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A B S T R A C T

Due to the proliferation of inference tasks on mobile devices, state-of-the-art neural architectures
are typically designed using Neural Architecture Search (NAS) to achieve good tradeoffs
between machine learning accuracy and inference latency. While measuring inference latency
of a huge set of candidate architectures during NAS is not feasible, latency prediction for mobile
devices is challenging, because of hardware heterogeneity, optimizations applied by machine
learning frameworks, and diversity of neural architectures. Motivated by these challenges, we
first quantitatively assess the characteristics of neural architectures (specifically, convolutional
neural networks for image classification), ML frameworks, and mobile devices that have
significant effects on inference latency. Based on this assessment, we propose an operation-wise
framework which addresses these challenges by developing operation-wise latency predictors
and achieves high accuracy in end-to-end latency predictions, as shown by our comprehensive
evaluations on multiple mobile devices using multicore CPUs and GPUs. To illustrate that our
approach does not require expensive data collection, we also show that accurate predictions
can be achieved on real-world neural architectures using only small amounts of profiling data.

1. Introduction

Due to significant breakthroughs in machine learning (ML), inference tasks using neural networks are being deployed to a growing
number of mobile devices (e.g., smartphones, smartwatches, tablets), largely for computer vision and natural language tasks. In
comparison with powerful cloud servers, mobile devices have limited resources, which restricts the choice of neural architectures
(NAs).

To achieve good tradeoffs between machine learning accuracy and hardware efficiency, state-of-the-art NAs [1–3] are typically
designed through Neural Architecture Search (NAS) [4]. Recent work [5–7] proposes zero-shot NAS, which substantially reduces
the search cost by utilizing proxy metrics to estimate the ML accuracy of each candidate NA without training. Consequently, the
bottleneck of zero-shot NAS becomes latency measurement; for example, the evaluation of accuracy proxy metric in [5] takes less
than a second for each candidate NA, while deploying and compiling each NA on a device for latency measurement typically requires
a few minutes. In addition, NAs exhibit distinct performance characteristics across hardware platforms [8], and it is time-consuming
to repeat the measurements on all platforms during NAS. As an alternative to measurements, existing approaches for evaluating the
efficiency of NAs can be categorized as those using (1) proxy metrics [3,9] (e.g., FLOPs), which are usually platform-independent and
cannot accurately reflect the actual performance due to the diversity of platforms [8,10]; (2) look-up tables [11–13] of measurements
collected for the building blocks of NAs, which require extensive profiling on each platform and cannot cover every possible
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block configuration; (3) prediction models, which can predict the performance of any block configuration in the search space,
broadly relying on machine learning techniques [14–24], but also including analytical performance models (e.g., accounting for
computations [25] and memory access traffic of GEMM-based convolution [26,27]). However, building accurate prediction models
for efficiency metrics on mobile devices is difficult due to the following challenges (where we also highlight related work).

(1) Hardware heterogeneity : Existing prediction models mainly focus on Nvidia cloud GPUs [14,17–20] or Nvidia embedded
GPUs [23,24]; instead, the heterogeneity of CPUs and GPUs on mobile devices makes the performance predictions more difficult.
In particular, inference tasks are frequently performed on mobile devices using CPUs [28], due to the support of a broader set of
available operations (e.g., Channel Shuffle [29] is currently unavailable on the TensorFlow Lite (TFLite) [30] GPU Delegate [31];
batch normalization is not implemented as Metal kernel for iOS GPUs in PyTorch Mobile [32]). Modern mobile CPUs typically use
the ARM big.LITTLE architecture, which consists of heterogeneous core clusters, e.g., high-performance cores and high-efficiency
cores [33]; when an inference task takes advantage of this multicore architecture, the schedule of threads on different cores has a
significant impact on performance (Section 3.1.1). In addition, multicore speedups on a given device can vary for different NAs; for
instance, MobileNet (with width multiplier of 0.75) and ResNet18 (with width scale of 0.25) achieve comparable inference latency
(28.4 ms and 28.1 ms, respectively) on Pixel 4 with one medium core, but differ by 24.6% with three medium cores (11.8 ms
and 14.7 ms, respectively) on TFLite. Therefore, it is necessary to evaluate prediction approaches using heterogeneous hardware
resources, in particular over multiple CPU cores; this is not taken into consideration by existing work on latency prediction for mobile
CPUs [15,21,22].

(2) ML framework optimizations: Modern ML frameworks introduce optimizations that can significantly accelerate inference tasks.
For example, operator fusion [34] reduces overhead in the invocation of kernels on GPUs: our tests show that kernel fusion can
result in up to 22% and 48% performance improvements over 102 real-world NAs on TFLite and PyTorch Mobile, respectively
(Section 3.2.1). Similarly, the choice of algorithms for implementing each operation can considerably affect inference performance:
for example, TFLite uses the faster Winograd [35] algorithm for some (but not all) convolution layers on GPUs; PyTorch Mobile
implements five types of kernels for convolution layers of different configurations on GPUs (Section 3.2.2). Existing work on latency
estimation for GPUs [15,18,20,23,24] does not consider such optimizations (which are specific to ML frameworks); instead, current
literature predicts inference latency only from the features of NAs and hardware platforms.

(3) Neural architecture diversity : During the exploration of the search space by NAS algorithms, the properties of NAs (e.g., the
number of operations and their latency) can vary considerably; in addition, novel neural architectures are proposed by manual
design [1,10,29], prompting the definition of new NAS search spaces. Existing ML-based performance prediction models use training
and test datasets with very similar NAs [14,24,36], or with a small set of popular NAs [18,19,37]; in contrast, practical applicability to
NAS requires accuracy on a large set of diverse NAs.

Motivated by these challenges, we first quantitatively assess characteristics of neural architectures, ML frameworks, and mobile
devices affecting inference latency; then, we use our findings to develop a framework to predict end-to-end inference latency on
mobile CPUs and GPUs by estimating the latency of NA components through machine learning models. In so doing, we address
several shortcomings of related work: (i) we develop a training dataset of convolutional neural networks for image classification
that is more representative of real-world NAs, by including a broader set of NA blocks than current literature [38]; (ii) we measure and
predict latency on different combinations of heterogeneous CPU cores and different data representations (i.e., floating-point or integer
quantization [39]) over two ML frameworks, while related work [21,22] uses only a single CPU core (unrealistic in practice) and
floating-point calculations for a given ML framework. Notably, our solution explicitly accounts for optimizations applied by ML
frameworks on each NA; in contrast, previous work nn-Meter [22] uses black-box models to estimate the effects of ML framework
optimizations (and is limited to a single core for CPUs).

In this paper, we significantly extend our preliminary work [40] (which only considers TFLite) by collecting inference
measurements and applying our prediction approach to PyTorch Mobile (for all NAs and on all mobile platforms, effectively
doubling our experimental evaluation from 90 to 174 scenarios). The comparison of performance characteristics between different
ML frameworks highlights not only the impact, but also the heterogeneity of ML framework optimizations. For example, many
operations (including addition, mean, pooling) obtain significant speedups from multithreading execution in PyTorch Mobile, but
no benefits in TFLite (Section 3.1.1); in contrast, model quantization can result in performance degradation on PyTorch (using large
and medium cores on Snapdragon 855), instead of the speedups observed in TFLite (Section 3.1.2). These differences are due to
the different implementations and optimization strategies of TFLite and PyTorch Mobile; to obtain accurate predictions, we analyze
and model the optimizations applied by each ML framework. Specifically, the main contributions of our work are as follows.

• By collecting measurements for 102 state-of-the-art NAs (from 25 articles) on 6 mainstream mobile platforms using 2 ML frame-
works (TFLite and PyTorch Mobile), and based on quantitative evidence, we identify aspects of hardware and ML frameworks that
substantially affect the latency of inference tasks on mobile devices. For mobile CPUs, we expose performance characteristics under
various settings, including multithreading over ARM heterogeneous core clusters and quantization with lower-bit representations
(Section 3.1). For mobile GPUs, we analyze two types of optimization strategies in ML frameworks: kernel fusion and kernel
selection (Section 3.2). As a representative example, we present the principles of both strategies in TFLite and PyTorch Mobile,
and empirically evaluate resulting speedups to highlight their impact on inference latency.

• Based on the results of our performance study, we develop a framework for estimating end-to-end inference latency on mobile
devices by combining accurate latency predictions of individual NA components (Section 4.2). In contrast with complex ML
models predicting end-to-end latency by encoding the configurations of all operations as a single feature vector [14,16,17],
latency predictors for NA components require less training data and are easier to interpret. To address hardware heterogeneity,



Performance Evaluation 165 (2024) 102429

3

Z. Li et al.

we profile execution times of NAs using different sets of CPU cores and different data representations, and we train ML models
to predict performance for each combination.1 For ML framework optimizations, we precisely deduce the selected GPU kernels
without deploying and compiling the target NA on the actual hardware (Section 4.1). After collecting one-time training data on each
device, we apply ML models to accurately predict the latency of inference tasks under various settings of mobile CPUs and GPUs,
which can be used by existing NAS techniques without access to the actual hardware.

• Since the existing benchmark dataset NATSBench [38] (studied in [14,22]) lacks depthwise convolution operations and exhibits
limited diversity of operation configurations (see Section 5.6.2 for quantitative analysis), we build a synthetic dataset of 1000 NAs
sampled from a NAS space covering a majority of configurations for common operations and building blocks (Section 4.3). For
each NA, we comprehensively measure latency under 174 scenarios across 6 mainstream mobile platforms, including multicore
combinations and use of integer quantization on both TFLite and PyTorch Mobile. In addition to accurate latency prediction, this
dataset provides insight (i) to NA developers on how to build efficient NAs and (ii) to mobile developers on how to choose effective
optimizations on different ML frameworks.

• To evaluate how our approach addresses the aforementioned challenges, in addition to the default setting of NAS (Section 5.1),
we show that our approach also achieves accurate predictions under hardware heterogeneity (Section 5.2), neural architecture
diversity (Section 5.3), and ML framework optimizations (Section 5.4). To address concerns regarding the cost of training data
collection [21], we evaluate prediction accuracy with limited amounts of training data, using multiple ML methods (Section 5.5).
Our results highlight that, when trained with latency measurements for a sufficient number of NAs (e.g., 1000 synthetic NAs),
powerful ML methods (e.g., GBDT [41]) achieve very accurate predictions for NAs with similar characteristics (e.g., average
errors 2.4% and 5.2% on CPUs and GPUs for TFLite; 2.6% and 4.8% on CPUs and GPUs for PyTorch Mobile); when training and
testing data have different characteristics (e.g., training on synthetic NAs and testing on real-world NAs), simple linear models
(e.g., Lasso [42]) are robust and still accurate (e.g., average errors of 5.4% and 8.0% on CPUs and GPUs for TFLite; 10.4% and
8.2% on CPUs and GPUs for PyTorch Mobile). When training data is very limited (e.g., 30 synthetic NAs), accuracy is lower
(e.g., with GBDT, average errors of 8.1% and 8.6% on CPUs and GPUs for TFLite; 6.2% and 8.8% on CPUs and GPUs for PyTorch
Mobile) but sufficient for NAS, while profiling time for a target device is negligible compared to deploying and measuring latency
of thousands of candidate NAs, as noted in [21].

