q

Check for
updates

G. Asharov and A. Chandramouli—Research supported by the Israel Science Founda-
tion (grant No. 2439/20), and by the European Union (ERC, FTRC, 101043243). Views
and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the

Peeking Into the Future: MPC Resilient
to Super-Rushing Adversaries

Gilad Asharov!®)®, Anirudh Chandramouli'@®, Ran Cohen?®,
and Yuval Ishai®*

! Bar-Tlan University, Ramat Gan, Israel
{gilad.asharov,anirudh.chandramouli}@biu.ac.il
2 Reichman University, Herzliya, Israel
cohenran@runi.ac.il
3 Technion, Haifa, Israel
yuvali@cs.technion.ac.il
4 AWS, New York, USA

Abstract. An important requirement in synchronous protocols is that,
even when a party receives all its messages for a given round ahead of
time, it must wait until the round officially concludes before sending its
messages for the next round. In practice, however, implementations often
overlook this waiting requirement. This leads to a mismatch between the
security analysis and real-world deployments, giving adversaries a new,
unaccounted-for capability: the ability to “peek into the future.” Specif-
ically, an adversary can force certain honest parties to advance to round
r —+ 1, observe their round r 4+ 1 messages, and then use this information
to determine its remaining round r messages.

We refer to adversaries with this capability as “super-rushing” adver-
saries. We initiate a study of secure computation in the presence of
super-rushing adversaries. We focus on understanding the conditions
under which existing synchronous protocols remain secure in the pres-
ence of super-rushing adversaries. We show that not all protocols remain
secure in this model, highlighting a critical gap between theoretical secu-
rity guarantees and practical implementations. Even worse, we show
that security against super-rushing adversaries is not necessarily main-
tained under sequential composition.

Despite those limitations, we present a general positive result: secret-
sharing based protocols in the perfect setting, such as BGW, or those that
are based on multiplication triplets, remain secure against super-rushing
adversaries. This general theorem effectively enhances the security of

European Union nor the granting authority can be held responsible for them.

R. Cohen—Research supported in part by NSF grant no. 2055568 and by ISF grant

1834/23.

Y. Ishai—Research supported by ISF grants 2774/20 and 3527/24, BSF grant 2022370,

and ISF-NSFC grant 3127/23.

© International Association for Cryptologic Research 2025
S. Fehr and P.-A. Fouque (Eds.): EUROCRYPT 2025, LNCS 15605, pp. 390-420, 2025.
https://doi.org/10.1007/978-3-031-91092-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-91092-0_14&domain=pdf
http://orcid.org/0000-0002-0846-9773
http://orcid.org/0000-0003-4282-1387
http://orcid.org/0000-0002-1293-552X
http://orcid.org/0009-0009-4096-6305
https://doi.org/10.1007/978-3-031-91092-0_14

MPC in the Presence of Super-Rushing Adversaries 391

such protocols “for free.” It shows that these protocols do not require
parties to wait for the end of a round, enabling potential optimizations
and faster executions without compromising security. Moreover, it shows
that there is no need to spend efforts to achieve perfect synchronization
when establishing the communication networks for such protocols.

1 Introduction

Secure multiparty computation (MPC) protocols [15,22,40,53] are typically
studied in two main models: the synchronous model, where messages exchanged
between honest parties are guaranteed to arrive within a known, bounded delay,
and the asynchronous model, where messages can be delayed arbitrarily, and
parties proceed independently at their own pace [14,16]. Though more general,
the asynchronous model is often seen as overly pessimistic since such arbitrary
delays are rare in practice, and networks, in most cases, are reliable. Conse-
quently, much of the MPC literature focuses on the synchronous model, which
allows for better resilience, simpler protocols, stronger security guarantees, and
improved concrete efficiency.

In the synchronous model, parties begin the protocol at the same time and
a fixed upper bound on message delivery time between parties is assumed to be
known in advance, allowing the protocol to progress in predefined rounds. All
messages in a given round must be delivered within this specified time limit,
which must be respected throughout the protocol’s execution. All parties are
perfectly coordinated and proceed together from one round to the next.

