since a Turing machine with sufficient

resources may search for the hardest function fn : {0, 1}n →
{0, 1} by brute force given n, and then compute that function

fn on a given input of length n. Kannan [3] was the first to

investigate the precise complexity upper bound of this brute-

force construction of a hard language: he observed that the

class EΣP
2 , which denotes 2O(n)-time machines with access

to an oracle for a ΣP
2

complete language, contains a function

of maximum circuit complexity, precisely because this class

possesses sufficient resources to diagonalize over all low-

complexity functions of a given input length. The question

of finding the smallest uniform complexity class containing an

exponentially hard boolean function came to more prominence

following the seminal works of Nisan, Wigderson and Impagli-

azzo [6], [7], who showed that if one could improve Kannan’s

upper bound from EΣP
2 to E, it would imply BPP = P, i.e.

universal derandomization of all polynomial time algorithms.

A recent line of work on the Range Avoidance problem

(“Avoid”) has reformulated this topic in the language of

search problems [1], [8]. Consider the so-called “truth table

generator” TTn : {0, 1}ℓ → {0, 1}2
n

which takes as input the

description of a circuit C : {0, 1}n → {0, 1} of size s, and

outputs the truth table of the function it computes. If s << 2n,

then a standard argument shows that we may encode C in a

direct way using < 2n bits, so that ℓ < 2n and the function

TTn is computable in 2O(n) time. Therefore, to produce a

function of high circuit complexity, it suffices to find a string

y ∈ {0, 1}2
n

outside the range of C. This general problem,

1388

2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/24/$31.00 ©2024 IEEE
DOI 10.1109/FOCS61266.2024.00089

20
24

 IE
EE

 6
5t

h
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

cie
nc

e
(F

OC
S)

 |
 9

79
-8

-3
31

5-
16

74
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/F

OC
S6

12
66

.2
02

4.
00

08
9

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

where we are given a circuit with more output bits then input

bits and wish to find a string outside its range, is called Range

Avoidance. By the pigeonhole principle, it is a total search

problem, meaning it always has solutions. Viewing TTn as

an instance of the Range Avoidance problem we can observe

that if Avoid has a polynomial time algorithm then E requires

exponential-size circuits. For larger complexity classes, it was

shown in [8] (based on an earlier result in [9]) that solving

Avoid and proving circuit lower bounds are actually equivalent

problems: for exponential-time classes at least as large as ENP,

proving an exponential circuit lower bound is equivalent to

solving Avoid in the polynomial-time analogue of that class.

Beyond constructing hard boolean functions, algorithms for

Range Avoidance have a host of further applications in explicit

constructions of pseudorandom objects [8], [10].

This perspective was crucially used in recent breakthrough

works of Chen, Hirahara, Ren and Li [1], [2], who gave the

first unconditional improvement to Kannan’s classical result1.

These works showed that the classes SP
2
¦ ZPENP ¦ ΣE

2
all

contain a function of circuit complexity 2n/n, which is within

a (1±o(1)) factor of the maximum possible circuit complexity

of a boolean function. The results are established by giving

a new algorithm for Avoid which runs in the class FSP
2

, the

functional variant of the decision class SP
2

.

The authors of [1], [2] made progress on a classical lower

bound problem by discovering a new kind of algorithm

for the total search problem Range Avoidance. This search

problem lies in an unusual complexity class which was only

first investigated a few years ago by [4]: it is a member

of TFΣP
2

, the class of total search problems in the second

level of the polynomial hierarchy. Since the introduction of

TFΣP
2

in [4], there has been no follow up work developing

a structural classification of the problems therein, despite

the considerable attention that has been devoted to Range

Avoidance [1], [8], [10], [12]–[16] and explicit construction

problems more generally. The work of [1], [2] indicates that

some problems in TFΣP
2

admit highly nontrivial algorithms,

algorithms which have consequences in seemingly unrelated

areas of complexity. Do such algorithms exist for all search

problems in TFΣP
2

? What more can we say about the relation

of Avoid to other problems in this class? The purpose of

this work is to address these two questions in particular, and

more broadly to further the systematic study of TFΣP
2

beyond

its introduction in [4], with an emphasis both on inclusions

and black box separations. Prior to our work, no non-trivial

separations between problems in TFΣP
2

were known.

TFΣP
2

has a more famous cousin one level down in the

polynomial hierarchy, the class TFNP of total NP search

problems. In contrast to TFΣP
2

, TFNP has received a thorough

investigation over the past three decades and its structure is

1This is the first improvement on finding the smallest complexity class with
an exponential circuit lower bound. If the goal is to prove merely superpolyno-
mial lower bounds, lower bounds for smaller classes can be established using
Karp-Lipton theorems [11], an approach pioneered in Kannan’s original paper
[3]. This method can at best show “sub-half-exponential” lower bounds, and
only for infinitely many input lengths.

rather well understood in comparison. A major distinction we

reveal between TFΣP
2

and TFNP is that the former has a

plethora of resource-constained subclasses, many of which can

be separated from one another by explicit and natural search

problems. By “resource-constrained subclass” we mean a class

of search problems characterized by the existence of some

resource-constrained algorithm which can find a solution. One

example we will see is the class psFZPPNP, the class of

problems where for every input x, there is a canonical solution

yx which is output with high probability by some polynomial

time NP-oracle algorithm. Another class is FPΣ
NP

2
∩Π

P

2 , con-

sisting of those problems which can be solved in polynomial

time with oracle access to a language in ΣP
2
∩ ΠP

2
. We will

introduce and study several other such subclasses, and exhibit

four natural search problems which exhibit separations (in the

decision tree model) between them. This situation is in stark

contrast to the known structure of TFNP: while FNP does

contain some intermediate resource-constrained classes, such

as psFZPP and FPNP∩coNP (these are roughly analogous to

psFZPPNP and FPΣ
NP

2
∩Π

P

2 mentioned above), it is known that

in the decision tree model all of these classes collapse to FP.

As a result in the decision tree model, the only resource-

based distinctions amongst the standard TFNP problems is

the distinction between FP and the rest of TFNP.

A. Overview of Main Results

A search problem is defined by a relation R ¦ {0, 1}∗ ×
{0, 1}∗, where for each “instance” x we say y is a “solution

for x” if (x, y) ∈ R; the relevant task is to find a solution

given an instance. We say that a search problem is total if

every instance has a solution. A defining feature of search

problems which distinguishes them from decision problems

is that a given instance may have many different solutions.

Indeed, if a search problem has a unique solution on every

instance, then it may be equivalently phrased as a decision

problem: given (x, i), output the ith bit of the unique solution

for x. For many search problems of interest it is not clear how

to reduce them to a decision problem of the same complexity.

For example given total search problem R we may define the

decision problem LexFirstR, where given an instance (x, i)
we must output the ith bit of the lexicographically first solution

to x. While LexFirstR is clearly at least as hard as R, in many

cases it will be much harder and a reduction does not seem

to exist in the opposite direction.

Say that A is a deterministic algorithm solving some search

problem R. Then A naturally associates to each instance x a

canonical solution yx := A(x) which it outputs. In particular

we can think of A as defining a second search problem R′

with (x, y) ∈ R′ iff A(x) = y; if A solves the original search

problem R, then R is reducible to R′ since (x, y) ∈ R′ →
(x, y) ∈ R. Now, if the algorithm A lies in some restricted

complexity class, then this places the same complexity upper

bound derived search problem R′. The point of this is that

when we have some nontrivial deterministic algorithm solving

a search problem R, we may think of it as giving a reduction

from R to a search problem with unique solutions.

1389

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

For most of the classical problems in the class TFNP it

is believed that there is no decision problem which captures

their complexity precisely, a conjecture supported by black

box separations [17]. More generally it is believed that for

most of the standard problems R ∈ TFNP, any unique-

solution problem R′ which we can reduce R to must lie

outside of TFNP2. The new results in [1], [2] reveal that the

situation for Range Avoid is different: because their Range

Avoidance algorithms are deterministic and are upper bounded

inside TFΣP
2

, they imply that Range Avoidance is reducible

to a problem in TFΣP
2

with unique solutions. To make this

discussion more formal we need to define the class TFΣP
2

and

its unique solution subclass TFUΣP
2

:

Definition 1 (TFΣP
2

and TFUΣP
2

). A polynomially-bounded3

search problem R lies in TFΣP
2

if it is a total search problem,

and there exists a coNP verifier V so that (x, y) ∈ R if and

only if V(x, y) = 1. We say R ∈ TFUΣP
2

if moreover every

instance has a unique solution.

In this terminology Li’s result implies the following: Range

Avoidance is polynomial-time reducible to a problem in

TFUΣP
2

. His result is in fact a significant strengthening of

this, but for now we focus on this particular consequence,

which seems quite unintuitive on the surface: given an instance

f : {0, 1}n → {0, 1}n+1 of Range Avoidance, there are at

least 2n distinct solutions, and it is not clear how to narrow

down to any particular solution which is “more special” then

the others. Our first contribution is to clarify this result in the

following way: we introduce a natural TFΣP
2

search problem,

whose containment in TFUΣP
2

is obvious from the definition,

and then show that Range Avoidance reduces to this problem:

Definition 2 (Linear Ordering Principle (LOP)). Given z:
{0, 1}n × {0, 1}n → {0, 1} specified by a boolean circuit,

find a witness that z does not define a total ordering on

{0, 1}n, or else find the minimal element in the ordering it

defines. A witness that z does not define a total order consist

of x, y, z ∈ {0, 1}n such that one of the following holds: (a)

x z x; (b) x ̸= y, x ̸z y, and y ̸z x; (c) x z y z z and

x ̸z z.

While this problem does not literally have unique solutions

as stated, it has a property which we show is morally equiv-

alent. Observe that one type of solution in this problem is

easier to verify then the other: a witness that z fails to define

a linear order can be verified in polynomial time, whereas

a candidate minimum element can only be verified in coNP.

Moreover, if an instance has no easily verifiable solutions, then

it has a unique solution. This follows from the fact that every

linear order has a unique minimal element. We summarize this

by saying that LOP has essentially unique solutions; a very

easy argument (Section II, Lemma 3) shows that any problem

2This is equivalent to saying that we believe these standard problems, e.g.
PPAD or PPP, not to lie in FPNP∩coNP.

3The “polynomially bounded” condition just means we are restricting
attention to search problems whose solutions have polynomially bounded
length.

with essentially unique solutions is reducible to a problem in

TFUΣP
2

. We then prove:

Theorem 1. Range Avoidance is polynomial time reducible to

LOP.

We believe this result goes a long way in explaining the new

upper bounds for Range Avoidance. In particular our reduction

isolates the two key steps in Li’s algorithm which allow us

to single out a special low complexity canonical solution for

Range Avoidance: the first step prepares a special subset

of solutions using a certain tree-like iteration construction,

and the second step singles out a fixed canonical solution

among these by defining a certain total ordering on these

special solutions. Recall our comment under Definition 1 that

Li’s result is in fact stronger than a reduction from Range

Avoidance to a problem in TFUΣP
2

: more generally he shows

that Range Avoidance lies in the complexity class FSP
2

(we will

review the definition of this class in Section II). Our result

subsumes this upper bound as well, since another very direct

argument shows that LOP lies in FSP
2

. Thus our result gives the

current best upper bound on the Range Avoidance problem,

and hence on the Kannan’s classical problem of constructing

the truth table of a hard boolean function.

At this point we have seen that there are search problems

in TFΣP
2

which seem on the surface to have no distinguished

solutions, but which nonetheless can be reduced to problems

in TFUΣP
2

by some highly non-obvious means. This naturally

points to the following question: are all problems in TFΣP
2

reducible to TFUΣP
2

? We give a negative answer in the deci-

sion tree model. Our separation is exhibited by the following

relative of Range Avoidance which was introduced originally

in [4].

Definition 3 (Strong Avoid). Given f : {0, 1}n \ {0n} →
{0, 1}n, find y ∈ {0, 1}n \ range(f).

From now on we will refer to Range Avoidance as “Weak

Avoid” to distinguish it from Strong Avoid. Our black box

separation will be significantly stronger than just showing that

Strong Avoid is not reducible to a problem in TFUΣP
2

; we will

show more generally that Strong Avoid cannot be solved by

making non-adaptive queries to any language in ΣP
2

, which

is equivalent to proving size lower bounds for depth-3 AC0

circuits solving Strong Avoid:

Theorem 2. In the decision tree model, Strong Avoid is not in

FP
Σ

P

2

|| . More specifically, let C : {0, 1}(N−1) logN → {0, 1}N
ϵ

be a depth-3 circuit of size 2N
ϵ

and let D : {0, 1}N
ϵ

→
{0, 1}logN be an arbitrary postprocessing function, where

N = 2n = |{0, 1}n|. Then provided ϵ is sufficiently small,

D ◦ C cannot solve Strong Avoid: there must be some input

f : [N − 1] → [N] so that D(C(f)) fails to find a

y /∈ range(f).

This immediately implies non-reducibility to TFUΣP
2

, since

any problem R ∈ TFUΣP
2

with unique solutions can be solved

with non-adaptive queries to the language {(x, i) | (x, y) ∈

1390

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

R→ yi = 1} which lies in ΣP
2

. The connection of these kinds

of separations to depth 3 AC0 lower bounds was spelled out in

a recent paper of Vyas and Williams [5] for the case of Weak

Avoid: their work established that nontrivial upper bounds for

Weak Avoid are equivalent to certain depth 3 circuits solving

the so-called “Missing String” problem: given an explicit list

of 2n−1 n-bit strings, output a string not in the list. The

input size here is ≈ N = 2n, and the question is whether

a depth 3 circuit exists of size polynomial or quasipolynomial

in N . Note that the Missing String problem is simply the

black-box variant of Weak Avoid. Li’s result showed that

quasipolynomial size depth-3 circuits for this problem actually

do exist, solving the original question of Vyas and Williams

in the positive. We show that if the problem is modified so

that the list of strings has length N − 1 rather then N
2 , then

depth-3 circuits require exponential size to solve this problem.