2. Background

2.1. Convolutional neural architectures for image classification

Convolutional Neural Networks (CNNs) play an important role in computer vision tasks. These models process an input image
(e.g., 224 ε 224 pixels and 3 channels) using a sequence of convolutional layers. Each layer uses a set of filters (e.g., moving windows
of 3 ε 3 pixels) that are applied at each image location (e.g., using a dot product across all input channels, followed by an element-
wise activation function) to detect higher level features (e.g., shapes, colors, and textures); the outputs of these filters are collected
into output channels (also known as feature maps), which are then provided as input to the next layer. Pooling layers are used to
replace feature map values in a moving window (e.g., 3 ε 3 pixels) with their maximum or mean, thus reducing the resolution
of the map for efficiency. At the end of the CNN, fully connected layers are frequently used to obtain confidence scores of output
classes as weighted sums of features extracted by previous layers.

CNNs are usually deep, to be able to learn complex and hierarchical features: earlier layers extract low-level local details
(e.g., edges), while later layers capture high-level features as a combination of low-level ones (e.g., a specific shape). However,
deeper CNNs are computationally expensive; in order to reduce complexity, depthwise convolutions [43] have been proposed to
perform separate convolutions for each input channel, instead of using values from all input channels. Grouped convolutions are a
variant where input channels are split into groups, each processed by a different set of filters. Feature maps calculated using different
filters can also be concatenated or combined using element-wise addition. To improve efficiency, a sequence of operations (e.g., a
convolutional filter and the following ReLU activation) can be combined as a single operation if a more efficient implementation is
available (e.g., in kernel fusion of GPU operations).

The weights of the filters computing and combining feature maps are trained from a dataset of input/output examples; after
training, CNNs are deployed to cloud servers or mobile devices for inference tasks, i.e., classification of new input images. When
CNNs are deployed to mobile devices, memory and computation required for inference tasks are particularly critical, due to their
limited resources and to responsiveness requirements for many applications (e.g., augmented reality or real-time user interaction).
For this reason, we investigate methods to predict end-to-end latency of a given NA, i.e., the total time required to execute the
operations of all layers, to obtain an input classification from an input example. Notably, inference latency does not depend on the
input values or model weights, but on the input shape and the model architecture; this makes our prediction method useful for NAS.

2.2. Development and deployment of neural architectures

As illustrated in Fig. 1, the lifecycle of neural architecture development and deployment on mobile devices consists of
(1) designing and training a neural network on cloud servers, and (2) deploying the model on a target mobile device where inference
tasks are performed on CPU cores or GPU.

1 As in existing literature [14,22] on mobile devices, we collect data and train models for each setting instead of constructing one model to predict inference
latency across all devices (e.g., [18] for cloud GPUs) due to the heterogeneity of mobile platforms.
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Fig. 1. Lifecycle of neural architecture development and deployment on mobile devices.

State-of-the-art neural architectures are developed by both manual design [10,43,44] and NAS [1–3,45]. Due to scarce computing
and memory resources, NAs intended for inference tasks on mobile devices are designed not only to maximize prediction
accuracy, but also to satisfy performance constraints on end-to-end latency and memory consumption. To achieve these goals,
model quantization [39,46] is frequently applied: instead of floating-point values, fixed-width integers are used to represent model
parameters and to perform computations with low precision, reducing memory requirements and computation times (as shown in
Section 3.1.2).

After training on cloud servers, the identified neural architecture is stored as a model file, which can be distributed to
heterogeneous mobile platforms for inference tasks. For instance, in TFLite, a neural architecture is described as a computational
graph, where each node represents an operation and each edge represents the flow of intermediate results between operations;
the complete computational graph is included in the .tflite model file; in PyTorch, the model is serialized and optimized as a
TorchScript program, which contains the information of control and data flow during inference.

A mobile device can be equipped with multiple hardware accelerators for inference tasks (e.g., CPU, GPU, DSP, and Edge TPU
are available on Pixel 4). To be executed on specific hardware, the model is ‘‘compiled’’ as a sequence of CPU operations and
GPU kernels. Notably, different ML frameworks provide distinct implementations; for instance, the GPU kernels on Android are
implemented in OpenCL for TFLite, while in Vulkan for PyTorch Mobile. Within a framework, the same operation can be executed
using different algorithms on different devices; for example, the TFLite GPU Delegate can select different kernels for convolution
operations on Adreno GPUs vs. Mali GPUs (Section 3.2.2). In addition, several consecutive operations/kernels can be ‘‘fused’’ into
one to reduce the dispatching overhead (Section 3.2.1). Eventually, a compiled model is executed on the target hardware: on GPUs,
kernels are dispatched to a command queue for execution; on CPUs, operations are executed sequentially, while multithreading is
used only to accelerate the execution of individual operations using multiple cores (Section 3.1.1).

3. Inference on mobile devices

In this section, we present the results of our empirical study on the performance of real-world neural architectures on mobile
platforms; in particular, we analyze thread scheduling and model quantization in multicore mobile CPUs (Section 3.1), and kernel
fusion and selection in mobile GPUs (Section 3.2), evaluating their impact on inference latency. The insight gained from our results
will be used in Section 4 to develop a latency prediction framework.

3.1. Mobile CPUs

3.1.1. Effects of multithreading
Modern mobile platforms typically adopt the ARM big.LITTLE architecture, which allows multiple types of CPU cores to be

integrated into the same system; each group of homogeneous cores is operated as a ‘‘core cluster’’ running at the same clock
speed. The ‘‘big cores’’ with higher clock speeds can handle computationally intensive tasks, while the ‘‘LITTLE cores’’ with lower
clock speeds require less power. High-priority tasks are usually scheduled on big cores for better performance; non-urgent tasks are
assigned to little cores to reduce energy consumption. Table 1 lists the core clusters of the mobile platforms in our study.2

An inference task can be accelerated with multithreading over multiple cores. For Android devices, given a set of CPU cores,
we use an equal number of threads and set the CPU affinity of these threads to encourage their scheduling on the cores; for iOS
devices, we specify the quality-of-service (QoS) class [47] of each thread to schedule on performance or efficiency cores. Considering
the limited resources available on mobile devices, we select 102 real-world convolutional neural networks for image classification
with up to 18 million parameters from 25 articles (with manual design or NAS) [1–3,13,15,43–45,48–64]. The TensorFlow and
PyTorch implementations of these NAs are from [65], which also provides pre-trained parameters and Top-1/Top-5 test errors on

2 Since the architectures of Snapdragon 710 and A10 are similar to Snapdragon 855 and A12, respectively, we report their measurements in Appendix A.
The evaluation of our prediction method on Helio P35 and A10 Fusion using the GPU backend of PyTorch Mobile are not included in the paper due to their
insufficient memory for the backend.
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Table 1
Mobile platforms in our study.
Device Platform CPU Cores GPU

Google Pixel 4 Snapdragon 855 1ε Large (2.84 GHz), 3ε Medium (2.32 GHz), 4ε Small (1.80 GHz) Adreno 640
Xiaomi Mi 8 SE Snapdragon 710 2ε Large (2.20 GHz), 6ε Small (1.70 GHz) Adreno 616
Samsung Galaxy S10 Exynos 9820 2ε Large (2.73 GHz), 2ε Medium (2.31 GHz), 4ε Small (1.95 GHz) Mali G76
Samsung Galaxy A03s Helio P35 4ε Large (2.30 GHz), 4ε Small (1.80 GHz) PowerVR GE8320
Apple iPhone XS A12 Bionic 2ε Large (2.49 GHz), 4ε Small (1.52 GHz) Apple-designed G11P
Apple iPhone 7 A10 Fusion 2ε Large (2.34 GHz), 2ε Small (1.05 GHz) PowerVR GT7600 Plus (Custom)

Fig. 2. Effects of multicore on end-to-end latency (L, M, S represent Large, Medium, Small cores, respectively).

Fig. 3. Effects of homogeneous multicore on operation-wise latency (speedup over one core).

the ImageNet-1K dataset. Similarly to related work, we observe in our experiments that inference latency depends on the shape of the
input data but not on input values; therefore, we use a random 224 ε 224 image (as in the ImageNet-1K dataset) for measurements
of end-to-end inference latency.

Fig. 2 uses boxplots3 to depict end-to-end latency of these real-world neural architectures with different multicore configurations.4

Counterintuitively, using multiple heterogeneous cores can result in performance degradation: for example, on Snapdragon 855 (Figs. 2(a)
and 2(e)), the combination of a medium core and a small core results in worse performance (on average) than a medium core. As
noted in previous work [33], we attribute this performance degradation to the overhead of inter-cluster communication; also, we
observe that the work of an operation is split equally among threads in modern ML framworks (e.g., TFLite Threadpool [66] with
its matrix multiplication library Ruy [67], and PyTorch Mobile Threadpool [68]), which is suboptimal for heterogeneous cores.5

In Fig. 2, we observe a sublinear end-to-end speedup with respect to the number of homogeneous cores for multithreading. That
is because, as shown in Fig. 3, convolution, depthwise convolution (DW-Conv) and fully-connected (FC) operations achieve sublinear
speedups on both ML frameworks as the number of threads increases; the performance improvements of Mean and Pool operations

3 In the paper, boxplots indicate 1st quartile, median, and 3rd quartile of the data; whiskers extend for 1.5x the interquartile range.
4 For clarity of presentation, we omit some outliers with substantially higher latency in Fig. 2 (<4% of the data per configuration) and report the complete

data in Fig. A.31 of Appendix.
5 The work in [33] also proposes solutions to improve the throughput over heterogeneous cores. In our paper, we focus on the performance characteristics

of ML workloads and follow the current implementation of ML frameworks.
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Fig. 4. Effects of quantization on end-to-end latency.

Fig. 5. Effects of quantization on operation-wise latency.

are significant in PyTorch Mobile but negligible in TFLite, due to the lack of support for parallel execution of these operations in
TFLite.