In practice, however, achieving and maintaining truly synchronous commu-
nication is challenging. The synchronous model is idealized, and can be realized
using global synchronization mechanisms, such as a common clock shared by
all participants and bounded-delay channels [45], but in the real world, parties
may not be perfectly synchronized. Moreover, an implicit requirement in syn-
chronous protocols is that even if a party receives all its messages for a given
round early, it must wait until the round officially ends before sending the next-
round’s messages. This ensures that all honest parties receive their expected
messages before proceeding. However, determining the end of a round, that is,
establishing an appropriate message delivery bound, is problematic. Setting it
too high results in inefficiency, while setting it too low risks security vulnerabil-
ities or non-termination.

Unfortunately, in real-world implementations of MPC protocols, the require-
ment to wait (potentially idly) until the end of a round is often overlooked, and
parties are instructed to proceed optimistically and send their round-(r+1) mes-
sages as soon as they receive all their round-r messages. This creates a mismatch
between security analyses and practical deployments. This mismatch could be
an attempt to optimize efficiency, a result of ignorance, or a result of insufficient
clarification in the way synchronous protocols are described in the literature,
which separates the protocol layer and the communication layer.

This oversight introduces a potential security vulnerability. Specifically, it
gives the adversary a new capability that is not accounted for in the security

392 @G. Asharov et al.

analysis. The adversary can “peek into the future” by sending round-r messages
to an honest party P;, causing P; to proceed and send its round-(r + 1) messages
(once P; receives all other round-r messages). The adversary can then base its
remaining round-r message choices for the corrupted parties on this “future”
information. This is a strictly stronger capability than traditional “rushing,”
where the adversary only views round-r messages from honest parties before
deciding the round-r messages for the corrupted parties.

We illustrate this adversarial capability with a toy example involving three
parties: P, P, and P, running the following synchronous two-round protocol:

e Round I: P; picks and sends a random x; <« {0,1}" to Ps, and likewise,
P, picks and sends a random x5 «— {0,1}" to P; (where & is the security
parameter). All other messages are dummy (P5 to both Py, P2, and messages
between P; and P).

e Round II: P; sends x1 to P, (and all other parties exchange dummy mes-
sages).

When the protocol is executed optimistically, P, can first send its round-I
dummy message to P; and wait. Once P; receives the round-I message also from
P, it proceeds to round IT and sends z1 to P, (and other dummy messages to
Py). Now, P; can send x2 := 1 as its round-I message to Ps and ensure that Ps
always receives the same message from both parties in round I. In contrast, such
behavior is impossible in a standard synchronous protocol, where a malicious
P, can ensure that xo = x; only with probability 27", as x1 and x5 are chosen
independently.

Super-Rushing Adversaries. We initiate a study of secure computation in
the presence of super-rushing adversaries that have a limited ability to “peek
into the future.” Our goal is to bridge the gap between theoretical analyses of
protocols and common practices in real-world implementations.

Our starting point is the synchronous model. The literature in this setting
typically considers two types of adversaries with respect to their capability in
ordering the message delivery: A non-rushing adversary must send the corrupted
parties’ messages in a given round before receiving their messages from the honest
parties. A rushing adversary can arbitrarily order the message delivery within a
round, enabling corrupted parties to choose their messages for the round after
receiving the messages sent by honest parties.

In this work, we define stronger adversaries that we call super-rushing. Sim-
ilarly to rushing adversaries, a super-rushing adversary can reorder messages
within a given round, but, as opposed to rushing adversaries, it can also reorder
messages between different rounds, i.e., deliver certain messages for round r + 1
before all messages for round r have been delivered. The only constraint is that
an honest party must receive all of its round r messages before sending its round
r + 1 messages.

We aim to understand the conditions under which existing synchronous pro-
tocols remain secure in the presence of super-rushing adversaries. That is, we ask

MPC in the Presence of Super-Rushing Adversaries 393

whether the mismatch between the theoretical analysis and the implementation
is of real concern. Our central motivating question is:

Do synchronous MPC protocols remain secure even in the presence of
super-rushing adversaries?