We note that our lower bound holds against a stronger class

of circuits than what was originally considered by Williams

and Vyas: in their model the depth 3 circuit is of the form

C : {0, 1}(N−1) logN → {0, 1}logN and must output the exact

solution to Avoid. Here we allow C to output an arbitrary

string in {0, 1}N
ϵ

, which can then be postprocessed arbitrarily

to construct a solution to Avoid.

By a simple reduction, we also obtain quasipolynomial

depth-3 circuit size lower bounds even for moderately weak

Avoid instances with domain [N] and codomain [N +
N/ logO(1)N]. This result gives a complete characterization

of the degree of “Weakness” necessary to obtain quasipoly-

nomial size depth 3 circuits: if the codomain has size N +
N/ logO(1)N then circuits of quasipolynomial size suffice,

and if its size is N + N/ logÉ(1)N then they do not; see

Lemma 9 for details.

Our last main result exhibits a more fine-grained separation

amongst the subclasses of TFΣP
2

. Above we have highlighted

one important distinction, between the problems which are

reducible to TFUΣP
2

and those which aren’t. However both of

the problems we’ve seen so far which reduce to TFUΣP
2

also

have an additional property: they are solvable by a polynomial

time randomized algorithm using a NP oracle. For Weak Avoid

this follows from its definition, while for LOP it follows from

its containment in the class FSP
2

. We show that this is not

possible for all problems reducible to TFUΣP
2

. Our separation

is exhibited by the following natural search problem:

Definition 4 (Strong 1-1 Avoid). Given f : {0, 1}n \ {0n} →
{0, 1}n, find a pair x ̸= y in {0, 1}n \ {0n} such that f(x) =
f(y), or else y ∈ {0, 1}n \ range(f),

Observe that Strong 1-1 Avoid enjoys the same property as

LOP of having essentially unique solutions: it is easy to verify

the collision solutions f(x) = f(y)'x ̸= y, and any instance

with no collision solutions has a unique solution. This follows

from the fact that any injective function f : [N] → [N + 1]
misses exactly one point in its codomain. Hence, like Weak

Avoid and LOP, the problem Strong 1-1 Avoid is reducible to

TFUΣP
2

. However we prove the following lower bound:

Fig. 1. Inclusion diagram of relevant classes and search problems. Solid
arrows represent the inclusion of the class at the base of the arrow into the
class at its tip. Dotted arrows indicate non-inclusion of the base class into
the tip class in the decision tree model. The main linear axis of classes along
the top are all included from left to right, indicated by the long solid arrow
above them. Our major results are the separations marked with ♠,♣ and the

inclusion marked with ♦. TFUΣP

2
essentially corresponds to FP

Σ
P

2
∩Π

P

2 , see
Lemma 2.

Theorem 3. In the decision tree model, Strong 1-1 Avoid is

not solvable in FBPPNP.

Aside from revealing further the structure of TFΣP
2

, this

result yeilds a new separation for decision classes which was

not previously known:

Theorem 4. In the decision tree model, ΣP
2
∩ ΠP

2
̸¦ BPPNP.

In particular ΣP
2
∩ ΠP

2
̸¦ SP

2
.

In the next two subsections we will describe these main

results in some more technical detail. A diagram of the struc-

ture of TFΣP
2

and our main results is given in Figure 1; some

classes in this diagram will not be defined until Section II-A.

B. Bounded Depth Circuit Lower Bounds and Class Separa-

tions

Our two main separations show that Strong Avoid has no

non-trivial upper bound inside of TFΣP
2

(Theorem 2), and

that Strong 1-1 Avoid has no randomized NP-oracle algorithm

(Theorem 7). The first lower bound is the more involved of

the two, and requires proving a novel depth 3 AC0 circuit

lower bound for a total search problem, which appears to be

the first circuit lower bound of this kind.

Theorem 2 yields a very fine-grained separation for the

Strong Avoid problem. It is easy to construct a depth 4 circuit

C : {0, 1}(N−1)+logN, → {0, 1}+logN, solving Strong Avoid,

where moreover the bottom fan-in is only O(logN) [5]. More

strongly, it is possible to construct a depth O(logN) decision

tree, which at each step queries a depth 3, poly(N) size

circuit on the input f , and at each leaf outputs a correct

solution y /∈ range(f). Our lower bound can be interpretted as

saying that if such a decision tree is forced to be non-adaptive,

then either the circuits it queries at each step must grow to

exponential size, or else the number of queries must grow

to NΩ(1). This also contrasts the situation with Weak Avoid,

where as mentioned above, Li’s construction gives depth-3

AC0 circuits of size NO(logN) for solving Weak Avoid.

1391

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

We believe our lower bound is of independent interest in

circuit complexity. In particular, we give a very precise depth-3

lower bound for a total search problem. It is of course possible

to construct contrived examples of total search problems which

are hard for AC0 circuits, for example “given x ∈ {0, 1}n

output b ∈ {0, 1} such that Parity(x) = b;” in such examples

we can derive hardness of the search problem by reduction

from a decision problem. In contrast, the lower bound we show

here cannot be established by reduction from any decision

problem. This follows from the fact that any decision problem

which is reducible to a TFΣP
2

search problem lies in ΣP
2
∩ ΠP

2
.

In the decision tree model, this means that any language which

can be solved by a small depth decision tree querying instances

of Strong Avoid has both ΣP
2 and ΠP

2 circuits. However, the

lower bound we are trying to show for Strong Avoid rules out

the existence of any FPΣ
P

2
∩Π

P

2 algorithm for Strong Avoid.

Phrased more succinctly, our lower bound establishes that

Strong Avoid is harder then any decision problem which can

be reduced to it, which by definition means we cannot establish

the lower bound itself by reduction from a decision problem.

In light of this, to prove Theorem 2 we must develop new AC0

lower bound techniques which are specially tailored to total

search problems.

Our second main lower bound (Theorem 3) places Strong

1-1 Avoid outside of FBPPNP. Recall that Strong 1-1 Avoid

has the property of having essentially unique solutions and is

thus reducible to a problem in TFUΣP
2

. We will see (Lemma

2) that this means it is reducible to a decision problem in

ΣP
2
∩ ΠP

2
. Combining this with the above lower bound we

obtain Theorem 4, which separates the decision tree class

ΣP
2
∩ ΠP

2
from BPPNP and in particular from SP

2
. This is in

contrast to the situation for NP ∩ coNP, which is known to

collapse to P in the decision tree model. This improves a

previous result of Fortnow and Yamakami [18] who showed

that ΣP
2
∩ ΠP

2
̸¦ PNP in the decision tree model.

1) Lower Bound Methods: A main technical ingredient in

both lower bounds is a new Switching Lemma (Lemma 6)

specialized for Avoid. Switching lemmas have been used for

both circuit lower bounds for computing functions, and in

proof complexity to prove lower bounds on the size of proofs

of hard tautologies (e.g., [19]–[21]). Between the two, our

argument bears a stronger resemblance to the second, however

there are some key conceptual differences. The basic idea

behind all switching lemmas is to show that under a random

restriction Ä (from a suitable distribution) a low-width DNF is

likely to be represented by a low-depth decision tree. Since a

low-depth decision tree representation for a function f implies

that both f as well as its negation can be represented by low-

width DNFs, this in turn allows us to collapse an AND of

low-width DNFs into a single low-width DNF, thus reducing

the circuit depth by 1.

A major difference between various switching lemmas is the

choice of distribution over restrictions, and the way in which

the decision tree represents a DNF. In the original Switching

Lemmas used to prove AC0 lower bounds for parity, the

restrictions are simply uniformly random partial restrictions,

and the notion of represents is with respect to every input.

That is, the decision tree computes the same function as the

DNF.

In the case of switching lemmas used in proof complexity

to prove AC0-Frege lower bounds for the [N] → [N + 1]
pigeonhole principle, we think of the input as specifying a

purported 1-1 function from [N] to [N + 1] (which cannot

actually exist if N is finite). The chosen distribution over

restrictions are partial 1-1 matchings from [N] to [N + 1],
and a low-depth “PHP decision tree” in this context can make

queries to a pigeon or to a hole at each vertex, and every

path in the tree corresponds to a partial matching. Since, in

reality, no 1-1 function from [N] to [N + 1] exists, these

trees do not represent the original DNF in any standard way.

However, if the input variables instead corresponded to a total

1-1 assignment from [N] to [N] (which do exist), then we

can apply the same PHP Switching Lemma to prove that

under a random partial 1-1 restriction, a low-width DNF is

likely to convert to a low-depth PHP decision tree, which now

represents the DNF in the sense that it agrees with the DNF

on all input assignments that correspond to 1-1 mappings from

[N] to [N].
In the case of Avoid, we have to modify the way of

constructing a decision tree associated with a DNF so that the

decision tree represents the original DNF in the sense that they

are truth-functionally equivalent with respect to all 1-1 input

functions from [N] to [M], where now M is strictly larger

than N . To achieve this, we modify the notion of pigeonhole

decision trees as follows. As in the original PHP Switching

Lemma in proof complexity, each node of our decision tree

will query either a pigeon or a hole. When a pigeon is queried

at a node, we allow edges for all possible holes that it could

be mapped to. But when a hole is queried, now we have

to allow for the possibility that this hole is unmapped: in

addition to allowing edges for each pigeon that could map

to this hole, we allow an extra edge corresponding to the case

where nothing maps to this hole. With this modification, our

pigeonhole decision trees will represent the original DNF with

respect to all 1-1 inputs from [N] to [M].
Another crucial distinction is how we use the Switching

Lemma to reduce the depth of the circuit by one. In the proof

complexity setting for the pigeonhole principle lower bounds,

we think of N as infinite, and therefore with respect to 1-

1 inputs, a DNF can be written as a low-width matching

disjunction, where each term in the disjunction corresponds

to a partial 1-1 function (or matching) from [N] to [N].
After applying the PHP Switching Lemma and a union bound,

each matching disjunction f (under Ä) becomes a low-depth

“matching decision tree”, enabling a reduction in the overall

circuit depth by one. To summarize, in the classical PHP

Switching Lemma, the underlying depth-2 subcircuits are

always low-width matching disjunctions, both before and after

each application of the PHP Switching Lemma. In our case,

the underlying depth-2 subcircuits are not of the same type

before and after applying our Pigeonhole Switching Lemma;

a consequence is that our Switching Lemma cannot be applied

1392

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

twice. This is not a defect of our method, but rather a necessary

feature of any technique here, since our search problem can

be solved by circuits of one higher depth. More specifically,

we show that initially the bottom depth-2 subcircuits of C can

be expressed as low-width matching disjuncdtions. But after

applying the Pigeonhole Switching Lemma, and subsequent

depth reduction, the new depth-2 subcircuits become hole

disjunctions which are a generalization of matching disjunc-

tions, where now each term in the DNF can specify not only

a partial 1-1 matching, but also a subset of holes that are

unmapped. With these appropriate modifications, our proof of

the switching lemma is similar to previous proofs.

Equipped with the Pigeonhole Switching Lemma, we can

give the high level view of both proofs. We start with Theorem

2. To prove Theorem 2, we would like to restrict attention to

the class of 1-1 input functions from [N] to [N +1]. However

if we truly restrict ourselves to 1-1 functions, then a lower

bound is not possible by Lemma 4: for these inputs, there

is a unique solution, and therefore a polynomial-size depth-

3 circuits can easily check whether the unique solution has

its ith bit equal to 1 or to 0 and hence solve the problem

unconditionally. To circumvent this barrier, we will prove a

strengthening of Theorem 2, by giving a lower bound for

Avoid on input functions f : [N] → [M], where M is larger

than N + 1. By enlarging the range of f , we can focus our

attention of f ’s that are 1-1 since now for every input, there

are at least M − N distinct solutions. Note that this implies

the lower bound stated above (with M = N + 1), since there

is a direct reduction from Avoid on instances [N] → [M] to

instances [N] → [N + 1]: we simply map every element of

[M]\[N+1] to the element N+1. Observe that this reduction

does not preserve injectivity.

Now assume there exists small-size s depth-3 circuit C
computing Strong Avoid on 1-1 functions from [N] to [M],
M >> N . We can first apply a standard argument (the Width

Reduction Lemma 8) so that we can assume that the bottom-

level fanin of C is at most O(log s). After this step, we can

assume that C is a size-s, depth-3 circuit, where the bottom

depth-2 subcircuits are low-width matching disjunctions. Next

we apply our Pigeonhole Switching Lemma (as discussed

above) which will guarantee that there exists a matching re-

striction Ä such that under Ä, all depth-2 matching disjunctions

in C will convert to low-depth pigeonhole decision trees. This

will allow us to reduce the overall circuit depth by 1, and

afterwards each output bit of C will be computed by a low-

width hole disjunction. As discussed above, a hole disjunction

is a type of DNF that generalizes matching disjunctions:

each term t in the hole disjunction can be viewed as partial

information about the input f . The partial information consists

of two parts: (i) first, t1 specifies a small partial matching,

pairing up some pigeons in [N] to some holes in [N +1]; (ii)

secondly, t2 specifies a small set of holes (disjoint from the

holes mentioned in t1 that are not in the range of f). It remains

to prove a lower bound for circuits C for solving Avoid, where

each output bit is specified by a low-width hole disjunction.

This is also accomplished using a kind of restriction, but rather

then choosing it at random we apply a careful deterministic

process involving a novel covering argument. This step is

somewhat reminiscent of early proofs of the Switching Lemma

(e.g., [22], [23]).

The proof of Theorem 3 again uses the Pigeonhole Switch-

ing Lemma, together with a direct argument. We want to

prove depth lower bounds for FBPPNP, which informally

are randomized decision trees of small height which, instead

of querying variables, are allowed to query the value of an

arbitrary low-width DNF over the inputs. By Yao’s minimax

principle, it suffices to prove that any low-depth PNP decision

tree cannot solve Avoid with probability 2/3, with respect to

the uniform distribution of 1-1 functions. We think of this dis-

tribution in the following way: first sample a uniform partial 1-

1 assignment Ä, then sample a uniform extension of Ä to a total

assignment. Applying our Pigeonhole Switching Lemma and

a union bound, we can argue that with high probability over

the first choice of Ä, all of the NP queries in our PNP decision

tree T can be simplified to small depth pigeonhole decision

trees, which overall allows T to be replaced by a low depth

pigeonhole decision tree. It then remains only to argue that a

pigeonhole decision tree of low depth cannot solve 1-1 Strong

Avoid with non-trivial probability on a uniform extension f
of Ä, which can be accomplished with a direct argument.

