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Abstract. In the dishonest-majority setting, secure multiparty compu-
tation (MPC) with identifiable abort (IA) guarantees that honest parties
can identify and agree upon at least one cheating party if the protocol
does not produce an output. Known MPC constructions with IA rely
on generic zero-knowledge proofs, adaptively secure oblivious transfer
(OT) protocols, or homomorphic primitives, and thus incur a substan-
tial penalty with respect to protocols that abort without identifiability.
We introduce a new, weaker notion of IA called input-revealing IA
(IRIA), which can be constructed through selective revealing of commit-
ted input values—a technique we call vindicating release. We show that
this weaker form of IA can be achieved with small concrete overheads for
many interesting protocols in the literature, including the pre-processing
protocols needed for several state-of-the-art MPC protocols.
We next show how to assemble these IRIA components into an MPC
protocol for any functionality with standard IA. Such a realization differs
minimally in terms of cost, techniques, and analysis from the equivalent
realization that lacks identifiability, e.g., our total bandwidth overhead
incurred is less than 2x, which is an asymptotic improvement over prior
work on IA.
On a practical level, we apply our techniques to the problem of thresh-
old ECDSA, and show that the resulting protocol with standard IA is
concretely e"cient. On a theoretical level, we present a compiler that
transforms any secure protocol into one with standard IA assuming only
a variant of statically-corruptable ideal OT.

1 Introduction

When a majority of participants in a secure multiparty computation (MPC) pro-
tocol behave maliciously, it is not generally possible to guarantee output delivery
for honest parties [30]. Consequently, the standard definition of security permits
the adversary to halt the protocol after first learning the outputs of all dishonest
parties; correctness and privacy, however, are still guaranteed for honest parties.
! The full version [31] is available online: https://eprint.iacr.org/2023/1136
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This regime of security with abort has been well-studied, beginning with clas-
sical feasibility results [88,57,10], followed by many asymptotic improvements
[70,42,17], and culminating in concretely efficient protocols [63,86,87].

Unfortunately, many protocols only achieve security with unanimous abort
(UA), wherein honest parties can detect an attack but not identify a specific
cheater. As a result, these protocols are exposed to denial-of-service (DoS) at-
tacks, wherein even a single corrupted party can cause the protocol to abort
repeatedly. Such DoS attacks are tolerable in some specific use-cases, e.g., in
small, closed systems where investigation can be performed out-of-band [52];
however, they cannot be tolerated in many large-scale and/or permissionless
MPC applications, such as distributed sampling of structured reference strings
(SRSes) for public consumption, or threshold signing for blockchains. Among
the most commonly used SRSes are RSA moduli [15,62,27,28,44,21] and “the
powers of τ setup” [13,16,60,75,32]. Many works on the distributed sampling of
these objects and on threshold signatures [24,26] aim to prevent DoS attacks by
achieving the stronger notion of identifiable abort (IA), which guarantees that
in the case of an abort, all honest parties agree upon the identity of at least one
corrupted party.

The notions of identifiable abort and unanimous abort were both shown fea-
sible by Goldreich, Micali, and Wigderson [57]. The GMW compiler transforms
any protocol that is secure against semi-honest adversaries into a protocol that
is secure with IA against malicious adversaries. At a high level, the parties com-
mit to their inputs and then run an augmented coin-tossing protocol to sample
a committed random tape for each party, after which they run the original pro-
tocol over a broadcast channel, but include with each message a zero-knowledge
proof that the message has been computed correctly. This approach is simple,
but inefficient due to its non-black-box usage of cryptographic primitives.

A line of follow-up work demonstrated that in the dishonest-majority setting,
MPC with unanimous abort can withstand computationally unbounded adver-
saries (i.e., it requires no cryptographic assumptions) if given access to an ideal
oblivious transfer (OT) functionality [74,70]. Furthermore, the OT functionality
need only be accessed offline (i.e., before the parties know their inputs); it can
therefore be modeled as a pairwise correlation [9]. On the other hand, Ishai,
Ostrovsky, and Seyalioglu [68] ruled out information-theoretic MPC with iden-
tifiable abort given any pairwise correlation. This implies that IA is separated
from any ideal oracle that only interfaces with two parties in an o"ine phase.

Ishai, Ostrovsky, and Zikas [69] overcame this barrier by constructing a com-
plex n-wise correlation that enables information-theoretic MPC with IA. Specif-
ically, they presented a compiler like the one of GMW, which uses information-
theoretic signatures for commitments and a distributed version of the IKOS
zero-knowledge proof [67] that is information-theoretically secure given their
correlation. They also presented a protocol for the distributed sampling of their
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correlation that makes black-box use of an adaptively secure OT protocol5 and
ideal commitments.

Successive works have abandoned the compiler-oriented approach and com-
bined various n-wise correlations with specific online protocols to achieve better
efficiency. Baum et al. [7] presented a variant of the BDOZ protocol [14] that
uses homomorphic information-theoretic signatures, and a correlation-sampling
protocol based upon somewhat homomorphic encryption; this approach avoids
zero-knowledge proofs in the online phase. Spini and Fehr [85] and Cunningham
et al. [38] adjusted the SPDZ protocol [42] to achieve IA. Baum et al. [8] fo-
cused on boolean (rather than arithmetic) circuits and relaxed the problem to
allow computational assumptions in the online phase. Their approach is based
upon multi-party garbling [10,63], and makes black-box use of a statically secure
OT protocol, a pseudorandom function (PRF), and additively homomorphic
commitments. Their approach also opens up a number of well-known concrete
optimizations such as OT extension and free-XOR.

1.1 Identifying Cheaters by Revealing One’s Inputs

The results of Ishai et al. [69] or Baum et al. [7] can be interpreted as reducing
the problem of achieving IA for general tasks to the problem of achieving IA for
distributed sampling. As we have argued above, distributed sampling with IA is
also important for sampling SRSes. Our work focuses primarily on this problem.

In distributed sampling protocols, the only private inputs of the participants
are their random coins; in the case of an abort, these coins can be safely revealed,
because neither the outputs nor the coins themselves will ever be used again.
This suggests a seemingly simple approach to IA that avoids zero-knowledge
statements concerning the next-message function: parties commit to their ran-
domness, and, in the case of an abort, reveal it. Using the opened commitments,
honest parties can emulate the protocol and identify (and agree upon) the first
player to cheat.

The problem with this approach arises in the security proof: if the adversary
causes an abort after learning the outputs, then the simulator must produce an
output-consistent view for each of the honest parties, i.e., a view that is consistent
with both the outputs that the adversary has learned and the earlier messages
that were sent by honest parties, which were simulated without knowledge of
the output.

Ishai et al. [69] addressed the challenge of output consistency by introducing
a technical trick to ensure the random coins are never revealed once the output
has been learned. Instead of computing the output directly, they first compute
a secret sharing of the output that is authenticated with information-theoretic
signatures, using a generic MPC protocol in the OT-hybrid model that has
security with (non-identifiable) abort against adaptive adversaries. They then
reconstruct the output by broadcasting the shares and verifying the signatures.
5 By black-box use of a protocol, we mean black-box access to the protocol’s next-

message function, but not access to the code or description of the next-message
function. This usage was introduced by Ishai et al. [67].
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If an abort occurs before the reconstruction, then no output has yet been defined
and the simulator can choose any set of random coins. By the correctness of the
protocol, they correlate to an output from the appropriate distribution, and
the equivocality of the protocol messages already transmitted is ensured by the
adaptive security of the generic MPC protocol and the protocol that realizes
the OT oracle. An abort occurs during reconstruction (i.e., after the adversary
learns the output) only if the adversary broadcasts a signature that does not
verify, and this condition is identifiable without opening any random coins.

Baum et al. [8] devised a different simulation strategy that only requires
statically secure OT. Much like Ishai et al., they address the challenge of output
consistency by indirectly revealing the output. Their protocol uses homomor-
phic commitments instead of information-theoretic signatures, and performs the
entire computation in both committed and secret-shared form, in parallel. Af-
terward, they use statistical checks to ensure the equivalence of the committed
outputs and the secret-shared outputs, and then open the commitments. Instead
of equivocating protocol messages, their simulator produces messages on behalf
of the honest parties by running the actual honest parties’ code (for the secret-
shared components); this prevents direct extraction of the corrupt parties’ coins,
but the parallel committed computation can be used to extract instead.

Despite these improvements over earlier approaches, neither of these yields
an efficient, implementable protocol with IA.

1.2 Our Contributions

In this work we present a new and efficient approach for constructing MPC
with identifiable abort that follows the spirit of modern MPC protocols with
unanimous abort.

We first introduce a weakened form of identifiable abort that we dub input-
revealing identifiable abort (IRIA). We then present a novel approach for realiz-
ing sampling functionalities with IRIA that is based upon selectively and asym-
metrically revealing committed inputs in a specific order to vindicate honest par-
ties when an abort occurs. Unlike the prior works described above, our solution
to the output consistency problem does not rely upon generic zero-knowledge
proofs, adaptively secure primitives, homomorphic primitives, or protocol com-
pilers. Instead, we show that under our approach, messages and randomness can
be equivocated when (and sometimes only when) they must be by exploiting
fundamental asymmetries in the functionalities.

To illustrate the value of this idea, we systematically apply it to several well-
known building-block protocols from the MPC literature, and use the resulting
augmented protocols with IRIA to construct protocols with standard IA for
generic tasks and for the specific task of threshold ECDSA signing.

Oblivious Transfer. We modify the PVW OT protocol [80] to give the OT sender
the ability to decommit both of its inputs to the public. Our protocol achieves an
intermediate form of security, between IA and IRIA, that involves revealing only
the sender’s inputs to the adversary when an abort occurs. Thus our protocol
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realizes Sender-Committed OT with Sender-Input-Revealing IA (SCOT-SIRIA)
and Public Verifiability (PV). Relative to the unmodified PVW protocol, our
overhead is essentially additive, with the exception that all messages are sent
via broadcast. We also give a simple n-wise correlation with a multiplicative
depth of 1 from which SCOT (with PV and any flavor of IA) can be trivially
realized. Details are given in Section 3.

Furthermore, we demonstrate that the Softspoken OT extension protocol of
Roy [82] can be enhanced to make it sender committing and to achieve SIRIA,
using only an ideal SCOT-SIRIA oracle, a programmable random oracle, and
a broadcast channel. In other words, SCOT-SIRIA (with PV) can be extended
in much the same way as standard OT, and with essentially identical concrete
cost.6 Our enhancement is general enough to be applicable to other OT-extension
protocols. Details are given in Section 3.4.

