
3034 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

When Lyapunov Drift Based Queue Scheduling
Meets Adversarial Bandit Learning

Jiatai Huang , Leana Golubchik , Senior Member, IEEE, and Longbo Huang , Senior Member, IEEE

Abstract— In this paper, we study scheduling of a queueing
system with zero knowledge of instantaneous network conditions.
We consider a one-hop single-server queueing system consisting
of K queues, each with time-varying and non-stationary arrival
and service rates. Our scheduling approach builds on an innova-
tive combination of adversarial bandit learning and Lyapunov
drift minimization, without knowledge of the instantaneous
network state (the arrival and service rates) of each queue.
We then present two novel algorithms SoftMW (SoftMaxWeight)
and SSMW (Sliding-window SoftMaxWeight), both capable of
stabilizing systems that can be stabilized by some (possibly
unknown) sequence of randomized policies whose time-variation
satisfies a mild condition. We further generalize our results to
the setting where arrivals and departures only have bounded
moments instead of being deterministically bounded and propose
SoftMW+ and SSMW+ that are capable of stabilizing the system.
As a building block of our new algorithms, we also extend the
classical EXP3.S algorithm for multi-armed bandits to handle
unboundedly large feedback signals, which can be of independent
interest.

Index Terms— Scheduling, queueing, bandit learning,
Lyapunov analysis.

I. INTRODUCTION

STOCHASTIC network scheduling is concerned with a
fundamental problem of allocating resources to serving

demand in dynamic environments, and it has found wide appli-
cability in modeling real-world networked systems, including
data communication [2], [3], cloud computing and server
farms [4], [5], [6], [7], smart grid management [8], [9],
[10], supply chain management [11], [12], and control of
transportation networks [13], [14], [15]. One basic requirement
of most existing scheduling solutions is having knowledge of
the instantaneous network state – i.e., the amount of arrival
traffic and the amount of service under any feasible control
action, e.g., the power allocation among all links – before
taking a new scheduling action. Given this information, there

Manuscript received 15 August 2023; revised 15 January 2024; accepted
27 February 2024; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor B. Ji. Date of publication 26 March 2024; date of current
version 20 August 2024. The work of Jiatai Huang and Longbo Huang was
supported by the Technology and Innovation Major Project of the Ministry of
Science and Technology of China under Grant 2020AAA0108400 and Grant
2020AAA0108403. The work of Leana Golubchik was supported in part by
NSF under Award CNS-1816887. (Corresponding author: Longbo Huang.)

Jiatai Huang and Longbo Huang are with the Interdisciplinary Informa-
tion Sciences (IIIS), Tsinghua University, Beijing 100084, China (e-mail:
hjt18@mails.tsinghua.edu.cn; longbohuang@tsinghua.edu.cn).

Leana Golubchik is with the Department of Computer Science, University of
Southern California, Los Angeles, CA 90089 USA (e-mail: leana@usc.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2024.3374755, provided by the authors.

Digital Object Identifier 10.1109/TNET.2024.3374755

have been many successful network scheduling algorithms,
with various aspects of theoretical performance guarantees,
including queue stability [16], [17], [18], delays [19], [20],
[21], and utilities [21], [22], [23].

However, in many real-world scenarios, such network-state
knowledge may not always be available if its measurement
or estimation is too difficult or costly to obtain. Even when
such knowledge is available, it can be biased and imperfect.
For instance, in an IoT system, due to sensors’ temperature-
drift or device malfunction, unexpected changes in traffic and
channel patterns can occur at any time [24]. In an underwater
communication system, it is extremely challenging to perform
perfect channel state estimation [25]. Moreover, in applications
where the communicating parties can move rapidly, e.g., self-
driving vehicles [26], or in an arbitrary manner, e.g., wireless
AR/VR devices [27], channel conditions can also change
rapidly and thus difficult to estimate accurately. Therefore,
scheduling policies relying on precise network-state knowl-
edge may not be applicable to many real-world tasks; relying
on such policies can result in significant performance degrada-
tion due to inaccurate information. Hence, network scheduling
without instantaneous knowledge and accurate estimation of
the network state is important both, in theory and in practice,
i.e., it can significantly improve robustness and availability of
large-scale networked systems while reducing operational and
maintenance costs.

To this end, in this paper, we focus on a novel schedul-
ing without network-state knowledge formulation. Specifically,
we focus on a one-hop scheduling task, where a single-server
serves K queues, each corresponding to a job type. The
server chooses a single queue to serve in each time slot. The
network dynamics, i.e., arrival and service rates, evolve in
an oblivious adversarial manner and are unknown before the
scheduling decision. Moreover, the service outcome is only
observed after the action with bandit feedback, i.e., only the
served queue produces an observation. Our goal is to seek an
efficient scheduling policy to stabilize the network. It turns
out that in such systems which have time-varying network
dynamics, many attractive properties of classical scheduling
policies for stationary systems no longer hold. For example,
different work-conserving policies may induce different busy
time period distributions. Therefore, queue stability in this
setting is a fundamental and a non-trivial problem, and is an
important focus of our work.

To solve this problem, we introduce novel learning-
augmented scheduling algorithms, inspired by the celebrated
MaxWeight queue scheduling algorithm [28] and the success

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

https://orcid.org/0000-0002-3008-4861
https://orcid.org/0000-0001-8353-5040
https://orcid.org/0000-0002-7341-447X

HUANG et al.: WHEN LYAPUNOV DRIFT BASED QUEUE SCHEDULING MEETS ADVERSARIAL BANDIT LEARNING 3035

Fig. 1. Numerical evaluation of a non-stationary system (see Appendix A
for details).

of the EXP3 family of algorithms on non-stationary Multi-
Armed Bandits (MAB) problems [1]. The proposed algorithms
are capable of stabilizing a non-stationary system, as long as
the system can be stabilized by a randomized policy whose
total variation of probabilities to serve each type of job is
not too large. Perhaps surprisingly, our algorithms rely on
neither knowing the network statistics before-hand, nor on
complicated explicit real-time estimation of the system. As a
result, compared to its network-state knowledge dependent
counterparts, our algorithms are naturally more robust to
jitter and unexpected traffic/service patterns in the system.
Indeed, a numerical comparison of our algorithms with their
accurate knowledge dependent counterparts shows that the
presented algorithms do give superior performance for systems
with service state noise, as depicted in Figure 1. In par-
ticular, our proposed algorithms are capable of stabilizing
complex time-varying systems with unknown network states
in contrast to popular policies, such as MaxWeight and
Longest-Queue-First, which fail to control the queue
lengths well. The detail of the numerical experiment is pre-
sented in Appendix A.

Our work differs from the existing learning-augmented
network control literature, e.g., [29], [30], [31], [32], and [33],
in the following aspects. References [29], [30], [31], and [32]
study the scheduling or load-balancing tasks on stationary
systems with rate statistics unknown before-hand, while in
our setting the system can be time-varying and adversarial.
Reference [33] also considers non-stationary systems, but they
assume smoothly time-varying service rates and explicitly
estimate the instantaneous service rates using exponential
average and discounted UCB bonus. Compared to these works,
our approach requires neither to explicitly optimize off-line
problems nor to explicitly probe and estimate the instantaneous
channel states, but rather uses adversarial bandit learning
techniques to coherently explore and stabilize the system at
the same time.

On the technical side, utilizing adversarial MAB algo-
rithms in stochastic network scheduling and obtaining provable
stability guarantees is non-trivial. Firstly, it requires trans-
forming the scheduling problem into an equivalent adversarial
bandit problem, where the key is to properly specify the
corresponding queue-dependent rewards and the overall objec-
tive. Secondly, the analysis requires extending the adversarial

bandit algorithms to handle the potentially unbounded reward
due to queue sizes as well as establishing a connection between
regret analysis and the queue stability result. There also exist
recent works that utilize reinforcement learning (RL) for queue
scheduling, e.g., [34] and [35]. However, results there typically
rely on learning the unknown stationary distribution. When
the environment is adversarial, information learned from past
history does not form a good estimator for future dynamics.
In this case, how to design RL algorithms with rigorous
performance guarantees remains a challenging task.