Insight 1. On mobile CPUs, multithreading significantly impacts the performance of inference tasks. On homogeneous cores,
multithreading leads to sublinear reduction of latency for convolution, depthwise convolution, and fully-connected operations;
however, on heterogeneous cores, multithreading can result in performance degradation due to the overhead of inter-cluster
communication.

3.1.2. Effects of quantization
On mobile devices with limited power and computing resources, neural architectures can be converted into lower-precision

representations (e.g., 16-bit floating-point or 8-bit integers) to reduce memory utilization and computational demand, without
substantial loss in ML accuracy. We study the approach of integer-arithmetic-only inference [46] in TFLite (where both weights
and activations are represented as 8-bit integers during inference6) and post-training static quantization in PyTorch,7 respectively.
Fig. 4 compares end-to-end inference latency using 8-bit integer with 32-bit floating-point.8 As can be seen, quantization shows a
distinct speedup on various core combinations. Particularly, we observe performance degradation after quantization on large and
medium cores on Snapdragon 855 in PyTorch Mobile (Fig. 4(e)); we attribute this degradation to the use of a different inference
backend, QNNPACK [70], for quantized models in PyTorch, resulting in an average of 32% performance degradation for convolutions
(for one large core) as compared to the inference backend XNNPACK [71] used for floating-point models, as shown in Fig. 5(e).
Notably, our prediction approach still achieves accurate prediction for this anomalous case, as shown in Section 5.2.

Fig. 5 depicts the latency improvement of each type of operation after quantization. In TFLite, on all devices, most operations
achieve significant speedup when using 8-bit integers however, padding and element-wise operations show performance degradation
after quantization: the average latency of element-wise operations is increased by 2.55x and 2.60x on Snapdragon 855 and Exynos
9820, respectively. Previous work [39,46] suggests that this degradation is due to the overhead of matching quantization ranges
(i.e., the scale) of all inputs of quantized operations (e.g., element-wise addition). In PyTorch Mobile, operations of DW-Conv, Mean,

6 We study the effects of integer quantization only on mobile CPUs, because using 8-bit integers can cause significant overhead in the current implementation
of the TFLite GPU delegate when extra GPU kernels for quantization and dequantization are invoked.

7 We made minor modifications to the QNNPACK backend to solve a performance issue for DW-Conv with 7 ε 7 kernels, as described in [69].
8 Similarly to Fig. 2, we omit outliers (only of a couple of points) for better visualization.
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Fig. 6. Effects of kernel fusion.

Fig. 7. Effects of kernel fusion on operation-wise latency.

and Pool show significant performance improvements after quantization; however, the performance of the remaining operations
varies on different cores of devices, due to the distinct implementations of the backends.

Insight 2. While quantization reduces memory utilization and latency of inference tasks in most cases (as expected), there is
performance degradation for some operations due to the cost of scaling inputs or inefficient backend implementations in ML
frameworks.

3.2. Mobile GPUs

3.2.1. Effects of kernel fusion
Kernel fusion has been broadly adopted to reduce the overhead of dispatching kernels [22]. In PyTorch Mobile, a sequence of

optimizations are applied to models generated for mobile, including (1) fusion of the batch normalization (BN) with the convolution
layers, (2) fusion of activation layers (as clamping) with the previous convolution and linear layers, and (3) fusion of ReLu layers
into the previous addition operations. In TFLite, the implementation of kernel fusion is more sophisticated, as reported in Algorithm
B.2: two consecutive operations of the computational graph are fused when the first operation has only one output tensor (Line 5)
and the second operation: (1) is the only operation in the graph using this output tensor (Line 14), (2) uses this output tensor as its
first input to produce a single output (Line 22), and (3) has a compatible type (Line 24). To study the impact of kernel fusion, we
modified the source code of TFLite [72] and PyTorch Mobile [73] to disable this feature.

Figs. 6(a) and 6(c) illustrate that kernel fusion leads to a reduction in the number of kernels of over 45% for real-world NAs
on both frameworks. Figs. 6(b) and 6(d) show the performance improvements from kernel fusion on different mobile devices.9 We
observe up to 1.22x and 1.48x speedup of the average end-to-end latency over all the neural architectures for TFLite and PyTorch
Mobile, respectively, due to a reduction in the cost of kernel dispatching. As shown in Fig. 7,10 kernel fusion can significantly reduce
the latency of certain operations (i.e., element-wise in TFLite; batch normalization and activation in PyTorch Mobile) by merging
multiple kernels; at the same time, there is no substantial latency increase for other operations. This observation is aligned with
our analysis: the operations fused into other operations are mainly element-wise operations in TFLite (Line 24 of Algorithm B.2),
as well as batch normalization and activation layers in PyTorch Mobile.

Insight 3. By substantially reducing the number of operation kernels, kernel fusion can improve the performance of inference
tasks on mobile GPUs. The fusion can substantially reduce the latency of element-wise operations in TFLite and batch normalization
and activation in PyTorch Mobile by fusing them into the predecessor layer; the effect on other operations is negligible.

3.2.2. Effects of kernel selection
Machine learning frameworks use different optimized implementations for the operations of neural architectures. Algorithm

B.3 summarizes the criteria used by TFLite to select the Winograd algorithm for convolution operations: when the input tensor and
kernel size of a convolution operation satisfy the criteria defined by the CheckWinograd function, a Winograd kernel will be selected.
Figs. 8(a) and 8(b) shows the performance improvement from using Winograd kernels in real-world NAs; we observe performance
improvements of up to 1.32x for PowerVR GE8320 and up to 1.36x for A12 Bionic. Notably, kernel selection is hardware-dependent

9 The outliers (only a couple of data points) are removed to improve visualization. Disabling kernel fusion in PyTorch Mobile leads to failure on iOS GPUs,
due to the lack of implementations for batch normalization in the Metal backend.
10 A few outliers with large speedups on element-wise operations are reported in Fig. A.33 of Appendix.
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Fig. 8. Effects of kernel selection.

in TFLite: none of the NAs obtain performance improvements on Adreno 640 or 616, because the requirements for applying the
Winograd algorithm on these GPUs are stricter than Mali and PowerVR GPUs in the current TFLite implementation. Details are
illustrated in Appendix B.

Similarly, PyTorch Mobile implements five types of Vulkan kernels for the convolution operations: conv2d, conv2d_pw,
conv2d_dw, conv2d_dw_3ε3, and conv2d_dw_5ε5 based on the input/output size, kernel shape and number of groups of the
convolution, as presented in Algorithm B.1. Fig. 8(c) shows that, in comparison with only using conv2d kernels, applying various
optimized kernels leads to an average speedup of 1.33x on end-to-end latency; Fig. 8(d) further illustrates the improvement on each
type of kernel (over conv2d) on Adreno 640.

Insight 4. Framework-dependent optimizations have a significant impact on the performance of inference tasks. Convolution
operations with certain shapes of input tensors and kernel sizes can use the optimized kernels (e.g., Winograd algorithm in TFLite)
to accelerate the execution. Therefore, an accurate performance prediction model needs to accurately capture which kernels are
executed during inference.

4. Methodology

Given an input model file generated on a cloud server (e.g., during NAS), we aim at accurately predicting its end-to-end latency
on different mobile CPUs and GPUs without deploying it to actual devices. Our approach includes the following steps: (1) from
the model file, we first extract the configurations (e.g., input shape, channel size) of the operations (i.e., the execution units on
mobile CPUs) in the neural architecture; (2) for mobile GPUs, we deduce (without deploying to the mobile device) the actual
kernels executed after kernel fusion and kernel selection (Section 4.1); (3) we use ML models to predict inference latency of each
operation from its configurations (Section 4.2); (4) end-to-end latency is estimated as the sum of predicted operation latencies
plus the additional latency due to ML framework overhead. To train the prediction models and to evaluate our approach, we
collect latency measurements on both real-world NAs and a synthetic dataset including 1000 neural architectures from a NAS space
(Section 4.3), which is available at [69] and was described in [74].

4.1. Kernel deduction

From the model file, we are able to extract the configurations of all the operations of a neural architecture. As discussed in
Section 3.1.1, these operations are executed sequentially on mobile CPUs; multiple threads collaborate within the execution of each
operation. For each type of operation, platform, ML framework, and CPU core combination, we train a machine learning model to
predict inference latency.

When using mobile GPUs, operations can be further fused (Section 3.2.1) or implemented with optimized algorithms (Sec-
tion 3.2.2), which have substantial effects on performance (as illustrated by our measurements); consequently, identifying which
kernels are actually executed on the target device is critical to obtaining accurate latency predictions. To save the cost of deploying
the neural architectures to physical devices, we deduce the kernels executed on a device by simulating the process of kernel fusion
and kernel selection, according to the principles elicited from the implementation of ML framework. Specifically, to predict latency
on mobile GPUs, we first fuse kernels according to the rules (e.g., Algorithm B.2 for TFLite); then, we use the rules (Algorithms B.1
and B.3) to select a kernel based on the configurations of each convolution operation and on the specific target device.

4.2. Prediction models

To predict the latency of an operation, we use features associated with both memory access cost (e.g., size of input, output and
parameters) and computational cost (e.g., FLOPs), as reported in Table 2. Formally, for each operation, given the feature vectors
𝝎𝜔 ϑ 𝜀 and latencies 𝜗𝜔 ϑ 𝜛 measured on a specific device, 𝜔 = 1,… ,𝜚 (where 𝜚 is the size of the training dataset of the operation),
we train a prediction model 𝜍 ω = argmin𝜍

1
𝜚

⌋𝜚
𝜔=1

⌈⌈(𝜍 ( 𝜑𝝎𝜔) ϖ 𝜗𝜔)ϱ𝜗𝜔⌈⌈2 where each feature 𝛻𝜔,𝜕 is standardized as 𝜑𝛻𝜔,𝜕 = (𝛻𝜔,𝜕 ϖ ℵ𝜕 )ϱℶ𝜕
based on its training set mean ℵ𝜕 = (⌋𝜚

𝜔=1 𝛻𝜔,𝜕 )ϱ𝜚 and standard deviation ℶ𝜕 =
⌉⌋𝜚

𝜔=1(𝛻𝜔,𝜕 ϖ ℵ𝜕 )2ϱ𝜚 . Note that we minimize the
mean squared percentage error; during testing, we evaluate the mean absolute percentage error (MAPE) 1

𝜚
⌋𝜚

𝜔=1
⌈⌈(𝜍 ω( 𝜑𝝎𝜔) ϖ 𝜗𝜔)ϱ𝜗𝜔⌈⌈.