VOLE. We modify the vectorized multiplication (i.e., Vector Oblivious Linear
Evaluation, or VOLE) protocol of Doerner et al. [46,47,48] by replacing the
protocol’s OT oracle with a SCOT-SIRIA oracle, and prove that it becomes
committing for both participants. Only a few extra instructions are required to
decommit. The modified protocol statistically realizes Committed VOLE with
IRIA (CVOLE-IRIA) and PV in any finite field. This protocol provides an in-
tuitive argument that IRIA is in some sense easier than full adaptive security,
because achieving adaptive security for the same protocol would require the
simulator to solve an adversarially-influenced instance of an NP-hard problem.
Details are given in Section 4.

MPC Preprocessing. We rewrite the preprocessing protocol of MASCOT [73]
in terms of an ideal CVOLE-IRIA oracle. This modularizes the MASCOT pre-
processing protocol, which simplifies it considerably relative to its original pre-
sentation and reveals the essence of the mechanism by which authenticated
Beaver triples are generated with an unauthenticated multiplication primitive.
This change alone is sufficient to statistically realize the SPDZ or BeDOZa pre-
processing functionality with IRIA, and with the property that all parties are
committed to their outputs. Details are given in Section 5.

General MPC with Standard IA. We show that when the SPDZ preprocessing is
generated by our previously realized IRIA functionality, then the SPDZ online
protocol can realize any sampling functionality with (standard) IA. Altogether,
the chain of realizations we have proposed involves few changes, no new as-
sumptions, and little concrete overhead relative to plain MASCOT. Among the
sampling functionalities we can realize is the preprocessing sampler for the IOZ
compiler, which allows IA to be achieved for any functionality, but there is a
more direct and more efficient way to attain this goal.
6 As in standard OT extension, the number of invocations of the SCOT-SIRIA oracle

depends only on the security parameter, and the number of invocations of the random
oracle depends upon the size of the extension.
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To achieve IA directly for any functionality, we construct a preprocessing
protocol that produces shared multiplication triples with BeDOZa-style [14] sta-
tistical MACs, and commits the parties only to the MAC keys. Baum, Melissaris,
Rachuri, and Scholl [6] recently observed that if an abort occurs in the online
phase of the BeDOZa protocol, then only the MAC keys, and not the private
inputs, must be revealed in order to identify a cheater. For the task of sampling,
this is less efficient than using SPDZ, but for non-sampling tasks it allows us to
achieve IA without the far-greater overhead of sampling information-theoretic
signatures, as in prior works [69,7]. Unlike the preprocessing protocol of Baum et
al. [6], which is tied to the Learning Parity with Noise (LPN) assumption, ours
follows statistically from ideal SCOT-SIRIA, and thus a variety of assumptions.

Threshold ECDSA. In Section 7, we describe a simple variation of the three-
round threshold ECDSA protocol of Doerner et al. [48] that uses our CVOLE-
IRIA primitive to achieve identifiable abort with only a modest increase in band-
width and computational costs over the original. Unlike in other protocols pre-
sented in this work, the threshold ECDSA protocol we present does not always
abort when some party cheats. This is an essential feature in the context of
threshold cryptography, and highlights an advantage in flexibility for our ap-
proach to IA. If cheating always implied an abort, and with it the abandonment
of all protocol state and refusal of future interaction, then a single cheating party
could make it impossible for all other parties (even fully-honest groups) to sign
under the same key in the future. Instead, when a party cheats in the sign-
ing phase, it causes an identifiable failure: the signing protocol halts, a corrupt
party is identified, and no signature is produced, but future signatures may still
be attempted (even by the corrupt party).

1.3 Interpretation of Results

Since we can realize the sampling functionality that generates the correlated
randomness required by the security-enhancing IOZ compiler [69], there are two
theory-oriented interpretations of our results:

– Whereas the IOZ compiler as originally presented required an adaptively se-
cure OT protocol to sample its correlated randomness, we show the sufficiency
of a statically corruptable ideal OT variant involving n parties, of which n−2
are passive “listeners.” This implies that our n-party ideal functionality is com-
plete for identifiable abort.7 Plain OT has often been considered the funda-
mental primitive of MPC with unanimous abort [74,70]. We offer SCOT-IRIA8

as a candidate for the fundamental primitive of MPC with IA.

7 That is, ideal SCOT-SIRIA yields a statistical realization for any functionality with
(plain) IA, in constant rounds.

8 That is, a variant of SCOT with (double-sided) IRIA, which is strictly weaker than
SCOT-SIRIA.
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– Our result can be viewed as decomposing the complex n-wise correlated ran-
domness required by the IOZ compiler9 into multiple copies of a very simple
n-wise correlation with a multiplicative depth of 1. In Section 3, we give an
informal argument that no correlation complete for MPC with IA can be
too much simpler. This serves as evidence that SCOT-IRIA is a reasonable
fundamental primitive.

Putting aside the theoretical implications of this work, we argue that the
primitives and protocols we introduce are also asymptotically or even concretely
efficient. Specifically:

– We argue that our MASCOT variant with IRIA is useful and independently
interesting in the context of Beaver-Triples-as-a-Service [84], and that it pro-
vides an essential guarantee that is absent from current incarnations of the
concept with minimal extra overhead.

– Via closed-form cost analysis in Section 6, we show that our modifications to
the MASCOT and Doerner et al.’s VOLE protocols incur a bandwidth cost
overhead of roughly 50% and a round count overhead of 3 if an abort does
not occur, or roughly 100% and 6 rounds if an abort does occur, relative to
the equivalent unmodified protocols that achieve only security with abort.

– Our threshold ECDSA protocol with IA is well within the efficiency envelope
of threshold ECDSA protocols that have already been deployed commercially
without IA. We believe this to be strong evidence of practicality.

1.4 Related Work

Security with identifiable abort was first explicitly recognized by Aumann and
Lindell [5] in the context of covert security. It has been used implicitly in a
large number of works both before and after it was named, particularly in the
domain of MPC with fairness and guaranteed output delivery [58,35,39,34], fair
coin tossing [12,61,4,20], 1/p-security [59,11], and as a stepping stone to stronger
security-notions [64,89,66]. Our results can be used immediately to improve upon
all of these applications.

Another line of work on identifiable abort has focused on round-efficiency,
yielding (optimal) four-round protocols in the plain model [29], as well as two-
round protocols in the CRS model with a precise characterization of when
and how many times broadcast must occur to achieve specific security guar-
antees [33,41,43]. Round-efficient protocols with IA are also known for quantum
computations [3]. These works focused on theoretical feasibility within partic-
ular constraints, and are not suitable for practical implementation. While our
techniques yield generic MPC with IA and constant round complexity, we do
not focus on optimizing the precise number of rounds, and instead prioritize the
simplicity, modularity, and (where concrete performance is concerned) compu-
tational efficiency of our construction.
9 Or, for that matter, any other multiparty correlation for MPC that achieves IA, such

as the one proposed by Baum, Orsini, and Scholl [7].

7



Another line of work has focused on the complexity of the correlated random-
ness required to achieve generic MPC with identifiable abort in the information-
theoretic setting. Ishai, Ostrovsky, and Zikas [69] proved that n-wise correlations
suffice, and Ishai, Ostrovsky, and Seyalioglu [68] proved that pairwise correla-
tions do not. Simkin et al. [83] and Brandt et al. [19] showed that for n − 1
corruptions, a correlation with cardinality n− 1 is (surprisingly) sufficient, and
Brandt [18] subsequently presented tight setup bounds. In our work we achieve
security in the presence of n − 1 corruptions via a correlation of cardinality n;
we make no attempt to reduce the cardinality to n− 1.

In an concurrent and independent work, Baum, Melissaris, Rachuri, and
Scholl [6] show how to achieve IA by transforming a special class of sender-
receiver protocols, where only the sender has private input. We view their results
as complementary to ours. Both our approach and theirs leverage party asymme-
try when aborts occur. However, their proof techniques are entirely different from
ours. They employ a notion weaker than adaptive security which they call online
extractability in order to construct a linearly homomorphic commitment scheme
with IA. Whereas we make use of standard ideal functionalities that are tweaked
to incorporate input revealing, they make black-box use of protocols instead.5
Our techniques are rooted in the well-known notion of Committed OT, and add
a similar property of input-committingness to other well-known abstractions,
using each abstraction as a basis for instantiating the next. In contrast, their
compiler-based technique relies on revealing input tapes, and the properties they
require of their commitment scheme seem to emerge from a very specific con-
struction. They give an instantiation only from the LPN assumption and achieve
only fully-generic MPC, whereas our approach can be applied widely and instan-
tiable from several assumptions (e.g., DDH, LWE, or DCR+QR). Because their
instantiation is PCG-based, it has an asymptotic advantage over ours, whereas
ours seems to have better concrete efficiency for small circuits, and for bespoke
protocols such as threshold ECDSA that require only a small number of VOLE
operations.

2 Preliminaries

Notation. We use X for an unspecified domain, G for a group, F for a field, Z for
the integers, and N for the natural numbers. We use λc and λs to denote the com-
putational and statistical security parameters, respectively. Group operations are
expressed additively, and group elements are given capitalized variables. We use
Pi to indicate an actively participating party with index i; in a typical context,
there will be a fixed set of active participants denoted P1, . . . , Pn. A party that
observes passively but remains silent is denoted V.

Security and Communication Model. We consider a malicious PPT adversary
who can statically corrupt any subset of parties. All of our proofs are expressed
in the Universal Composition (UC) framework of Canetti [22]. We note that our
techniques do not rely on any specific properties of the framework, and can be
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applied to any security framework that supports synchronous communication
and composability.

As per prior works, we consider all messages to be sent over an authenticated
broadcast channel, often denoted by FBC but here left implicit, and we do not
consider any point-to-point communication. Since generic MPC with identifiable
abort implies the ability to broadcast [35], we believe this to be reasonable.
Some prior works attempt to optimistically minimize the broadcast usage when
all participants are honest. For example, techniques have been introduced to
minimize the number of distinct broadcast invocations in the online phase [7]
and the bandwidth complexity of broadcast [8]; both of these techniques apply
to our work as well. In general, an adversary can always fraudulently claim
not to have received a message that was supposed to have been sent over a
point-to-point channel, forcing action to be taken on the broadcast channel; in
many (but perhaps not all) cases, this implies that the adversary can force all
communication onto the broadcast channel if it so desires.