Our contributions in this work can be summarized as
follows:

• We propose two novel scheduling algorithms SoftMW
(Algorithm 2) and SSMW (Sliding-window SoftMW,
Algorithm 3) that are capable of scheduling one-hop
queueing systems without channel state knowledge, while
stablizing the systems under mild conditions on the
time-variation of the reference randomized policy.

• In designing these two algorithms, we carefully combine
techniques from online bandit learning and Lyapunov
drift based scheduling approaches and analysis. Specif-
ically, the bandit part is used to guarantee that our
algorithms’ “regret” against an unknown time-varying
randomized policy over a finite time-horizon is small.
This regret guarantee is coupled (in an innovative manner)
with Lyapunov drift analysis to develop the stability result
(see Section V-C and Appendix F).

• We extend the EXP3.S algorithm [1], originally designed
for adversarial MAB problems with bounded rewards,
such that time-varying learning rates and exploration rates
are applicable to handling unboundedly large feedback
(see Section V-A, Algorithm 1). This extended EXP3.S
algorithm (termed EXP3.S+) is used as a building block
in SoftMW and SSMW. However, it is also of independent
interest beyond the scope of queueing problems.

• We further generalize our results to the setting where
arrivals and departures have bounded moments instead
of being deterministically bounded (see Appendix H) and
present SoftMW+ (Algorithm 4) and SSMW+ (Algorithm
5) that are capable of stabilizing such a system.

Table I provides a comparison summary between our
proposed algorithms and closely related efforts. Theoretical
results on system stability and average queue length bounds
in zero-knowledge network systems are still largely open.
To our knowledge, our work is the first to utilize adversarial
MAB algorithms with dynamic regret guarantees in queueing
systems scheduling, and is capable of providing satisfactory
average queue length bounds (and thus provable stability)
under very mild assumptions. Most prior work is based on
epsilon-greedy or Upper Confidence Bounds (UCB), where
the assumption is needed that the system is either stationary
or non-stationary but with arrival (departure) rates having
adequate smoothness. Hence, our algorithms apply to more
general and complex settings. We believe our approach can
facilitate novel and interesting insights into MaxWeight-
type as well as other queueing scheduling algorithm design
problems. We also note that our proposed average queue length

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

3036 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

bounds results can lead to fruitful, non-trivial delay bounds
when certain mild technical conditions hold. For instance,
when arrival rates are universally bounded above some ω > 0,
then SoftMW and SoftMW+ guarantee O

(
CW KM2

ωε

)
queue-

ing delays.

II. NOTATION

Throughout this paper, for n → 1, we denote the set
{1, 2, . . . , n} by [n] and the (n ↑ 1)-dimensional probability
simplex over [n] by ↓[n]. We use bold English letters (e.g.,
Qt, St) and Greek letters with arrows above (e.g., εϑt, εϖt) to
denote vector-valued variables. We use 0 to denote the all-
zero vector, and 1 to denote the all-one vector. We use 1i to
denote the one-hot vector with 1 on the i-th coordinate, i.e.,
(1i)j = 1 if i = j and 0 otherwise. We use [statement] to
denote the indicator of a given statement; its value is taken
as 1 if the statement holds and 0 otherwise. We use x↔ y to
denote the element-wise product of two vectors x and y.

Let f be a strictly convex function defined on some convex
domain A ↗ RK . For any x,y ↘ A, if ≃f(x) exists, we write
the Bregman divergence between y and x induced by f as

Df (y,x) ↭ f(y)↑ f(x)↑ ⇐≃f(x),y ↑ x⇒

We use f
→(y) ↭ supx↑RK {⇐y,x⇒ ↑ f(x)} to denote the

convex conjugate of f .
We use Õ, !̃ or ”̃ to suppress poly-logarithmic factors in

T (the length of the decision horizon) and K (the number of
queues). Unless stated otherwise, we use

Ft = ϑ (a1, . . . , at,Q0, . . . ,Qt,A1, . . . ,At, S1,a1 , . . . , St,at)

for any t → 0 to denote the filtration of ϑ-algebra when study-
ing random quantities indexed by time, i.e., Ft is generated
by all decisions and quantities visible to a scheduling policy
at the end of t-th time slot.

III. PROBLEM SETTING

We consider the problem of scheduling K job types on
a single work-conserving server with a slotted time system.
Each arriving job first joins a queue associated with its type i,
which we denote by Qi. Denote by At,i the amount of arriving
jobs of type i in the t-th time slot, and by St,i the maximum
amount of jobs of type i the server can serve in the t-th time
slot. At the beginning of each time slot t, the server chooses
exactly one type of a job at ↘ [K] to serve. Denote by Qt,i

the queue length of type i jobs at the end of time slot t. Then,
each Qt,i evolves according to the following equation:

Qt,i = max {Qt↓1,i + At,i ↑ St,i [i = at], 0}

where Q0 = (Q0,1, . . . , Q0,K) = 0. At the beginning of
each time slot t, the latest queue lengths Qt↓1,1, . . . , Qt↓1,K

are available to the server for making new decisions. The
maximum service amount of past actions S0,a0 , . . . , St↓1,at

are also visible to the server.
We assume that there are two sequences of distributions

{A1,A2, . . .} and {S1,S2, . . .}, all fixed before the queue
process starts, and their statistics are unknown to the scheduler
before-hand. All distributions Ats and Sts are supported on

[0, M]K , where M is a constant known before-hand. We fur-
ther assume that each At is randomly sampled from At, each
St is sampled from St, and all Ats and Sts are independent
random vectors. We denote by εϖt the mean of At, and by εϑt

the mean of St.
Our objective is to design a scheduling policy, such that the

average expected queue lengths

1
T

T↓1∑

t=0

K∑

i=1

E[Qt,i] (1)

on any finite time-horizon of sufficiently large length T is well-
controlled. Building an upper-bound for the average queue
length in Eq. (1) is one of the core problem in network
optimization, it is closely related to other important network
performance metrics (e.g., the delay bound can be implied
via Little’s law). Conventionally, we say a scheduling policy
stabilizes the system, or the system is stable under some
scheduling policy, if the average queue length in Eq. (1) is
uniformly bounded by some finite number for all T → 1.

Classical scheduling tasks on stationary systems (e.g., [30],
[31]) correspond to the case where At = A1 (St = S1), i.e.,
the distributions are time-invariant in our setting. In this paper,
we consider general environments where the network state
information is unknown [33], [37], [38], the arrival and service
rates can also be time-varying [33]. This is an important
setting in robust scheduling algorithm design, and building
average queue length bounds in this case is still largely open.
Intuitively, to schedule such systems well, one needs to explore
and estimate the time-varying service distributions subject
to queue stability, which is much more complicated than
stationary systems.

IV. A SUFFICIENT CONDITION FOR
STABILIZING THE SYSTEM

In our paper, we make the following assumption on the
system, which is analogous to the capacity region definition
in stationary network scheduling [28], and can be viewed as
a generalized stability condition for scheduling in adversarial
environments.