C. Linear Ordering Principle

We now discuss in more detail our results on the newly

defined Linear Ordering Principle problem, abbreviated LOP.

Recall that our main result here is Theorem 1, which says that

Weak Avoid is polynomial time reducible to LOP. The proof

follows much of the high level structure of Li’s result placing

Weak Avoid in FSP
2

, with some key modifications. Roughly

speaking, Li’s proof shows that given an instance of Avoid

f : {0, 1}n → {0, 1}n+1, we can define a comparison relation

¯ on {0, 1}poly(n), so that for some unique distinguished

element Ã∗ ∈ {0, 1}poly(n) we have Ã∗ ¯ Ã for all Ã ̸= Ã∗,

and Ã∗ contains a solution to the original Avoid instance.

In our case we need to define a similar comparison relation,

which in addition globally acts as a total order on {0, 1}poly(n).
To explain the argument more clearly we split the reduction

into two parts. We first introduce an intermediate search

problem called Forest Termination and reduce Weak Avoid

to this problem, then we reduce Forest Termination to LOP.

We note that our proof, as well as Li’s, also bears a strong

resemblance to the work of [24] who gave the first proof of the

weak pigeonhole principle in the bounded arithmetic theory

T2.

Our subsequent results show some appealing structural

properties of the complexity class defined by reducibility to

LOP. We start by proving closure under a broad class of

reductions:

Theorem 5. Any search problem which has a polynomial time

PNP Turing reduction to LOP also has a polynomial time

many-one reduction to LOP.

1393

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

Combining this closure property with the fact that LOP has

essentially unique solutions, we are able to conclude that LOP

is equivalent in complexity to a decision problem. In particular

we can define a decisional complexity class LP
2

for which LOP

is the “complete problem” (despite being a search problem

and not a language). We start by presenting a machine-based

definition of LP
2

:

Definition 5. A language L is in the complexity class LP
2

if

there is a polynomial time relation R : ({0, 1}∗)3 → {0, 1}
and a polynomial p, so that for all x, R(x, ·, ·) defines a total

order on {0, 1}p(n) whose minimal element a has a1 = L(x).

We then have the following equivalent characterizations:

Theorem 6. The following are equivalent for a language L:

1) L ∈ LP
2

2) L is polynomial time many-one reducible to LOP.

3) L is PNP-Turing reducible to LOP.

Conversely, the search problem LOP is polynomial time truth

table reducible4 to a language in LP
2

.

We mentioned in passing before that LOP is easily shown

to lie in the class FSP
2

, the functional analogue of the decision

class SP
2

(this will be shown in Lemma 5. The same reason

shows that LP
2
¦ SP

2
. For those unfamiliar with the somewhat

unconvential class SP
2

, this is a complexity class introduced

independently by Russell-Sundaram and Canetti [25], [26].

Their goal was to identify the smallest class in the polynomial

hierarchy which is sufficient to capture randomized algorithms,

in particular BPP and MA. Beyond this purpose the class

rarely appears, and so far no natural problems have been

exhibited which lie in SP
2

and not one of its more traditional

subclasses (such as BPP or NP). In addition it seems that

SP
2

does not have a complete problem, due to its definition

involving a promise. We have identified here a subclass LP
2

of

SP
2

, which is characterized exactly by a simple and natural

total search problem, and which nonetheless maintains the

interesting properties that motivated the original definition of

SP
2

:

Theorem 7.

1) PNP ¦ LP
2

and BPP ¦ MA ¦ LP
2

2) LE
2

5 contains a language of circuit complexity 2n/n.

In each case, the result stated for LP
2

was previously known

to hold for SP
2

and is now shown to be inherited by the

more natural subclass LP
2

. The only interesting property that

is known of SP
2

which we were unable to prove for LP
2

is the

Karp-Lipton theorem; we discuss this further Sections I-D and

IV.

D. Open Problems

We conclude our introduction with a few interesting prob-

lems which remain open. The first is rather broad:

4This is essentially the most restrictive reduction possible when reducing a
search problem to a language.

5LE
2

is the exponential-time analogue of LP
2

, where we replace “polynomial

time” with 2
O(n) time” in its definition

Problem 1. Show any additional inclusions or black-box

separations which are not implied by the arrows in Figure 1.

We specifically highlight the following:

Problem 2. Is there an FPNP Turing reduction from LOP to

Weak Avoid?

Our interest in this problem is the following observation:

Observation 1. Say that Linear Ordering Principle is FPNP

Turing reducible to Weak Avoid. Then there is a particular

language L of circuit complexity g 2n/n, and a deterministic

NP oracle algorithm A running in time 2O(n), such that given

oracle access to any language L′ of circuit complexity 2Ω(n),

AL′

computes L.

This follows by composing the reduction of Weak Avoid to

LOP, which produces a unique solution, with the (purported)

second reduction from LOP back to Weak Avoid. Such a

consequence would be rather surprising and interesting purely

from the perspective of circuit complexity.

Next we highlight the problem of better clarifying the

relationship between LP
2

and SP
2

:

Problem 3. Does LP
2
= SP

2
? Can they be separated in the

decision tree model? Does LP
2

satisfy a Karp-Lipton theorem?

For this problem, we would say LP
2

“satisfies a Karp-Lipton

theorem” if one could unconditionally prove the implication

“NP ∈ P/poly → PH = LP
2

.” A notable property of SP
2

is that

it is the smallest complexity class for which this statement is

known to hold.

The next problem we highlight is in the realm of depth 3

circuits:

Problem 4. Does Weak Avoid have depth 3 circuits of poly-

nomial size?

Recall that Li’s upper bound is only quasipolynomial, of

size around N logN . This problem seems intimately connected

to the long-standing open question in proof complexity of

whether the Weak Pigeonhole Principle has polynomial size

bounded depth Frege proofs; a quasipolynomial upper bound

was shown by Paris Wilkie and Woods [24] using a very sim-

ilar technique to Li’s, and [27] give a different bounded-depth

Frege upper bound of lower depth, but still quasipolynomial

size. Despite the strong aesthetic similarities we do not know a

formal connection in either direction between these problems.

Lastly, the search problems discussed here have other con-

nections to bounded arithmetic. In particular, the LOP princi-

ple has been investigated in several papers, defined explicitly

for the first time in [28] and studied mostly within the context

of characterizing the strength of Jerebek’s bounded arithmetic

theory of approximate counting relative to weaker theories,

and also as a new avenue for approaching the longstanding

problem of separating Buss’ T2 hierarchy by sentences of fixed

complexity. Buss, Kolodziejczyk and Thapen [29] observe that

the LOP principle is provable in both T 2
2 and in APC2, and

ask whether or not LOP is provable in the weaker theory

1394

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

T 1
2 + sWPHP , where sWPHP is the surjective weak

pigeonhole principle, and corresponds to the search problem

Weak Avoid. Atserias and Thapen [30] resolve this question,

proving that in the relativized setting, sWPHP does not prove

the LOP principle over T 1
2 . In fact they prove a stronger

result, that sWPHP cannot prove the HOP principle over

T 1
2 , where HOP is a Σb

1 version of LOP. It seems possible that

the techniques here could be used to give a negative answer

to Problem 2. A relatively unexplored area that is likely to

be fruitful is to discover more relationships between natural

search problems lying in the second level of the polynomial

hierarchy (and higher) and corresponding systems of bounded

arithmetic.

II. PRELIMINARIES

A. Search Problems, Complexity Classes, and Basic Inclusions

We define here a variety of subclasses inside of TFΣP
2

,

classified according to the computational resources necessary

to solve a search problem. We then prove some of the more

basic results relating these classes to eachother and to the four

main search problems of interest in this work.

Definition 6 (FPNP, FPΣ
P

2
∩Π

P

2 , FP
Σ

P

2

||). Let R be a search

problem and C a class of decision problems. We say R ∈ FPC

if there is a language L ∈ C and a polynomial time algorithm

making queries to L which “solves R:” given x it outputs y
such that (x, y) ∈ R. We say R ∈ FPC

|| if there is such an

algorithm, which moreover makes its queries nonadaptively:

given an input x it computes in polynomial time a list of

queries z1, . . . , zm, uses its L-oracle to test in unit time the

membership of each zi in L, and then uses the oracle responses

to output an answer in polynomial time.

We include for reference the following class considered in

[1], [2]:

Definition 7 (svFΣP
2

). svFΣP
2

is the class of search problems

having“singled-valued” FΣP
2

algorithms. We say R lies in this

class if there is a choice of canonical solution {(x, yx) ∈ R |
x} for each input x, a second relation R′ ∈ TFΣP

2
, and a

polynomial time function f so that whenever (x, z) ∈ R′,

f(z) = yx.

In Lemma 1 we relate this class to the others we have

defined here. Beyond this we will not need to reference this

class further: every time we prove an upper bound for a search

problem it will be in a class lower then svFΣP
2

, and our

separation for Strong Avoid will hold even against the larger

class FP
Σ

P

2

|| § svFΣP
2

. We next review the randomized classes:

Definition 8 ((ps)FZPPNP, (ps)FBPPNP). A relation R is

in FBPPNP if there exists a randomized polynomial time

algorithm with access to a SAT oracle which, given x, outputs

y such that (x, y) ∈ R with probability g 2/3. If the algorithm

always outputs a valid answer or § and answers § with

probability < 1
3 this places R in the subclass FZPPNP.

For a search problem R where each x may have many

solutions y, it is possible that a randomized algorithm outputs

different correct answers on the same input x as a function of

its random coin tosses. If for each x there exists a canonical

yx with (x, yx) ∈ R and some randomized algorithm computes

x 7→ yx with high probability, we say that algorithm is

pseudodeterministic; we use the prefix ps− to denote the

pseudodeterministic analogue of a randomized class.

The last standard complexity class we examine is the

functional analogue of SP
2

, defined as follows:

Definition 9 (FSP
2

). A search problem R is in FSP
2

if there

exists polynomial time algorithm V taking three inputs, so

that for all x there exists yx with (x, yx) ∈ R so that:

1) There exists Ã1 such that for all Ã2, V(x, Ã1, Ã2) = yx.

2) There exists Ã2 such that for all Ã1, V(x, Ã1, Ã2) = yx.

a) Search Problems vs. Function Problems:: As dis-

cussed in the introduction, some kinds of algorithms for search

problems have the property that they associate to each input

a fixed solution which the algorithm produces on that input.

With the exception of the non-pseudodeterministic randomized

classes FBPPNP and FBPPNP, each of the classes we have

just defined describes algorithms of this sort. These classes

are arranged nicely in the following hierarchy, as indicated in

Figure 1:

Lemma 1. FP ¦ FPNP ¦ FSP
2
¦ psFZPPNP ¦ FPΣ

P

2
∩Π

P

2 ¦

svFΣP
2
¦ FP

Σ
P

2

||

Proof: All inclusions follow directly from the definition,

with the exceptions of FPNP ¦ FSP
2

which is due to Russell-

Sundaram [25] and FSP
2
¦ psZPPNP which is due to Cai [31].

Recall the class TFUΣP
2

, referenced heavily in the introduc-

tion, consisting of those TFΣP
2

search problems with unique

solutions. This class is directly associated to FPΣ
P

2
∩Π

P

2 in this

hierarchy:

Lemma 2. The following are equivalent for any R ∈ TFΣP
2

:

1) R is polynomial time reducible to a problem in TFUΣP
2

.

2) R ∈ FPΣ
P

2
∩Π

P

2 .

Proof: Say R is polynomial time reducible to R′ ∈
TFUΣP

2
. So there are polynomial time functions so that for

all x, if (f(x), y) ∈ R′ then (x, g(x, y)) ∈ R. Consider the

language L defined as follows: (x, i) ∈ L iff for the unique y
with (f(x), y) ∈ R′, we have yi = 1. Then L ∈ ΣP

2
∩ ΠP

2
and

g yeilds a reduction from R to L.

In the other direction note that any language L ∈ ΣP
2
∩ ΠP

2

defines a search problem in TFUΣP
2

: given x find b ∈ {0, 1}
so that L(x) = b. The result follows directly from this fact.

Recall from the introduction that the problems LOP and

Strong 1-1 Avoid do not quite have unique solutions, but

come very close. We define this property of having essentially

unique solutions as follows:

Definition 10 (Essentially Unique Solutions). We say that

a total search problem R ∈ TFΣP
2

has “essentially unique

1395

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

solutions” if there are verifiers V1,V2 such that:

1) V1 is testable in polynomial time, while V2 is testable

in coNP.

2) For all x, either there exists y so that V1(x, y) = 1 and

(x, y) ∈ R, or else there exists a unique y such that

V2(x, y) = 1 and (x, y) ∈ R.

We then have:

Lemma 3. If R has essentially unique solutions then it is

polynomial time reducible to a search problem R′ ∈ TFUΣP
2

which actually has unique solutions. By Lemma 2 this is

equivalent to the statement R ∈ FPΣ
P

2
∩Π

P

2 .

Proof: Let V1,V2 witness that R has essentially unique

solutions. Consider the search problem R′: given x, output

either the lexicographically first y such that V1(x, y) = 1, or

else the unique y such that V2(x, y) = 1. By the definition of

V1,V2 we see that R′ is a total search problem with unique

solutions. Clearly R is polynomial time reducible to R′. We

need to show that R′ ∈ FΣP
2

. For a fixed x, say that there

exists y with V1(x, y) = 1, and let y0 be the lexicographically

first such y. Then we can confirm that (x, y0) ∈ R′ in coNP

by confirming V1(x, y0) = 1 and that for all y′ < y0 we

have V1(x, y
′) = 0. On the other hand say that there is no

y with V1(x, y) = 1, and let y∗ be the unique element with

V2(x, y
∗) = 1. Then we can confirm that (x, y∗) ∈ R′ in

coNP by checking that for all y we have V1(x, y) = 0, and

using V2 to confirm V2(x, y
∗) = 1 (recall that V2 is in coNP

by definition).