By convention, we assume that trivial protocol errors are handled appro-
priately. For example, if a particular party is expected to send a message in a
protocol with identifiable abort, but does not do so (or sends a message that fails
to type-check), then we assume the other parties abort and identify the silent
party as a cheater.

Security with Abort. Under this notion of security, the adversary may cause the
protocol to terminate without producing output for the honest parties, and may
condition termination on the corrupt parties’ output values. Such failures cannot
always be attributed to any particular party. This is the most basic notion of
security against malicious adversaries. If the parties are guaranteed to agree
on whether an abort has occurred, then the abort is unanimous; otherwise it is
selective. Any protocol with selective abort can be modified to achieve unanimous
abort via a single broadcast round at the end.

Security with Identifiable Abort (IA). Under this notion of security, the adversary
may cause the protocol to terminate without producing output for the honest
parties, and may condition termination on the corrupt parties’ outputs. To cause
an abort, the adversary must identify one corrupt party to the honest parties.

Security with Input-Revealing Identifiable Abort (IRIA). We introduce this no-
tion; it is similar to but strictly weaker than plain identifiable abort. In the case
of an abort, the adversary learns the inputs of all honest parties and any random
coins sampled by the functionality.

Security with Sender-Input-Revealing Identifiable Abort (SIRIA). This notion is
relevant only to functionalities with asymmetric roles for the invoking parties,
and lies between plain IA and IRIA. A functionality that has a sender role and
a receiver role has SIRIA if the adversary learns only the input of the sender
when an abort occurs.
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Guaranteed Output Delivery (GOD). This is the strongest notion of security; it is
unrealizable for many tasks [30]. Guaranteed output delivery is typically defined
in the stand-alone model (e.g., Cohen and Lindell [35]) and cannot be captured in
the inherently asynchronous UC framework. Katz et al. [72] proposed a means
to model synchronous communication within UC, which captures guaranteed
termination. When discussing guaranteed output, we implicitly use this model.

Public Verifiability (PV). We model public verifiability as an abstract modifier
for other functionalities. The parties interacting with any particular session of
an unmodified functionality become the active participants in the modified func-
tionality, but there may be additional observing verifiers who can register to
receive outputs, but cannot otherwise influence the functionality.
Functionality 2.1. !F "PV. Public Verifiability for F [32]

The functionality !F "PV is identical to the functionality F , except that
it interacts with an arbitrary number of additional observing verification
parties (all of them denoted by V, as distinct from the actively participating
parties P1, P2, etc.). Furthermore, if all actively participating parties are
corrupt, then !F "PV receives its random coins from the adversary S.
Coin Retrieval: Whenever the code of F requires a random value to
be sampled from the domain X, then sample as F would if at least one of
the active participants is honest. If all active participants are corrupt, then
send (need-coin, sid,X) to S, and upon receiving (coin, sid, x) such that
x ∈ X in response, continue behaving as F , using x as the random value.
Observer Registration: Upon receiving (observe, sid) from V, remem-
ber the identity of V, and if any message with the same sid is sent to all
active participants in the future, then send it to V as well.

Basic Functionalities. The constructions in this paper make use of functionalities
that are well known from prior works. We use the same one-to-many commitment
functionality FCom as Cohen et al. [32], which is similar to the one-to-many
commitment functionalities given by Canetti and Fischlin [23] and Canetti et
al. [25], except that it omits explicit destination parties in favor of allowing
passive verifiers to receive commitments when wrapped with !·"PV. We make
use of the CRS-sampling functionality FCRS introduced by Canetti et al. [25],
which samples a random value from the appropriate distribution and outputs it
to all parties. We also make use of the correlation-sampling functionality FCorr of
Ishai et al. [69], which samples a set of correlated random values when invoked,
and outputs each of them to a different party. In both cases, we assume the
functionalities to have identifiable abort (though their original descriptions do
not); i.e., if the adversary wishes to prevent any honest party from receiving
output, it must identify one of its corrupt parties to the honest parties. Finally,
we use a standard n-party coin-tossing functionality FCT with identifiable abort,
which is similar to FCRS except that by convention it samples uniformly from
some domain, instead of from an arbitrary distribution.
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3 Sender-Committed OT

Basic 1-of-2 oblivious transfer (OT) [49] is a complete primitive for multiparty
computation with (non-identifiable) abort [74,70], but Ishai et al. [68] have shown
a separation between any two-party correlation (including OT) and identifiable
abort in the information-theoretic setting. We aim to make a minimal enhance-
ment to the OT functionality such that it is complete for IA, and the afore-
mentioned separation tells us that it is necessary that this enhancement involve
additional parties. The simplest role we can expect additional parties to take is
the role of passive observers, who only record whether the enhanced function-
ality aborts and which party was responsible (but do not observe either active
party’s secrets in the non-aborting case). This is not enough, however, because
a dishonest interaction with the functionality might take the form not of an
abort, but of an incorrect input (with respect to some correct input distribution
specified by the protocol that uses the functionality), and as it stands, there is
no way for observers to check the inputs for correctness. Again, we seek the sim-
plest enhancement, which in our judgment is to make the functionality publicly
committing for the sender; i.e., the sender becomes committed when providing
their inputs, and both inputs can be decommitted to the passive verifiers at a
later time.10 We refer to our enhancement as Sender-Committed OT or SCOT.

The weakest form of identifiable abort is input-revealing for both active par-
ticipants, and we will prove that this weak form is complete for IA via Theo-
rems 4.2 and 5.2. However, the VOLE construction for arbitrary fields that we
discuss in Section 4 requires that the receiver’s inputs remain hidden, and so the
variant we give formally has only sender-input-revealing IA.
Functionality 3.1. FSCOT-SIRIA(X): Sender-Committed OT

This functionality interacts with two active participants, PA (Alice) and PB
(Bob), and with the ideal adversary S. It is parameterized by a domain X.
OT: On receiving (choose, sid, β) from Bob such that β ∈ {0, 1} and
PB∥PA∥sid′ = sid for some fresh sid′, send (choice-made, sid) to all par-
ties. On receiving (messages, sid, α0, α1) from Alice such that α0, α1 ∈ X,
store Alice’s message in memory and send (messages-loaded, sid) to all
parties. When both Alice and Bob’s messages have been received, send
(chosen-message, sid, αβ) to Bob and send (ot-done, sid) to all parties.
Opening: On receiving (open, sid) from Alice, if the record
(messages, sid, α0, α1) exists in memory, then send it to all parties and
ignore all future instructions with the same sid value.

10 This change also makes the functionality weakly committing for the receiver, which
receives the message corresponding to its choice bit, and is bound to that choice
bit by its inability to guess the other message, so long as the messages have su"-
cient entropy. Our functionality is slightly weaker than previously studied notions
of double-sided committing OT [36,54] because our functionality only allows the
receiver to decommit its choice bit if the sender also decommits.
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Abort: On receiving (abort, sid) from S at any point, such that
PB∥PA∥sid′ = sid, if Pc is corrupt for some c ∈ {A, B}, then send
(messages, sid, α0, α1) to S if such a record exists in memory,a and regard-
less send (abort, sid, Pc) to all parties and ignore all future instructions
with the same sid value.
a This functionality can be transformed into FSCOT-IRIA, with double-sided input-

revealing IA, simply by releasing β along with α0 and α1 in the case of abort,
and it can be transformed into FSCOT-IA, with standard IA, by releasing none
of these values.

In the full version [31] of this paper we explore a simple n-wise correlation,
from which our functionality can be realized information-theoretically, and in
Section 3.1 we give a direct computational realization based on the PVW OT
[80] augmented with a simple sigma protocol.

3.1 Direct Computational Realization via PVW

Peikert et al. [80] proposed a composable OT framework (the PVW framework,
recently honored with the CRYPTO 2023 Test of Time Award) instantiable from
the Decisional Diffie-Hellman (DDH), Quadratic Residuosity (QR), or Learning
with Errors (LWE) [81] assumptions. We observe that their protocol is already
committing for the sender, and we need only add an additional phase to the
protocol by which the sender can decommit. Prior works [71,53] have added a
similar decommitment capability simply by revealing the sender’s randomness.
However, this approach does not seem to be simulation-secure: for example, in
the DDH-based instantiation, simulation of a decommitment for an arbitrary pair
of messages seems to require breaking the Discrete-Logarithm (DL) assumption,
which invalidates the scheme.

We take a different approach: the sender reveals its inputs, and then proves
that they are correct decommitments with respect to the messages already trans-
mitted. Although our protocol achieves UC security, we do not require a straight-
line-extractable proof of knowledge to do this, because our simulator does not
require anything additional to be extracted from the sender. Instead, we combine
a simple sigma protocol with a commitment scheme that is binding and equivoca-
ble, but not extractable, and we show that if a corrupt sender cheats, then there
exists a rewinding reduction that breaks the binding property of the commitment
scheme. This allows our protocol to achieve composable security while avoiding
the compromises typically associated with composable zero-knowledge proofs:
specifically, the computation and communication overheads and the program-
ming of the random oracle associated with straight-line extractors [78,51,76].11

Our approach is general: it can be applied to any instantiation of the PVW
11 We note that in the UC model, the simulator is forbidden to rewind the environment,

which precludes rewinding-based simulation techniques, but reductions run the whole
experiment, including the environment, as a subroutine, and thus they can make use
of rewinding in the usual way. See, for example, Dodis, Shoup, and Walfish [45].
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framework, provided that the underlying dual-mode encryption scheme supports
a sigma protocol for proof of correct encryption, which we define below. In the
full version of this paper [31], we also give an explicit construction of our ap-
proach based upon the DDH instantiation of PVW, Pedersen commitments, and
a variant of the Schnorr protocol.

In the original PVW scheme, all messages correspond to valid inputs, and
aborts only occur if parties fail to speak. In our new decommitment phase, a
corrupt receiver can cause an abort after the sender’s inputs have been revealed.
Thus, our approach yields security with sender-input-revealing IA.

3.2 Building Blocks for PVW
Dual-Mode Encryption. Peikert et al. introduced a primitive that they refer to
as dual-mode encryption, a form of public-key encryption in the CRS model with
an added notion of branches and two modes. Given some public key, messages
can be encrypted to any branch. In messy mode, some branches are decryptable
in the usual sense with a corresponding secret key, whereas some branches are
messy, meaning that the resulting encryption contains no information about
the message. In messy mode, all public keys (including ill-formed ones) contain
some messy branches, and messy branches can be efficiently distinguished from
decryptable ones if and only if the distinguisher has knowledge of a trapdoor that
is embedded in the CRS. In decryptable mode, on the other hand, the trapdoor
can be used to sample public keys that have only decryptable branches. The
two modes are efficiently distinguishable if and only if the distinguisher has
knowledge of the trapdoor.