Our primary goal is not to design new protocols tailored to this model,
but to investigate whether existing synchronous protocols can run “as-is,” with-
out any modification. This contrasts with the work of Kushilevitz, Lindell, and
Rabin [46], who showed how to compile any perfect synchronous protocol into a
secure protocol in the UC framework, which is inherently asynchronous (and thus
allows such super-rushing attacks); this is achieved by changing the original pro-
tocol and adding a synchronization round after every communication round (thus
doubling the round complexity). For further discussion, see Sect.1.2.

Ideally, the hope is that since secure protocols are already robust against
rushing adversaries and guarantee (at least) privacy and correctness, they will
also remain secure against super-rushing adversaries. The best-case scenario
is that the answer to the above question is affirmative. Such a result would
have three important implications: First, for implementations that inadvertently
bypass the requirement to wait until the end of the round, an affirmative answer
would confirm that no real security risk is introduced. Second, for protocols
that do enforce this waiting period, an affirmative answer would indicate that
waiting is unnecessary, allowing for potential optimizations and faster execution
without compromising security. Third, such a result would imply that there is
no need to spend efforts to achieve perfect synchronization when establishing
communication networks for secure protocols.

1.1 Our Results

We initiate a systematic study of protocols in the presence of super-rushing
adversaries, with a focus on perfect security. At a very high level, our results
show that not all protocols remain secure against super-rushing adversaries,
highlighting a critical gap between theoretical security guarantees and prac-
tical implementations. Nevertheless, our exploration finds sufficient conditions
for which protocols remain secure in the presence of super-rushing adversaries.
These conditions imply that central secure computation protocols from the liter-
ature maintain their security even in the presence of super-rushing adversaries.
Thus, our results effectively enhance their security “for free.” We believe that
the same applies to almost all general-purpose synchronous MPC protocols from
the literature, and our work can be seen as the first evidence in this direction.

Defining Super-Rushing Adversaries. Before proceeding, we elaborate on
the model. We consider synchronous protocols that are designed in a round-by-
round manner and assume that communication between honest parties is private
and reliable. As soon as P; receives all the information it needs to compute the
next-message function, P; computes its outgoing messages and sends them. The

394 @G. Asharov et al.

adversary can control the message delivery according to its power: non-rushing,
rushing, or super-rushing. Finally, recall that in a synchronous model, if P; does
not send a message to P;, then P; can recognize this;' hence, a standard mod-
eling simplification is that if the adversary does not intend to send a message
to Pj, to consider that the adversary instead sends some default message to P;
to indicate that. We carry this simplification over to our setting, as this natu-
rally holds in our motivating scenario: when executing a synchronous protocol
optimistically, the adversary cannot stall its messages without being detected.

We formalize super-rushing by letting the adversary “pull” messages by
request (from honest parties to corrupted parties) and provide corrupted parties’
messages in its own schedule within a round. The adversary is allowed to request
round r + 1 messages from an honest P; under the restriction that it already
sent all messages from corrupted parties to P; in round r (see Sect. 3).

We also focus in this paper on protocols with all-to-all communication pat-
tern in every round. This suffices to capture most of the multiparty protocols
in the literature in the perfect setting, and already highlights the gap between
super-rushing and rushing. On the other hand, in such protocols, the adver-
sary can potentially see just one round into the future (due to all-to-all commu-
nication, the gap between every pair of honest parties can be at most one round).
Our results naturally extend to message-oblivious protocols [24,25], where the
communication pattern is predetermined and does not depend on inputs or ran-
domness, even though in such protocols the adversary may have the ability to
see beyond a single round into the future.