We now state formally the claim made in the introduction

that LOP and Strong 1-1 Avoid have essentially unique solu-

tions:

Lemma 4. Linear Ordering Principle and Strong 1-1 Avoid

have essentially unique solutions; hence both problems lie in

FPΣ
P

2
∩Π

P

2 .

Proof: Any injective function f : [N] → [N + 1] leaves

a unique point in [N + 1] out of its range. Every total linear

order on a finite set has a unique minimal element.

We next prove formally that LOP is contained in the class

FSP
2

, which follows quite directly from the definitions:

Lemma 5. Linear Ordering Principle is in FSP
2

.

Proof: Let z: {0, 1}n × {0, 1}n → {0, 1} be an instance

of Linear Ordering Principle. We construct the FSP
2

solver

V for z as follows. Let X = {0, 1}3n+1 be partitioned

so that the first 2n elements A are identified with {0, 1}n,

and the remaining > 23n elements B are identified with

potential witnesses that z fails to define a linear order. Given

Ã1, Ã2 ∈ X , V(z, Ã1, Ã2) behaves as follows:

1) If Ãi ∈ B codes a witness that z does not define a linear

order for some i ∈ {1, 2}, we output Ãi; if both do then

we output the lexicographically first between them.

2) Say Ãi ∈ B and Ãi′ ∈ A for {i, i′} = {1, 2}, and Ãi is

not a witness that z fails to define a linear order. In this

case we output Ãi′ .

3) If both Ã1, Ã2 ∈ A, we think of them as representing

elements a1, a2 of {0, 1}n and compare them according

to z. If a1 z a2 we output Ã1, otherwise we output Ã2.

First say that z is not a total order. Among all witnesses to

this let Ã ∈ B be the lexicographically first. Then for all

Ã′ ∈ X , we have V(z, Ã, Ã′) = V(z, Ã′, Ã) = Ã. On the

other hand say z is a total order and let Ã ∈ A correspond

to its unique minimal element. Then again for all Ã′ ∈ X ,

we have V(z, Ã, Ã′) = V(z, Ã′, Ã) = Ã. Thus in all cases V
gives an FSP

2
algorithm solving the Linear Ordering Principle

problem on input z.

Finally, amongst the 4 search problems studied here we

have the two following obvious inclusions which we haven’t

mentioned yet:

Observation 2. Weak Avoid and Strong 1-1 Avoid are poly-

nomial time reducible to Strong Avoid.

B. Oracle Separations and the Decision Tree Model

All of the upper bounds and inclusions we show in this

paper are unconditional and hold relative to every oracle. Since

showing any unconditional separations amongst the classes we

have identified would imply P ̸= NP, we can only hope to

establish separations in a restricted model. As is standard, our

restricted model will correspond to the “decision tree model”

of complexity classes, which can be framed either in terms

of oracles and Turing machines, or more directly in terms of

decision trees and bounded depth circuits, c.f. [32]. We choose

here the latter terminology.

All of our search problems are defined in terms of a function

or relation specified by a boolean circuit. Take for example

the Weak Avoid problem, whose instance is a boolean circuit

computing f : {0, 1}n → {0, 1}n+1. Clearly this problem

remains total if f were not represented by a small circuit,

but instead was an arbitrary function f : [2n] → [2n+1]. In

the decision tree model, the relevant search problem has as its

input an arbitrary function f : [N] → [2N] where N = 2n. For

example, the decision tree variant of the simplest complexity

class FP then corresponds to algorithms which can access

f only by querying its on poly(n) = poly(logN) different

inputs x ∈ [N]. If we imagine f : [N] → [2N] is specified

by an assignment ³ : {0, 1}[2
n]×[n+1], where ³x,i = f(x)i,

then this is equivalent to allowing the algorithm to query

poly(n) = poly(logN) variables of the assignment ³.

Decision tree analogues of other complexity classes can be

defined similarly. It is a standard result that a decision tree

separation implies a a separation of the associated Turing

machine classes relative to an oracle; more specifically it

is equivalent to a separation relative to a so-called “generic

oracle” [33].

Most of the definitions in our decision tree models will

be standard, e.g. bounded depth formulae and DNFs. One

decision tree model we study whose definition and notation

is less standardized is a FPNP decision tree:

Definition 11 (FPNP Decision Trees). Let f : {0, 1}n → A
be a function where A is some set. A PNP decision tree T

1396

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

computing f is defined by a binary tree, with each internal

node labeled by a DNF formula on the variables {xi | i f n}
and each leaf labeled by a value y ∈ A. On an input x ∈
{0, 1}n, we traverse T starting at the root. At each internal

node associated to a DNF D, we test if D(x) = 1; if so we

proceed to the right child of the current node, otherwise we

proceed to the left. When we reach a leaf we output the value

associated to it; T computes f if the value reached is f(x).
We say that T has complexity f r if its depth as a tree is at

most r, and each DNF associated to its nodes has width at

most r.

We next define the decision tree variant of FP
Σ

P

2

|| which is

the subject of our main lower bound Theorem 2:

Definition 12. Let R ¦ {0, 1}N × [M] black-box (relativized)

search problem. We say that R is in FP
Σ

P

2

|| if there exist ΣP
2

circuits Φ1, . . . ,Φk with k f poly log(N) and an arbitrary

post-processing function S : {0, 1}k → [M] so that for all

inputs f ∈ {0, 1}N , (f, S(Φ1(f), . . . ,Φk(f))) ∈ R. A ΣP
2

circuit is a 2poly logN -size depth 3 circuit with bottom fanout

f poly logN .

In our case the input will be some f ∈ {0, 1}N logN

representing a function f : [N] → [N + 1], and the relevant

search problem is to output some y ∈ [N+1] outside its range.

The fact that this captures the relativized version of FP
Σ

P

2

||
is based on the well known equivalence between relativized

levels of the polynomial hiearchy and quasipolynomial size

bounded depth circuits [22]; in particular the ΣP
2

circuits

Φ1, . . . ,Φk above correspond to a sequence of non-adaptive

ΣP
2

oracle queries.

Note on bottom fanin: The depth 3 circuit model which

captures FP
Σ

P

2

|| has the additional restriction that the bottom

level of each depth 3 circuit has fanin poly logN . Our lower

bound will apply also to the stronger model in which the depth

3 circuits are only constrained in their size and not their bottom

fanin.

Finally, we make note of one separation indicated in Fig-

ure 1 which was shown prior to our work:

Lemma (Wilson and Vyas-Williams [34] [5]). In the decision

tree model, Weak Avoid is not in FPNP.

III. LOWER BOUNDS FOR PIGEONHOLE PRINCIPLES

A. Pigeonhole Principle Basics

We will be concerned here with search problems where the

input is a function f : [N] → [M] with M > N , and the goal

is to find an empty pigeonhole of f .

Definition 13. We use [M][N] to refer to the set of all functions

f : [N] → [M]. We define a set of propositional variables,

referred to as “bit variables”, given by

BITSN,M := {fx,i | x ∈ [N], i ∈ [+logM,]}

We associate each truth assignment ³ : BITSN,M → {0, 1}
with the function f³ : [N] → [M], where where the value ³

assigns to fx,i indicates the ith bit of f³(x) in binary; if M is

not a power of two then we think of all strings in {0, 1}+logM,

of binary value exceeding M as being redundant representa-

tions of the element M . Similarly we associate every function

f : [N] → [M] with the assignment ³f : BITSN,M → {0, 1}
using the same correspondence.

For a conjunction of literals (term) Ä over the varaibles

BITSN,M , we define its pigeon-width to be the size of the set

{x ∈ [N] | fx,i or ¬fx,i occurs in Ä for some i}.

From now on we will often not refer explicitly to as-

signments ³ : BITSN,M → {0, 1}, only to functions

f : [N] → [M]. The relevance of this definition is that,

when defining circuits/computational devices whose input is

a function f : [M] → [N], we must specify how the device is

able to access/read the input f : typically this will correspond

to the ability to read the bits BITSN,M .

For the vast majority of this section we will restrict our

attention to functions f : [N] → [M] which are 1-1 (injective):

consequently when we speak about the evaluation of a formula

which takes f as an input, we will typically only care about

the behavior of that formula on this special class of inputs.

We use the following notation to express this:

Definition 14. Let FN,M ¢ [M][N] denote the set of all 1-1

functions [N] → [M]. For two predicates F,G : [M][N] →
{0, 1}, we say that F is equivalent to G (with respect to all

1-1 functions), denoted by F ≡ G, if F (f) = G(f) for all

f ∈ FN,M .

We now introduce notation for describing partial informa-

tion about an input f . A natural such unit of partial information

is a partial assignment Ä : BITSN,M → {0, 1, ⋆}, however for

our purposes it will be useful to define additional types of

partial information as well:

Definition 15 (Matchings and Hole Restrictions). A partial

matching Ã is a partially defined 1-1 function from [N] to

[M]. We use dom(Ã), range(Ã) to refer to the domain and

range of Ã, and nodes(Ã) = dom(Ã) ⊔ range(Ã). More

generally a “hole restriction” Ä = ïÃ,Eð consists of a partial

matching Ã and a set E ¦ [M] satisfying range(Ã) ∩E = ∅.

Let nodes(Ä) = nodes(Ã) ∪ E. We use |Ä | to refer to the

value |Ã| + |E|. We think of the hole restriction ïÃ,Eð as

describing the following partial information about a function

f : [N] → [M]: “f(x) = Ã(x) for all x ∈ dom(Ã),
and y /∈ range(f) for all y ∈ E.” For a total assignment

f ∈ FN,M , we say f is compatible with ïÃ,Eð, written

f∥ïÃ,Eð, if the above statement holds. For two hole re-

strictions Ä1 = ïÃ1, E1ð, Ä2 = ïÃ2, E2ð, we say they are

consistent, written Ä1∥Ä2, if there is a total assignment f which

is compatible with both. We say Ä1 extends Ä2, written Ä1 § Ä2,

if Ã1 § Ã2 and E1 § E2. We will think of a partial matching

Ã as a special kind of hole restriction of the form ïÃ, ∅ð, and a

total 1-1 assignment f as a special hole restriction of the form

ïf, range(f)ð, where range(f) = [M] \ range(f). In this way

we will use the above terminology to define relations between

matchings, hole restrictions and total 1-1 assignments, e.g.

1397

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

f∥Ã and Ã ¦ Ä .

The main subject of this section is circuits C :
{0, 1}|BITSN,M | → {0, 1}+logM, which solve Avoid, in the

sense that C(f) /∈ range(f) for all f , where C(f) denotes

feeding C the representation of f as an assignment to its

bit variables. We thus need some notation for basic kinds of

circuits computing a function of f , which will be hole and

matching disjunctions:

Definition 16 (Matching and Hole Disjunctions). A hole

disjunction ϕ = (iÄi over [M][N] is defined by a collection of

hole restrictions [N] → [M], which we refer to as the “terms”

of ϕ. We say ϕ(f) = 1, or “f satisfies ϕ,” if f∥Äi for some

term Äi of ϕ. In this way each hole disjunction is associated

with a boolean function FN,M → {0, 1}. If |Äi| f w for all i
we say that ϕ has width w. We call ϕ a matching disjunction

if all Äi are partial matchings.

Recall that we are primarily concerned here with the values

a formula takes on 1-1 assignments f ∈ FN,M . In such a

setting we can simplify any circuit so that the bottom two

logical layers are a set of matching disjunctions:

Observation 3. Let D be a DNF formula on the bit variables

BITSN,M . Then there is a matching disjunction ϕ so that

D ≡ ϕ. Moreover if D has pigeon-width w and size s, then

ϕ will have width at most w and size at most sMw.

Proof: Say that D = (i 'j ℓi,j is a DNF where each ℓi,j
is a literal on BITSN,M . For each term ti = 'jℓi,j we may

replace it by the matching disjunction:

¹i =
∨

Ã∈match(ti)

Ã

where match(ti) is the set of minimal partial matchings Ã so

that for each literal ℓi,j = (¬)Àfx,b in ti (with À ∈ {0, 1}),

there is an edge (x, y) ∈ Ã with yb = ¬À. Clearly we have

that ¹i(f) = ti(f) for all 1-1 assignments f , and thus we may

replace D with the matching disjunction (i¹i without affecting

its behavior on 1-1 assignments. Recall that the pigeon-width

of a term over BITSN,M is the total number of pigeons x ∈
[N] mentioned in the term; clearly the width of ¹i is at most

the pigeon width of ti since it only mentions the f w pigeons

relevant to ti; for this same reason we may bound its size

(number of terms) by Mw, the number of mappings from these

f w pigeons onto the M available holes.

Definition 17. Let ϕ = Ä1 (. . . (Äs be a hole disjunction

with Äi = ïÃi, Eið and let » = ïÃ, Uð be a hole restriction.

We define ϕ restricted by Ä , denoted by ϕ ↾ », as follows: (i)

First, any term Äi ∈ ϕ that is inconsistent with » is set to 0 by

» and thus these terms disappear from ϕ ↾ » (we also say they

are “killed” by »). If all terms are set to 0, then ϕ ↾ » = 0.

(ii) Otherwise for any term Äi consistent with », we replace

Äi with Äi ↾ » := ïÃi \Ã,Ei \Uð. If Äi ↾ » = ï∅, ∅ð this means

» already satisfies this term; if this happens for any of the Äi
then we set ϕ ↾ » = 1.

The last basic computational model acting on inputs f ∈
FN,M we consider is a “pigeonhole decision tree”:

Definition 18. A pigeonhole decision tree T over FN,M is

defined by a rooted tree with fanout fM , with leaves labeled

by values from some finite set Z . Each internal node v ∈ T
is labelled by either a “pigeon query” or a “hole query”.