More formally, a two-branch dual-mode encryption scheme is a tuple of algo-
rithms (DMSetup, DMKeyGen, DMEnc, DMDec, DMTrapKeyGen, DMFindMessy)
such that:
1. (crs, td) ← DMSetup(1λ, µ) samples a CRS and a trapdoor, given the mode

µ ∈ {0, 1}, where µ = 0 indicates messy mode, and µ = 1 indicates decryptable
mode. We require that CRSes produced in the two modes are computationally
indistinguishable unless the trapdoor is known. That is,
)

crs : (crs, td)← DMSetup(1λ, 0)
}
≈c
)

crs : (crs, td)← DMSetup(1λ, 1)
}

2. (pk, sk) ← DMKeyGen(crs, β) samples a public key pk, along with the secret
key sk for branch β ∈ {0, 1}.

3. m̃ ← DMEnc(crs, pk, b, m) emits an encryption m̃ of message m ∈ M under
branch b ∈ {0, 1} of pk. If b is a messy branch of pk, then m̃ contains no
information about m. If b is a decryptable branch, then m̃ is semantically
secure in the usual way.

4. m ..= DMDec(crs, sk, m̃) emits a message m ∈ M if m̃ is the encryption of m
under a decryptable branch of the public key pk corresponding to sk. In other
words, we require that for every m in the message space and (β, µ) ∈ {0, 1}2

m = DMDec(crs, sk, DMEnc(crs, pk, β, m)) :
(crs, td)← DMSetup(1λ, µ), (pk, sk)← DMKeyGen(crs, β)
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with probability 1 over the coins of the algorithms. This is perfect correctness.
5. For descriptions of DMTrapKeyGen and DMFindMessy and their properties,

we refer the reader to Peikert et al. [80] and the full version of this paper [31].

In addition to the above mentioned properties, we note that ciphertext valid-
ity is a public property; i.e., it must be possible to determine from only the CRS,
public key, and ciphertext value whether decryption of a ciphertext is possible.
This is easily satisfied if all ciphertexts decrypt under all keys.

Proof of Correct Encryption. Under our modification, the sender must be able
to prove that a ciphertext is a valid encryption of a particular input, even when
the ciphertext is messy. It does this by proving knowledge of the coins used by
the encryption algorithm. That is, if we let DMEnc(crs, pk, b, m; r) be a deter-
ministic algorithm that takes the randomness r as input rather than sampling
it internally, then the relation

RDMEnc((crs, pk, b, m, m̃), r) &→ m̃ = DMEnc(crs, pk, b, m; r)

defines membership in a language for which we must construct a zero-knowledge
proof of knowledge of a witness:

LDMEnc = {(crs, pk, b, m, m̃) : ∃r s.t. RDMEnc((crs, pk, b, m, m̃), r) = 1}

Sigma Protocols. A sigma protocol is a three-message protocol for proving knowl-
edge of the witness w for some element x of a language L. It comprises a quartet
of algorithms (Σ1

L, Σ2
L, Σ3

L, ΣV
L), which respectively generate the three messages

of the protocol and verify the proof. For a formal description of these algorithms
and their properties, we refer the reader to Damgård [40] and to the full version
of this paper [31].

Equivocable Commitments in the CRS Model. Finally, we require a commit-
ment scheme that is much too weak to realize the ideal commitment function-
ality FCom: one that is hiding, binding, and equivocable, but not necessarily
extractable. An equivocable commitment scheme in the CRS model is a tuple of
algorithms (CSetup, CCom, COpen, CTrapSetup, CTrapCom, CEquiv) such that:

1. crs← CSetup(1λ) samples a CRS.
2. (c, d)← CCom(crs, m) samples a commitment c and an opening d for a mes-

sage m. We require that the commitment be hiding; i.e., that the adversary
have negligible advantage in distinguishing a commitment c to m from a
commitment c′ to m′, even given knowledge of crs and choice of m and m′.

3. COpen(crs, c, d) is a deterministic algorithm that outputs ⊥ if d not is a valid
opening for c, or m if d is a valid opening for c and c is a commitment to
m. We require that the commitment be binding; i.e., that it be infeasible for
the adversary to find two different valid openings d and d′ that cause one
commitment c to open to two different messages m and m′.

4. For descriptions of CTrapSetup, CTrapCom, CEquiv, and their properties, we
refer the reader to Di Crescenzo et al. [37] and to the full version [31].
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3.3 The Modified PVW Scheme

Now we give our SCOT-SIRIA protocol based on PVW OT. We describe it and
prove it in terms of general primitives, much as Peikert et al. did, and present
a proof of security in the full version [31]. We define a simple functionality
!FDME

CRS "PV that samples CRSes of the type required by the messy mode of our
dual-mode cryptosystem. We also define !FCom

CRS "PV that samples CRSes of the
type required by our equivocable commitment scheme.

We require one additional primitive, which is an efficiently invertible injective
map Map : X → M from the message domain X of the protocol to the message
domain M of the dual-mode encryption scheme.
Protocol 3.2. πSCOT-SIRIA-PV-PVW(X, λc). Computational SCOT

This protocol involves two active participants, PA and PB, who we refer to as
Alice and Bob, an a-priori-unknown number of passive verifiers (collectively
denoted V), and the ideal functionalities !FDME

CRS "PV and !FCom
CRS "PV. This

protocol is parameterized by the sender’s message domain X. It makes use
of a dual-mode encryption scheme with a sigma protocol for the language
of correct encryptions and an equivocable commitment scheme as defined
in Section 3.2.
Initialization: On receiving (init, sid) from the environment, Pi for
i ∈ {A, B} sends (sample, sid∥1) to both !FDME

CRS "PV and (sample, sid∥2) to
!FCom

CRS "PV and receives (crs, sid∥1, dmecrs) and (crs, sid∥2, comcrs).
OT:

1. On receiving (choose, sid, β) from the environment, PB samples
(pk, sk) ← DMKeyGen(dmecrs, β) and broadcasts (dmepk, sid, pk) to all
parties.

2. On receiving (dmepk, sid, pk), PA outputs (choice-made, sid) to the envi-
ronment. On also receiving (messages, sid, α0, α1) from the environment,
PA samples rb ← {0, 1}λc and computesa

α̃b ← DMEnc(dmecrs, pk, b, Map(αb); rb)

for b ∈ {0, 1}, and broadcasts (transfer, sid, α̃0, α̃1) to all parties.
3. On receiving the transfer message from PA, all parties output

(ot-done, sid) to the environment.
4. On receiving the transfer message from PA, party PB computes

γ ..= Map−1(DMDec(dmecrs, sk, α̃β))

and outputs (chosen-message, sid, γ) to the environment.
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Opening:

5. On receiving (open, sid) from the environment, PA samples

(ab, sb)← Σ1
DMEnc((dmecrs, pk, b, Map(αb), α̃b), rb) for b ∈ {0, 1}

(c, d)← CCom(comcrs, (a0, a1))

and broadcasts (open-com, sid, α0, α1, c) to all parties.
6. On receiving the open-com message from PA, party PB samples

eb ← Σ2
DMEnc((dmecrs, pk, b, αb, α̃b))

for b ∈ {0, 1} and broadcasts (open-chal, sid, e0, e1) to all parties.b
7. On receiving the open-chal message from PB, party PA computes

zb ← Σ3
DMEnc((dmecrs, pk, b, Map(αb), α̃b), rb, sb, eb)

for b ∈ {0, 1} and broadcasts (open-resp, sid, z0, z1, d) to all parties.
8. On receiving (open-resp, sid, z0, z1, d) from PA, all others compute

(a0, a1) ..= COpen(crscom, c, d)

and output (messages, sid, α0, α1) to the environment if

ΣV
DMEnc((dmecrs, pk, b, Map(αb), α̃b), ab, eb, zb) = 1

for b ∈ {0, 1}. On the other hand, if either of these equations does not
hold, then the parties output (abort, sid, PA) to the environment.

Verification:

9. If there is an observing verifier V, then upon receiving (observe, sid) from
the environment, V sends (observe, sid) to !FDME

CRS "PV and !FCom
CRS "PV.

It then receives the broadcast messages and produces outputs to the
environment as described in the forgoing protocol.

a We assume without loss of generality that the encryption routine requires only
security-parameter many random bits.

b In the non-programmable global random-oracle model the parties can instead
apply the Fiat-Shamir transform [50]: they can calculate (e0, e1) ← RO(sid, c)
instead of receiving (e0, e1) from PB. This reduces the Open phase of the
protocol to a single message.

Theorem 3.3. If (DMKeyGen, DMEnc, DMDec) belong to a two-branch dual-
mode encryption scheme for the domain M, and (CCom, COpen) belong to an
equivocable commitment scheme, and (Σ1

DMEnc, Σ2
DMEnc, Σ3

DMEnc, ΣV
DMEnc) is a

sigma protocol for LDMEnc, and Map : X → M is an efficiently invertible injec-
tive map, then πSCOT-SIRIA-PV-PVW(X, λc) UC-realizes !FSCOT-SIRIA(X)"PV in the
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(!FDME
CRS "PV, !FCom

CRS "PV)-hybrid model, in the presence of a malicious adversary
that statically corrupts any number of passive verifiers and at most one of the
active participants PA and PB.

Proof of the above theorem appears in the full version of this paper [31].

Corollary 3.4. If GroupGen(1λ) outputs a distribution of cyclic groups relative
to which the decisional Diffie-Hellman problem is hard, and Map : X → G
is an invertible injective map, then there exists a protocol that UC-realizes
!FSCOT-SIRIA(X)"PV in the (!FDME

CRS "PV, !FCom
CRS "PV)-hybrid model given (G, G, q) =

G ← GroupGen(1λ), in the presence of a malicious adversary that statically cor-
rupts any number of passive verifiers and at most one of the active participants
PA and PB.

Proof of the above corollary appears in the full version of this paper [31].

On CRS Reuse. We note that as written, our protocol samples individual CRSes
for each session, which is wasteful in practice. This is a notational convenience.
The CRSes can be sampled once and safely reused, but the simulator requires
the CRS to be programmed differently when Alice is corrupt and when Bob is
corrupt, which means that each pair of parties will require two CRSes, one for
each direction in which an OT can be performed.