Single-Input Functionalities. As a warmup, we first investigate protocols
where a single party holds an input. Despite being a simplified variant, such func-
tionalities are of high importance. Single-input functionalities include broadcast
protocols [47,52], where a sender wishes to distribute a message to all partici-
pants (and the parties must agree on the message received). Another important
functionality is verifiable secret sharing (VSS) [23], where a dealer distributes a
secret to n participants while the parties can verify that a well-defined secret
was shared. Moreover, it allows, for instance, the distribution of “multiplica-
tion triplets with a dealer,” a highly important building block in perfect MPC
(e.g., [15]). It allows a dealer to distribute polynomials A(x), B(x),C(z), such
that each party P; receives A(i), B(i),C(i), while all parties guarantee that
A(z), B(z),C(z) are of degree-t, and that C'(0) = A(0) - B(0). Using this prim-
itive, parties generate multiplication triplets [12]. Our first result shows that:

Theorem 1.1. (Informal) Let f be a single-input functionality, and consider a
protocol T that perfectly securely realizes f in the presence of a rushing adversary.
Moreover, assume that:

! This can be achieved using timeouts when instantiating synchronous communication
via a common clock and bounded-delay channels.

MPC in the Presence of Super-Rushing Adversaries 395

o If the input provider is corrupted, then the input x can be extracted from the
joint view of the honest parties;

o If the input provider is honest, then for every x and x’' such that fi(z) =
fr(z') (where fr denotes the outputs of the corrupted parties), the view of the
corrupted parties in an execution of ™ with input x is identical to their view
in an execution with x'.

Then, w perfectly realizes f in the presence of a super-rushing adversary.

Note that verifiable secret sharing, generation of multiplication triplets, or func-
tionalities with no privacy (such as broadcast), satisfy the conditions of Theo-
rem 1.1, as well as other results in the literature, e.g., [9,38].

In fact, we prove an even stronger result than stated in Theorem 1.1: we can
relax the requirements from the protocol and assume security against just a non-
rushing adversary (which, in round r first provides its messages and only then
receives the honest parties’ round r messages). This suffices to automatically
upgrade the security twice—ensuring security against both rushing and super-
rushing adversaries, at no additional cost! In other words, when proving the
security of such protocols in the past, we were overextending our efforts yet
underestimating the results.

Two-Input Functionalities. After establishing that super-rushing is of no
concern for single-input functionalities, we turn our attention to functionalities
with two input providers. Specifically, we consider the simultaneous broadcast
functionality [23], denoted as fs,, where two designated parties, say P; and P,
holding bits b; and bs, respectively, wish to broadcast those bits in parallel,
i.e., the output of the all participants should be (by,bs). The critical security
requirements here is independence of inputs, ensuring that no sender can choose
its bit as a function of the other input. Here, things dramatically change:

Theorem 1.2. (informal) There exists a protocol that implements the two-
input functionality fsp which is secure against a rushing adversary but is insecure
against a super-rushing adversary.

We consider the five-party protocol from [38], where in round 1 parties P;
and P, send their bit to parties P3, Py, and Ps. In round 2, each of those parties
echo the pair of bits it received to everyone, who then take the majority as their
output. Intuitively, the super-rushing adversary, corrupting, say, P;, can “peek
into the future” and learn the bit by of the other sender: this can be done by
sending 0 to P; who will echo the pair (0,b2) to everyone including P; (here we
rely on security against a single corruption, meaning that if Ps is cheating with
this behavior, it cannot affect correctness). Next, P; can pick its own input by
as a function of by (e.g., set by = by). That is, P; breaks the independence of
inputs requirement of secure computation.

A closer look at this protocol reveals that the protocol does not have a
“committal round” [34,50], which is a predefined round during which the parties’
inputs become fixed (preventing the adversary from altering its input beyond

396 @G. Asharov et al.

this point) while still hiding all information about the output. This leads to the
conjecture of whether the existence of a committal round is a sufficient condition
for guaranteeing resiliency to super-rushing. However, it does not:

Theorem 1.3. (informal) There exists a protocol for fo, admitting a committal
round CR, that is secure against a rushing adversary but is insecure against a
super-rushing adversary.

In this negative result, described in Sect.2, the protocol is very natural and
consists of a verifiable secret sharing phase (in which P; and P, “commit” to
their respective input bits b; and by), followed by an “output revealing round,”
in which the parties learn the output. This “commit-then-reveal” structure is
the standard approach for implementing coin-tossing mechanisms. As such, this
result demonstrates that central building-blocks for MPC might go wrong when
considering super-rushing adversaries.