Pigeon nodes (those that make a pigeon query) are labeled

by a query q(v) ∈ [N] and have f M outgoing edges each

labeled by a distinct element (q(v), y) ∈ [N] × [M]. Hole

nodes are labeled by a query q(v) ∈ [M] and have f N + 1
outgoing edges, which are either labelled by a distinct element

(x, q(v)) ∈ [N] × [M] or by q(v) ∈ [M]. (The label q(v)
corresponds to nothing mapping to pigeon q(v).) In this way,

we can associate each node v ∈ T to some ïÃ,Eð with Ã ¦
[N]× [M], E ¦ [M], consisting of the labels of all edges on

the path from the root to v in T . We then require that this pair

ïÃ,Eð associated to v is a hole disjunction.

T is said to be a complete pigeonhole decision tree if for

every f ∈ FN,M there is a (unique) root to leaf path in T
that is consistent with f . In the case that T is complete we

may associate T with a function T : FN,M → Z , where

T (f) is the value at the leaf of T consistent with f . The

depth of T is the length of the longest root to leaf path. We

will sometimes define pigeonhole decision trees without having

specific associated leaf values in mind; in this case we refer

to the tree as “unlabeled.”

Note: The queries in a pigeonhole decision tree do not

correspond directly to queries of the underlying bit variables

BITSN,M . While it is possible to query logM of the variables

BITSN,M to determine f(x) for some x ∈ [N], if we want

to determine the preimage of y ∈ [M] under f (or determine

it has no preimage), we would need to query ≈ N logM
variables of BITSN,M to make this determination directly.

Instead, a pigeonhole decision tree corresponds more directly

to a special kind of PNP decision tree on the bit variables.

We next observe that if T is a complete depth d pigeonhole

decision tree with binary leaf values, then we may represent

both T and ¬T by a width d hole disjunction:

Observation 4. Let F : FN,M → {0, 1} be some predicate.

If F ≡ T for some complete pigeonhole decision tree T of

depth d, then there exist hole disjunctions ϕ1, ϕ2 of width f d
so that F ≡ ϕ1 and ¬F ≡ ϕ2.

We will need the following variant of the Switching Lemma,

which says that for any low-width matching disjunction ϕ,

is we sample a random partial matching Ä, then with high

probability ϕ ↾ Ä will have a low-depth, complete pigeonhole

decision tree. The proof is left to the full version of this paper.

Definition 19 (Distribution of Partial Restrictions). Let

MN,M
K be the set of all partial matchings [N] → [M] with

exactly N −K edges. We use Ä ∼ MN,M
K to denote a sample

from the uniform distribution on this set. When N,M are clear

from context we write MK as shorthand for MN,M
K .

1398

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

Lemma 6 (Pigeonhole Switching Lemma). Let M,N, d ∈
N. Let ϕ be a width-w matching disjunction over [M][N]. If

M −N f K f N
4 and N,K, d, w sufficiently large, then

Pr

Ä

∼M

K

[ϕ ↾ Ä has no depth f d pigeonhole decision tree] f exp
(

d(logwK5−logN1/2+O(1))
)

B. Depth 3 Lower Bound for Strong Avoid

In this section we prove the following circuit lower bound,

which is a restatement of Theorem 2.

Theorem (Theorem 2 Restated). There is some absolute

constant ϵ > 0 so that the following holds. Let Φ1, . . . ,Φk

be depth 3, size f s unbounded fanout formulas over the bit

variables BITSN,N+1. Provided k f N ϵ and s f 2N
ϵ

, there

exists a string z ∈ {0, 1}k so that for all y ∈ [N + 1], there

exists an assignment f : [N] → [N + 1] such that:

1) Φi(f) = zi for all i
2) y ∈ range(f)

In particular it is not possible to determine an empty pigeon-

hole of f by reading the values of Φ1(f), . . . ,Φk(f).

Overview of Proof. As mentioned in Section I-B1, we want to

prove Theorem 2 by restricting attention to the class of inputs

that correspond to 1-1 functions, and in order to do this we

will need to prove a strengthening of Theorem 2, by proving

the lower bound for Avoid on input functions f : [N] → [M],
where M is larger than N +1. As discussed in Section I-B1,

this implies the lower bound stated above (with M = N +1).

Thus we assume for sake of contradiction that there exist

depth-3 AND-of-OR-of-AND circuits Φ1, . . . ,Φk of total size

at most s that solves Avoid on all one-to-one instances f :
[N0] → [M0], where M0 = N0 +N ϵ

0 , for some 0 < ϵ < 1.

1) The first step is to argue that there exists a matching

restriction Ä such that after applying Ä, all depth-2

subcircuits (which are DNFs) have pigeon-width at most

w ≈ log s. This is accomplished in the Width Reduction

Lemma (8) by a standard Chernoff argument and a union

bound. Composing this with Observation 3, we can then

convert all of the depth two subcircuits to matching

disjunctions of the same width w, without affecting

their behavior on 1-1 assignments. Overall, we are left

with depth-3 circuits Φ1, . . . ,Φk which are ANDs of

matching disjunctions of width at most w = c log s for

some constant c > 0, and there size is at most sM c log s.

These circuits still solve Avoid but now with respect to

1-1 functions on the reduced domain and range, [N1],
[M1], where N1 = Ω(N0), and M1 ≈ N1 +N ϵ

1 .

2) At this point each Φi is an AND of low-width matching

disjunctions, i.e. we have Φi = 'jϕi,j where the ϕi,j
are width w matching disjunctions. The next step is

to apply our Pigeonhole Switching Lemma (6) which

will tell us that there exists a matching restriction Ä
such that for all i, j, ϕi,j ↾ Ä simplifies to a depth d
pigeonhole decision tree. We will be able to choose

the parameters in our switching lemma so that after

the second restriction, there are N2 remaining pigeons

and M2 = 2N2 remaining holes, with d2k2 < N2.

By Observation 4, this allows us to rewrite ¬ϕi,j as a

width=d hole disjunction, and thus ¬Φi as width d hole

disjunction. The simplified circuits ¬Φ1, . . . ,¬Φk still

solve Avoid, but now with respect to 1-1 functions on the

reduced domain and range leftover after this restriction,

i.e. on instances [N2] → [2N2].
3) The final step is to prove that if ϕ1, . . . , ϕk are width-d

hole disjunctions that solve Avoid with respect to all 1-1

functions from [N2] to [2N2], then we must have d2k2 >
N2. This is accomplished by Lemma 7. The proof is a

novel argument based on coverings. Recall that our goal

is to give some sequence of values z1, . . . , zk ∈ {0, 1},

so that for all y0 ∈ [2N2] we can find a 1-1 instance

f : [N2] → [2N2] so that ϕ1(f) = z1, . . . , ϕk(f) = zk,

but y0 is not an Avoid solution for f . This indicates that

the values ϕ1(f), . . . , ϕk(f) are insufficient to determine

an Avoid solution. To construct z1, . . . , zk, we start

by repeatedly searching for some ϕi whose underlying

terms have a small hitting set, which is a small set of

pigeons and holes so that every term of ϕi mentions at

least one of them. If some ϕi is found, we apply a partial

restriction Ä to the hitting set variables, which reduces

the width of ϕi by 1. Since there are k ϕi’s, and each

has width at most d, after dk iterations, each ϕi either

has been set to a constant, or is promised to have no

small hitting set. We set zi = 1 or zi = 0 for all the ϕi
which have been forced to a constant by our restriction

Ä in this process, and set zi = 1 for all the unkilled ϕi.
Then to finish the proof, we need to show that for any y0
we can find an instance f∥Ä so that y0 ∈ range(f), and

ϕi(f) = 1 for every ϕi which was unkilled in the first

step. Let y0 ∈ [2N2] be given. Starting with the partial

assignment Ä, we extend it so some unmapped pigeon

x0 goes to y0, and then we iterate over each unkilled

ϕi and try extend Ä to satisfy one of its terms greedily.

The correctness will follow from the fact that none of

the unkilled ϕi have a small hitting set.

We now formalize the above, which relies on the three

Lemmas mentioned in the proof overview. Two of these

Lemmas (Lemmas 8 and 7) will then be proven, while the

more involved Lemma 6 is omitted form this extended abstract

and can be found in the full version of the paper.

Proof of Theorem 2: Fix some ϵ, ¶ to be specified later.

Let N0 be sufficiently large, and let M0 = N0 +N ϵ
0 . Assume

towards a contradiction that Φ1, . . . ,Φk are depth-3, size s =

2N
ϵ/2
0 circuits so that for all assignments f : [N0] → [M0],

we may determine an empty pigeonhole for f by reading the

values Φ1(f), . . . ,Φk(f), and that k f N
ϵ/5
0 . Without loss of

generality we may assume:

Φi =
∧

j

Di,j

where Di,j is a DNF over the variables BITSN0,M0
. Obviously

if Φ1(f), . . . ,Φk(f) could determine an empty pigeonhole on

1399

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

all assignments f then it would do so on all 1-1 assignments;

we will derive a contradiction already from this fact.

Applying the width reduction lemma (Lemma 8) with w =
c log s for a sufficiently large constant c > 1, and a union

bound over i, j, we can find a partial matching Ä0 leaving N1

pigeons unmapped, where N1 = ¶N0, such that for all i, j,
Di,j ↾ Ä0 has pigeon-width w. We then convert each Di,j to

matching disjunction ϕi,j using Observation 3; the width of

the matching disjunctions is at most w, and their number is

at most s′ := s ·M c log s
0 f 2N

ϵ
0 . At this point each circuit

Φi has been reduced to a conjunction of width w matching

disjunctions of size s′. The reduced circuits still solve Avoid

with respect to all 1-1 functions f with domain N1 = ¶N0

and range M1 = N1 +N ϵ
0 .

Next we apply our Switching Lemma (Lemma 6) with the

following choice of parameters:

N := N1

M :=M1 = N1 +N ϵ
0

K := N ϵ
0

w = c log s = cN ϵ
0

d := K1/5 = N
ϵ/5
0

Choosing ϵ sufficiently small, it follows that for all i, j:

PrÄ∼MK
[Tϕi,j↾Ä has depth g d] <

1

ks′

Thus by a union bound over i, j, we conclude that there exists

a partial matching Ä so that for each i, j there is a pigeonhole

decision tree Ti,j of depth d such that ϕi,j ≡Ä Ti,j .

Applying Observation 4 we can find hole disjunctions Èi,j

of width d so that ¬ϕi,j ≡Ä Èi,j , and therefore ¬Φi ≡Ä
∨

j Èi,j which is a width d hole disjunction. By the conditions

on the original Φ1, . . . ,Φk, for all 1-1 assignments f extending

Ä we must be able to determine an empty pigeonhole of f by

reading the values ¬Φ1(f), . . . ,¬Φk(f).
After applying Ä, we are left with a reduced domain and

range [N2] and [M2], where N2 = K = N ϵ
0 , and M2 =

M1 − (N1 − K) = 2K = 2N2. Therefore on the smaller

input size [2N2]
[N2], we have found a sequence of k width-d

hole disjunctions such that on all 1-1 assignments g : [N2] →
[2N2], we can determine an empty pigeonhole of g by reading

the values of these hole disjunctions applied to g. At this point

we reach a contradiction with Theorem 7, since by our choice

of parameters we have 4k2d2 < N2 is satisfied (recall that

k f N
ϵ/5
0 by assumption).

Equipped with the Pigeonhole Switching Lemma (Lemma 6,

it is left to prove Lemmas 8 and 7. We will first prove Lemma

7 followed by a proof of Lemma 8.

Lemma 7. Let ϕ1, . . . , ϕk be hole disjunctions of width w
over [2N][N]. Then provided N > 4k2w2, there exists a string

z ∈ {0, 1}k so that for all y ∈ [2N], there exists a 1-1 function

f : [N] → [2N] such that:

1) ϕi(f) = zi for all i
2) y ∈ range(f)

In particular it is not possible to determine an empty pigeon-

hole of f from ϕ1(f), . . . , ϕk(f) for all 1-1 assignments f .

To prove this we need the following definition:

Definition 20 (Hitting Sets). If ϕ is a hole disjunction and

A ¦ [N] ⊔ [M], we say that A is a hitting set for ϕ if A ∩
nodes(Ä) ̸= ∅ for all terms Ä ∈ ϕ.

We can observe the following property of hitting sets:

Observation 5. Let Ã : [N] → [M] be a partial matching, ϕ
a nonempty hole disjunction, and A ¦ [N]⊔ [M] a non-empty

hitting set for ϕ ↾ Ã. Say that Ã′ is an extension of Ã such that

A ¦ nodes(Ã′). Then for each term Ä ∈ ϕ ↾ Ã, Ä has strictly

smaller width in ϕ ↾ Ã′ then it originally did in ϕ ↾ Ã.

We can now prove the main claim:

Proof: To prove this we will construct partial matching

Ã : [N] → [2N], a set I ¦ [k], and values {zi ∈ {0, 1} | i ∈ I}
so that:

1) For all total 1-1 assignments f extending Ã, ϕi(f) = zi
for all i ∈ I .

2) For all y0 ∈ [2N], there exists a total 1-1 assignment

f extending Ã so that ϕi(f) = 1 for all i /∈ I , and

y0 ∈ range(f).

We will initialize Ã = ∅ and expand it in stages by the

following procedure:

1) If there exists a nonempty A ¦ [N]⊔[2N], |A| f 2kw+
2 and some i ∈ [k] so that A is a hitting set for ϕi ↾ Ã,

then extend Ã to a 1-1 map Ã′ so that A ¦ nodes(Ã′). If

none exist then halt the procedure and output the current

Ã.

2) Set Ã := Ã′ and return to the previous step.

We claim that we will always be able to extend Ã in the appro-

priate way until no further hitting sets can be found, and that

at the end we will have |Ã| f kw(2kw+2) = 2k2w2 +2kw.