Assumption 1 (Piecewise Stabilizability): There exist CW →

0, ϱ > 0, ες1,
ες2, · · · ↘ #[K] and a partition of N+ into

intervals W0, W1, · · · , such that for any T → 1 we have
∑

i:mint→Wi t<T

(|Wi|↑ 1)2 ⇑ CW T (2)

and for any i → 0 and j ↘ [K] we have

1
|Wi|

∑

t↑Wi

ςt,jϑt,j → ϱ +
1

|Wi|

∑

t↑Wi

ϖt,j . (3)

Assumption 1 can be regarded as a generalization of the
(W, ϱ)-constrained dynamics in [39]. It essentially assumes
that the time horizon can be divided into intervals, within
which there exist stationary policies that can stablize the
network (Eq. (3)). As a quick sanity check, for stationary
instances where the arrival rate vector is in the interior of the
capacity region, Assumption 1 is automatically satisfied with
CW = 0 (hence all Wis are singleton sets) and all εςis are

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

HUANG et al.: WHEN LYAPUNOV DRIFT BASED QUEUE SCHEDULING MEETS ADVERSARIAL BANDIT LEARNING 3037

TABLE I
OVERVIEW OF OUR ALGORITHMS AND CLOSELY RELATED WORK

equal to some fixed element ες ↘ #[K], which is a randomized
policy capable of stabilizing the system.
Remark: In fact, under the above assumption, by a quadratic
Lyapunov drift argument (see Theorem 1), we can also show
that a policy, in which at each time step t we serve a type of
job at independently at random according to the distribution
indicated by εςt, can stabilize the system as well (require
knowing εςt beforehand). We call {εςt : t → 1} the reference
mixed action sequence, and refer to the above randomized
policy induced by {εςt : t → 1} as the reference randomized
policy.

With Assumption 1, in general, it is still a challenging
problem to scheduling the system. For our main results in
Section V, we need another technical assumption presented
below.

Assumption 2 (Reference Policy Stationarity): For the refer-
ence mixed action sequence {εςt} in Assumption 1, there exist
some φ > 0 and CV > 0 such that

T↓1∑

t=1

⇓εςt+1 ↑
εςt⇓1 ⇑ CV T

1
2↓ϑ

for any T → 1.
Intuitively speaking, Assumption 2 says that the sequence

{εςt} (and hence the environment) does not change in a very
abrupt way. Similar smooth assumptions have also been made
in existing results, e.g., [33].1 In Section VI, we will also study
when can we handle problems where the reference policy
has significantly larger variation. Note that Assumption 2 is
not restrictive. For instance, when the network is stationary,
if it is stabilizable, one can show that there exists a fixed
reference policy that stabilizes the network, i.e., εςt = ες for
all t.

1Strictly speaking, [33] introduces a smoothness assumption on the arrival
and service rate rather than the reference randomized policy.

V. QUEUE SCHEDULING WITH ONLY BANDIT FEEDBACK

In contrast to the setting with perfect network state knowl-
edge, in our case, there is no such accurate channel condition
for the scheduler. Specifically, the server only receives a bandit
feedback for each time step’s actual service, i.e., only St,at is
known after the service decision at is made.

In this section, we present a novel algorithm, which is
capable of stabilizing the system using only bandit feedback,
St,at . Our core idea is to embed a suitable Multi-Armed
Bandit algorithm into the MaxWeight scheduler [36], so that
the term E[

∑T
t=1 Qt↓1,atSt,at], which is the key ingredi-

ent of MaxWeight, is guaranteed to be not too far from
E[

∑T
t=1⇐Qt↓1 ↔ St,

εςt⇒]. Given access to εϑt, MaxWeight
achieves this by greedily choosing at = arg maxi Qt↓1,iϑt,i

at each time step t. However, when εϑt is unknown and
time-varying, it is hard to guarantee that each summand
Qt↓1,atSt,at is large. Thus, we focus on optimizing the whole
sum E[

∑T
t=1 Qt↓1,atSt,at].

In the remainder of this section, we will first present
EXP3.S+, an extended version of the EXP3.S [1] algorithm
for adversarial MAB (Section V-A). EXP3.S+ has adequate
flexibility to serve as an important building block of our novel
scheduling algorithm SoftMW (Section V-B). We also present
its performance guarantee, as it is key for understanding our
later analysis. Finally, in Section V-C, we outline analysis of
SoftMW and describe several important novel techniques to
relate adversarial MAB learning to Lyapunov drift analysis.

A. EXP3.S+: An Extended Version of EXP3.S

We first present EXP3.S+, which extends the EXP3.S
algorithm [1], designed originally for solving adversarial
Multi-Armed Bandit (MAB) problems, to address the poten-
tially unbounded queue lengths in queueing systems, which
cannot be directly handled by existing bandit algorithms.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

3038 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Algorithm 1 EXP3.S+
Input: Number of actions K, time-horizon length T ,

initial mixed action x1 ↘ #[K]

Output: A sequence of actions a1, a2, . . . , aT ↘ [K]
1 Intermediate Variables A sequence of learning rates

↼1, ↼2, . . . , ↼T ↘ R+, a sequence of implicit
exploration rates ↽1, ↽2, . . . ,↽T ↘ [0, 1/K],
a sequence of explicit exploration rates
⇀1, ⇀2, . . . , ⇀T ↘ [0, 1/2], a sequence of explicit
exploration normal vectors e1, e2, . . . , eT ↘ #[K]

2 $(x) ↭ ∑K
i=1(xi lnxi ↑ xi)

3 for t = 1, 2, . . . , T do
4 Choose ↽t, ↼t, et and ⇀i

5 Below denote by
#[K],ϖt ↭ {x ↘ #[K] : xi → ↽t ⇔i ↘ [K]}

6 pt ↖ (1↑ ⇀t)xt + ⇀tet

7 Sample at ↙ pt, take action at, observe gt,at

8 g̃t ↖

{
gt,at/pt,at the at-th coordinate
0 the other coordinates

9 xt+1 ↖ arg minx↑↑↔[K],ωt ⇐↑↼tg̃t,x↗⇒+D!(x↗,xt)

More formally, EXP3.S+ applies to the following scenario:
there is an agent and an adversary simultaneously making
decisions on a finite-length time-horizon t = 1 . . . T . At each
time t, the agent chooses an xt ↘ #[K] deterministically based
on observed history, then samples at ↘ [K] according to xt.
Simultaneously (at time t), the adversary chooses gt ↘ RK

deterministically, based on observed history. Then, gt,at is
revealed to the agent. The high-level objective for the agent is
to maximize the cumulative feedback

∑T
t=1 gt,at . The details

of our EXP3.S+ are described in Algorithm 1.
Specifically, EXP3.S+ works by producing sequences of

candidate mixed actions xts according to mirror descent steps
(Line 9). At each time step t, xt will be further mixed with an
exploration vector et to obtain pt (Line 6); the final chosen
action at is then sampled according to pt (Line 7). After
receiving the reward feedback gt,at , an importance-sampling
estimate g̃t for the whole reward vector gt is calculated
(Line 8) and used as the gradient in the next mirror descent
step (Line 9). The mirror descent step picks a new mixed
action xt+1 that is not only close to the last mixed action xt,
but also gains a large single step reward with respect to the
reward estimator gt.

Remark: The amplitude of feedback value gt,at in Line 7 is
crucial to the correctness of EXP3.S+. The original EXP3.S
algorithm in [1] uses a constant learning rate ↼ and a constant
exploration rate ⇀ across all T time steps. However, the
algorithm can only support problems with reward feedback
values no more than ↼

↓1
⇀, and does not apply to our setting.

For our purpose, in the presented algorithms, we will feed
Qt↓1,atSt,at into EXP3.S+ as the reward value, which is a
quantity that can be arbitrarily large (since Qt↓1,at can go
unbounded as t ∝ ′). In EXP3.S+, the learning rates and
exploration rates can both be time-varying, and the exploration
rates can even be action-dependent (it allows specifying any

et ↘ #[K] rather than 1/K). In each mirror descent step,
we choose to pick the new action on a subset #[K],ϖt of the
whole simplex #[K], which is different from vanilla EXP3.
This novel design is crucial to guarantee a small regret against
a change sequence of actions (i.e., dynamic regret) instead of
against a fixed action.