For prediction model, we consider the following representative ML approaches [75] adopted in the literature [18,20,22–24].
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Table 2
Feature space for each operation category.
Operation/Kernel Features

Convolution, Depthwise Convolution (DW-Conv) Input height (width), input channel, output height (width), stride, kernel height (width), filters,
input size, output size, kernel size, FLOPs

Grouped Convolution Input height (width), input channel, output height (width), stride, kernel height (width), filters,
input size, output size, kernel size, group number, FLOPs

Fully Connected (FC) Input channel, filters, parameter size, FLOPs
Mean Input height (width), input channel, kernel height (width), input size, FLOPs
Concat, Split Input height (width), input channel, kernel height (width), output channel, input size, output size
Pooling Input height (width), input channel, output height (width), stride, kernel height (width), input

size, output size, FLOPs
Padding Input height (width), input channel, output height (width), padding size, output size
Element-wise, Activations , Batch Normalization (BN) Input height (width), input channel, input size

Fig. 9. Difference between end-to-end latency and sum of operation-wise latency for real-world NAs.

Lasso. We first consider a linear model 𝜍 (𝝎) = 𝜺ℷ 𝝎 and estimate the optimal weights 𝜺ω as

𝜺ω = argmin
𝜺

1
𝜚

𝜚{
𝜔=1

⌈⌈⌈⌈⌈
𝜺ℷ 𝜑𝝎𝜔 ϖ 𝜗𝜔

𝜗𝜔

⌈⌈⌈⌈⌈

2

+ ℸ}𝜺}1 s.t. 𝜺 ∱ 0 . (1)

An L1 regularization term with hyperparameter ℸ is included to control model complexity and to favor a sparse solution. We use
grid search in [10ϖ5, 102] to find the best ℸ. Since each input feature 𝜑𝛻𝜔,𝜕 is positively correlated with latency, we constrain weights
⊳𝜕 to be non-negative in Eq. (1).

Random Forests (RF). An RF model includes multiple decision trees to reduce the overfitting of a single decision tree. We tune
hyperparameters including the number of decision trees (1 to 10) and the minimum number of samples to split an internal node (2
to 50) using 5-fold cross-validation.

Gradient-Boosted Decision Trees (GBDT). GBDT generates decision trees with gradient boosting on multiple stages. We tune
hyperparameters including the number of gradient boosting stages (1 to 200) and the number of examples required to split a node
(2 to 7) using 5-fold cross-validation.

Multi-Layer Perceptron (MLP). An MLP consists of multiple layers of fully-connected neurons. We tune the hyperparameters for
the number of layers from 1 to 6 and the number of neurons in each layer from {64, 128, 256, 512}. Similarly to previous work [18],
we use ReLU activations after each layer and the Adam optimizer with learning rate from {5 ε 10ϖ3, 5 ε 10ϖ4, 5 ε 10ϖ5}, and weight
decay from {10ϖ3, 10ϖ4, 10ϖ5}. We use 20% of training data as the validation set, and stop training when there is no improvement
in the validation error over 50 epochs.

To obtain end-to-end latency predictions, we add up latencies predicted for all operations of the NA, since CPU operations and
GPU kernels are executed sequentially (in a topological order determined by their dependencies). We also account for the additional
latency due to overhead and data transfers; as shown in Fig. 9, the sum of the latencies measured for all operations is consistently
lower than the measured end-to-end latency, especially on GPUs. Since the difference fluctuates around a constant value for all
NAs on a specific GPU, we use the average difference between end-to-end latencies and the total operation-wise latencies in the
training dataset to estimate this additional latency ℷoverhead. Formally, for a neural architecture with set of operations ⊲, we predict
end-to-end latency as ℷoverhead +

⌋
0ϑ⊲ 𝜍 ω

0 ( 𝜑𝝎0 ), where 𝜍 ω
0 is the latency predictor trained from measurements of operations with the

same type as 0, and ℷoverhead is the estimated overhead. We note that, if the same kernel (e.g., a 3 ε 3 convolution) is executed
multiple times within the NA, these are considered different operations, for which we collect different measurements.

In our experiments, we trained our prediction models (Lasso, Random Forests, GDBT, MLP) on an Intel i7-6800K CPU. Taking
Pixel 4 (using one large CPU core) as an example, the process of comprehensive training and hyperparameter-tuning of all operations
(convolutions, depthwise convolutions, etc.) from synthetic NAs required 1 minute for Lasso, 7 minutes for RF, 2.6 hours for GBDT,
and 28.7 hours for MLP.

4.3. Synthetic dataset

Next, we present our synthetic dataset of NAs sampled from a NAS space including operations and building blocks proposed in
recent works. We first introduce the approach to collecting latency measurements (Section 4.3.1) and then describe the design of
the NAS space (Section 4.3.2).
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Fig. 10. Latency breakdown on Snapdragon 855.

Fig. 11. Design of the NAS space for synthetic dataset.

4.3.1. Kernel latency profiling
For TFLite, We use the TFLite Model Benchmark Tool [76] to benchmark the performance of neural architectures. Since the tool

supports latency measurements of elementary operations only on mobile CPUs, we record start/stop timestamps of GPU kernels by
collecting profiling information at the OpenCL command queue (on Android) or Metal command buffer (on iOS), respectively. To
reduce the overhead of timestamp recording, we dispatch the same kernel 256 times,11 and we set the GPU Performance State [78]
to high for iOS devices, in order to acquire stable measurements over time.

In PyTorch Mobile, we utilize the Kineto profiler [79] to collect the duration of every CPU operation; for the Vulkan backend
on Android GPUs, we measure the duration of GPU kernels by collecting GPU timestamps from the query pool in Vulkan; for Metal
backend on iOS GPUs, similarly to TFLite, we dispatch each Metal command buffer for 256 times and record the GPU execution
time.

We adopt the default precision settings of the TFLite Model Benchmark tool, which uses 32-bit floating-point on mobile CPUs
and 16-bit floating-point on mobile GPUs. For PyTorch Mobile, we enable 16-bit floating-point inference for Vulkan backend on
Android GPUs. Figs. 10(a) and 10(c) show the average latency breakdown for 102 real-world neural architectures on Snapdragon
855 for TFLite and PyTorch Mobile, respectively.12 Notably, convolution and depthwise convolution operations account for most of
the end-to-end latency in both frameworks.

4.3.2. NAS space for sampling neural architectures
Figs. 10(a) and 10(c) highlight the importance of convolution and depthwise convolution operations in end-to-end latency.

Consequently, we design a search space to sample diverse configurations of each operation type to learn their performance
characteristics. As shown in Fig. 11, synthetic neural architectures from our NAS space contain a sequence of 9 blocks with fixed
input height and width, following the design of sequential connections of blocks in MobileNetV2 [45].13 The type and parameters
of each building block are sampled uniformly at random among:

1. A convolution layer (with kernel size 3 ε 3, 5 ε 5 or 7 ε 7, and optional group size 41, with 1 ∲ 1 ∲ 16).
2. Depthwise separable convolution [43] (with kernel size 3 ε 3, 5 ε 5 or 7 ε 7).
3. Linear bottleneck [45] (with kernel size 3 ε 3, 5 ε 5 or 7 ε 7, expansion rate 1, 3 or 6, and optionally using Squeeze-and-
Excite [1]).

4. Average or max pooling layer (with window size 1 ε 1 or 3 ε 3).
5. A split layer (with 2, 3, or 4 splits), followed by element-wise operations performed on each output tensor, and a concatenation
layer that merges all output tensors.

Due to the limited memory and computing resources on mobile devices, we uniformly sample the output channel sizes of these
building blocks (identified as ⊲1 to ⊲9) with the following constraints: {⊲1,… ,⊲5} ϑ [8, 80], {⊲6,… ,⊲9} ϑ [80, 400], and ⊲10 ϑ
[1200, 1800].

Similarly to real-world NAs, inference latency does not depend on the input values or model weights, but on the input shape
and operations performed. For this reason, in our inference latency measurements for synthetic NAs, we used randomly initialized
model weights and a random 224 ε 224 input image. We built a synthetic dataset including 1000 neural architectures sampled from
this NAS space. For each neural architecture, we collected training measurements on 6 mobile platforms (Table 1), for a total of 174

11 Here, we follow the TFLite implementation [77], which allows no more than 256 dispatches for Mali GPUs; we found that using fewer dispatches does not
sufficiently reduce the overhead of timestamp recording.
12 When presenting the percentage of end-to-end latency, we include the results of NAs that may not have all types of operations, e.g., depthwise convolution

operations only appear in 44 NAs, so its median across 102 NAs is zero.
13 In Section 5.3, we also evaluate our predictions on real-world NAs that consist of non-linearly connected building blocks.
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Fig. 12. Predictions of ML models (Synthetic NAs).

scenarios, covering (1) combinations of homogeneous or heterogeneous cores, (2) floating-point and 8-bit integer representations,
(3) mobile GPUs from different manufacturers, and (4) two mainstream ML frameworks. Figs. 10(b) and 10(d) illustrates the latency
breakdown for NAs in our synthetic dataset, where the latency distribution over operations is similar to real-world NAs. In summary,
our synthetic dataset includes latency measurement and corresponding parameters for 23K operations under 84 scenarios for PyTorch
Mobile, and 22K operations under 90 scenarios for TFLite, resulting in 3.95M data points in total. This dataset is available at [69]
and was described in [74].

5. Results

This section presents a comprehensive evaluation of our latency prediction framework across a broad range of scenarios:
first, we show results on the default setting of NAS (Section 5.1), and then we evaluate the impact of hardware heterogeneity
(Section 5.2), neural architecture diversity (Section 5.3), and ML framework optimizations (Section 5.4). In addition, to address
concerns regarding the cost of training data collection, we present results using a small number of training examples (Section 5.5).
Lastly, we quantitatively compare both our predictions and the design of the synthetic dataset with existing literature (Section 5.6).

5.1. Default setting: NAS space

We first test our framework in the common scenario of predicting inference latency during NAS: we sample test data (the
candidate architectures during NAS) and training data (the profiling architectures used to train our latency prediction model)
uniformly at random from the same search space (Section 4.3.2). These sampled NAs constitute our synthetic dataset of 1000
samples; in this section, we use 900 of these for training and 100 for testing.

Fig. 12 presents the average MAPE across 6 platforms14 on both TFLite and PyTorch Mobile under different ML approaches when
predicting end-to-end latency, as well as the latency of the 3 operation types accounting for most of end-to-end latency. Based on
the latency breakdown of synthetic neural architectures on CPUs and GPUs (Figs. 10(b) and 10(d)), convolution operations typically
account for the most significant proportion of end-to-end latency; consequently, the prediction error of convolution dominates the
error of end-to-end latency prediction for all ML approaches on both CPUs and GPUs. For example, Lasso has a large MAPE (62.2%)
for ‘‘mean’’ operations on CPU in TFLite (Fig. 12(a)), while its MAPE for end-to-end latency is only 10.0%; that is because, as shown
in Fig. 10(b), for 75% of synthetic neural architectures, mean operations contribute to less than 3.6% of the CPU end-to-end latency.