Sequential Composition. We proceed to study sequential composition of pro-
tocols that are secure against super-rushing. Somewhat surprisingly, we show
that even a sequential composition of two single-input protocols does not neces-
sarily remain secure against a super-rushing adversary.

Theorem 1.4. There exists a 4-ary single-input functionality f and a 4-party
protocol w¢ that securely realizes f against a super-rushing adversary corrupting
a single party. Further, there exists a 4-ary functionality g and a 4-party protocol
7 in the f-hybrid model that consists of 2 calls to f and securely realizes g against
a super-rushing adversary corrupting a single party. Nevertheless, the protocol
771 that replaces the calls to f with the execution of ¢ does not securely
realize g in the presence of a super-rushing adversary corrupting single party.

General Possibility Result. In our negative results, we see that the adver-
sary has the capability to peek into the future, learn something, and use this
information to change its own input accordingly. Which protocols prevent such
a behavior?

Our primary contribution is a general positive result, demonstrating that
any perfectly secure protocol against a rushing adversary that satisfies certain
natural conditions remains secure even against a super-rushing adversary. In
other words, although the adversary can “peek into the future,” this additional
power does not compromise security.

These “natural conditions” required by our transformation align closely with
the structure found in most perfect, secret-sharing-based secure protocols, such
as the celebrated protocol of Ben Or, Goldwasser, and Wigderson [15]. The
BGW protocol operates in three phases: (1) Input sharing phase (VSS)—Dby the
end of this phase, the inputs of all parties are fixed and no information about
the output is revealed; (2) Circuit emulation phase—the parties emulate the
computation of the circuit gate-by-gate, computing shares on the output wire
of each gate based on the shares of the input wires; notably, during this phase,

MPC in the Presence of Super-Rushing Adversaries 397

the simulator can carry out the simulation without needing to know the final
outputs of the computation; and (3) Output reconstruction phase - the outputs
are reconstructed (and are needed for the simulation of this phase).

Informally, our approach requires the protocol to include a “committal
round” (denoted CR), a round in which the inputs are fixed and committed but
the output remains hidden, and an “output revealing round” (denoted ORR), a
round during which the outputs are disclosed. In BGW, the committal round is
the end of the “input sharing phase,” and the output revealing round is the last
round, where the parties learn the outputs.

Recall that the negative example in Theorem 1.3 has a CR (round 1) and an
ORR (round 2), which may sound contradicting to the discussion above; however,
in this example it holds that ORR = CR+1. Our first positive result complements
this example by showing that for all protocols satisfying ORR > CR + 1, that
is, protocols for which “the circuit emulation” phase takes at least one round,
super-rushing security follows from rushing security.

Theorem 1.5. (informal) Every perfectly secret-sharing-based secure protocol
that (1) has all-to-all communication, (2) admits a committal round CR, (3)
admits an output revealing round ORR, and (4) satisfies ORR > CR + 1, is
secure against a super-rushing adversary.

We emphasize that this statement is informal, and there are several other
requirements from the protocol that are not specified in the above statement.
See Sect. 5 for the formal treatment.

Intuitively, the adversary can “peek into the future” by observing the next
communication round. However, due to the all-to-all communication pattern,
this peeking is restricted to just one round ahead. The adversary, thus, might
look into round CR+1 while some parties have not yet completed their committal
round. The condition ORR > CR + 1 ensures that the simulator can continue
constructing the adversary’s view at this point without relying on the actual
inputs or outputs. By the time the adversary peeks into round ORR, where the
outputs are actually required, all parties are guaranteed to have completed their
committal round. At this point, the adversary can no longer cause any harm.

Theorem 1.5 is very powerful. It already captures natural protocols in the lit-
erature, such as BGW for non-linear circuits [15], protocols that follow a similar
paradigm [3,9,31], and protocols that are based on the online-offline model (e.g.,
[1,26]). Our proof upgrades the security of all those protocols, for free, and with-
out any modifications.