The formal performance guarantee of EXP3.S+ for∑T
t=1 gt,at is given in Theorem 1 below.
Theorem 1 (EXP3.S+ Dynamic Regret Guarantee): Dur-

ing the execution of Algorithm 1, for any fixed sequence
ες1, . . . ,

εςT ↘ #[K], if w.p.1 the following events happen,
(i) x1 ↘ #[K],ϖ1 ,

(ii) gt ⇑ ↼
↓1
t ⇀tet for all 1 ⇑ t ⇑ T ,

(iii) ↼1 → ↼2 → · · · → ↼T ,
(iv) ↽1 → ↽2 → · · · → ↽T ,
(v) εςt ↘ #[K],ϖt for all 1 ⇑ t ⇑ T ,
then let

V ↭
T↓1∑

t=1

⇓εςt+1 ↑
εςt⇓1,

we will have

E
[

T∑

t=1

⇐gt,
εςt⇒

]
↑ E

[
T∑

t=1

gt,at

]
⇑ (1 + V)E

[
↼
↓1
T ln

1
↽T

]

+ eE
[

T∑

t=1

↼t⇓gt⇓
2
2

]
+ E

[
T∑

t=1

⇀t⇐gt, et⇒

]
.

In Theorem 1, the value V characterizes how frequently εςt

(the reference policy) changes over time. Our results build on
Assumptions 2 and 3, which only require V to be O(

∞
T)

(the CV T
1/2↓ϑ term) in Assumption 2 and O(T 1↓ϑ) (the

CV T
1↓ϑ term) in Assumption 3. These two conditions are

not restrictive. For instance, in the case of stationary networks,
V = O(1) since there exist constant reference policies.

In Appendix B, we provide a formal proof for Theorem 1
using an analysis based on Online Mirror Descent [40], which
is much more suitable for handling time-varying learning
rates compared to the classical sum-of-exp potential function
approach in [1]. We also discuss a practical implementation of
the arg max calculation (at Line 9) in Appendix C. We note
that Algorithm 1 and its analysis can be of independent
interest and applied to problems other than stochastic network
scheduling.

B. Soft Max-Weight Scheduling Using EXP3.S+

We now present our novel scheduling algorithm, SoftMW,
in Algorithm 2. SoftMW is based on carefully designed
feedback signals as well as parameters and learning rates in
EXP3.S+. Its name refers to the computation in EXP3.S+
(Algorithm 1) that is heavily based on the softmax operation
(see Appendix C).

At the beginning of SoftMW, an EXP3.S+ instance is
created. Then, at each time step t, the parameters ↽t, ↼t, et, ⇀t

in EXP3.S+ are determined, depending on the current time
index t and current queueing backlog Qt↓1. EXP3.S+ will
then output an action at, SoftMW just choose to serve the

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

HUANG et al.: WHEN LYAPUNOV DRIFT BASED QUEUE SCHEDULING MEETS ADVERSARIAL BANDIT LEARNING 3039

Algorithm 2 SoftMW (Soft MaxWeight)
Input: One-step arrival/service upper-bound M > 0,

Number of job types K, Problem instance
smoothness parameter ω > 0

Output: A sequence of job types to serve a1, a2, . . . → [K]

1 Initialize an EXP3.S+ instance with K available actions and
x1 = 1/K

2 for t = 1, 2, . . . do
3 Pick the following parameters of EXP3.S+ for time slot

t:
4 εt ↑ t→3/K
5 ϑt =(

t→(1
4→

ε
2)M

√
86M2K6t

3
2 +

∑t→1
s=0↓Qs↓22

)→1

6 et = Qt→1/↓Qt→1↓1
7 ϖt = Mϑt↓Qt→1↓1 =

↓Qt→1↓1
(

t→(1
4→

ε
2)
√

86M2K6t
3
2 +

∑t→1
s=0↓Qs↓22

)→1

8 Take a new action decision output at from EXP3.S+,
serve the at-th queue, regard Qt→1,atSt,at as a new
feedback gt,at and feed it into the current EXP3.S+
instance

at-th queue. Finally, after observing the service amount St,at ,
SoftMW feeds Qt↓1,atSt,at as the MAB feedback at time t

into the EXP3.S+ instance.
The intuitive reason why Algorithm 2 works is as follows.

We use EXP3.S+ in a carefully designed way to drive the
scheduling process, so that the effect of Algorithm 2 is very
closed to (or better than) the reference randomized policy
given by Assumption 1, in the sense that under Algorithm 2,
the queues’ total quadratic Lyapunov drift is only slightly
larger (or even smaller) than that under the reference ran-
domized policy. Therefore, Algorithm 2 has similar (or even
stronger) capability of stabilizing the system.

Algorithm 2’s average queue length bound on any finite
time-horizon is given in Theorem 2.

Theorem 2: For problem instances satisfying Assumptions 1
and 2, SoftMW (Algorithm 2) guarantees

1
T

E
[

T∑

t=1

⇓Qt⇓1

]

⇑
2(K + 1)M2 + 4CW (KM

2 + ϱKM)
ϱ

+ o(1).

In particular, the system is stable.
Remark: As a quick sanity check, for stationary problem

instances, Theorem 2 gives O(KM
2
/ϱ) average queue length

bound, which coincides with the classical result we can
achieve in stationary problems ([28] Sec. 3.1). In fact, one
can show that for both (i) pretending to have accurate one-step
forecasts for service rates and running vanilla MaxWeight,
and (ii) running the reference randomized policy {εςt} specified
in Assumption 1, the average queue length bounds via a stan-
dard quadratic Lyapunov analysis are O

((CW K+K+1)M2

ω

)
.

Therefore, informally, in terms of queue length bound, the
overhead due to SoftMW on problem instances satisfying
Assumption 2 is insignificant.

Fig. 2. Illustration for the analysis outline of SoftMW.

C. Queue Stability Analysis Outline

In this section, we provide a brief outline of how to formally
establish the queue stability result (Theorem 2). We first
review the general procedure from quadratic Lyapunov drift
analysis, which is capable of building the average queue
length bounds for both the reference randomized policy {εςt}

and ordinary MaxWeight policy (the left path in Figure 2).
Then, using the result on EXP3.S+’s total dynamic regret
(Theorem 1), we show that the EXP3.S+ scheduling used in
SoftMW can lead to terminal Lyapunov function values close
to the reference policy in Assumption 1, differing by a term
proportional to

√∑
⇓Qt⇓

2
2. Finally, we relate this

√∑
⇓Qt⇓

2
2

term with the queue lengths (
∑
⇓Qt⇓1) we want to bound,

and show that this difference term is indeed o(T), so that
we can obtain an average queue length bound of the same
order as compared to the reference randomized policy and
MaxWeight. This novel queue stability analysis combining a
Lyapunov drift argument and adversarial MAB dynamic regret
analysis is illustrated in the rightmost, highlighted (in blue)
part of Figure 2.

1) Recap of Lyapunov Drift Analysis: In our analysis,
we use standard results from quadratic Lyapunov drift analy-
sis [28]. Conventionally, we define

Lt ↭ 1
2
⇓Qt⇓

2
2 =

1
2

K∑

i=1

Q
2
t,i,

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

3040 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

as the quadratic Lyapunov function of the queue lengths.
We first have the following standard lemma regarding the drift
upper bound.

Lemma 1 (General quadratic Lyapunov Drift
Upper-bound [28]): Consider any scheduling policy for
this queueing system and suppose that the policy randomly
picks a job type at according to a probability distribution
pt (which may depend on the system’s history, i.e., pt is an
Ft↓1-measurable random vector supported on #[K]). Let Qt

denote the queue length vector under that policy. We have

E [Lt ↑ Lt↓1| Ft↓1]

⇑
(k + 1)M2

2
+ ⇐Qt↓1,

εϖt ↑ εϑt ↔ pt⇒

=
(k + 1)M2

2
+ ⇐Qt↓1,

εϖt⇒ ↑ E [Qt↓1,atSt,at | Ft↓1]

for any t → 1. By summing the inequalities over 1 ⇑ t ⇑ T ,
taking total expectation and then rearranging the terms, we get

E
[

T∑

t=1

Qt↓1,atSt,at ↑ ⇐Qt↓1,
εϖt⇒

]
⇑

(K + 1)M2
T

2
(4)

for any time horizon length T → 1.
Next, we have Lemma 2 regarding the drift value under

the reference policies. As in the standard Lyapunov drift
analysis [28], this bound will be useful for deriving queue
length results for queue-based policies.