As shown in Fig. 12, in our default setting, all non-linear ML approaches (RF, GBDT, MLP) achieve comparable accuracy on
end-to-end latency predictions, with average MAPE across six platforms: below 2.8% for CPUs and below 5.5% for GPUs on TFLite;
below 4.2% for CPUs and below 5.9% for GPUs on PyTorch Mobile. Lasso achieves less accurate predictions (11.2% on CPUs and
9.4% on GPUs for TFLite; 27.5% on CPUs and 21.5% on GPUs for PyTorch Mobile) because its linear model cannot represent
non-linear relationships between latency and operation features, as identified by previous work [8,22].

5.2. Case study: Hardware heterogeneity

Next, we evaluate our prediction framework under hardware heterogeneity, including scenarios with different CPU core
combinations and with both floating-point and integer representations. We select GBDT as a representative ML approach in this
section, since it shows comparable or slightly better predictions than RF and MLP in the case of a large CPU core (Figs. 12(a) and
12(c)).

Fig. 13 illustrates GBDT predictions of end-to-end latency over various core configurations.15 We observe that more homogeneous
cores typically lead to higher prediction errors. Using more cores can result in larger measurement variance, due to background
jobs running on mobile devices (e.g., cameras, sensors, and networking services); measurement variance can impair the quality of
profiling data and thus affect prediction accuracy.16 For example, from the results on Exynos 9820 shown in Fig. 13(b), the MAPE
on 4 small cores (10.3% for floating-point and 10.5% for integer quantization) is higher than the MAPE on 1 small core (8.6% and
4.9%, respectively), due to the interference of background jobs when an inference task attempts to make use of all the efficient cores

14 Due to lack of space, MAPE of each platform is reported in Tables C.5 and C.7 of Appendix.
15 For clarity of presentation, we omit some outliers (<9% data points for 1 large and 2 medium cores of Exynos 9820, and <4% data points for all other

configurations), and report plots with all data points in Fig. A.34 of Appendix.
16 In our approach, we do not explicitly model background jobs; in practice, they depend on user activities and so are different at runtime.
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Fig. 13. Predictions of GBDT on multicore CPUs (Synthetic NAs).

Fig. 14. Coefficient of variation for latency measurements of synthetic NAs on CPUs.

Fig. 15. Predictions of GBDT on GPUs (Synthetic NAs).

on the device; in these situations, latency measurements have larger coefficient of variation, as shown in Fig. 14. Overall, GBDT
achieves accurate predictions across all platforms: the worst MAPEs for homogeneous cores are 10.5% on Exynos 9820, 5.8% on
Snapdragon 855, 6.0% on Helio P35, and 5.8% on A12 Bionic for TFLite; 8.5% on Exynos 9820, 6.6% on Snapdragon 855, 5.1%
on Helio P35, and 3.3% on A12 Bionic for PyTorch Mobile.

Note that using heterogeneous cores results in even higher variability of latency measurements due to inter-cluster communi-
cation [33]. In addition, as explained in Section 3.1.1, operations without multithreading implementations can be scheduled on
arbitrary cores, complicating prediction; for example, when using 1 large and 1 medium core on Snapdragon 855 with TFLite
(Fig. 13(a)), MAPEs (3.9% for floating-point and 5.5% for integer quantization) are higher with respect to using 2 medium cores
(3.2% and 3.9%, respectively).

Fig. 15 presents predictions of GBDT for different GPUs. For convolution operations, we split the results of different types of
kernels (i.e., Winograd for TFLite; conv2d_pw and conv2d_dw for PyTorch Mobile) between Figs. 15(a) and 15(c) because separate
latency predictors are trained for each kernel; no Winograd kernel is used on Adreno 640 and 616 with TFLite due to the rules of
kernel selection presented in Section 3.2.2. Overall, GBDT achieves accurate end-to-end prediction across all six GPUs, with worst
MAPE of 8.2% on Exynos 9820 for TFLite and 10.9% on A12 Bionic for PyTorch Mobile.

5.3. Case study: Neural architecture diversity

Next, we evaluate our framework on diverse neural architectures: we consider a scenario where training data include candidates
sampled at the early stages of NAS, while test data are highly accurate neural architectures generated at the end of NAS. In our
evaluation, we use 1000 synthetic neural architectures as training data and 102 real-world neural architectures (from existing
literature) as test data. The two sets of neural architectures have different distributions (i.e., we introduce a dataset shift): we observe
that the latency of convolution operations in real-world neural architectures is generally lower than in synthetic neural architectures.
Figs. 16(a) and 16(c) show the percentage of end-to-end latency attributed to convolution operations (split by range) on Helio P35
with TFLite, and on Snapdragon 855 with PyTorch Mobile: convolutions with higher latency dominate end-to-end latency in our
synthetic neural architectures, while faster convolutions contribute more to real-world neural architectures.
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Fig. 16. Convolution operations with different latency ranges (Helio P35 for TFLite, Snapdragon 855 for PyTorch Mobile).

Fig. 17. Predictions of ML models (Real-World NAs).

Fig. 18. Effectiveness of kernel fusion on predictions.

Figs. 17(a) and 17(c) show the average MAPE across six devices for the real-world neural architectures on CPUs. For most ML
approaches trained on synthetic neural architectures, prediction errors are higher for real-world neural architectures than synthetic
neural architectures (Fig. 12) that are generated from the same distribution as the training data. The only exception is Lasso, which
achieves better predictions on real-world neural architectures, with end-to-end MAPE on CPUs (5.4% in TFLite and 10.4% in PyTorch
Mobile). We attribute this anomaly to the better accuracy of Lasso predictions on fast operations (<50 ms in Fig. 16(a), and <10 ms
in Fig. 16(c)) due to higher weights assigned to these operations in Eq. (1), which we observe in both synthetic and real-world
architectures (Figs. 16(b) and 16(d)). Since real-world architectures include a larger proportion of fast operations (in this specific
dataset shift), average accuracy of Lasso is better on real-world architectures than synthetic neural architectures.

Figs. 17(b) and 17(d) presents predictions on mobile GPUs. We observe that, for some small real-world neural architectures, the
overhead of TFLite is significant. Since the overhead has high runtime variability (in particular, on PowerVR GE8320 and Mali G76),
it can affect the accuracy of end-to-end latency predictions, especially for neural architectures with low latency such as MobileNets.

5.4. Case study: ML framework optimizations

Next, we illustrate the improvements of GPU predictions from accounting for ML framework optimizations such as kernel fusion
and kernel selection.

Kernel Fusion. In Section 3.2.1, we show that kernel fusion considerably reduces the number of kernels and leads to improvements
in end-to-end latency. Fig. 18(a) shows that, after following Algorithm B.2 to estimate which kernels will be fused in TFLite
(Section 3.2.1), we obtain a number of kernels close to actual measurements collected on 102 real-world neural architectures.17
Figs. 18(b) and 18(c) illustrate that on both frameworks, we obtain substantial error reduction in end-to-end latency prediction
with respect to ML models which do not consider kernel fusion (labeled as ‘‘w/o Fusion’’).

Kernel Selection. As introduced in Section 3.2.2, a convolution operation can be executed as different kernel implementations
compatible with the its configuration and the target device. We deduce the kernels that ML frameworks select for convolution
operations and train separate predictors for each (since they exhibit different performance characteristics). Fig. 19(a) shows the
considerable error reduction achieved by accounting for kernel selection of TFLite on PowerVR GE8320, for real-world neural
architectures that support Winograd kernels; Fig. 19(b) confirms that this reduction is due to more accurate predictions of the
latency of Winograd kernels. Fig. 19(c) represents the effects of considering kernel fusion in PyTorch Mobile, where Lasso achieves
more significant improvement than other ML approaches. We attribute this difference to the fact that the kernel selection in PyTorch
Mobile is relatively simple: As shown in Algorithm B.1, the choice of kernel is only dependent on one or two features, which the
non-linear ML models can capture. The linear model Lasso shows limited potential to represent such relations; for example, we

17 The fusion rules of PyTorch Mobile are very simple, as described in Section 3.2.1; thus, we omit the prediction results for the number of kernels.
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Fig. 19. Prediction error reduction on powervr ge8320 by accounting for kernel selection.

Fig. 20. Prediction errors on synthetic or real-world nas for different synthetic training set sizes.

observed that the depthwise convolutions with kernel size 7 ε 7 are substantially slower than the ones with kernel size 3 ε 3 or
5 ε 5 due to lack of support for efficient implementations in PyTorch Mobile.

5.5. Case study: Limited training data

The high cost of collecting sufficient training data is a common criticism of ML approaches to predict the latency of neural
architectures during NAS [21]. In this section, we study the effects of training set size on different ML approaches, illustrating the
benefits of a simple model when training data is limited.

5.5.1. Comparison of ML approaches
Fig. 20 show prediction errors of different ML approaches for varying training set sizes 𝜚Train, on synthetic neural architectures

(presented in Section 5.1) and real-world neural architectures (presented in Section 5.3), respectively (errors are average MAPE
across 6 platforms).18 Predictions of Lasso are less sensitive to the size of training data, while other more complex approaches
achieve higher errors when the training set size is decreased from 900 to 30. Consequently, when training data is limited, e.g., in
Figs. 20(a), 20(b), 20(e) and 20(f) for training size of 30, a simple model such as Lasso achieves similar or better accuracy than
some complex models; Lasso is also more robust when test and training datasets have different distributions, even for large amounts
of training data, e.g., when training on synthetic NAs but testing on real-world NAs in Figs. 20(c), 20(d), 20(g) and 20(h). Complex
models (GBDT, RF and MLP) are similarly accurate when sufficient training data is available and there is no dataset shift (i.e., training
and testing datasets have similar distributions), e.g., in Figs. 20(a), 20(b), 20(e) and 20(f) for training set size of 900. In the case of
data shift (Figs. 20(c) and 20(d)), MLP achieves the worst predictions on TFLite with a training set of size 100. This is due to severe
prediction errors on concatenation/split operations: on Pixel 4 (one large CPU core), MAPEs on concatenation/split operations are
56.7%, 1400.4% and 1068.7%, after training on 30, 100 and 900 neural architectures, respectively. This anomaly is due to the
very small amount of training data (only 5, 25 and 312 concatenation/split operations from training data of 30, 100 and 900 neural
architectures, respectively). Instead, for convolution operations with sufficient data, MLP prediction errors are 7.8%, 5.1% and 4.6%
for training sets of size 30, 100 and 900, respectively, on the same platform.