Extensions. We extend Theorem 1.5 in two central ways:

e We show that it is easy to transform any protocol that has a CR and an ORR
but for which ORR = CR + 1 to be secure against super-rushing adversaries,
by adding one more “dummy” round between CR and ORR.

o We consider the special case where the CR is over the broadcast channel (in
which case if the adversary progresses party P; to round r+-1, it “commits” to
the message is would send to all other honest parties in round r). In that case,

398 @G. Asharov et al.

ORR = CR+1 suffices to guarantee security against super-rushing adversaries.
This captures, for instance, the BGW protocol for linear functions, in which
the final round of its VSS is a vote over the broadcast channel, and there is
no need to add a synchronization round to BGW in that case. We conclude
that BGW remains secure against super-rushing, regardless of whether the
function is linear or not. This extension also captures the perfectly secure
protocols of [5,6] for NC! circuits and upgrades their security against super-
rushing adversaries.

Statistical Setting. After establishing an understanding of super-rushing in
the perfect setting, we turn our attention to the statistical setting. We show that
unfortunately, a protocol that satisfies all the requirements of Theorem 1.5, i.e.,
is secret-sharing based, admits a committal round, admits an output revealing
round, and satisfies ORR > CR + 1, but is only statistically secure, does not
provide security in the presence of a super-rushing adversary, although it is
secure against a rushing adversary.

In fact, our negative results complement each one of the conditions of Theo-
rem 1.5: We showed a negative result for a protocol that does not have a CR (The-
orem 1.2); When there is a CR and an ORR but for which ORR = CR+1 (Theo-
rem 1.3); or when the protocol admits a CR, an ORR, and satisfies CR > ORR+1
but is only statistically secure. Nevertheless, we emphasize again that the state-
ment of Theorem 1.5 is simplified, and there are additional necessary require-
ments from the simulator of the rushing adversary that are not reflected in the
informal statement.

Open Questions. We believe that a more systematic study of super-rushing is
an interesting and well-motivated topic for future work. Our work leaves open
several natural questions. What about protocols that do not have an all-to-all
communication pattern, such as protocols with a “king-phase” communication
pattern (such as [32,41])? Under what conditions composition of protocols secure
against super-rushing remain secure? Which protocols remain secure in the sta-
tistical or computational setting?

Despite the seemingly pessimistic tone of our negative result, we conjec-
ture that almost all, if not all, general-purpose protocols outside the scope of
our current framework still remain secure against super-rushing adversaries. In
particular, the negative result we present for the statistical setting is somewhat
contrived, as it introduces a negligible error that is almost never exploitable
by traditional rushing adversaries but becomes amplified and noticeable under
super-rushing adversaries. The nature of this error in statistically secure pro-
tocols, and even in computationally secure protocols, is fundamentally different
and does not seem to be affected by super-rushing adversaries, but we leave it
for further exploration.

MPC in the Presence of Super-Rushing Adversaries 399

1.2 Related Work

Fully Asynchronous Model. The Universal Composability (UC) framework,
introduced by Canetti [20], operates under a fully asynchronous and adversar-
ial communication model, without any guarantees on message delivery. In this
model, the adversary has complete control over the network, meaning that when
one honest party sends a message to another, it may never reach its destination.
This stands in contrast to our model, where reliable message delivery is assumed.
Consequently, the UC framework inherently does not provide guaranteed termi-
nation, as the adversary has the ability to entirely block communication. Indeed,
the adversary has inherent capabilities to “peek into the future.” For example,
it might observe future messages from one honest party P; (if P; has advanced
in the protocol) while another party Py lags behind.

Kushilevitz, Lindell, and Rabin [46] introduced a transformation that con-
verts any information-theoretically secure protocol in the stand-alone, syn-
chronous model (satisfying a few basic properties) into one that is secure in
the UC setting. Their transformation alters the original protocol by introducing
a synchronization round after every protocol round, where each party announces
to all when it is ready to move on to the next round, and proceeds once reev-
ing announcements from everyone. This indeed protects against super-rushing
attacks, but effectively doubles the number of rounds required, and blows up
the message complexity of each round to quadratic (even if the underlying pro-
tocol does not require so). Further, this approach inherently cannot guarantee
termination, as a single corrupted party can block the entire computation by
remaining silent. Our focus, in contrast, is on evaluating whether existing pro-
tocols remain secure as is, without any modification.