Lemma 2 (Negative Lyapunov Drift under Reference Policy):
Suppose Assumption 1 holds. Consider any scheduling policy
for this queueing system, under which the queue length vectors
are denoted by {Qt}. Let {εςt : t → 1} be the sequence of
probabilities to serve each queue as defined in Assumption 1.
Then, for any time horizon length T → 1, we can find a
constant TT that depends only on T , such that T ⇑ TT ⇑

T +
√

T
CW

+ 1 and

E
[
TT∑

t=1

⇐Qt↓1,εϑt ↔
εςt ↑

εϖt⇒

]

→ ϱE
[
TT∑

t=1

⇓Qt↓1⇓1

]
↑ (KM

2 + ϱKM)CWTT

→ ϱE
[

T∑

t=1

⇓Qt↓1⇓1

]
↑ (KM

2 + ϱKM)CWTT .

Here ↔ is the element-wise product, i.e., εa ↔ εb =
(a1b1, . . . , aKbK), and CW is the constant defined in Assump-
tion 1.

Proof: See Appendix D. ↫
Combining Theorem 1 and Theorem 2, we obtain the

following important proposition for our analysis.
Theorem 1 (Sufficiently-Large-Weight Implies Queue Stabil-

ity): Suppose Assumption 1 holds, also suppose a scheduling
policy guarantees the following.

E
[

T∑

t=1

Qt↓1,atSt,at

]
→ E

[
T∑

t=1

⇐Qt↓1,εϑt ↔
εςt⇒

]
↑ f(T)

for all T → max{ 4
CW

, CW }, where f(T) is some non-
negative, increasing function of T . Then, we have

1
T

E
[

T∑

t=1

⇓Qt⇓1

]

⇑
(K + 1)M2 + 2CW (KM

2 + ϱKM)
ϱ

+
f(2T)

ϱT
.

In particular, if f(T) is O(T), then this policy stabilizes the
system.

Proof: See Appendix D. ↫
Remark: Theorem 1 implies that for problem instances

satisfying Assumption 1, serving the queue according
to either {εςt} (the reference randomized policy) or the
vanilla MaxWeight algorithm (assuming that service rate
forecasts are available to the algorithm at the time of
decision making), the average queue length will be no
more than (K+1)M2+2CW (KM2+ωKM)

ω , as claimed earlier
in Section IV. This is because in both cases, we have
E [Qt↓1,atSt,at | Ft↓1] → ⇐Qt↓1,εϑt ↔

εςt⇒. Hence, the condi-
tion in Theorem 1 holds with f(T) = 0 for these two policies.

In the remaining of the analysis, we will derive the corre-
sponding f(T) for SoftMW+, so that we can conclude the
queue stability via an argument similar to Theorem 1.

2) From EXP3.S+ Regret Bound to Lyapunov Func-
tion Value Bound: To build the queue stability result for
SoftMW (Algorithm 2), our high-level idea is to develop
the required condition in Theorem 1 such that f(T) can
also be properly controlled. Since SoftMW makes decisions
based on EXP3.S+, intuitively, we should utilize the regret
upper-bound result Theorem 1. In order to do that, we need
to verify that the required conditions (i)-(iv)2 in Theorem 1
hold.

In fact, in SoftMW, our choices of ↼ts and ↽ts are obviously
decreasing, hence condition (iii) and (iv) hold. We choose
x1 = (1/K, . . . , 1/K) thus condition (i) also holds; the choice
of ⇀t and et also guarantees condition (ii). The real issue is
whether ⇀ϱ ’s exceed 1

2 . This is established in the following
proposition.

Theorem 2 (Feasibility of the Exploration Rates in
SoftMW): For all t → 1, we have ⇀t ⇑

1
2 in SoftMW.

Appendix E gives a detailed proof of Theorem 2. Having
confirmed that the algorithm is feasible, we can now safely
apply Theorem 1, resulting in the following property of
SoftMW.

Lemma 3 (SoftMW Large-Weight Guarantee): Suppose
Assumptions 1 and 2 hold; then, running Algorithm 2
guarantees

T∑

t=1

E
[
⇐Qt↓1,St ↔

εςt⇒ ↑Qt↓1,atSt,at



⇑ 4M
2 +

[
9M(1 + CV)T

1
4↓

ε
2 (3 lnT + lnK)



2The reference policy {ωεt} itself may not satisfies condition (v), but we
will project each ωεt onto ![K],ωt as ωε↑t, and only use Theorem 1 to obtain
a regret bound against the action sequence {ωε↑t}.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

HUANG et al.: WHEN LYAPUNOV DRIFT BASED QUEUE SCHEDULING MEETS ADVERSARIAL BANDIT LEARNING 3041

· E






86M2K6T
3
2 +

T∑

t=1

⇓Qt↓1⇓
2
2




 (5)

for any time horizon length T → 1. Here {εςt} is the reference
policy in Assumptions 1 and 2.

Proof: See Appendix E. ↫
Theorem 3 gives an upper-bound for
E

[∑
Qt↓1,atSt,at ↑

∑
⇐Qt↓1,εϑt ↔

εςt⇒


, which is closely

related to the condition required by Theorem 1. However,
this upper-bound is not yet a quantity that depends solely
on T ; it still has a factor of

√
E[

∑
⇓Qt⇓

2
2], depending on

the actual queueing trajectory. Therefore, we are unable to
apply Theorem 1 directly to claim queue stability. Rather,
we need to work with the

√
E[

∑
⇓Qt⇓

2
2] factor, to convert it

to the cumulative queue length E[
∑
⇓Qt⇓1], just as we did in

Theorem 2 to convert E
[∑

⇐Qt↓1,εϑt ↔
εςt ↑

εϖt⇒


to queue

lengths.
3) Relate Regrets in

√
E[

∑
⇓Qt⇓

2
2] to Queue Lengths

E[
∑
⇓Qt⇓1]: Plugging Eq. (5) into Eq. (4) in Theorem 1, after

further applying Theorem 2 and rearranging terms, we get the
following proposition, which offers an inequality connecting√

E[
∑
⇓Qt⇓

2
2] and E[

∑
⇓Qt⇓1].

Theorem 3: Given Assumptions 1 and 2, Algorithm 2 gives
us

E
[
TT∑

t=1

⇓Qt↓1⇓1

]

⇑
(K + 1)M2 + 2CW (KM

2 + ϱKM)
ϱ

TT +
4M

2

ϱ

+
g(TT)

ϱ
·

86M2K6T
3
2

T + E
[
TT∑

t=1

⇓Qt↓1⇓
2
2

]

⇑
(K + 1)M2 + 2CW (KM

2 + ϱKM)
ϱ

TT +
4M

2

ϱ

+
∞

86MK
3
T

3
4

T g(TT)
ϱ

+
g(TT)

ϱ
·

E
[
TT∑

t=1

⇓Qt↓1⇓
2
2

]

(6)

for any T → max{ 4
CW

, CW }, where TT is some constant no
more than 2T , and

g(T) = 9M(1 + CV)T
1
4↓

ε
2 (3 lnT + lnK) = Õ(T

1
4↓

ε
2).

Recall that all arrivals and departures are assumed to be
bounded by a constant M . Therefore, each dimension of the
queue length vectors {Qt} is a sequence of non-negative
numbers, where the difference between any two adjacent terms
is within ±M . We may then make use of the following lemma
for such bounded-difference sequences.