Notably, for real-world neural architectures, using only 30 training examples, Lasso considerably outperforms other ML
approaches on CPUs with a large core, with an average MAPE across six platforms of 6.5% in TFLite (Fig. 20(c)) and 11.5% in
PyTorch Mobile (Fig. 20(g)). As pointed out by prior work [21], the cost of profiling only 30 neural architectures on each target
device is negligible compared to measuring latencies of all candidate neural architectures (e.g., thousands) during NAS.

5.5.2. Lasso predictions with limited training data
Next, we thoroughly evaluate the predictions of Lasso with a limited training set size (i.e., 30 neural architectures) on real-world

neural architectures, across a broad range of scenarios for hardware heterogeneity.

18 MAPEs for each platform are reported in Tables C.4–C.7 of Appendix.
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Fig. 21. Predictions of Lasso on multicore CPUs (Real-World NAs).

Fig. 22. Predictions of Lasso on GPUs (Real-World NAs).

Fig. 21 shows the prediction error of Lasso on real-world neural architectures, across various combinations of cores and data
representations.19 Generally, the trend of prediction errors for homogeneous and heterogeneous clusters is similar to the results in
Fig. 13. The maximum MAPE for combinations of homogeneous cores is 22.9% on Exynos 9820, 13.5% on Snapdragon 855, 9.6% on
Helio P35, and 9.5% on A12 Bionic for TFLite; 22.3% on Exynos 9820, 16.2% on Snapdragon 855, 20.4% on Helio P35, and 9.9%
on A12 Bionic for PyTorch Mobile. We attribute the large prediction errors on Exynos 9820 to the noise of measurements collected
with many small cores, which is due to background tasks and can affect the quality of training data for this limited dataset. For
example, by adding more training data, MAPEs can be reduced to less than 14.8% in Fig. 21(b). Fig. 22 shows the predictions of
Lasso across multiple mobile GPUs. The maximum MAPE is 11.0% on Mali G76 for TFLite and 12.6% on A12 Bionic for PyTorch
Mobile.

Since all the features are standardized, we use the magnitude of weights in the Lasso model to analyze the importance of different
features. In general, on all devices of both frameworks, using either CPUs or GPUs, we find the most critical features (those with
largest weights) of convolution operations to be FLOPs and kernel size, which are strongly correlated with the costs of computation
and memory access, respectively,20 except the following. For CPUs on PyTorch Mobile, the most critical features of convolutions are
FLOPs and output size, as PyTorch Mobile implements a caching allocator for CPU memory [80] which saves the cost of rewriting
kernel weights into memory over multiple inference runs; consequently, the feature correlated to memory access is the output
size rather than the kernel size for CPUs on PyTorch Mobile. In contrast, the two most critical features of depthwise convolution
operations are FLOPs and input size. Input size can dominate the cost of memory access for depthwise convolutions since their kernel
sizes are substantially smaller than those of standard convolutions.

5.6. Comparison with related work

Lastly, we quantitatively compare our results with the state-of-the-art inference latency predictor nn-Meter [22] and conduct
evaluations on the existing NAS benchmark dataset NATSBench [38].

5.6.1. Predictors: nn-Meter
As noted in Section 1, nn-Meter [22] is a state-of-the-art technique for predicting inference latency on mobile devices; it uses

a black-box model to estimate the rules of kernel fusion on a target device and predicts the latency of each kernel using Random
Forest Regression. We first compared our results with those of nn-Meter using the pre-trained predictors provided by nn-Meter;
however, nn-Meter’s predictors failed to achieve accurate predictions on our dataset because they were trained on measurements
collected using different compile options of TFLite, as detailed in Appendix C. Therefore, to achieve a fair comparison, we ran the
source code of nn-Meter [81] to train a predictor with the same data used by our approach: (1) we first used nn-Meter to detect the
rules of kernel fusion on four Android devices from Table 121; (2) then, we trained kernel-level latency predictors on our synthetic

19 For clarity of presentation, we omit some outliers (<4% data points per configuration) and report plots with all data points in Fig. A.35 of Appendix.
20 However, as noted in Section 1, FLOPs alone is not an accurate proxy metric for the actual latency.
21 In nn-Meter, rule detection requires benchmarking NAs on actual devices; nn-Meter does not support this for iOS devices.



Performance Evaluation 165 (2024) 102429

16

Z. Li et al.

Fig. 23. Comparison with nn-Meter.

Fig. 24. Predictions on 44 Real-world NAs w/o DW-Conv.

dataset (including our latency measurements), but using the features and the hyperparameters of the Random Forest Regression
model specified by nn-Meter.

Fig. 23 compares nn-Meter predictions (the average MAPE across four Android platforms) to those of our approach (using
different ML models); as can be seen, our approach outperforms nn-Meter on both 102 real-world NAs and 100 NAs from our
synthetic dataset across different sizes of training data. An important reason is that our approach considers a broader set of
features for operations. For example, nn-Meter does not distinguish grouped convolutions from standard convolutions; a grouped
convolution splits the input tensor into multiple groups of small tensors and conducts convolutions on each tensor, leading to a
significant reduction in FLOPs. Consequently, nn-Meter mispredicts 14 real-world NAs with grouped convolutions (e.g., errors of
31.2% and 157.1% on the CPU and GPU of Helio P35, respectively). Notably, nn-Meter predictions are less accurate on GPUs for
the following reasons: (1) nn-Meter does not account for kernel selection on GPUs, e.g., it neglects the fact that various kernels with
distinct performance characteristics (such as Winograd) can be applied to the same convolution operation on different platforms
(as evaluated in Section 5.4); (2) nn-Meter ignores the effects of ML framework overhead, which can be significant on GPUs (in
particular, on PowerVR GE8320 and Mali G76, as shown in Section 5.3).

5.6.2. NAS benchmark: NATSBench
Evaluated in related work [14,22], the NATSBench [38] dataset includes NAs sampled from Topology Search Space (23) and

Space Search Space (24). In 23, each NA consists of operations with predefined configurations (e.g., number of channels) and
different topology (i.e., interconnections between operations); in 24, the topology is fixed and the number of channels is chosen
from 8 candidates. For both datasets, we select 1000 NAs with the highest test accuracy on CIFAR-100 [82]; we observe that the
diversity of operation configurations in these NAs is very limited. For example, there are only 11 and 239 unique configurations
of convolution operations in the NAs from 23 and 24 respectively (compared to 6608 configurations in our synthetic dataset). In
the NAS space of such limited configurations, building look-up tables by measuring the latencies of all possible configurations of
each building block is sufficient to estimate the end-to-end latency of candidate NAs; in contrast, our NAS space covers over 2ε 107
configurations of convolution operations (i.e., with different number of input/output channels, kernel size, and group size), which
makes look-up tables very costly to build and is better suited for inference latency prediction approaches during NAS.

In addition, the limited data diversity results in NATSBench being less representative of real-world NAs; for example, among 102
real-world NAs in our study, 58 contain depthwise convolutions, which are not present in NATSBench NAs (therefore, a prediction
model cannot be trained for this type of operation). Fig. 24 compares prediction errors on the remaining 44 real-world NAs based
on training with 1000 NAs from 24 (which includes a broader set of configurations than 23) and from our synthetic dataset. As can
be seen, more complex ML models are less accurate when trained with 24, due to its limited diversity.

5.7. Discussion and threats to validity

Hardware heterogeneity and ML frameworks optimizations are the main threats to validity for our work, as described next.
Due to hardware heterogeneity, ML frameworks may select entirely different kernel implementations on different devices

(e.g., Winograd kernels as discussed in Section 3.2.2). As a result, using latency measurements collected on one device to obtain
latency predictions on a different device may be inaccurate when different kernels and operations are executed. Even when the
executed kernels are the same, the different hardware architectures (including CPU/GPU frequency, number of cores, memory
bandwidth, and cache sizes) may result in different performance characteristics. To make predictions for a new hardware platform
without collecting latency measurements, a model would need to account for kernel selection and for the parameters of the hardware
architecture. We are exploring the development of more general cross-device prediction models as future work.
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In addition, changes to the implementation of kernels within ML frameworks may affect their performance, requiring new data
collection and retraining of latency predictors. Such changes typically occur when optimized building blocks of NAs are proposed and
integrated into ML frameworks. For example, recent advancements in Vision Transformer motivated the introduction of optimized
implementations of multi-head attention layers in ML frameworks. Our approach requires new latency measurements to train
predictors for these new operations.

6. Related work

As observed in Section 1, related work has only limited consideration of the following challenges.

Limited consideration of hardware heterogeneity. Most existing work aims at latency predictions of training or inference tasks on
cloud GPUs [14,17–20,25–27] or embedded GPUs [23,24], where Nvidia GPUs dominate the market for ML workloads. Instead, our
paper studies multiple mainstream mobile platforms from different manufacturers, and tackles hardware heterogeneity across these
platforms. Some recent works [15,21,22] focus on performance prediction on mobile CPUs, but are limited only to a single core
with floating-point representation. Instead, our work evaluates inference latency of mobile CPUs across a broad range of realistic
scenarios, including the utilization of multiple heterogeneous CPU cores, and both floating-point and integer representations.

Limited consideration of ML framework optimizations. The majority of existing work [15,18,20] proposes to predict latency based
on the features extracted from neural architectures and hardware, but neglects the effects of ML framework optimizations. As
identified by our results, accounting for these optimizations results in significant improvements of the predictions for real-world
neural architectures across multiple ML approaches. Since ML framework optimizations cannot be analyzed on Nvidia cloud and
edge GPUs (cuDNN is not open-source [83]), recent work [22] proposes a black-box approach to learn their policies (i.e., the
algorithms for kernel fusion). In contrast, on mobile platforms, ML frameworks use open-source algorithms and custom kernels
to support a broad range of heterogeneous GPUs; we highlight the optimizations in both TFLite and PyTorch Mobile, accurately
inferring the actual kernels used after compilation without deploying and compiling NN models on actual devices.

Next, different approaches exist in the literature to model inference latency. Some works [14,16,17] adopt ML approaches to
predict end-to-end latency of neural architectures by encoding the entire neural architecture as a single vector of input features; this
approach, however, requires complicated ML techniques as well as large amounts of training data. In contrast, we make latency
predictions for each component of the neural architecture, allowing simple ML algorithms that require less training data and are
easier to interpret (e.g., in the case of Lasso) for understanding and development. Similarly to our work, component-wise approaches
are used by [15,22] and analytical performance models of computation and memory access also exist in the literature [25–27],
but both lines of work have limited consideration of hardware heterogeneity and ML framework optimizations, as described
above.