To see this, observe that if ϕ is a hole disjunction of width

w and nodes(Ã) is a hitting set for ϕ, then every term in ϕ
will either be killed in ϕ ↾ Ã or else have its width decreased

by 1 by Observation 5. Therefore the above procedure can

only repeat kw times before all the ϕi have been killed. In

each step at most 2kw + 2 edges need to be added to Ã in

order to cover A, so the total size of Ã at any step is at most

kw(2kw+2) = 2k2w2+2kw, and therefore there are always

enough available pigeons/holes to extend Ã in the appropriate

way at each step since N > k2w2.

Now we can choose I ¦ [k], which will consist of those

indices i so that ϕi ↾ Ã is forced to a constant (i.e. one of its

terms is already satisfied by Ã in which case it is forced to

one, or else all of its terms are killed and it is forced to 0).

For i ∈ I we denote by zi ∈ {0, 1} the value it is forced to. It

remains to show that for any given y0 ∈ [2N], we can find a

total 1-1 assignment f extending Ã so that y0 ∈ range(f) and

ϕi(f) = 1 for all i /∈ I . To do this we will construct a hole

1400

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

restriction ïÄ, Uð, where Ä is another partial matching disjoint

consistent with Ã, and U ¦ [2N] satisfying:

1) y0 ∈ range(Ã ∪ Ä)
2) |Ä| f kw, |U | f kw
3) U ∩ range(Ã ∪ Ä) = ∅
4) For each i ∈ [k] \ I there is a term ïÃ,Eð ∈ ϕi, so

that for all x ∈ dom(Ã) we have Ã ∪ Ä(x) = Ã(x), and

E ¦ U .

If we can accomplish this then the proof is complete. We

simply extend Ã ∪ Ä to a total 1-1 assignment f which leaves

U out of its range. By the assumption N > 4k2w2 such a

total assignment exists; here we are using the fact that the

total number of holes 2N is larger then the size of U plus the

number of holes filled thus far by Ã ∪ Ä. By construction we

then have ϕi(f) = 1 for all i /∈ I and y ∈ range(f).

Observe that by construction of Ã, for each i /∈ I we have

that ϕi ↾ Ã has no hitting set of size f 2kw + 2. We will

construct Ä, U in stages. Initially we check if y0 ∈ range(Ã),
if not we initialize Ä = {(x0, y0)} where x0 is an arbitrary

element unmapped in Ã, otherwise we initialize Ä = ∅. In

addition we initialize U = ∅. Now we go through each i ∈
[k]\I in order and do the following. We search for some term

Ä = ïÃ,Eð ∈ ϕi ↾ (Ã∪Ä) so that nodes(Ä)∩nodes(ïÄ, Uð) =
∅. If found, then we add the nodes in E to U and the edges in

Ã to Ä. We claim that it is always possible to find such a term

while maintaining that Ã∪Ä is 1-1 and U∩range(Ã∪Ä) = ∅. In

particular say that we have gotten to some step i ∈ [k]\I where

this is not possible. Let A = nodes(ïÄ, Uð). Observe that by

construction |A| f 2kw + 2. Recall that by construction of Ã
we have that A cannot be a hitting set for ϕi ↾ Ã. By definition

of a hitting set this implies the existence of the required term

Ä ∈ ϕi.

Next, we prove the Width Reduction Lemma:

Lemma 8 (Width Reduction). Let ϵ > 0 be a sufficiently small

constant. Let ϕ be a DNF over BITSN,M with s terms. Say a

partial matching Ä is sampled as follows: sample A ¦ [N] by

including each element independently with probability 1 − ϵ;
now choose a uniform 1-1 function A→ [M].

Pr
Ä
[D ↾ Ä has pigeon width g w] < exp(log s− Ω(w))

Proof: Let ϕ = ¼1, . . . , ¼s. We will ignore each term

whose pigeon width is already < w; its pigeon width cannot

increase under the restriction. Let ¼ ∈ ϕ be a term of width

g w. We will bound the probability that Ä does not kill the

term ¼ and then take a union bound over the s terms. Without

loss of generality we may assume ¼ is the literal fx,1; if it

were of the form fx,i or ¬fx,i for some i > 1 the argument

is completely symmetric. Let B ¢M consist of those y ∈M

whose first bit (in binary) is 1.

Pr
Ä
[¼ survives Ä]

=
∑

U¦dom(¼)

Pr[dom(¼) ∩ dom(Ä) = U] ·
(|B|

M

)|U |

f
w
∑

t=1

Pr[|dom(¼) ∩ dom(Ä)| = t] · 2−t

f 2−w/2 + Pr[|dom(¼) ∩ dom(Ä)| <
w

2
]

f 2−w/2 + Pr
À1,...,Àw∼Bern(1−ϵ)

[
∑

i

Ài f
w

2
] f exp(−Ω(w))

Where the last inequality follows from Chernoff’s bound and

Bern(1 − ϵ) denotes the Bernoulli distribution with expected

value 1− ϵ. Thus by a union bound

Pr
Ä
[ϕ ↾ Ä has width g w] f exp(log s− Ω(w))

a) Lower Bounds for Moderately Weak Avoid:: Above

we showed that depth-3 circuits cannot solve the Strong

Avoid problem unless their size is exponential. In contrast,

Li’s construction gives quasipolynomial size depth 3 circuits

which solve the Weak Avoid problem, i.e. Avoid on instances

[N] → [2N] when the codomain is at least twice as large

as the domain. By a standard iteration construction (the

same argument which lets us reduce [N] → [2N] Avoid to

[N] → [N2] Avoid as in [8]), for every constant d we can

obtain quasipolynomial size depth 3 circuits solving Avoid on

instances [N] → [N +N/ logdN]. We show here that this is

essentially optimal: for every constant c there exists another

constant d so that [N] → [N + N/ logdN] Avoid cannot be

solved by depth 3 circuits of size 2log
c N . The proof is a simple

reduction to Theorem 2 which is originally due to Razborov

[35].

Lemma 9. For every c ∈ N there exists d ∈ N so that

the following holds. Let Φ1, . . . ,Φk be depth 3 circuits of

size s such that for every assignment f : [N] → [N +
N/ logdN], an Avoid solution can be determined from the val-

ues Φ1(f), . . . ,Φk(f). Then either k g logcN or s g 2log
c N .

Proof: Let c ∈ N be fixed. We will choose M = logdN
for an appropriate choice of d which will be specified later

and which will depend only on c. We then reduce the Avoid

problem on instances [M] → [M + 1] to instances [N] →
[N + N/ logdN] as follows: given g : [M] → [M + 1], let

g¹ℓ : [Mℓ] → [(M + 1)ℓ] be the map which sends each

block [1,M], . . . , [M(ℓ − 1),Mℓ] to its corresponding block

in [1,M + 1], . . . [(M + 1)(ℓ− 1), (M + 1)ℓ] according to g.

Setting ℓ = N
M we see that g is a map [N] → [N + ℓ], where

ℓ = N/M = N/ logdN .

Obviously given g we can generate g¹ℓ without any compu-

tational overhead by simply substituting variables. In addition,

any Avoid solution to g¹ℓ uniquely determines an Avoid

solution to g, obtained by simply forgetting the block number

and outputting the position within the relevant block. Thus

1401

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

if the circuits Φ1(f), . . . ,Φk(f) could solve Avoid on inputs

[N] → [N + N/ logdN] then they can also solve Avoid on

inputs [M] → [M +1]. By Theorem 2 there is some absolute

constant ϵ, such that for this to be possible we must have

k gM ϵ and s g 2M
ϵ

. Setting d > c
ϵ the theorem follows.

C. BPPNP Lower Bound for 1-1 Strong Avoid

We restate the main result to be proved:

Theorem 3 In the decision tree model, Strong 1-1 Avoid is

not solvable in FBPPNP.

Recalling the definition of BPPNP (in the decision tree

model), if 1-1 Strong Avoid has BPPNP decision trees of

complexity w, then there is a distribution T over PNP decision

trees of complexity r, so that for all f : [N] → [N + 1] T
outputs a 1-1 Strong Avoid Solution with probability g 2/3.

By Yao’s minimax principle, this implies the existence of a

fixed tree T ∈ support(T), so that T (f) succeeds in finding

an empty pigeonhole of f with probability g 2/3 when f is

sampled uniformly from the space of 1-1 functions FN,N+1. It

thus suffices to rule out the existence of such a deterministic

tree T . We will use here the notation FN := FN,N+1, and

f ∼ FN to denote a uniform sample from this set. Thus

Theorem 3 follows from the following Theorem:

Theorem 8. There is an absolute constant ϵ > 0 so the

following holds: if T is a PNP decision tree of complexity

N ϵ over the bit variables BITSN,N+1 and leaves labeled by

elements of [N + 1], then:

Pr
f∼FN

[T (f) /∈ range(f)] f N−Ω(1)

The high level idea of the proof is as follows. Observe that

a random f ∼ FN,M can be sampled by first choosing a

uniform partial matching Ä of a certain size, and then choosing

a uniform completion of Ä to a total assignment. Applying our

Switching Lemma, we can argue that with high probability,

after we sample Ä we can replace all of the NP queries in

our PNP decision tree T with small depth pigeonhole decision

trees, which overall allows T to be replaced by a low depth

pigeonhole decision tree. It then remains only to argue that a

pigeonhole decision tree of low depth cannot solve 1-1 Strong

Avoid with non-trivial probability on a uniform extension f
of Ä, which can be accomplished with a direct argument.

Proof of Theorem 8: By definition of a PNP decision

tree, T is a binary tree of depth r = N ϵ with each internal

node branching on the value of some DNF of width r over

the bit variables BITSN,N+1. Let D1, . . . , Ds be the set of all

DNF associated to the nodes of T ; so s f 2r. As in the proof

of Theorem 2 we may apply Observation 3 and replace all

Di by width r logN matching disjunctions ϕi since we only

care about their behavior on assignments in FN . Fix some

parameter K to be specified later. We will consider sampling

f ∼ FN in the following way: first choose a uniform partial

matching Ä with N−K edges, then a uniform extension f § Ä
of Ä to a total 1-1 assignment. We define B as the event that

ϕi ↾ Ä does not have a pigeonhole decision tree of depth f r

for some i f s. Observe in the case Ä /∈ B, we may construct

a pigeonhole decision tree T of depth r2 so that T ≡Ä T ;

we simply simulate the original computation of T , and each

time a DNF Di was originally queried, we instead simulate

the depth f r pigeonhole decision which represents ϕi. Let

Pd(J) be the maximum, over all pigeonhole decision trees Q
of depth d on g : [J] → [J+1], of Prg∼FJ

[Q(g) /∈ range(g)].
Then we have:

Pr
f∼FN

[T (f) /∈ range(f)] = Pr
Ä, f§Ä

[T (f) /∈ range(f)]

f Pr
Ä
[Ä ∈ B] + max

Ä/∈B
Pr
f§Ä

[T (f) /∈ range(f)]

f Pr
Ä
[Ä ∈ B] + Pr2(K)

f 2r max
i

Pr
Ä
[ϕi ↾ Ä has no p.d.t. of depth f r] + Pr2(K)

where p.d.t. abbreviates pigeonhole decision tree. We will

prove in the next lemma that Pr2(K) f r2

K+1 . Setting ϵ
sufficiently small and K = r3, we can apply Lemma 6 and

complete the proof.

It remains to prove the bound on Pr2(K). At the cost of

increasing the depth of the tree by 1, we assume that a pigeon-

hole decision tree always queries a hole before outputting it

as a solution.

Lemma 10. Pd(N) = d
N+1

Proof: Let T be a tree witnessing Pd(N).
Say that T first queries a hole y ∈ N , so that

T (f) =



















T1(f) if f(1) = y

· · ·

TN (f) if f(N) = y

y if y /∈ range(f)

then we have:

Pd(N) = Pr
f
[T (f) /∈ range(f)]

= Pr
f
[y /∈ range(f)]+

∑

x

Pr
f
[f(x) = y] · Pr

f
[Tx(f) /∈ range(f) | f(x) = y]

f
1

N + 1
+

N

N + 1
Pd−1(N − 1)

Here we are using that fact that a uniform f conditioned on

f(x) = y is equivalent, up to relabeling, to a uniform member

of FN−1, and the labeling of pigeons and holes has no effect

on the value of Pd−1(N−1). By the same reasoning if T first

queries a pigeon x then we have the simpler bound:

Pr
f
[T (f) /∈ range(f)]

=
∑

y

Pr
f
[f(x) = y] · Pr

f
[Ty(f) /∈ range(f) | f(x) = y]

f Pd−1(N − 1)

1402

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

so overall

Pd(N) f max{Pd−1(N − 1),
1

N + 1
+

N

N + 1
Pd−1(N − 1)}

Therefore by induction on d we conclude that the optimal

pigeonhole decision tree achieving Pd(N) only queries holes,

and without loss of generality queries them in order 1, . . . , d
(in the base case we use the assumption that T must query a

hole before using it as an answer), then outputs the index of

the first empty hole that was queried (if any). Therefore we

have:

Pd(N) = Pr
f
[{1, . . . , d} ª range(f)] =

d

N + 1

Next we show that Theorem 4, separating the decision class

ΣP
2
∩ ΠP

2
from BPPNP, follows as a corollary of Theorem 3.

Proof of Theorem 4: Lemma 4 says that Strong 1-1

Avoid is solvable in FPΣ
P

2
∩Π

P

2 . This result holds relative to

every oracle (and thus in the decision tree model). Hence

relative to every oracle, if ΣP
2
∩ ΠP

2
¦ BPPNP then Strong

1-1 Avoid collapses into BPPNP. The result then follows from

Theorem 3.

IV. LINEAR ORDERING PRINCIPLE

In this section we investigate the complexity of the Linear

Ordering Principle. We restate the definition in a slightly

different terminology:

Definition (Linear Ordering Principle, Refinement of 2). The

input to LOP is a binary relation z on [N]× [N] specified by

a circuit. The following solutions are sought:

1) A witness that z does not define a total order on [N]
(trivial solution)

2) An element a0 ∈ [N] so that a0 z a for all a ̸= a0 ∈ [N]
(nontrivial solution)

We say an instance z is nontrivial if it has no trivial solutions.