Lemma 4: Suppose x1 = 0, x2, . . . , xn → 0, |xi+1 ↑ xi| ⇑

1 for all 1 ⇑ i < n. Denote by S =
∑n

i=1 xi; then we have
n∑

i=1

x
2
i ⇑ 4S

3
2 .

Proof: See Appendix E. ↫

For our purposes, Theorem 4 guarantees that

T∑

t=1

⇓Qt↓1⇓
2
2 ⇑ 4

∞

M

K∑

i=1


T∑

t=1

Qt↓1,i

 3
2

⇑ 4
∞

M


T∑

t=1

⇓Qt↓1⇓1

 3
2

. (7)

Then, plugging Eq. (7) into Eq. (6), we obtain the following
inequality that depends entirely on E

[∑
TT

t=1⇓Qt↓1⇓1


:

E
[
TT∑

t=1

⇓Qt↓1⇓1

]
⇑ h(TT) + g(TT)


E

[
TT∑

t=1

⇓Qt↓1⇓1

] 3
4

(8)

where

g(T) = 18M
5
4 (1 + CV)T

1
4↓

ε
2 (3 lnT + lnK)

= Õ


T

1
4↓

ε
2

ϱ


,

h(T) =
(K + 1)M2 + 2CW (KM

2 + ϱKM)
ϱ

T + Õ(T 1↓ ε
2).

It remains to solve Eq. (8), in order to obtain an upper bound
for E

[∑
TT

t=1⇓Qt↓1⇓1


. To do so, we utilize the following

lemma.
Lemma 5: Let y, f, g : R+ ∝ [1,′) be three non-

decreasing functions. If

y(x) ⇑ f(x) + y(x)
1
4 g(x)

for all x → 0, then we have

y(x) ⇑
(
f(x)

1
4 + g(x)

)4
.

Proof: See Appendix E. ↫
Finally, according to Theorem 5, the solution of Eq. (8) gives
us:

E
[
TT∑

t=1

⇓Qt↓1⇓1

]

⇑

(
h(TT)

1
4 + g(TT)

)4

⇑
(K + 1)M2 + 2CW (KM

2 + ϱKM)
ϱ

TT + o(TT).

Thus,

1
T

E
[

T∑

t=1

⇓Qt↓1⇓1

]
⇑

1
T

E
[
TT∑

t=1

⇓Qt↓1⇓1

]

⇑
(K + 1)M2 + 2CW (KM

2 + ϱKM)
ϱ

TT

T
+ o(TT /T)

⇑
2(K + 1)M2 + 4CW (KM

2 + ϱKM)
ϱ

+ o(1)

as desired.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

3042 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Algorithm 3 SSMW (Sliding-window SoftMW)
Input: One-step arrival/service moment upper-bound

parameter M > 0, Number of job types K,
Problem instance smoothness parameter φ > 0

Output: A sequence of job types to serve
a1, a2, . . . ↘ [K]

1 while true do
2 T0 ↖ the latest time index t

at which we have made a new decision at

// for the first iteration, we should have

T0 = 0

3 m ↖ max

∈
↘QT0↘↓

2M ∋, 1


4 Run a fresh EXP3.S+ instance for m time steps
with the following configuration (below ⇁ denotes
the time index within the epoch of length m,
1-based):

5 ↽ = m
↓2

/K

6 x1 can be any element in
#[K],ϖ ↭ {x ↘ #[K] : xi → ↽ ⇔i ↘ [K]}

7 ↼ϱ =
(
6M

2
Km

1+ ε
2

)↓1

8 eϱ = QT0+ϱ↓1/⇓QT0+ϱ↓1⇓1

9 ⇀ϱ = M↼ϱ⇓QT0+ϱ↓1⇓1 =
1
6K

↓1
M

↓1
m
↓1↓ ε

2 ⇓QT0+ϱ↓1⇓1

10 Take a new action decision output from the current
EXP3.S+ instance, serve this type of jobs (recall
we are at the (T0 + ⇁)-th time step of the whole
time horizon), regard QT0+ϱ↓1,aT0+ϑ ST0+ϱ,aT0+ϑ

as a new feedback gϱ,aϑ and feed it into
EXP3.S+

VI. TAMING TIME-HOMOGENEOUS O(T 1↓ϑ)
REFERENCE POLICY TOTAL VARIATION

In this section, we propose another novel algorithm capable
of stabilizing our adversarial queueing system. Specifically,
this algorithm is stable under a reference randomized policy
with O(T 1↓ϑ) total variation, as long as that much total
variation is “evenly” distributed throughout the infinite time
horizon. This new condition is formalized as follows.

Assumption 3 (Time-Homogeneous Reference Policy Sta-
tionarity): For the sequence {εςt} in Assumption 1, there exist
some φ > 0 and CV > 0 such that

T0+T↓1∑

t=T0+1

⇓ςt+1 ↑ ςt⇓1 ⇑ CV T
1↓ϑ

for any T0 → 0 and T → 1.
Remark: Assumption 3 can be viewed as a shift-invariant

version of Assumption 2, with the degree of T relaxed from
1
2 ↑ φ to 1 ↑ φ. Roughly speaking, this assumption holds as
long as there is only a finite number of time periods on which
the reference policy variation accumulates at a linear rate. For
example, if

∑T
t=0⇓ςt+1↑ςt⇓1 = ”(T 1↓ϑ), then Assumption 3

is satisfied.
For problem instances where Assumptions 1 and 3 hold,

we present a new algorithm to stabilize the system, namely
Sliding SoftMW (SSMW), which is detailed in Algorithm 3.

Compared to SoftMW (Algorithm 2), SSMW (Algorithm 3)
does not use historical queue lengths at the beginning to tune
the EXP3.S+ learning rates. Instead, SSMW starts with new
EXP3.S+ instances of lengths proportional to the current
queue lengths (Line 3). As a result, SSMW initiates many
more EXP3.S+ instances throughout its execution, though
each EXP3.S+ period is likely to be short. In this sense,
SSMW is more similar to MaxWeight, since MaxWeight
always uses the current queue length vector for making
new decisions, and disregards how the system arrived at the
current state. Theorem 3 gives the queue stability result for
SSMW.

Theorem 3: For problem instances satisfying Assumptions 1
and 3, SSMW (Algorithm 3) guarantees

1
T

E
[

T∑

t=1

⇓Qt⇓1

]

⇑

[
3KM

2
m0+

(K + 1)M2

2
+(KM

2+ϱKM)CW +6M2

]

·
10
ϱ

for any time horizon of length T →
4

CW
+ CW . In particular,

the system is stable. Here m0 is defined as

m0 ↭ inf


m : m → 2, f(m↗) ⇑
ϱ

2
⇔m

↗
→ m



⇑
(
(1 + CV)MK lnKϱ

↓1
)O(1/ϑ)

where

f(m) = 88(1 + CV)MKm
↓

ε
2 (2 lnm + lnK).

The complete formal proof of Theorem 3 can be found
in Appendix F. In brief, the derivation of Theorem 3 can be
reduced to an important observation, presented next.

For any fixed problem instance satisfying Assumptions 1
and 3, there exists an instance-dependent constant m0 → 1,
such that, at some time step T0, we have (a) an EXP3.S+
instance in SSMW that just ended, and (b) ⇓QT0⇓≃ →

2Mm0 (i.e., the next EXP3.S+ instance that lasts for
m = ∈

↘QT0↘↓
2M ∋ time steps, where m → m0); then we

have

E
[

m∑

t=1

⇐QT0+t↓1,
εϖT0+t⇒ ↑QT0+t↓1,aT0+tST0+t,aT0+t

]

⇑ ↑
ϱ

2
E

[
m∑

t=1

⇓QT0+t↓1⇓1

]
,

where the two expectations are both conditioned on the system
state at the end of time T0.