Finally, while our paper predicts latency of NAs that are static during inference (a common scenario in practice), dynamic neural
networks (or adaptive neural networks) disable parts of the NA based on the complexity of the specific input example [84,85], to
ensure that inference latency is sufficiently low for a target application. In this case, performance bottlenecks may depend on the
input data, requiring performance testing [86]. Our approach can, in principle, be extended to dynamic NAs by predicting latency
of individual blocks selected at runtime. In this context, our approach of estimating latency for individual blocks is beneficial in
contrast to end-to-end black-box models that would be difficult to adapt to this scenario. We plan to explore these settings in future
work.

7. Conclusions

Using measurements collected on 6 mobile devices for a number of neural architectures (1000 synthetic NAS architectures and
102 real-world architectures), we showed the impact of different factors on inference latency, including optimizations applied by
ML frameworks for mobile GPUs (kernel fusion and kernel selection), scheduling over heterogeneous subsets of CPU cores and
integer representations after quantization, often neglected by related work. Based on this experimental evaluation, we proposed
an approach to estimate end-to-end inference latency by training ML models to predict latency of each component type of neural
architectures. Our approach can accurately predict latency of novel neural architectures on a given device using limited profiling
data (e.g., from 30 architectures); notably, we achieve good accuracy also when the test dataset has different characteristics from
training data (a common scenario in NAS) and for different ML frameworks (TFLite and PyTorch Mobile). In future work, we
plan to extend our evaluation and prediction approach to other efficiency metrics (e.g., power consumption), to different classes of
specialized hardware accelerators for inference tasks (e.g., Apple Neural Engine).
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Appendix A. Supplementary data

In this appendix, we include supplementary data from our measurements and prediction results. This data is provided here for
completeness and includes measurements and predictions on two additional platforms (Snapdragon 710 and A10 Fusion) as well as
the full set of outliers that were omitted in some of the figures of the main text for clarity of presentation.

Figs. A.25 to A.28 present the measurements on Snapdragon 710 and A10 Fusion, which are omitted in Figs. 2 to 5 (Section 3) for
clarity of presentation; correspondingly, the predictions on these platforms are reported in Figs. A.29 and A.30, which are omitted
in Figs. 13 and 21 (Section 5). Fig. A.31 depicts end-to-end latency of real-world NAs on six platforms for different multi-core
configurations, including the outliers omitted in Fig. 2 for clarity of presentation (Section 3.1.1). Figs. A.32 and A.33 present the
speedup of kernel fusion on end-to-end latency and on each type of operations, respectively, including the small set of outliers
omitted in Figs. 6(b) and 7 (Section 3.2.1).

Tables C.4 to C.7 report the complete MAPEs of end-to-end latency predictions on each hardware platform, for synthetic and
real-world neural architectures, on TFLite and PyTorch Mobile, respectively, across different ML approaches, with varying training
set sizes. This detailed data corresponds to the results in Fig. 20 in the main text where these errors were averaged across hardware
platforms. For predictions on different CPU core combinations and with both floating-point and integer representations, Fig. A.34
shows the end-to-end latency predictions of GBDT for synthetic neural architectures on various core combinations, including the
small set of outliers omitted in Fig. 13 (Section 5.2); Fig. A.35 presents the end-to-end latency predictions of Lasso for real-world
neural architectures on various core combinations, including the small set of outliers omitted in Fig. 21 (Section 5.5.2).

Fig. A.25. effects of multicore on end-to-end latency.

Fig. A.26. Effects of homogeneous multicore on operation-wise latency (Speedup over one core).

Fig. A.27. Effects of quantization on end-to-end latency.

Fig. A.28. Effects of quantization on operation-wise latency.
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Fig. A.29. Predictions of GBDT on CPUs (Synthetic NAs).

Fig. A.30. Predictions of Lasso on CPUs (Real-world NAs).

Fig. A.31. Effects of multicore on end-to-end latency.

Fig. A.32. Effects of kernel fusion on end-to-end Latency.

Fig. A.33. Effects of kernel fusion on operation-wise latency.

Appendix B. Details of kernel fusion and kernel selection

In this section, we elaborate the algorithms of kernel fusion (Section 3.2.1) and kernel selection (Section 3.2.2) in PyTorch Mobile
and TFLite. Algorithm B.1 shows the implementation details of Vulkan kernel selection in PyTorch Mobile: when the convolution
layer satisfies the criteria for depthwise convolutions (i.e., the group size is equal to input channels), a depthwise kernel can be
applied based on kernel shape; also, a special pointwise kernel is implemented for convolutions with kernel shape 1 ε 1.
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Fig. A.34. Predictions of GBDT on CPUs (Synthetic NAs).

Fig. A.35. Predictions of Lasso on CPUs (Real-world NAs).

Fig. B.36. Effects of using grouped_convolution_2d kernels on end-to-end latency in TFLite.

Algorithm B.2 presents the implementation details of kernel fusion in TFLite GPU Delegate: two operations of the computational
graph are fused when (1) the first operation has only one output tensor (Line 5), (2) the second operation is the only operation in
the graph using this output tensor (Line 14), (3) the second operation uses this output tensor as its first input and produces a single
output (Line 22), and (4) the next operation has a compatible type (Line 24).

Algorithm B.3 summarizes the criteria used by TFlite to enable the use of the Winograd algorithm for convolution operations
on GPUs: when the input tensor and kernel size of a convolution operation both satisfy certain hardware-dependent criteria
(i.e., CheckWinograd), the kernel of Winograd is selected for the operation. For example, Table B.3 presents three convolution
operations in ResNet16, which all have only one convolution group, kernel size 3 ε 3 and stride 1. For convolution (1), src_depth
and dst_depth fail to satisfy the conditions for Adreno GPUs (Line 17), but meet the requirements for Mali and PowerVR GPUs (Line
21). For convolution (2), total_tiles is too small for Adreno 600-level GPUs (Line 24), but large enough for Mali and PowerVR GPUs
(Line 28). Convolution (3) cannot be implemented using the Winograd algorithm in either GPU because of the small total_tiles (Line
28).
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Table B.3
Applicability of TFLite Winograd Kernels to Convolutions in ResNet16 (group size 1, 3 ε 3 kernel, 1 ε 1 stride).
Index Configurations Conditions in Algorithm B.3 If use Winograd

Input channels Output channels Output height src_depth dst_depth total_tiles Adreno Mali

(1) 64 64 56 16 16 196 No Yes
(2) 128 128 28 32 32 49 No Yes
(3) 256 256 14 64 64 16 No No

Fig. B.37. Comparison with the pre-trained predictors from nn-Meter on Pixel 4 (TFLite v2.1).

Algorithm B.1: Conv Kernel Selection in PyTorch Mobile Vulkan Backend

SelectConv2DKernel(op_info)
1 if op_info.is_transpose
2 return Kernel(conv2d)
3 if op_info.groups == op_info.input_channel and op_info.output_channel ∳ 1
4 if op_info.kernel_shape == 3x3
5 return Kernel(conv2d_dw_3x3)
6 else if op_info.kernel_shape == 5x5
7 return Kernel(conv2d_dw_5x5)
8 else
9 return Kernel(conv2d_dw)
10 if op_info.kernel_shape == 1x1
11 return Kernel(conv2d_pw)
12 return Kernel(conv2d)

Another operation allowing optimized implementations in TFLite is grouped convolution, which consists of three stages: (1) split-
ting the input tensor over channel size, (2) performing a convolution on each resulting tensor (i.e., on each group), and (3) concate-
nating all output tensors. A naive implementation of grouped convolution uses an independent convolution kernel for each group,
and two kernels for the split and concatenation operations. TFLite supports an optimized implementation of grouped_convolution_2d
using only one kernel. Fig. B.36 illustrates the performance improvement of the optimized grouped_convolution_2d kernel over a naive
implementation; we observe substantial improvements, e.g., 2.96x speedup for RegNetX004 on PowerVR GE8320.

Appendix C. Evaluations on nn-Meter

In this appendix, we report details of our quantitative comparison with related work, specifically nn-Meter. Recall that in the
main text we provided a quantitative comparison with nn-Meter on our dataset (Section 5.6.1). Here, we provide details of why
such a comparison was appropriate.

A natural approach to a quantitative comparison with nn-Meter would be to use nn-Meter’s pre-trained predictors on Pixel4
Snapdragon 855 CPU (with a single thread) and Adreno 640 GPU (as provided in [81]), which is what we did initially. However,
this did not work out (and hence a, what we believe to be a more fair comparison, using our data set in the main text) for the
following reasons. Specifically, initially we evaluated our approach on the same experimental setup as nn-Meter by using TFLite
v2.1. Due to the lack of support for operations (e.g., grouped convolutions) on GPU delegate of TFLite v2.1, 17 real-world NAs
failed to be fully executed on GPUs. As a result, in our evaluations we selected only 85 real-world NAs and (re)generated 1000
synthetic NAs by removing grouped convolutions in our NAS space. As depicted in Fig. B.37, which compares nn-Meter predictions
to those of our approach (with different ML models, all trained on 900 synthetic NAs), our approach achieves much better results
(on Pixel 4) on both real-world and synthetic NAs. We believe that the main reason is that the ground truth measurements used
by nn-Meter to train the predictors are collected from their customized TFLite benchmark tool (also provided in [81]), which was
compiled without specifying the ARM64 architecture (because this argument was optional in the earlier version of TFLite, but is
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Algorithm B.2: Kernel Fusion in TFLite GPU Delegate

MergeNodes(nodes)
1 ready_tensors = []
2 for cur_node in nodes
3 for dst_tensor in cur_node.dst_tensors
4 ready_tensors.insert(dst_tensor)
5 if cur_node.dst_tensors.size() ∳ 1
6 continue
7 candidate_nodes = []
8 candidate_tensor_index = 0
9 for next_node in nodes
10 for k = 0 to next_node.src_tensors.size() - 1
11 if next_node.src_tensors[k] == cur_node.dst_tensors[0]
12 candidate_tensor_index = k
13 candidate_nodes.insert(next_node)
14 if candidate_nodes.size() ∳ 1 or candidate_tensor_index ∳ 0
15 continue
16 next_node = candidate_nodes[0]
17 if next_node.src_tensors[0] ϑ ready_tensors
18 and IsLinkable(next_node)
19 Merge(cur_node, next_node)
20 nodes.remove(cur_node)
21 return nodes