The trivial solutions are enumerated formally as follows:

1) x such that x z x
2) x, y, z such that x z y z z and x ̸z z
3) x ̸= y such that x ̸z y and y ̸z x

Note that in the introduction we defined z to be a relation

on {0, 1}n × {0, 1}n. We state it in this more general form

here, since the space we define a linear ordering on in our

main reduction will not have size being a power of two. It is

straightforward to pad an instance of LOP which is defined on

some subset of {0, 1}n to the whole space without affecting

the value of the solution.

Recall from Section II-A that LOP has “essentially unique

solutions:” the trivial solutions are checkable in polynomial

time, and any instance without trivial solutions has a unique

nontrivial solution. Our primary interest in this problem stems

from the following reduction (stated in the Introduction):

Theorem 1 Weak Avoid is polynomial-time many-one re-

ducible to LOP.

We will describe the reduction in two parts, using an

intermediate search problem called Forest Termination:

Definition 21 (Forest Termination). The input consists of:

1) A function Pred : [M]× [N]× [N] → [M]
2) A function Col : [M]× [N] → {0, 1}

specified by boolean circuits. We think of the input as

representing a layered rooted forest F of depth N with

nodes partitioned into sets L1, . . . , LN , each of size M , with

nodes in L1 being roots and all other nodes in {Lj}j>1

having a unique parent in Lj−1. We say that the function

Pred “validly represents a forest” if the following holds:

for each u ∈ [M], k f j f i ∈ [N], we have that

Pred(Pred(u, i, j), j, k) = Pred(u, i, k). If this holds then

we may think of Pred as representing some forest F in the

following strong sense: for any node u ∈ Li with i > 1,

the nodes Pred(u, i, 1), . . . ,Pred(u, i, i) form the unique path

from L1 to u in F . Finally for each each u ∈ F with think of

Col(u, i) as coloring the node u ∈ Li red or blue.

We say that u ∈ F ∪{§} is a termination point of F if the

following holds:

1) u = {§} and L1 contains no blue node.

2) u is a node in F , the path from L1 to u in F uses only

blue nodes, and u does not have a blue child in F .

Now the search problem is: given Pred,Col, find a witness

that Pred does not validly represent a forest, or else find a

termination point in the forest it represents.

The totality of this problem follows by starting at at a blue

node in L1 (if one exists) and finding a maximal blue path

through its descendants in F . We start by giving a reduction

from Weak Avoid to Forest Termination. This is the aspect of

the proof which is very similar to arguments by Li and by

Paris Wilkie and Woods [2], [24].

Lemma 11. Weak Avoid with 2n stretch is polynomial-time

reducible to Forest Termination.

Proof: Let f : {0, 1}n → {0, 1}2n be given; we denote

by f0, f1 : {0, 1}n → {0, 1}n the functions obtained by

restricting to the first and last n bits of output respectively.

Let Sn denote the set of all binary strings of length at most

n, including the empty string ϵ. Naturally Sn is associated

with the nodes of a full binary tree of depth n; however since

the Forest Termination instance we construct involves a forest

whose structure and depth differ from that of Sn, we will use

the terminology of binary strings to refer to elements of Sn

in order to avoid confusion. We say s ³ s′ if s is a prefix

of s′, and s ¯ s′ if it is a proper prefix. We use s · s′ for

concatenation. If s ³ s′, with s′ = s · p, we use s′ − s to

denote p. We define the “preorder” < on Sn recursively with

respect to prefixes: for a prefix p and two distinct extensions

p · s, p · s′ with s < s′ (with the relative order of s, s′ defined

recursively), we put p · s < p · s′ < p. In the view of Sn as a

depth n perfect binary tree, this corresponds to the recursive

subtree ordering “left subtree < right subtree < root.” Note

that this is a total ordering with ϵ being the greatest element

1403

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

and 0n the least. Finally, for an element s ∈ Sn, we say that

s′ is a “left outlet” of s if either s′ = s or s′ = p0 for some

p ³ s. We use LO(s) to denote its set of left outlets; note

that |LO(s)| f n. Observe that for any s′ f s, there exists a

unique p ∈ LO(s) such that p ³ s′.
For some s ∈ Sn and some value x ∈ {0, 1}n, define fs(x)

recursively as follows: if s = ϵ then fs(v) = v. If s = bs′ for

some bit b and substring s′, fs = fs′(fb(x)).
We define a “transcript” as an element Ã ∈ ({0, 1}n)n. We

say the transcript Ã is valid for some s ∈ Sn if Ãi = 0n for all

i > |LO(s)|. In this way the valid transcripts for s are in one-

to-one correspondence with functions LO(s) → {0, 1}n. Thus

for a valid transcript Ã for s and some p ∈ LO(s), we use

Ã(p) ∈ {0, 1}n to denote the value the transcript associates to

p.

For a transcript Ã, and strings s′ < s ∈ Sn, we define the

transcript Ã′ = Pred(Ã, s, s′) as follows. We first check if Ã is

valid for s; if not we set Ã′ to be some fixed canonical choice

of invalid transcript for s′. Otherwise, for each p ∈ LO(s′),
we set Ã′(p) = fp−q(Ã(q)) where q ∈ LO(s) is the unique

left outlet of s which is an ancestor of p.

We now construct an instance of Forest Termination with

[N] = [2n+1 − 1] = Sn and M = [2n
2

] = ({0, 1}n)n. [N]
is associated naturally to Sn, so that each layer corresponds

to an element of Sn and the layers are ordered according to

<, i.e. L1 is associated to 0n ∈ Sn and LN to ϵ ∈ Sn. [M]
is associated to the set of possible transcripts, so that Ls will

be the set of all possible transcripts for the string s (some

valid and others invalid). We use Pred defined above to give

the Pred function in the instance of Forest Termination. It

should be noted that the depth of the forest defined here is

N = 2n+1 − 1, which is much larger then the depth of tree

naturally associated to Sn (whose depth is n); this is why we

have used the notation of binary strings rather then nodes in a

tree to refer to elements of Sn. It remains to define the node

coloring function Col.
If (Ã, s) ∈ [M]×[N] are such that Ã is not a valid transcript

for s, then Col(Ã, s) is red; if Ã is a valid transcript for s and

|s| < n then it is colored blue (|s| denotes its length as a

binary string). Otherwise if Ã is a valid transcript for s and

|s| = n, we check that Ã(s) = ¬fs(s), where ¬ denotes the

string obtained by flipping all bits. If so we color it blue,

otherwise we color it red. Note that since |s| = n, f(s) is

well defined, and thus so is fs(s).
It follows by construction that Pred validly defines a forest

in the sense of Definition 21. It remains to show that given any

termination point we may determine a solution to the original

instance of range avoidance. We first claim that there exists a

blue node in the first layer L0n , so that the solution to Forest

Termination cannot be §. Observe that LO(0n) = {0n}, thus

the transcript Ã which sets Ã(0n) = ¬f0n(0
n) will be blue.

Now, say that Ã ∈ Ls is a termination node. We claim that Ls

cannot be the last layer, i.e. s ̸= ϵ. Say towards a contradiction

that Ã is a termination node in layer Lϵ. So Ã is a valid

transcript for ϵ, which stores a single value x = Ã(ϵ). By the

assumption Ã is a termination point all of its predecessors are

blue. In particular if we view x as a length-n element of Sn,

then we have that Pred(Ã, ϵ, x) is blue, which by construction

means that fx(x) = ¬fx(x), which is a direct contradiction.

Now say that Ã is a termination node in layer Ls where

s ̸= ϵ; let s′ be the successor of s in the ordering <. First say

that |s′| = n; in this case (Ã, s) cannot be a termination point,

since we may construct a blue transcript Ã′ for s′ such that

Pred(Ã′, s′, s) = Ã by simply appending the value ¬fu′(u′) as

Ã′(u′) to the original transcript Ã for s. Otherwise we have s =
s′1. Let p = s′0; so p is a left-outlet of s, and therefore Ã stores

some values x0 = Ã(p), x1 = Ã(s). We claim that x0x1 must

be a solution to the Avoid instance f . Say this is not true and

there is some x ∈ {0, 1}n such that f(x) = x0x1; i.e. f0(x) =
x0 and f1(x) = x1. Then we can generate a blue transcript Ã′

for s′ as follows. Observe that LO(s′) = LO(s) \ {p} ∪ {s′}.

Thus if we remove p from the domain of Ã and set Ã′(s′) = x
to obtain Ã′, then Ã′ will be a blue transcript for s′ and we

will have Pred(Ã′, s′, s) = Ã, which means (Ã, s) cannot be a

termination point. To see this, note that in the computation of

Pred(Ã′, s′, s), the only modification made to Ã′ to generate

Ã will be to compute z0 = f0(Ã
′(s′)), z1 = f1(Ã(s

′)), and

add z0 as the value Ã associates to p and z1 as the value it

associates to s. By construction z0 = x0 and z1 = x1 so we

end up with the original transcript Ã.

Next we reduce Forest Termination to LOP, which is sim-

pler:

Lemma 12. Forest Termination is polynomial-time many-one

reducible to LOP.

We will prove shortly that any search problem which is PNP-

reducible to LOP is also polynomial-time many-one reducible

to LOP (Theorem 5); therefore it suffices to give a PNP

reduction.

Proof: Let Pred,Col an instance of Forest Termination.

We start by using an NP oracle to search for a witness that

Pred fails to validly represent a forest; if found we output

this as our solution, otherwise we know that the instance

indeed represents a forest F on the nodes L1 ⊔ · · · ⊔LN . For

conceptual simplicity, we modify F into a tree T by adding a

virtual blue root node § whose children consist of all nodes

in L1. We use < for the lexicographical ordering on each

Li. We now define a new ordering z on the nodes of T .

Its definition is given recursively with respect to subtrees of

T as follows: say that u is a node with blue-rooted subtrees

B1 < . . . < BK and red-rooted subtrees R1 < . . . < RK′

ordered lexicographically by their respective roots. Define z
recursively inside each Bi, Rj ; now between them use the

ordering B1 z . . . z BK z {u} z R1 z . . . z RK′ . By

induction on the depth of T we see that z is a total ordering.

The relation z will be our instance of LOP output by the

reduction; it remains to show that z is efficiently computable

and that its minimal element yeilds a Forest Termination

solution.

We first show how to compute z. Given u0 ̸= u1 ∈ T :

1404

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Example instance of Forest Termination with M = 4 and N =

3, with virtual root added at the top. Blue nodes are circles and red nodes
are diamonds. We have sorted each layer left to right so that blue nodes
come first, and within each color class the nodes are ordered left to right
lexicographically. The number on each node represents its position in the
ordering z. The nodes numbered 1 and 4 are the termination points of this
instance.

1) If u0 is an ancestor of u1 then let v be the child of

u0 from which u0 can be reached. If v is blue then set

u1 z u0, else if it is red set u0 z u1.

2) Otherwise let v be the least common ancestor of u0 and

u1, and let w0, w1 be the children of w from which

u0 and u1 can be reached respectively. We define the

relative ordering of w0, w1 in z, which is then inherited

by the pair u0, u1: if wb is blue and w¬b is red for

some b ∈ {0, 1}, then set wb z w¬b. Otherwise use the

lexicographical order < to order the pair w0, w1.

The only nontrivial step here is to compute a least common

ancestor of u1, u2, which can be accomplished with binary

search. Say u1, u2 lie in layers Li, Li′ respectively, with i′ > i.
The using Pred we find the ancestor of u2 in Li; call it û2. If

û2 = u1 then u1 is the ancestor of u2. Otherwise let j = +i/2,,

and compute the ancestors v1, v2 of u1, û2 in layer Lj . If

they are distinct then we repeat the same procedure starting

from v1, v2. Otherwise if v1 = v2 we prune all the layers

L1, . . . , Lj−1 from consideration and repeat the procedure

from u1, û2, taking Lj to be the root layer with v1 = v2
as its root, and renumbering the layers accordingly. Overall

the number of steps required is O(logN).
Finally it remains to show that any solution to LOP on the

instance z yields a solution to the given Tree Termination

instance, i.e. if u ∈ {§} ⊔ L1 ⊔ · · · ⊔ LN is minimal in the

ordering z then it must correspond to a termination point. Say

that u is not a termination point, then either:

1) There is an edge (v, w) in the path from the root to u so

that w is colored red. In this case we must have v z u.

2) u has a blue child v. In this case we have v z u.

In each case we see that u cannot be the minimal element. An

example of a Forest Termination instance and its correspond-

ing order z is given in Figure 2.

We now observe some special properties held by the search

problem LOP, the first of which is its strong closure properties

under a wide class of reductions:

Theorem (Theorem 5). Let R be any search problem which

has a polynomial-time, NP-oracle Turing reduction to LOP.

Then R is polynomial-time many-one reducible to LOP.

Proof: Let A be a polynomial time PNP Turing reduction

from some search problem R to LOP. Let x be an instance

of the search problem of length n. We first claim that we can

modify A so that:

1) A(x) only calls the LOP oracle on instances z which

are nontrivial, i.e. they define a true total order.

2) A(x) does not use its NP oracle.

To achieve the first condition, before each call to the LOP

oracle on an instance z, we first use the NP oracle to check

if z defines a total order, and to find a violation if not. If a

violation is found we no longer need to use the LOP oracle

on this instance; otherwise we know that z is a nontrivial

instance and we use the oracle to solve it. Now to achieve

the second condition, if ϕ is an instance of SAT with m
variables, we define the ordering zϕ on {0, 1}m by: y zϕ z if

ϕ(y) = 1'ϕ(z) = 0 or vice versa, otherwise zϕ orders them

lexicographically. Clearly zϕ is a nontrivial LOP instance, and

the minimal element of zϕ will tell us if ϕ is satisfiable.