This claim is formally stated and proved in Theorem 20
(Appendix F). In fact, the magic number m0 in Theorem 3 is
just a feasible choice for m0 in the above claim. Assuming
the claim is true and letting Q

↗

t,i = max {Qt,i ↑m0, 0},
one can see that the “shifted queue” Q↗

t enjoys an average
queue length bound 1

T E
[∑T

t=1⇓Q
↗
t⇓1


⇑ O(1/ϱ) by standard

Lyapunov drift analysis of Q↗
t. Therefore, we can conclude that

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

HUANG et al.: WHEN LYAPUNOV DRIFT BASED QUEUE SCHEDULING MEETS ADVERSARIAL BANDIT LEARNING 3043

1
T E

[∑T
t=1⇓Qt⇓1


⇑

1
T E

[∑T
t=1⇓Q

↗
t⇓1


+ Km0 ⇑ Km0 +

O(1/ϱ).
Remark: Compared to the O(ϱ↓1) queue length bound of

SoftMW (Theorem 2), Theorem 3 only gives an ϱ
O(1/ϑ) queue

length guarantee (here m0 is significantly larger than O(ϱ↓1)
and hence the bottleneck). Nevertheless, simulation results in
Appendix A show that the empirical performance of SSMW is
comparable to, or even better than that of, SoftMW.

VII. RELATED WORK

Recent literature includes learning-based scheduling poli-
cies that require little prior-knowledge and can gather channel
statistics at run-time.

Learning-based approaches to scheduling queueing systems
without perfect channel state knowledge require substantial
exploration, to probe for more information of all the channels
inside the system instead of merely exploiting the statistics
at hand (e.g., via a MaxWeight style planning). Typical
ways to introduce adequate exploration include epsilon-greedy,
which explicitly allocates a small probability to serve each
channel unconditionally [31], [41], [42]; here the exploration is
independent of the queue sizes and historical channel statistics
and thus almost decoupled from exploitation. By contrast,
optimistic exploration works by adding bonus terms to current
channel statistics, so that exploration and exploitation are
naturally coupled during scheduling [30], [31], [33], [43].
Upper confidence bound (UCB) [44] is a classical method for
designing a bonus term.

Existing works on scheduling in non-stationary queueing
systems include [33], which uses discounted UCB estimators
for an up-to-date service rate of each link to replace the actual
mean services rate in classical MaxWeight. The resulting
policy can stabilize problem instances where the difference of
each link’s arrival (and service) rates between any two time
steps in any time window of length W is sufficiently small,
and this window length W needs to match with the discounting
factor ⇀ used in discounted UCB estimators. Compared to [33],
our smoothness assumption is on the reference randomized
policies rather than the true service rates.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to apply adver-
sarial bandit learning techniques to schedule queueing systems
with unknown, time-varying network states. The presented
new algorithms SoftMW and SSMW are capable of stabilizing
the system whenever the system can be stabilized by some
(possibly unknown) sequence of randomized policies, and
their time-variation satisfies some mild condition. We further
generalize our results to the setting where arrivals and depar-
tures only have bounded moments and develop two stablizing
algorithms SoftMW+ and SSMW+.

We believe our approach can be generalized to more com-
plex stochastic networks (e.g., multi-hop networks), and to
achieve other tasks such as utility optimization subject to
queue stability. It is also an interesting future work to design
distributed network scheduling algorithms using adversarial
bandit learning techniques.

REFERENCES

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1,
pp. 48–77, 2002.

[2] X. Kong, N. Lu, and B. Li, “Optimal scheduling for unmanned aerial
vehicle networks with flow-level dynamics,” IEEE Trans. Mobile Com-
put., vol. 20, no. 3, pp. 1186–1197, Mar. 2021.

[3] S. Tsanikidis and J. Ghaderi, “On the power of randomization for
scheduling real-time traffic in wireless networks,” IEEE/ACM Trans.
Netw., vol. 29, no. 4, pp. 1703–1716, Aug. 2021.

[4] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proc. IEEE
INFOCOM, Mar. 2012, pp. 702–710.

[5] S. El Kafhali and K. Salah, “Stochastic modelling and analysis of cloud
computing data center,” in Proc. 20th Conf. Innov. Clouds, Internet Netw.
(ICIN), Mar. 2017, pp. 122–126.

[6] K. Psychas and J. Ghaderi, “A theory of auto-scaling for resource reser-
vation in cloud services,” Stochastic Syst., vol. 12, no. 3, pp. 227–252,
Sep. 2022.

[7] B. Berg, M. Harchol-Balter, B. Moseley, W. Wang, and J. Whitehouse,
“Optimal resource allocation for elastic and inelastic jobs,” in Proc. 32nd
ACM Symp. Parallelism Algorithms Architectures, Jul. 2020, pp. 75–87.

[8] S. Hu, X. Chen, W. Ni, X. Wang, and E. Hossain, “Modeling and analy-
sis of energy harvesting and smart grid-powered wireless communication
networks: A contemporary survey,” IEEE Trans. Green Commun. Netw.,
vol. 4, no. 2, pp. 461–496, Jun. 2020.

[9] T. H. Kim, H. Shin, K. Kwag, and W. Kim, “A parallel multi-
period optimal scheduling algorithm in microgrids with energy storage
systems using decomposed inter-temporal constraints,” Energy, vol. 202,
Jul. 2020, Art. no. 117669.

[10] L. Lv et al., “Contract and Lyapunov optimization-based load
scheduling and energy management for UAV charging stations,”
IEEE Trans. Green Commun. Netw., vol. 5, no. 3, pp. 1381–1394,
Sep. 2021.

[11] M. Rahdar, L. Wang, and G. Hu, “A tri-level optimization model for
inventory control with uncertain demand and lead time,” Int. J. Prod.
Econ., vol. 195, pp. 96–105, Jan. 2018.

[12] O. Ben-Ammar, B. Bettayeb, and A. Dolgui, “Optimization of multi-
period supply planning under stochastic lead times and a dynamic
demand,” Int. J. Prod. Econ., vol. 218, pp. 106–117, Dec. 2019.

[13] H. Wei et al., “PressLight: Learning Max pressure control to coordinate
traffic signals in arterial network,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, vol. 1, 2019, pp. 1290–1298.

[14] A. Braverman, J. G. Dai, X. Liu, and L. Ying, “Empty-car routing
in ridesharing systems,” Oper. Res., vol. 67, no. 5, pp. 1437–1452,
Sep. 2019.

[15] A. Braverman, J. G. Dai, X. Liu, and L. Ying, “Fluid-model-
based car routing for modern ridesharing systems,” in Proc. ACM
SIGMETRICS/Int. Conf. Meas. Model. Comput. Syst., Jun. 2017,
pp. 11–12.

[16] V. Tsibonis, L. Georgiadis, and L. Tassiulas, “Exploiting wireless chan-
nel state information for throughput maximization,” in Proc. 22nd Annu.
Joint Conf. IEEE Comput. Commun. Societies (INFOCOM), vol. 1,
Mar. 2003, pp. 301–310.

[17] B. Sadiq and G. de Veciana, “Throughput optimality of delay-driven
MaxWeight scheduler for a wireless system with flow dynamics,” in
Proc. 47th Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2009, pp. 1097–1102.

[18] S. Liu, L. Ying, and R. Srikant, “Throughput-optimal opportunistic
scheduling in the presence of flow-level dynamics,” IEEE/ACM Trans.
Netw., vol. 19, no. 4, pp. 1057–1070, Aug. 2011.

[19] M. J. Neely, “Order optimal delay for opportunistic scheduling in multi-
user wireless uplinks and downlinks,” IEEE/ACM Trans. Netw., vol. 16,
no. 5, pp. 1188–1199, Oct. 2008.

[20] M. J. Neely, “Delay analysis for max weight opportunistic scheduling
in wireless systems,” IEEE Trans. Autom. Control, vol. 54, no. 9,
pp. 2137–2150, Sep. 2009.