3.4 Extending SCOT-SIRIA

In the full version [31], we describe how to construct Sender-Committed OT
Extension with SIRIA, starting from SCOT-SIRIA. Since OT extension is only
a meaningful improvement over plain OT where concrete efficiency is concerned,
we allow ourselves the use of a programmable random oracle (and achieve
only computational security). Our protocol is derived from the SoftspokenOT
protocol of Roy [82]. Whereas πSCOT-SIRIA-PV-PVW vindicates the sender using
reactively-transmitted sigma protocol in the case of an abort, our extension pro-
tocol performs vindication by specifying that the parties simply release certain
intermediate protocol values in a carefully crafted sequence. We also introduce
a technique that we call OT Extension Extension, in which one instance of OT
Extension is used as the base OT for many additional instances. OT extension
extension is crucial for attaining the concrete efficiency goals outlined in the rest
of this paper, as it allows the OT sender to reactively instantiate a polynomially-
large number of OT instances with selective decommitments freely interleaved
among them, while performing a number of public key operations proportion-
ate only to the security parameter. We arrive at the following corollary for our
SCOT extension security theorem:

Corollary 3.5. (Informal). There is a protocol of which a single instance UC-
realizes polynomially-many reactively-invoked instances of !FSCOT-SIRIA"PV with
the same sender and receiver, where the total number of public-key operations
is independent of the number of choose and open queries.
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4 From SCOT-(S)IRIA to CVOLE-IRIA

In this section, we use the SCOT functionality introduced in Section 3 to statis-
tically UC-realize Committed Vector Oblivious Linear Evaluation with (double-
sided) Input-Revealing Identifiable Abort (CVOLE-IRIA) over any finite field.
Functionality 4.1. FCVOLE-IRIA(F, (): Committed Vector OLE

This functionality interacts with two active participants, PA and PB,
who we refer to as Alice and Bob, and with the ideal adversary S. It is
parameterized by a finite field F and an integer (.

VOLE: On receiving (correlation, sid, b) from Bob such that b ∈ F and
PB∥PA∥sid′ = sid for some fresh sid′, send (correlation-loaded, sid) to
all parties. On receiving (vector, sid, a) from Alice such that a ∈ F#, send
(vector-loaded, sid) to all parties. When both Alice and Bob’s messages
have been received:

– If Alice is corrupt, then receive (adv-share, sid, c) from the adversary
and compute d ..= {b · ai − ci}i∈[#].

– If Bob is corrupt, then receive (adv-share, sid, d) from the adversary and
compute c ..= {b · ai − di}i∈[#].

– If neither active participant is corrupt, then sample c, d← F# uniformly
subject to b · ai = ci + di for every i ∈ [(].

Finally, store (vole, sid, a, b, c, d) in memory and send (share, sid, c) to Al-
ice and (share, sid, d) to Bob and (vole-done, sid) to all parties. If in-
stead of sending (adv-share, sid, ∗), the adversary sends (abort, sid, Pc)
such that Pc is corrupt, then send (vole, sid, a, b) to the adversary and
send (abort, sid, Pc) to all parties, and ignore all future instructions with
the same sid value.
Opening: On receiving (open, sid) from Pi for some i ∈ {A, B}, send
(open-req, sid, Pi) to all parties. On receiving such a message from both
Alice and Bob, if a record of the form (vole, sid, ∗, ∗, ∗, ∗) exists in mem-
ory, then send it to all parties and ignore all future instructions with the
same sid value. If an honest active participant sends (open, sid) and the
adversary sends (abort-open, sid, Pc) such that Pc is corrupt, then send
(vole, sid, ∗, ∗, ∗, ∗) to S if such a record exists in memory, and regardless
send (abort, sid, Pc) to all parties and ignore all future instructions with
the same sid value.

We provide two distinct realizations for the above functionality. The first
requires only ideal SCOT-IRIA, and serves to demonstrate that this weakest
form of SCOT (with double-sided input revealing) is complete for (standard)
IA. We defer a description of the protocol and proof to the full version of this
paper [31], but provide the relevant theorem here:
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Theorem 4.2. For any ( ∈ N+, there is a protocol that statistically UC-
realizes !FCVOLE-IRIA(Z2, ()"PV against a malicious adversary statically corrupt-
ing at most one active participant and any number of passive verifiers in the
!FSCOT-IRIA(Z#+λs

2 )"PV-hybrid model. This protocol requires at most 2 invoca-
tions of !FSCOT-IRIA"PV in total.

4.1 CVOLE-IRIA Over Any Finite Field

Our main construction of Committed VOLE supports any finite field and
achieves statistical security, but it requires that only the sender ’s inputs be
revealed if the underlying SCOT instances abort (in contrast to the construc-
tion referenced by Theorem 4.2, which works even if the receiver’s inputs are
also revealed). This construction is based upon the two-round OT-multiplication
protocols of Doerner et al. [46,47,48], who derived their technique from the semi-
honest OT-based multiplication protocol of Gilboa [56]. We will give an informal
description of Doerner et al.’s protocol, and then explain how the technique of
vindicating release can be applied to the protocol in order to achieve IRIA. We
leave a formal protocol description and a security sketch to the full version [31].

Gilboa’s protocol leverages the observation that oblivious transfer can be
used to compute secret shares of the product of an arbitrary value a (known to
Alice) and a single bit β (known to Bob). Alice samples a random output δ and
two random OT messages α0 and α1 such that α0 + δ = 0, and α1 + δ = a.
The message that bob chooses will be denoted γ = αβ . If Bob’s choice bit
is 0, then δ + γ = 0, and if he inputs 1, then δ + γ = a. If the parties supply
a method to linearly decompose a full-width multiplication into a sequence of
multiplications by single bits,12 then Bob can apply this method to his full-width
input b to transform it into a vector of choice bits β, Alice can sample a vector
of (independent) masks δ and two vectors of corresponding messages that use a
consistently, and if the decomposition method is inverted on both δ and Bob’s
vector of received OT messages γ, then the result is additive shares of a · b.

Next, let us consider malicious security. The sole interaction between the
parties in the protocol heretofore described is a sequence of OTs. Bob’s input b
is represented via the OT choice bits, and if the linear decomposition of his
inputs is such that any sequence of bits corresponds to a valid input, then he
has no means to cheat. On the other hand, regardless of the decomposition
method, Alice’s input a must be used consistently in all of the OT instances.
Doerner et al. [46,47,48] introduce a statistical check that ensures (with over-
whelming probability) that the OT messages γ actually received by Bob are
consistent with a single input. However, their check does not validate the un-
chosen messages (i.e., α1−βi

i for each i ∈ [|β|]), which means that it introduces
a selective-failure attack, in which Alice can learn some of Bob’s choice bits by
cheating in a specific way that corresponds to guessing the values of some sub-
set of them, and observing whether the consistency check passes. In order to
mitigate this selective-failure attack, Doerner et al. specify a new decomposition
12 In the case of Gilboa’s original protocol, schoolbook multiplication is used.
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method for Bob’s input b which guarantees that even if the adversary knows b
and it correctly guesses statistically-many of Bob’s choice bits, his remaining
choice bits are statistically close to uniform from the adversary’s perspective.
This decomposition method resembles a bit-fixing randomness extractor, with
analysis based upon the leftover hash lemma [65].

Finally, we come to the questions of input-committingness and identifiable
abort: our additions to the Doerner et al. protocols. Recall that given an appro-
priate decomposition function, Bob’s only avenue for cheating is to falsely accuse
Alice. In the case that Alice is falsely accused, she can vindicate herself simply
by releasing both OT messages in each OT instance, in order to prove that they
are consistent with a single input a and with the check messages that she has
transmitted. Thus, to achieve vindication for Alice, it is sufficient to replace OT
with SCOT. SCOT also allows Alice to decommit her input a voluntarily, but
in order to extend the same capability to Bob, we need something more.

The problem we have is subtle. For OT messages with sufficient entropy,13 OT
already commits Bob to his choice bits, and he can decommit simply by revealing
which message he received. There is an issue with simulation, however: when
Alice uses an incorrect message pair for some OT instance in the ideal world,
the simulator uniformly chooses the corresponding choice bit for Bob, in order
to determine whether she should fail the consistency check. The decomposition
method of Doerner et al. ensures that any λs of Bob’s real-world choice bits are
statistically indistinguishable from uniform. If Alice cheats in any more than λs
OT instances, the simulator simply aborts on Bob’s behalf, because in the real
world she evades the check with statistically negligible probability. However, if
Alice cheats in fewer than λs OT instances, an abort may not occur, and yet
Bob will need to decommit his input. The simulator has already chosen choice
bits for Bob for the OT instances corresponding to Alice’s cheats, and now it
must find a decomposition of his input that is consistent with these choice bits.
When Doerner et al.’s decomposition method is used, this implies solving an
adversarially-influenced instance of the subset sum problem.14

We avoid this difficulty by gradually releasing protocol values so that Bob
decommits his input (and the simulator correspondingly finds a decomposition
of his input) only if it is guaranteed that Alice has not cheated. If the inputs
must be decommitted (or an abort occurs), then the vindication process begins
with Bob committing the OT messages γ that he received using FCom. Alice
then instructs FSCOT-SIRIA to release her OT messages for all OT instances. Bob
(and any external verifiers) verify that Alice has not cheated, and if she has not,
then Bob decommits γ.15 The simulator is only compelled to sample a full set

13 Due to Alice’s per-instance masks δi for i ∈ [|β|], her OT messages indeed have
su"cient entropy.

14 The subset-sum problem is NP-Complete in general, and we do not know of any
strategy under which it is e"ciently solvable in the specific parameter regime that
the adversary induces.

15 If Alice was accused of cheating by Bob, and she is vindicated, then the result of
this process is an abort in which Bob is identified as corrupt.
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of choice corresponding to a specific b in the case that Alice behaved honestly,
it can do so because the randomness extractor underlying the decomposition
function is explainable16 when no bits are fixed in advance. We note that the
success of the above strategy illustrates the intuitive notion that identifiable
abort is easier than security against adaptive corruptions. To our knowledge, the
VOLE protocol we have presented is not adaptively secure, because an adversary
corrupting Alice could cheat in such a way that when it later corrupts Bob, the
simulator is forced to solve an adversarial instance of subset sum.