At this point we have a polynomial time reduction A which

makes adaptive oracle calls to LOP on nontrivial instances,

each of which has a unique solution. We next modify A(x) to

make exactly m calls on all computation paths, and have each

call of the form z: {0, 1}m×{0, 1}m → {0, 1} for some fixed

value m = poly(n). We can accomplish this easily by padding

the algorithm with dummy queries and padding any instance

of LOP to a larger bit-length. We now define a new instance

zx: {0, 1}
m2

× {0, 1}m
2

→ {0, 1} as follows. An element

of {0, 1}m
2

is given by a sequence (u1, . . . , um) with ui ∈
{0, 1}m. To compare two elements ū = (u1, . . . , um), v̄ =
(v1, . . . vm), we find the first index i ∈ [m] so that ui ̸= vi.
We simulate A(x) through the first i − 1 queries, plugging

in uj = vj as the answer to the jth LOP oracle query. Once

we get to the ith query, we look at the instance zi of LOP

defining the next query, and compare ui, vi using zi; we then

order ū, v̄ accordingly, e.g. ū zx v̄ if ui zi vi. It follows

by construction that zx is a total order, and its least element

corresponds to the unique sequence of correct oracle responses

in the computation A(x). Therefore by the correctness of A
we may read off in polynomial time from this sequence the

solution to the search problem R on input x.

At this point we can prove Theorem 1 that Weak Avoid is

polynomial time many-one reducible to LOP:

Proof of Theorem 1: By [8] there is a PNP reduction from

the general Weak Avoid problem to the special case when the

stretch is 2n. Composing this with the reductions in Lemmas

11 and 12 we obtain a PNP reduction from Weak Avoid to

LOP. Applying Theorem 5 this in turn yields a polynomial-

time many-one reduction.

Recall that LOP enjoys the special property of having

essentially unique solutions. Together with its closure under

1405

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

PNP reductions, this endows LOP with the unusual property

of being equivalent to a decision problem. We define now a

decisional complexity class LP
2

, possessing a few equivalent

definitions, whose complete problem is equivalent to the

search problem LOP:

Definition (Reminder of Definition 5). A language L is in

the complexity class LP
2

if there is a polynomial time relation

R : ({0, 1}∗)3 → {0, 1} and a polynomial p, so that for all

x, R(x, ·, ·) defines a total order on {0, 1}p(n) whose minimal

element a has a1 = L(x).

Recalling Lemma 5, we have the following upper bound for

this class:

Observation 6. LP
2
¦ SP

2
.

At first sight LP
2

seems to crucially involve a promise,

namely that zx defines a total order for all x, just like the

promise defining the class SP
2

. However it turns out that this

promise can be eliminated and LOP can be given a purely

syntactic characterization. This is summarized in Theorem 6

which we restate here:

Theorem 6 The following are equivalent for a language L:

1) L ∈ LP
2

2) L is PNP-Turing reducible to LOP.

3) L is polynomial time many-one reducible to LOP.

Conversely, the search problem LOP is polynomial time truth

table reducible to a language in LP
2

.

Proof: If L ∈ LP
2

then by definition it is many-one

reducible to LOP which gives (1) → (2). Theorem 5 gives

(2) → (3); inspecting the proof, for each x we may define

zx so that the value L(x) is the first bit of the LOP solution

to zx, which actually gives (2) → (1).
Finally we prove Theorem 7 from the introduction, which

tells us that LP
2

satisfies two of the three most interesting

properties of the larger class SP
2

:

Theorem 7

1) PNP ¦ LP
2

and BPP ¦ MA ¦ LP
2

2) LE
2

6 contains a language of circuit complexity 2n/n.

Proof: The inclusion PNP ¦ LP
2

follows directly from the

closure of LP
2

under PNP reductions. For the second inclusion,

we know that every language in MA is PNP-reducible to the

construction of a O(log n)-seed length PRG for O(n)-size

circuits [6]. The explicit construction of such PRGs is in turn

reducible to Weak Avoid [8], and Weak Avoid is reducible to

LOP by Theorem 1. Applying Theorem 5 the result follows.

For the second part, the proof is identical to the case of SE
2

shown in [2] given our reduction from Weak Avoid to LOP.

Given x ∈ {0, 1}n we may produce in 2O(n) time an instance

of Weak Avoid Cn : {0, 1}ℓ → {0, 1}2
n

so that any solution

is a truth table of a function f : {0, 1}n → {0, 1} of circuit

complexity 2n/n. By Theorem 1 we may then construct in

2O(n) time a nontrivial instance of LOP z so that from the

6LE
2

is the exponential-time analogue of LP
2

, where we replace “polynomial

time” with 2
O(n) time” in its definition

unique minimal element of z we may read off a uniquely

defined Weak Avoid solution fn for Cn. We then accept/reject

x based on fn(x). Using the closure properties of LE
2

the

language {fn}n∈N thus defined lies in LE
2
.

The only interesting property of SP
2

which we cannot prove

is inherited by its subclass LP
2

is the Karp-Lipton theorem:

Theorem ([31], credited to Sengupta). If NP ∈ P/poly then

PH = SP
2

.

The proof of this result does not seem to generalize to LP
2

.

REFERENCES

[1] L. Chen, S. Hirahara, and H. Ren, “Symmetric exponential time requires
near-maximum circuit size,” in 56th Annual Symposium on Theory of

Computing, 2024.

[2] Z. Li, “Symmetric exponential time requires near-maximum circuit size:
Simplified, truly uniform,” in 56th Annual Symposium on Theory of

Computing, 2024.

[3] R. Kannan, “Circuit-size lower bounds and non-reducibility to sparse
sets,” Information and Control, vol. 55, no. 1, pp. 40–56, 1982.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0019995882903825

[4] R. Kleinberg, O. Korten, D. Mitropolsky, and C. Papadimitriou,
“Total Functions in the Polynomial Hierarchy,” in 12th Innovations

in Theoretical Computer Science Conference (ITCS 2021), ser.
Leibniz International Proceedings in Informatics (LIPIcs), J. R.
Lee, Ed., vol. 185. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2021, pp. 44:1–44:18. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2021/13583

[5] N. Vyas and R. Williams, “On Oracles and Algorithmic Methods
for Proving Lower Bounds,” in 14th Innovations in Theoretical

Computer Science Conference (ITCS 2023), ser. Leibniz International
Proceedings in Informatics (LIPIcs), Y. Tauman Kalai, Ed., vol.
251. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023, pp. 99:1–99:26. [Online]. Available: https:
//drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.99

[6] N. Nisan and A. Wigderson, “Hardness vs randomness,” Journal of

Computer and System Sciences, vol. 49, no. 2, pp. 149–167, 1994.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0022000005800431

[7] R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma,” in Proceedings of the Twenty-

Ninth Annual ACM Symposium on Theory of Computing, ser. STOC ’97.
New York, NY, USA: Association for Computing Machinery, 1997, p.
220–229. [Online]. Available: https://doi.org/10.1145/258533.258590

[8] O. Korten, “The hardest explicit construction,” in 62nd Annual Sympo-

sium on Foundations of Computer Science, 2021.

[9] E. Jeřábek, “Dual weak pigeonhole principle, boolean complexity, and
derandomization,” Annals of Pure and Applied Logic, vol. 129, no. 1,
pp. 1–37, 2004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0168007204000156

[10] V. Guruswami, X. Lyu, and X. Wang, “Range Avoidance for
Low-Depth Circuits and Connections to Pseudorandomness,” in
Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques (APPROX/RANDOM 2022), ser. Leibniz
International Proceedings in Informatics (LIPIcs), A. Chakrabarti
and C. Swamy, Eds., vol. 245. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 20:1–20:21.
[Online]. Available: https://drops-dev.dagstuhl.de/entities/document/10.
4230/LIPIcs.APPROX/RANDOM.2022.20

[11] R. M. Karp and R. J. Lipton, “Some connections between nonuniform
and uniform complexity classes,” in Proceedings of the Twelfth Annual

ACM Symposium on Theory of Computing, ser. STOC ’80. New York,
NY, USA: Association for Computing Machinery, 1980, p. 302–309.
[Online]. Available: https://doi.org/10.1145/800141.804678

[12] O. Korten, “Derandomization from time-space tradeoffs,” in Proceedings

of the 37th Computational Complexity Conference, ser. CCC ’22.
Dagstuhl, DEU: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2022. [Online]. Available: https://doi.org/10.4230/LIPIcs.CCC.2022.37

1406

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

[13] Y. Chen, Y. Huang, J. Li, and H. Ren, “Range avoidance, remote
point, and hard partial truth table via satisfying-pairs algorithms,”
in Proceedings of the 55th Annual ACM Symposium on Theory of

Computing, ser. STOC 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1058–1066. [Online]. Available:
https://doi.org/10.1145/3564246.3585147

[14] R. Ilango, J. Li, and R. R. Williams, “Indistinguishability obfuscation,
range avoidance, and bounded arithmetic,” in Proceedings of the 55th

Annual ACM Symposium on Theory of Computing, ser. STOC 2023.
New York, NY, USA: Association for Computing Machinery, 2023,
p. 1076–1089. [Online]. Available: https://doi.org/10.1145/3564246.
3585187

[15] K. Gajulapalli, A. Golovnev, S. Nagargoje, and S. Saraogi, “Range
Avoidance for Constant Depth Circuits: Hardness and Algorithms,”
in Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques (APPROX/RANDOM 2023), ser. Leibniz
International Proceedings in Informatics (LIPIcs), N. Megow
and A. Smith, Eds., vol. 275. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023, pp. 65:1–65:18.
[Online]. Available: https://drops-dev.dagstuhl.de/entities/document/10.
4230/LIPIcs.APPROX/RANDOM.2023.65

[16] Y. Chen and J. Li, “Hardness of range avoidance and remote point for
restricted circuits via cryptography,” Cryptology ePrint Archive, Paper
2023/1894, 2023, https://eprint.iacr.org/2023/1894. [Online]. Available:
https://eprint.iacr.org/2023/1894

[17] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi, “The
relative complexity of np search problems,” Journal of Computer and

System Sciences, vol. 57, no. 1, pp. 3–19, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000098915756

[18] L. Fortnow and T. Yamakami, “Generic separations,” Journal of

Computer and System Sciences, vol. 52, no. 1, pp. 191–197, 1996.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S002200009690015X

[19] P. Beame, “A switching lemma primer,” Technical Report, Department

of Computer Science, University of Washington, 1994.

[20] A. Razborov, Bounded Arithmetic and Lower Bounds in Boolean Com-

plexity, In Feasible Mathematics II. Birkhauser, 1993.

[21] P. Beame, R. Impagliazzo, J. Krajı́cek, T. Pitassi, P. Pudlák,
and A. R. Woods, “Exponential lower bounds for the pigeonhole
principle,” in Proceedings of the 24th Annual ACM Symposium on

Theory of Computing, May 4-6, 1992, Victoria, British Columbia,

Canada, S. R. Kosaraju, M. Fellows, A. Wigderson, and J. A.
Ellis, Eds. ACM, 1992, pp. 200–220. [Online]. Available: https:
//doi.org/10.1145/129712.129733

[22] M. L. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits, and the
polynomial-time hierarchy,” Math. Syst. Theory, vol. 17, no. 1, pp.
13–27, 1984. [Online]. Available: https://doi.org/10.1007/BF01744431

[23] M. Ajtai, “
∑1

1-formulae on finite structures,” Ann. Pure Appl.

Log., vol. 24, no. 1, pp. 1–48, 1983. [Online]. Available: https:
//doi.org/10.1016/0168-0072(83)90038-6

[24] J. Paris, A. Wilkie, and A. R. Woods, “Provability of the pigeonhole
principle and the existence of infinitely many primes,” J. Symb. Log.,
vol. 53, pp. 1235–1244, 1988.

[25] A. Russell and R. Sundaram, “Symmetric alternation captures bpp,”
computational complexity, vol. 7, pp. 152–162, 1998. [Online].
Available: https://api.semanticscholar.org/CorpusID:15331219

[26] R. Canetti, “More on bpp and the polynomial-time hierarchy,”
Information Processing Letters, vol. 57, no. 5, pp. 237–241, 1996.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0020019096000166

[27] A. Maciel, T. Pitassi, and A. R. Woods, “A new proof of the weak
pigeonhole principle,” J. Comput. Syst. Sci., vol. 64, no. 4, pp. 843–872,
2002. [Online]. Available: https://doi.org/10.1006/jcss.2002.1830

[28] M. Chiari and J. Krajı́vcek, “Witnessing functions in bounded arithmetic
and search problems,” Journal of Symbolic Logic, vol. 63, no. 3, pp.
1095–1115, 1998.

[29] S. R. Buss, L. A. Kolodziejczyk, and N. Thapen, “Fragments of
approximate counting,” J. Symb. Log., vol. 79, no. 2, pp. 496–525,
2014. [Online]. Available: https://doi.org/10.1017/jsl.2013.37

[30] A. Atserias and N. Thapen, “The ordering principle in a fragment
of approximate counting,” Electron. Colloquium Comput. Complex.,
vol. TR13-149, 2013. [Online]. Available: https://eccc.weizmann.ac.il/
report/2013/149

[31] J.-Y. Cai, “S2p in zppnp,” Journal of Computer and System

Sciences, vol. 73, no. 1, pp. 25–35, 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002200000600105X

[32] S. Cook, R. Impagliazzo, and T. Yamakami, “A tight relationship
between generic oracles and type-2 complexity theory,” Information and

Computation, vol. 137, no. 2, pp. 159–170, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0890540197926468

[33] P. Beame, S. A. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi,
“The relative complexity of NP search problems,” J. Comput.

Syst. Sci., vol. 57, no. 1, pp. 3–19, 1998. [Online]. Available:
https://doi.org/10.1006/jcss.1998.1575

[34] C. B. Wilson, “Relativized circuit complexity,” in 24th Annual Sympo-

sium on Foundations of Computer Science (sfcs 1983), 1983, pp. 329–
334.

[35] A. Razborov, “Personal communication.”

1407

Authorized licensed use limited to: Columbia University Libraries. Downloaded on June 13,2025 at 04:00:19 UTC from IEEE Xplore. Restrictions apply.