[21] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “LIFO-
backpressure achieves near-optimal utility-delay tradeoff,” IEEE/ACM
Trans. Netw., vol. 21, no. 3, pp. 831–844, Jun. 2013.

[22] L. Huang and M. J. Neely, “Utility optimal scheduling in processing
networks,” Perform. Eval., vol. 68, no. 11, pp. 1002–1021, Nov. 2011.

[23] M. J. Neely, “Delay-based network utility maximization,” IEEE/ACM
Trans. Netw., vol. 21, no. 1, pp. 41–54, Feb. 2013.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

3044 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

[24] A. Gaddam, T. Wilkin, M. Angelova, and J. Gaddam, “Detecting sensor
faults, anomalies and outliers in the Internet of Things: A survey on the
challenges and solutions,” Electronics, vol. 9, no. 3, p. 511, 2020.

[25] M. R. Khan, B. Das, and B. B. Pati, “Channel estimation strategies for
underwater acoustic (UWA) communication: An overview,” J. Franklin
Inst., vol. 357, no. 11, pp. 7229–7265, Jul. 2020.

[26] M. Ashjaei, L. Lo Bello, M. Daneshtalab, G. Patti, S. Saponara, and
S. Mubeen, “Time-sensitive networking in automotive embedded sys-
tems: State of the art and research opportunities,” J. Syst. Archit.,
vol. 117, Aug. 2021, Art. no. 102137.

[27] J. Chen, F. Qian, and B. Li, “Enhancing quality of experience for
collaborative virtual reality with commodity mobile devices,” in Proc.
IEEE 42nd Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2022,
pp. 1018–1028.

[28] M. J. Neely, Stochastic Network Optimization With Application to
Communication and Queueing Systems (Synthesis Lectures on Learn-
ing, Networks, and Algorithms), vol. 3. Morgan & Claypool, 2010,
pp. 1–211.

[29] S. Krishnasamy, A. Arapostathis, R. Johari, and S. Shakkottai, “On
learning the cµ rule in single and parallel server networks,” in Proc. 56th
Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Oct. 2018,
pp. 153–154.

[30] T. Choudhury, G. Joshi, W. Wang, and S. Shakkottai, “Job dispatching
policies for queueing systems with unknown service rates,” in Proc.
22nd Int. Symp. Theory, Algorithmic Found., Protocol Design Mobile
Netw. Mobile Comput., Jul. 2021, pp. 181–190.

[31] S. Krishnasamy, R. Sen, R. Johari, and S. Shakkottai, “Learning
unknown service rates in queues: A multiarmed bandit approach,” Oper.
Res., vol. 69, no. 1, pp. 315–330, Jan. 2021.

[32] W.-K. Hsu, J. Xu, X. Lin, and M. R. Bell, “Integrated online learning
and adaptive control in queueing systems with uncertain payoffs,” Oper.
Res., vol. 70, no. 2, pp. 1166–1181, Mar. 2022.

[33] Z. Yang, R. Srikant, and L. Ying, “Learning while scheduling in multi-
server systems with unknown statistics: MaxWeight with discounted
UCB,” in Proc. 26th Int. Conf. Artif. Intell. Statist., in Proceed-
ings of Machine Learning Research, vol. 206, F. Ruiz, J. Dys, and
J.-W. van de Meent, Eds., 2023, pp. 4275–4312. [Online]. Available:
https://proceedings.mlr.press/v206/yang23d.html

[34] B. Liu, Q. Xie, and E. Modiano, “RL-QN: A reinforcement learning
framework for optimal control of queueing systems,” ACM Trans. Model.
Perform. Eval. Comput. Syst., vol. 7, no. 1, pp. 1–35, Aug. 2022.

[35] B. S. Pavse, M. Zurek, Y. Chen, Q. Xie, and J. P. Hanna, “Learning
to stabilize online reinforcement learning in unbounded state spaces,”
2023, arXiv:2306.01896.

[36] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inf. Theory,
vol. 39, no. 2, Mar. 1993.

[37] X. Fu and E. Modiano, “Joint learning and control in stochastic queueing
networks with unknown utilities,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 51, no. 1, pp. 77–78, Jun. 2023.

[38] X. Fu and E. Modiano, “Optimal routing to parallel servers with
unknown utilities—Multi-armed bandit with queues,” IEEE/ACM Trans.
Netw., vol. 31, no. 3, pp. 1997–2012, 2022.

[39] Q. Liang and E. Modiano, “Minimizing queue length regret under
adversarial network models,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 46, no. 1, pp. 31–32, Jan. 2019.

[40] E. Hazan, “Introduction to online convex optimization,” Found. Trends
Optim., vol. 2, nos. 3–4, pp. 157–325, 2016.

[41] M. J. Neely, S. T. Rager, and T. F. La Porta, “Max weight learning
algorithms for scheduling in unknown environments,” IEEE Trans.
Autom. Control, vol. 57, no. 5, pp. 1179–1191, May 2012.

[42] S. Krishnasamy, P. T. Akhil, A. Arapostathis, R. Sundaresan, and
S. Shakkottai, “Augmenting max-weight with explicit learning for wire-
less scheduling with switching costs,” IEEE/ACM Trans. Netw., vol. 26,
no. 6, pp. 2501–2514, Dec. 2018.

[43] T. Stahlbuhk, B. Shrader, and E. Modiano, “Learning algorithms for
scheduling in wireless networks with unknown channel statistics,” in
Proc. 18th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Jun. 2018,
pp. 31–40.

[44] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” J. Mach. Learn. Res., vol. 3, pp. 397–422, Nov. 2002.

[45] R. T. Rockafellar, Convex Analysis. Princeton, NJ, USA: Princeton Univ.
Press, 2015.

Jiatai Huang was born in Hangzhou, China, in May
1996. He received the Ph.D. degree in computer
science and technology from the Institute for Inter-
disciplinary Information Sciences (IIIS), Tsinghua
University, Beijing, China, in 2023, under the super-
vision of Prof. Longbo Huang. His research interests
include multi-armed bandit algorithm design and
analysis.

Leana Golubchik (Senior Member, IEEE) is cur-
rently the Stephen and Etta Varra Professor of
electrical and computer engineering (with a joint
appointment in computer science) with the Univer-
sity of Southern California (USC). She is also the
Director of the Women in Science and Engineering
(WiSE) Program. Prior to that, she was a Fac-
ulty Member with the University of Maryland and
Columbia University. Her research interests include
the design and evaluation of large-scale distributed
systems, including hybrid clouds and data centers,

and their applications in data analytics, machine learning, and privacy. She
is a member of the IFIP WG 7.3 and a Fellow of AAAS. She is the Editor-
in-Chief of ACM Transactions on Modeling and Performance Evaluation of
Computing Systems.

Longbo Huang (Senior Member, IEEE) has held
visiting positions at the LIDS Laboratory, MIT,
CUHK, Bell-Labs France, and Microsoft Research
Asia (MSRA). He was a Visiting Scientist with
the Simons Institute for the Theory of Computing
in Fall 2016. He is currently a Professor with the
Institute for Interdisciplinary Information Sciences
(IIIS), Tsinghua University, Beijing, China. He is an
ACM Distinguished Scientist, a CCF Distinguished
Member, an IEEE ComSoc Distinguished Lecturer,
and an ACM Distinguished Speaker. He received

the Outstanding Teaching Award from Tsinghua University in 2014 and
the Google Research Award and the Microsoft Research Asia Collaborative
Research Award in 2014. He was selected into the MSRA StarTrack Program
in 2015. He won the ACM SIGMETRICS Rising Star Research Award
in 2018. He serves/served on the editorial board for IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON COM-
MUNICATIONS, ACM Transactions on Modeling and Performance Evaluation
of Computing Systems, IEEE/ACM TRANSACTIONS ON NETWORKING,
Performance Evaluation (Elsevier), and IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