In the full version of this work [31], we specify our protocol and sketch a proof
of the following theorem. We note that our protocol can only be constructed
from SCOT-SIRIA, and not from SCOT with double-sided IRIA, due to the
same simulation difficulty we have described above.

Theorem 4.3. For any finite field F and any ( ∈ N+, πCVOLE-IRIA-PV(F, (, λs)
statistically UC-realizes !FCVOLE-IRIA(F, ()"PV against a malicious adversary stat-
ically corrupting at most one active participant and any number of passive ver-
ifiers in the !FSCOT-SIRIA"PV-hybrid model.

4.2 Single-Sided CVOLE

A simple adjustment of FCVOLE-IRIA gives us a one-sided variant wherein only
Alice’s inputs and outputs are revealed in the case that an abort occurs, or the
Opening phase is invoked, and only Alice need participate in order to trigger
an Opening. This is in some sense analogous to the functionality we specify for
OT in Section 3, and it will be useful for constructing the protocols in Sections 5
and 7. Since Alice (who holds the vector) in our VOLE protocol is the OT sender,
we refer to this functionality as SCVOLE-IRIA:
Functionality 4.4. FSCVOLE-IRIA(F, (): Sender-Committed VOLE

This functionality adds the following phase to FCVOLE-IRIA(n,F):
Sender Opening: On receiving (open-sender, sid) from PA, if a
record of the form (vole, sid, a, ∗, c, ∗) exists in memory, then send
(alice-state, sid, a, c) to all parties and ignore all future instructions with
the same sid value. Note that this instruction cannot abort.

It is possible to modify the functionality further, such that the receiver’s input
(i.e., Bob’s input) is vectorized, rather than Alice’s. Per tradition, reversing the
roles in an asymmetric protocol results in reversing the name:
Functionality 4.5. FSCELOV-IRIA(F, (): Sender-Committed ELOV

This functionality is the same as FSCVOLE-SIRIA(n,F), except that in the
VOLE phase, Bob sends (vector, sid, b) such that b ∈ F# and Alice sends

16 Explainable randomness extractors were introduced by Abram et al. [1].
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(correlation, sid, a) such that a ∈ F, and the constraint on the outputs is
bi · a = ci + di for every i ∈ [(].

Both of these modified functionalities can be realized with simple adjustments
to our protocol, which we discuss in the full version of this paper [31]. We also
define (and realize) variations with SIRIA instead of IRIA.

5 From CVOLE-IRIA to Generic MPC

We now use the Committed Vector OLE functionalities introduced in Section 4
to construct generic MPC with plain IA via purely information-theoretic tech-
niques. Our first pathway leverages an observation made by Baum et al. [6] in
a concurrent work to achieve MPC with IA directly; our second pathway, the
details of which are deferred to the full version of this work [31], involves sam-
pling the preprocessing for classic information-theoretic MPC-IA online phases.
The second pathway allows us to instantiate the security-enhancing IOZ com-
piler [69] with somewhat weaker prerequisites than were previously known, and
thereby add IA to any semi-honest protocol.

5.1 Direct MPC-IA via BeDOZa and Vindicating Release

The classic BeDOZa MPC protocol [14] allows a set of parties to compute any
circuit comprising addition and multiplication gates over a field Fq. The par-
ties manipulate data in the form of additive secret shares over Fq. Sharings for
each wire in the circuit are generated in a preprocessing phase, and manipulated
information-theoretically in an online phase once the inputs become available.
Honest behavior is guaranteed in the online phase using pairwise linear message
authentication codes (MACs) on every share of every wire. The pairwise and
linear nature of these MACs is the key element that allows us to apply the tech-
nique of vindicating release. During the online phase of the BeDOZa protocol,
every value transmitted from Pi to Pj is accompanied by a tag, and Pj can use
the circuit topology to derive a MAC to verify the tag against the transmitted
value under Pj ’s secret key. If the verification fails in classic BeDOZa, then Pj

aborts, but there is no way for bystander parties to determine whether Pj ’s abort
was truly the result of a failed validation, or whether Pj aborted maliciously.
We propose that Pj can vindicate itself simply by releasing its key and the rele-
vant MAC to the public, after which the other parties can verify the MAC and
determine definitively which of the two parties caused the abort to occur.

The observation that public release of keys and MACs allows aborts to be
attributed in the BeDOZa protocol was first made by Baum et al. in a concur-
rent work [6], although they did not have the terminology of vindicating release
to describe this idea. They also did not take a modular approach; there is no
clean separation in their work between the online and o"ine phases, and their
preprocessing is computed using a monolithic protocol tied specifically to the
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Learning Parity with Noise (LPN) assumption. We propose a modular formu-
lation. First, we define a BeDOZa-IA preprocessing functionality (Functional-
ity 51) that can reactively and selectively unveil the MACs and keys necessary
for attributing aborts. Second, we introduce a much simpler preprocessing pro-
tocol that structurally resembles the well-known MASCOT protocol [73]. This
preprocessing protocol is information-theoretically secure assuming ideal CV-
OLE and SCELOV functionalities (as introduced in Section 4), and like the
other constructions in the work, it achieves IA via vindicating release.

For formal details of the BeDOZa online phase, we refer the reader to Bendlin
et al. [14] and Baum et al. [6]. The (modified) BeDOZa online phase UC-realizes
a standard notion of generic MPC with IA, as given by Ishai et al. [69]. Before
we describe our preprocessing functionality, we must give some notation.

Notation. Our functionality represents elements of the BeDOZa preprocessing
using a specific convention. The party to whom a value belongs is always in-
dexed first, so, for example, xi,∗ is a vector of Pi’s shares. There are v Beaver
triples; each t̨riple contains the input wire sharings x∗,k and y∗,k and the output
(product) wire sharing z∗,k. There are also uj input wires allocated for Pj ; the
kth input wire for Pj is shared as w∗,j,k and the mask for this wire is mj,k. Each
party has a MAC on every share of every wire. Pi uses the key δi,j to MAC the
wires of Pj , and Pi’s MAC on xj,k (i.e., Pj ’s share of the kth Beaver triple’s
left input wire) is a vector x̊i,j,k,∗ of length ρ such that ρ · |q| ≥ λs, while Pj ’s
corresponding tag is x̃j,i,k,∗.
Functionality 5.1. FBeDOZaPrep-IA(n,Fq, λs): BeDOZa Preprocessing

This functionality interacts with n active participants, P1, . . . , Pn. In
addition to the party count, it is parameterized by a finite field Fq of size
q over which the correlated randomness is generated, and a statistical
parameter λs. For convenience, we define ρ ..= ⌈λs/|q|⌉ to be the number of
Fq elements required for a λs-bit MAC.

BeDOZa Preprocessing: On receiving (prep, sid, u, v) from some Pi

such that P1∥ . . . ∥Pn∥sid′ = sid for some fresh sid′ and |u| = n, send
(prep-req, sid, u, v, Pi) to all parties. On receiving (prep, sid, u, v) from ev-
ery Pi for i ∈ [n], wait for S to send (proceed, sid) or (abort, sid, Pc) such
that c ∈ [n] and Pc is corrupt. In the latter case, send (abort, sid, Pc) to all
parties and ignore future messages with the same sid. In the former case:

1. For every i ∈ [n] such that Pi is corrupt, wait for S to send
(adv-shares, sid, i, δi,[ρ], mi,[ui], {wi,j,[uj ]}j∈[n], xi,[v], yi,[v], zi,[v]).

2. For every i ∈ [n] such that Pi is honest, sample

δi,[ρ] ← Fρ
q mi,[ui] ← Fui

q wi,j,[uj ] ← Fuj
q for j ∈ [n]

xi,[v] ← Fv
q yi,[v] ← Fv

q zi,[v] ← Fv
q
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subject for every k ∈ [v] to
∑

j∈[n]
zj,k =

∑

j∈[n]
xj,k ·

∑

j∈[n]
yj,k

and subject to

m =
{{∑

i∈[n]
wi,j,k

}

k∈[uj ]

}

j∈[n]

3. For every i ∈ [n] and h ∈ [n] \ {i}, sample

x̊i,h,[v],[ρ], ẙi,h,[v],[ρ], z̊i,h,[v],[ρ] ← Fv×ρ
q

x̃i,h,[v],[ρ], ỹi,h,[v],[ρ], z̃i,h,[v],[ρ] ← Fv×ρ
q

ẘi,h,j,[uj ],[ρ], w̃i,h,j,[uj ],[ρ] ← Fuj×ρ
q for j ∈ [n]

subject for every k ∈ [v] and l ∈ [ρ] to

x̊i,h,k,l + x̃h,i,k,l = δi,l · xh,k

ẙi,h,k,l + ỹh,i,k,l = δi,l · yh,k

z̊i,h,k,l + z̃h,i,k,l = δi,l · zh,k

and subject for every j ∈ [n] and k ∈ [uj ] and l ∈ [ρ] to

ẘi,h,j,k,l + w̃h,i,j,k,l = δi,l · wh,j,k

4. Output
{

prep, sid, δi,∗, mi,∗, wi,∗,∗, ẘi,∗,∗,∗,∗, w̃i,∗,∗,∗,∗,

xi,∗, x̊i,∗,∗,∗, x̃i,∗,∗,∗,, yi,∗, ẙi,∗,∗,∗, ỹi,∗,∗,∗, zi,∗, z̊i,∗,∗,∗, z̃i,∗,∗,∗

}

to Pi for every i ∈ [n] and store (prep, sid, δ, m, w, ẘ, w̃, x, x̊, x̃,
y, ẙ, ỹ, z, z̊, z̃) in memory.

Opening: On receiving (open, sid, Pj) from some Pi such that j ∈
[n], find the record (prep, sid, δ, m, w, ẘ, w̃, x, x̊, x̃, y, ẙ, ỹ, z, z̊, z̃) and send
(macs, sid, Pi, Pj , δi,∗, ẘi,j,∗,∗,∗, x̊i,j,∗,∗, ẙi,j,∗,∗, z̊i,j,∗,∗) to all parties.

In order to realize the above functionality, we adjust the MASCOT proto-
col [73]. We defer a formal description of the protocol and a proof sketch to
the full version of this paper [31]. Here we give a high-level overview of our
modifications and an intuitive view of their security.