IsLinkable(node)
22 if node.output_tensors.size() ∳ 1
23 return False
24 if node.type ϑ [ACTIVATION, COPY, ADD, SUB, MUL, DIV, EXP, LOG, SQRT, SQUARE, ABS, NEG, POW, EQUAL,

GREATER, LESS, MAXIMUM, MINIMUM]
25 return True
26 return False

Table C.4
End-to-end predictions on synthetic neural architectures on TFLite (CPU stands for a large core).
Approach Training Snapdragon 855 Exynos 9820 Snapdragon 710 Helio P35 A12 Bionic A10 Fusion

size CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Lasso
30 12.84% 17.95% 9.08% 10.29% 8.85% 14.15% 15.90% 6.05% 9.28% 8.23% 11.49% 6.72%
100 12.93% 18.71% 8.87% 10.23% 8.72% 14.46% 14.88% 5.59% 8.93% 7.83% 11.48% 6.29%
900 13.26% 16.36% 8.90% 9.63% 9.33% 12.67% 15.09% 5.31% 8.96% 6.90% 11.48% 5.41%

RF
30 10.71% 13.68% 13.52% 9.99% 11.83% 12.97% 9.98% 6.49% 8.69% 6.71% 13.38% 5.74%
100 6.20% 9.43% 4.90% 8.58% 6.13% 11.47% 7.79% 3.83% 5.51% 4.77% 6.67% 3.78%
900 2.83% 7.33% 2.82% 8.34% 2.29% 8.30% 3.09% 2.74% 2.46% 2.95% 2.99% 3.09%

GBDT
30 7.91% 12.52% 7.76% 9.59% 7.10% 15.97% 9.08% 4.93% 9.11% 4.57% 7.57% 4.28%
100 3.97% 9.77% 4.36% 8.59% 4.73% 12.29% 5.45% 3.43% 5.79% 3.48% 6.61% 3.67%
900 2.12% 7.60% 1.92% 8.41% 2.01% 6.56% 3.71% 2.77% 1.87% 2.96% 2.72% 2.99%

MLP
30 9.11% 10.02% 7.94% 8.55% 8.21% 10.12% 10.71% 4.84% 11.22% 4.70% 12.91% 4.41%
100 4.03% 9.17% 3.84% 9.01% 3.07% 9.28% 6.61% 4.35% 4.72% 3.94% 4.71% 4.52%
900 2.30% 6.37% 2.44% 8.19% 2.03% 6.35% 6.09% 3.35% 1.59% 3.13% 2.59% 3.30%

now used by default).22 To better understand the poor predictions of nn-Meter in Fig. B.37, we compared the measurements from
their customized benchmark tool with those of the standard TFLite benchmark tool (which we used to build our dataset, as noted
in Section 4.3.1) and found that their customized benchmark tool consistently showed worse performance. This leads to nn-Meter’s
pre-trained predictors (trained on the data collected by their tool) giving much poorer predictions on our dataset.

Thus, as noted above, to achieve a fairer comparison, in the main text we took the route of reproducing their approach on our
dataset (Section 5.6.1).

22 We communicated with the authors of nn-Meter and we were given this information.
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Algorithm B.3: Conv Kernel Selection in TFLite GPU Delegate

SelectConv2DKernel(gpu_info, op_info)
1 if CheckGroupedConv2D(gpu_info, op_info)
2 return Kernel(GroupedConv2D, gpu_info, op_info)
3 else if CheckWinograd(gpu_info, op_info)
4 return Kernel(Winograd, gpu_info, op_info)
5 else return Kernel(Conv2D, gpu_info, op_info)

CheckGroupedConv2D(gpu_info, op_info)
6 src_group_size = op_info.input_channel
7 dst_group_size = op_info.output_channel / op_info.group
8 if op_info.group ∳ 1 and src_group_size % 4 == 0
9 and dst_group_size % 4 == 0
10 return True
11 return False

CheckWinograd(gpu_info, op_info)
12 if op_info.group ∳ 1 or op_info.kernel_shape ∳ 3x3
13 or op_info.stride ∳ 1
14 return False
15 src_depth = ⦃op_info.input_channelϱ4⦄
16 dst_depth = ⦃op_info.output_channelϱ4⦄
17 if gpu_info.type == Adreno and (src_depth < 32 or dst_depth < 32)
18 return False
19 else if gpu_info.type == AMD and (src_depth < 16 or dst_depth < 8)
20 return False
21 else if src_depth < 16 or dst_depth < 16
22 return False
23 total_tiles = ⦃op_info.output_heightϱ4⦄ ω ⦃op_info.output_widthϱ4⦄
24 if gpu_info.type == Adreno6xx and total_tiles < 128
25 return False
26 else if gpu_info.type == Adreno and total_tiles < 64
27 return False
28 else if total_tiles < 32
29 return False
30 return True

Table C.5
End-to-end predictions on real-world neural architectures on TFLite (CPU stands for a large core).
Approach Training Snapdragon 855 Exynos 9820 Snapdragon 710 Helio P35 A12 Bionic A10 Fusion

size CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Lasso
30 9.77% 12.04% 5.83% 12.68% 6.40% 4.78% 5.51% 6.79% 4.20% 6.51% 7.00% 6.73%
100 8.23% 14.41% 4.85% 11.77% 7.08% 5.21% 4.87% 6.51% 4.36% 6.38% 7.46% 6.87%
900 7.29% 12.10% 5.24% 12.28% 5.27% 4.59% 4.65% 6.06% 3.66% 6.07% 6.24% 6.67%

RF
30 14.79% 14.77% 20.15% 13.23% 14.37% 7.99% 18.86% 6.81% 11.95% 8.23% 11.44% 8.08%
100 11.67% 9.94% 10.85% 11.24% 9.10% 5.72% 10.26% 7.19% 9.18% 7.00% 9.48% 5.95%
900 7.43% 7.24% 8.01% 11.39% 5.02% 5.60% 5.71% 6.01% 5.61% 6.74% 5.12% 4.80%

GBDT
30 12.20% 12.13% 16.57% 12.50% 11.92% 9.03% 16.11% 6.92% 11.46% 11.03% 8.90% 9.14%
100 12.32% 7.83% 10.28% 12.32% 7.38% 5.24% 10.19% 6.44% 8.72% 8.08% 8.53% 4.95%
900 6.38% 6.68% 7.86% 11.87% 4.79% 4.15% 4.80% 5.86% 5.45% 6.23% 4.70% 5.28%

MLP
30 14.87% 7.79% 13.18% 9.94% 11.35% 8.52% 13.01% 7.03% 11.39% 12.43% 12.12% 8.98%
100 18.31% 9.05% 16.61% 10.51% 12.35% 10.37% 12.25% 7.91% 15.09% 10.41% 11.22% 8.23%
900 14.48% 7.59% 14.23% 11.06% 16.59% 11.06% 10.22% 7.08% 10.71% 8.72% 8.55% 6.24%
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Table C.6
End-to-end predictions on synthetic neural architectures on PyTorch mobile (CPU stands for a large core).
Approach Training Snapdragon 855 Exynos 9820 Snapdragon 710 Helio P35 A12 Bionic A10 Fusion

size CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Lasso
30 27.46% 24.70% 29.15% 15.73% 43.22% – 26.23% 23.86% 26.23% 29.82% 33.27% –
100 29.02% 24.31% 25.88% 14.22% 43.17% – 23.13% 24.52% 24.80% 25.09% 30.44% –
900 27.52% 23.46% 24.51% 14.95% 38.25% – 22.16% 23.00% 23.36% 24.72% 29.93% –

RF
30 36.82% 44.52% 36.33% 33.06% 44.46% – 34.64% 43.85% 33.83% 31.70% 39.28% –
100 18.15% 20.57% 15.02% 15.11% 22.88% – 15.80% 19.33% 13.49% 18.51% 16.36% –
900 4.69% 5.90% 3.69% 4.36% 6.92% – 3.54% 3.01% 2.71% 10.39% 4.02% –

GBDT
30 6.29% 8.47% 5.08% 7.44% 9.06% – 6.23% 5.77% 4.49% 13.67% 6.04% –
100 4.33% 5.38% 3.19% 3.67% 6.06% – 3.76% 2.16% 2.52% 11.40% 3.82% –
900 2.79% 4.17% 2.33% 2.58% 4.02% – 2.16% 1.44% 1.66% 10.89% 2.88% –

MLP
30 6.97% 4.92% 3.76% 6.84% 35.74% – 5.31% 9.54% 3.48% 14.79% 9.09% –
100 4.38% 5.18% 3.30% 3.51% 5.14% – 3.11% 2.90% 3.08% 13.44% 4.25% –
900 2.27% 3.89% 1.81% 2.10% 2.49% – 1.90% 1.38% 1.29% 10.14% 2.83% –

Table C.7
End-to-end predictions on real-world neural architectures on PyTorch mobile (CPU stands for a large core).
Approach Training Snapdragon 855 Exynos 9820 Snapdragon 710 Helio P35 A12 Bionic A10 Fusion

size CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Lasso
30 11.76% 7.43% 10.82% 10.97% 20.37% – 8.45% 7.36% 7.69% 12.63% 9.38% –
100 11.68% 6.13% 9.09% 8.72% 19.17% – 7.59% 7.71% 7.22% 12.19% 9.33% –
900 11.27% 5.70% 8.34% 8.71% 19.49% – 7.07% 6.73% 6.77% 11.63% 9.40% –

RF
30 16.12% 21.68% 15.45% 29.49% 23.20% – 12.51% 23.28% 11.50% 14.98% 13.81% –
100 14.38% 10.65% 13.94% 11.66% 19.84% – 12.04% 11.88% 10.55% 13.57% 9.00% –
900 8.25% 6.87% 6.57% 7.21% 11.09% – 6.46% 5.23% 4.94% 10.65% 7.15% –

GBDT
30 11.64% 29.62% 12.08% 26.29% 20.55% – 10.75% 20.91% 7.23% 25.40% 7.39% –
100 8.44% 13.02% 8.24% 12.56% 11.35% – 9.15% 8.60% 6.16% 13.26% 5.56% –
900 5.86% 10.29% 5.03% 9.04% 5.60% – 4.73% 5.54% 4.65% 10.38% 5.55% –

MLP
30 9.31% 19.74% 12.13% 16.19% 22.72% – 11.03% 22.51% 7.59% 19.92% 7.93% –
100 8.86% 25.38% 5.43% 19.39% 10.75% – 5.66% 22.49% 7.45% 13.57% 7.21% –
900 6.04% 12.12% 5.86% 7.51% 9.71% – 6.25% 10.01% 4.57% 11.13% 6.04% –
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