Before we describe how IA is achieved, we make two observations about the
structure of the original MASCOT protocol. First, the original protocol generates
the preprocessing for the SPDZ online phase [42], rather than BeDOZa. In SPDZ,
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the parties hold shares of a single key, and shares of MAC on each wire’s logical
value; in contrast, in BeDOZa, each party holds an individual MAC on each
share of each wire under its own key. The total size of the SPDZ preprocessing is
therefore a factor of n smaller than the BeDOZa preprocessing. Since the MACs
are linear in both cases, though, the equations that define the preprocessing differ
mainly in how the intermediate values are summed, which means that almost
any mechanism to generate the preprocessing of one can easily be adapted to
generate the preprocessing of the other. We can only achieve efficient generic
MPC with IA via BeDOZa, but a variant that generates SPDZ preprocessing
remains interesting because it can provide an enhanced security guarantee in
the Triples-as-a-Service Paradigm [84]. In this context, one set of parties (i.e.,
service providers) generates the preprocessing that is consumed by another set
of parties, who have the inputs. Our functionality allows malicious providers to
be identified, even if the online MPC protocol does not achieve IA.

Second, the original MASCOT protocol is monolithic, and it has a monolithic
proof. Logically, the protocol can separated into two components: a set of pair-
wise unauthenticated OLE and VOLE operations with malicious security, and
then an information-theoretically secure means to combine the unauthenticated
VOLE outputs into a Beaver triple. We separate the protocol in this way, and
view this modularization of the MASCOT protocol as a minor contribution.

Achieving IA for the modular MASCOT protocol is easy. We replace the
OLE and VOLE invocations with calls to the CVOLE-IRIA functionality. If an
abort occurs during the protocol, the parties decommit their inputs and check
the transcript for inconsistencies. Because the protocol is information-theoretic,
the simulator can easily compute an input-consistent value to decommit on be-
half of the honest parties when an abort occurs. The protocol realizes an IA
functionality because this is equivalent to IRIA in the context of sampling.

Finally, we need the ability to decommit the MACs and MAC keys publicly
in order to perform vindicating release in the main BeDOZa-IA protocol. To
accomplish this, we use calls to SCELOV instead of CVOLE in places where the
MAC keys are input as correlations. This allows exactly the sort of retroactive
decommitment that we need.

In the full version [31], we give a formal protocol specification and prove:

Theorem 5.2. For any finite field F and n, λs ∈ N+, there exists a pro-
tocol that statistically UC-realizes !FBeDOZaPrep-IA(n,F, λs)"PV against a ma-
licious adversary statically corrupting up to n − 1 active parties in the
(!FCVOLE-IRIA"PV, !FCom"PV, !FCT"PV)-hybrid model.

Next, combining !FBeDOZaPrep-IA"PV with the BeDOZa-IA online phase yields:

Corollary 5.3. For any n-party ideal functionality !FIA"PV that has pub-
licly verifiable identifiable abort,17 there exists a protocol that statistically UC-
realizes !FIA"PV against a malicious adversary statically corrupting up to n− 1
active participants in the !FSCOT-SIRIA"PV-hybrid model.
17 The public verifiability aspect of this functionality is optional.
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Since we can realize any functionality with IA, we can realize the preprocess-
ing functionality for the IOZ compiler [69], which implies:

Corollary 5.4. Let πSH be a FD
Corr-hybrid protocol (for an efficiently com-

putable distribution D) that information-theoretically UC-realizes a function-
ality F in the presence of a semi-honest adversary statically corrupting n − 1
participants. There exists a compiler to turn πSH into an !FSCOT-SIRIA"PV-hybrid
protocol that information-theoretically UC-realizes F with publicly verifiable
identifiable abort in the presence of a malicious adversary statically corrupting
n− 1 participants. Moreover, this compiler is asymptotically round-preserving.

6 Cost Analysis

Our protocols for IA are the first ones, as far as we can tell, that are simple
enough that we can estimate their costs. In the full version, we perform a closed-
form worse-case cost analysis of the protocols we have introduced up to this
point. Since our approach in this paper involves parties taking active steps to
vindicate their behavior in the case of an abort, we give two sets of cost equations:
one for the eventuality of an abort, and one for the eventuality of a successful
protocol completion. We count costs separately for each role within a protocol
and each protocol phase. Our counts include only data payloads and ignore
bookkeeping values such as session IDs, which are implementation-dependent.

In Figure 1, we apply our cost model to our proposed version of MASCOT
that provides identifiable abort as described in Theorem 5.2. We divide the
protocol costs into two parts. The first cost corresponds to the initialization of
primitives like CVOLE. This cost needs only to be paid once, if no abort occurs.
The second cost corresponds to the preparation of triples etc., which can be
done repeatedly until an abort occurs, given a single initialization. The figure
depicts communication costs for both phases (and the worst-case abort) in order
to evaluate a circuit with u = 10 inputs and v = 104 wires for 128-bit security
parameters. The model demonstrates that our concrete overhead for achieving
IA is a constant factor < 2 over the base protocol.18

7 Threshold ECDSA with Identifiable Abort

In prior sections, we explain how our techniques can achieve generic MPC. In
this section, we show how our techniques can also be applied directly to be-
spoke protocols such as recent multiparty ECDSA signing protocols in order to
augment them with identifiable abort. Designing multiparty signing protocols
for ECDSA is nontrivial due to its nonlinear nature: a signature on message m
under public key pk = sk · G is of the form (R, s), where R = r · G is a signing
nonce, and s = (SHA2(m) + rx · sk)/r is a scalar (rx is the x-coordinate of R).
18 We note, however, that the basic MASCOT protocol uses point-to-point channels,

whereas our protocol requires all data to be transmitted over a broadcast channel.
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Fig. 1: Concrete communication costs of the initialization and triple preparation
phases of the basic version of MASCOT versus our proposed identifiable-abort
version. λc = 128, λs = 80 using a DDH-based OT.

The only existing multiparty ECDSA schemes that achieve identifiable abort
are those of Canetti et al. [24] and Castagnos et al. [26], which are based on Pail-
lier encryption and class groups, respectively. They both follow a conceptually
simple GMW-style template: they start with a semi-honest protocol that uses
homomorphic encryption to carry out the nonlinear operations, and augment
it with carefully crafted zero-knowledge proofs to guarantee that all operations
are performed honestly. While relatively round-efficient, their approaches are
non-black-box in homomorphic encryption and incur considerable overhead; in
particular they must prove that ciphertexts are related to one another and to
elliptic curve points in various ways, and Canetti et al. must also prove corre-
spondence with plaintexts lying in specific ranges.

In contrast, the protocol that we present in this section makes black-box use
of the !FSCVOLE-SIRIA(Zq, 2)"PV functionality, which was discussed in Section 4.2
(along with protocol that realizes it), and it completely avoids expensive zero-
knowledge proofs over ciphertexts or groups of unknown order. We do make use
of zero-knowledge proofs for simple statements that are black-box in the ECDSA
signing curve, but these proofs are invoked only when an abort actually occurs,
and they are instantiable with lightweight, Schnorr-like sigma protocols.

An Intuitive Overview. Our approach is to tweak the protocol of Doerner et
al. [48] in two ways: First, we rewrite it to generate a random correlation that
is later derandomized to incorporate the signing key and nonce.19 Using the
decommitment interface of !FSCVOLE-SIRIA"PV, this correlation can be (partially)
opened to the public if it has not yet been derandomized, and a cheater can
thereby safely be identified without exposing the signing key. Once a putative
correlation is generated, Doerner et al. specify a simple pairwise statistical check
that the parties use to verify the correlation’s correctness. We redesign this
checking mechanism so that each party obtains a public commitment to the
19 In other words, we preprocess the VOLE invocations.
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private input and output shares of every other party as a byproduct. Identifying
cheaters thereafter is a simple matter of finding a party who cannot prove that
its commitments satisfy the correct relations.

A Simple First Attempt. An ECDSA tuple is a type of correlated randomness
tailored to ECDSA, formalized by Abram et al. [2] after being used implicitly by
Lindell and Nof [77], and also central to the protocol of Doerner et al. [48]. An
ECDSA tuple comprises (φ, r, u, v) such that u = φ · r and v = φ · sk. Generation
of a secret-shared ECDSA tuple can be accomplished via one set of symmetric
pairwise VOLE instances; each party plays the role of sender once with every
other party. Doerner et al. showed that this creates BeDOZa-style MACs [14]
as a useful byproduct: each party’s individual share of φ functions as its own
MAC key. A shared ECDSA tuple can be verified inexpensively by checking
these statistical pairwise MACs. Given shares of an ECDSA tuple, parties can
sign a message non-interactively by revealing u and w = SHA2(m) · φ + rx · v,
and then assembling s = w/u.

An abort can occur during the generation of the ECDSA tuple, or during
assembly of the signature. These cases require qualitatively different approaches
to the tracing of cheaters, as the former could potentially allow the opening of
certain ephemeral secret values, whereas it is unsafe to reveal any secrets after
signature assembly is attempted.

We first consider how to sample an ECDSA tuple with identifiability. As
written, we cannot settle for input revealing IA, since the tuple depends upon
the long-term key sk. However, given a completely random ECDSA tuple (φ, r̃, r̃ ·
φ, s̃k · φ), the parties can easily derandomize the correlation to (φ, r, r · φ, sk · φ)
for some chosen sk and r by publishing sk − s̃k and r − r̃. This allows us to use
component functionalities that have IRIA in our protocol, so long as they can
never abort after derandomization has occurred.

This suggests a simple protocol template: sample a random ECDSA tuple
via CVOLE and verify it just as Doerner et al. do, after which the tuple can
be derandomized. If the MAC check fails, open the CVOLE to find the cheater.
The latter operation is safe because the tuple is not (yet) related to any long-
term secret values. This simple idea contains a subtle simulation challenge: the
simulator cannot be oblivious to s̃k and r̃ (and therefore sk and r) where s̃k · G
and r̃ · G are public, while retaining the ability to reveal s̃k and r̃ on demand if
it is falsely accused of cheating by a corrupt party. This issue is reminiscent of a
notoriously difficult problem in simulating discrete-logarithm-based cryptosys-
tems against an adaptive adversary: a simulator must be oblivious to x for some
public x · G owned by an honest party, and also prepared to reveal x in order
to explain the honest party’s view if it is corrupted. Here the selective opening
principle20 is key: we use SCVOLE to open only φ and check the consistency
of the rest of the view, while keeping s̃k and r̃ hidden. Looking ahead, a party
is given an opportunity to complain if consistency checks fails, and such a com-
20 In Section 5, this principle allowed us to verify MACs without revealing inputs, and

thereby achieve IA directly.
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plaint is resolved by opening that party’s share of φ: either an inconsistency can
be identified in the behaviour of a counterparty, or the accusing party is guilty.

The Freedom of φ. The above strategy is enabled by the fact that φ is completely
unspecified until the signature is assembled. This freedom is also necessary for
the security analysis of any protocol that employs ECDSA tuples, since φ must
function as a uniformly random mask for r. However, if the signature share as-
sembly fails and a cheater must be traced, the freedom of φ becomes a liability.
φ is well-defined at this stage, but no individual party is explicitly bound to its
share of φ, making honest behaviour difficult to prove. On the other hand, φ
cannot be revealed once signature assembly begins because a corrupt party with
knowledge of w and u can compute r = u/φ, and then use φ, r, and w to compute
sk. We therefore tweak the protocol so that each party creates a Pedersen com-
mitment [79] to its share of φ and proves via simple pairwise statistical checks
(à la [48,14]) that the committed value corresponds to the VOLE inputs used to
sample the ECDSA tuple. As a convenient byproduct, these checks yield Peder-
sen commitments to the VOLE outputs, and thus the protocol creates a public
commitment to every private value held by every party. If signature assembly
fails, each party can vindicate itself by proving a simple linear relation between
its claimed signature share and these committed secrets in zero-knowledge. The
freedom of φ is undisturbed, since Pedersen commitments are perfectly hid-
ing, and simple Schnorr-like sigma protocols for discrete logarithm relations can
be used for vindication. Because the commitments use the same curve as the
signature, this mechanism is efficient and requires only the discrete logarithm
assumption on that curve, which is a pre-requisite for ECDSA.

Putting it Together. We give an overview of each of the four phases of signing
below. Let P be a vector containing the indices of the signing parties, and let
P−i = P \ {i}. We assume each party Pi holds an additive secret key share ski,
and that a random base Ĝ ∈ G has been sampled during key generation in such
a way that its discrete logarithm relative to G is unknown to any party. We
describe the cheater-identification mechanism afterward.

Phase 1: Each party Pi samples ri, φi, φ̂i from Zq, commits to Ri
..= ri ·G, and

broadcasts a Pedersen commitment Cφ
i

..= φi · G + φ̂i · Ĝ. Simultaneously, Pi

initiates two instances of !FSCVOLE-SIRIA(Zq, 2)"PV with each Pj , in which it
plays Bob’s role and uses randomly-sampled values χ1

j,i and χ2
j,i as its inputs.

Phase 2: With each Pj for j ∈ P−i as its counterparty, Pi inputs (φi, φ̂i) to both
instances of !FSCVOLE-SIRIA(Zq, 2)"PV in which it plays the role of Alice, and
receives (tφ,1

i,j , t̂φ,1
i,j ) and (tφ,2

i,j , t̂φ,2
i,j ) as outputs, while Pj receives (tχ,1

j,i , t̂χ,1
j,i )

and (tχ,2
j,i , t̂χ,2

j,i ). These values satisfy the relations

tφ,1
i,j + tχ,1

j,i = φi · χ1
j,i t̂φ,1

i,j + t̂χ,1
j,i = φ̂i · χ1

j,i

tφ,2
i,j + tχ,2

j,i = φi · χ2
j,i t̂φ,2

i,j + t̂χ,2
j,i = φ̂i · χ2

j,i
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unless Pi used inconsistent values of (φi, φ̂i) in the two instances of
!FSCVOLE-SIRIA(Zq, 2)"PV. Pi proves to Pj that both sets of inputs correspond
to the opening of Cφ

i by sending the following check messages:

Γφ,1
i,j

..= tφ,1
i,j · G + t̂φ,1

i,j · Ĝ and Γφ,2
i,j

..= tφ,2
i,j · G + t̂φ,2

i,j · Ĝ

The values χ1
j,i and χ2

j,i essentially serve as Pj ’s private MAC keys, which it
can use to statistically validate Pi’s check messages:

χ1
j,i · Cφ

i − Γφ,1
i,j = tχ,1

j,i · G + t̂χ,1
j,i · Ĝ

χ2
j,i · Cφ

i − Γφ,2
i,j = tχ,2

j,i · G + t̂χ,2
j,i · Ĝ

As a convenient byproduct of this checking mechanism, Γφ,1
i,j and Γφ,2

i,j are
Pedersen commitments to the values tφ,1

i,j and tφ,2
i,j respectively. Note that the

checks we have just described are performed in both directions simultaneously.
Phase 3: If the previous checks pass, Pi decommits Ri and derandomizes χ1

i,j

to φi and χ2
i,j to ski by broadcasting ψ1

i,j
..= ri − χ1

i,j and ψ2
i,j

..= ski − χ2
i,j .

Now Pi must prove that its derandomized SCVOLE inputs are indeed the
discrete logarithms of Ri and pki. Pi broadcasts

Γr
i,j

..= tχ,1
i,j · G and Γsk

i,j
..= tχ,2

i,j · G

and now φj serves as Pj ’s MAC key to check Pi’s claim. Verifying the following
equations statistically validates that ψ1

i,j and ψ2
i,j derandomize χ1

i,j and χ2
i,j

to the discrete logarithms of Ri and pki, respectively:

φj ·
(
Ri −ψ1

i,j · G
)
− Γr

i,j = tφ,1
j,i · G

φj ·
(
pki −ψ

2
i,j · G

)
− Γr

i,j = tφ,2
j,i · G

At the end of this phase, the common nonce R ..=
∑

i∈P Ri is established,
and every party’s secrets are committed publicly: besides pki and Ri being
perfectly binding commitments to ski and ri, the byproducts of our checking
mechanism Cφ

i , Γφ,1
i,j , Γφ,2

i,j , Γr
i,j , and Γsk

i,j are public commitments to Pi’s
secrets φi, χ1

i,j , χ2
i,j , tχ,1

i,j , and tχ,2
i,j respectively.

Phase 4: If the previous checks pass, each Pi computes

ui
..= φi ·

(
ri +

∑

j∈P-i

ψ1
j,i

)
+
∑

j∈P-i

(tφ,1
i,j + tχ,1

i,j )

vi
..= φi ·

(
ski +

∑

j∈P-i

ψ2
j,i

)
+
∑

j∈P-i

(tφ,2
i,j + tχ,2

i,j )

wi
..= SHA2(m) · φi + rx · vi

and broadcasts ui and wi so that the signature (R, s ..= (
∑

i wi)/(
∑

i ui)) can
be assembled publicly.
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Cheater Identification. The above protocol can fail in two ways: either a mal-
formed protocol message triggers a complaint in any of the phases, or Phase 4
results in an invalid signature. These are handled through different mechanisms.

1. Any complaint between a pair of parties concerning a VOLE instance
or a failure of the checks can be resolved by opening Alice’s side of
!FSCVOLE-SIRIA(Zq, 2)"PV. If Pi plays Alice, then this reveals φi, φ̂i, tφ,1

i,j , t̂φ,1
i,j ,

tφ,2
i,j , t̂φ,2

i,j , after which all parties can verify their relationships to Cφ
i , Γφ,1

i,j ,
Γφ,2

i,j , Γr
i,j , and Γsk

i,j . If no inconsistency is detected, the complainer is deemed
to be corrupt.

2. If there is no explicit complaint, but signature assembly fails in the final
phase, !FSCVOLE-SIRIA(Zq, 2)"PV cannot be opened because revealing φ would
compromise sk. However, the lack of complaints indicates that all secret values
are available in publicly-committed form. If each Pi additionally provides
Pedersen commitments Cφr

i and Cφsk
i to the products φi · ri and φi · ski, then

Pi’s computation of ui and wi can be publicly replicated in committed form
as a linear combination of its committed secrets as follows:

An honest Pi computed ui = φiri +
∑

j∈P-i

ψ1
j,i · φi +

∑

j∈P-i

(tφ,1
i,j + tχ,1

i,j )

Any verifier can derive Ui = Cφr
i +

∑

j∈P-i

ψ1
j,i · Cφ

i +
∑

j∈P-i

(Γφ,1
i,j + Γr

i,j)

Simplifying the above term yields Ui = ui · G + ρi · Ĝ where ρi is the sum
of the Pedersen commitment randomness for Cφ

i , Cφr
i , and Γφ,1

i,j . Since Ui is
essentially a Pedersen commitment to ui, we have Ui − ui · G = ρi · Ĝ, which
we can interpret as a Pedersen commitment to zero. Similarly, if Pi supplies
Cφsk

i as a commitment to φi · ski, it facilitates the public derivation of Wi

as a commitment to wi. Therefore, in order for Pi to prove that the ui and
wi it broadcasted in Phase 4 were honestly derived relative to its publicly
committed secrets, it suffices for Pi to prove in zero-knowledge that it knows
the discrete logarithms of Ui − ui · G and Wi −wi · G relative to Ĝ, and that
Cφr

i commits to the product of the opening of Cφ
i and the discrete logarithm

of Ri, and that the same relation holds for Cφsk
i , Cφ

i , and pki.
There are simple Schnorr-like Sigma protocols for this task, which can be
compiled into simulation-extractable NIZKs via the Fiat-Shamir transform.
Straight-line extraction is not required of the NIZKs in this protocol because
every component of the witness is already available to the simulator as an
input to !FSCVOLE-SIRIA(Zq, 2)"PV. The extractor of the NIZK is only invoked
in the reduction, in order to construct an algorithm that outputs the discrete
logarithm of Ĝ relative to G if the adversary is able to cheat undetected but
still produce a proof of honest behaviour.

We refer the reader to the full version for a formal specification of the protocol.
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Signing e"ciency. Much like VOLE is the dominant cost in the unmodi-
fied protocol of Doerner et al. [48], SCVOLE dominates our signing protocol
for standard parameters (i.e., a 256-bit elliptic curve and 80-bits of statisti-
cal security). Whereas their work uses a single invocation of FRVOLE(q, 2) in
each direction between each pair of parties, our protocol uses two invocations
of !FSCVOLE-SIRIA(Zq, 2)"PV. As shown in the full version [31], the bandwidth
cost of instantiating !FSCVOLE-SIRIA(Zq, 2)"PV is roughly 150% of instantiating
FRVOLE(q, 2); thus the overall bandwidth of our ECDSA-IA protocol is roughly
triple that of Doerner et al.’s protocol. In terms of round count, Phases 1 and 2
are dominated by SCVOLE, which requires 5 rounds as per the full version, and
Phases 3 and 4 require one round each, bringing the total to 7 rounds. This is
better than many deployed threshold ECDSA signing protocols [55,47,77].
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