Several works establish synchronous communication over asynchronous net-
works [11,20,43-45,48,51]. Protocols in these models are designed in a lock-step
manner, which prevents super-rushing attacks. However, such protocols may be
vulnerable to super-rushing adversaries when executed optimistically.

Asynchronous Setting with Eventual Delivery. A long and fruitful line of
work in the realm of distributed computing studies asynchronous protocol with
eventual message delivery; that is, where the adversary can arbitrarily delay mes-
sages, though all messages must eventually be delivered. As such, adversaries in
this model also have limited ability to “peek into the future.” Ben-Or, Canetti,
and Goldreich [14] initiated the study of MPC over asynchronous networks with
eventual delivery (see, e.g., [2,14,16,27,30,42] and references therein). The inher-
ent challenge in this model is that one cannot distinguish between an honest
party whose message is delayed from a corrupted party who does not send the
message at all. This uncertainty leads to certain impossibility results and reduced
resilience compared to the synchronous model: e.g., impossibility of deterministic
protocols for Byzantine agreement [36], impossibility of asynchronous Byzantine
agreement and MPC with ¢ > n/3 (even assuming cryptography) [14,35], and
impossibility of perfect asynchronous MPC with ¢t > n/4 [14]. In contrast, our
model assumes that the corrupted parties always send messages when suppose

400 @G. Asharov et al.

to, which is a realistic assumption when optimistically executing a synchronous
protocol. Therefore, these impossibility results do not apply in our setting.

Hybrid Settings. Several works have looked at models that combine synchrony
and asynchrony in various settings. A line of work initiated by Blum, Katz, and
Loss [17] studies protocols that can obtain a certain security assuming synchrony,
yet satisfy weaker security guarantees if this assumption does not hold and the
communication is asynchronous; see, e.g., [4,10,18]. This model enables running
synchronous protocols while ensuring security against super-rushing adversaries.
However, as opposed to our results, such protocols achieve weaker security if the
adversary is super-rushing (and, in particular, are limited by the lower bounds of
asynchronous MPC); further, the goal in these works is different from our moti-
vation of studying MPC protocol designed for the synchronous setting without
modifications.

Another line of work, initiated by Beerliova-Trubiniova, Hirt, and Nielsen
[13], studies protocols in which the protocol begins with synchronous rounds and
proceeds with asynchronous communication. Such protocols may be vulnerable
to super-rushing adversaries if the synchronous part uses point-to-point channels
(as opposed to a broadcast channel) and is executed optimistically.

2 Technical Overview

In this section, we highlight some of our results while trying to give some intuition
as to what might go wrong and when one can expect that super-rushing does
not introduce security vulnerability.

What Might go Wrong? We start with one of our negative results, demon-
strating the advantage a super-rushing adversary gains. Specifically, we consider
the protocol and the adversary underlying Theorem 1.3, that admits a committal
round CR, but for which ORR = CR + 1.

Consider the following simultaneous broadcast functionality between 5 par-
ties where 2 parties provide inputs (and A denotes the empty string):

fsb(blaan)‘vA?)‘) = (y’yvyay,y) where Yy = (blva)'

To implement this functionality, we consider a protocol, denoted 7rgpyss, i
which P; and P; first use verifiable secret sharing (VSS) to distribute shares of
b1 and by, respectively, and then the parties jointly reconstruct those secrets to
learn by and by. Intuitively, this guarantees independence of inputs assuming syn-
chronous communication and rushing adversaries: each one of the input providers
must “commit” to its input before learning the other input. We remark that this
is also the standard way to toss a coin: P; and P, can choose their secrets uni-
formly at random, commit to them, reveal them, and take a combination of the
results.

MPC in the Presence of Super-Rushing Adversaries 401

Gennaro, Ishai, Kushilevitz, and Rabin [37] showed a l-round VSS for 5
parties secure against one corruption. Specifically, the dealer distributes a secret
s using a polynomial with degree 1. In the reconstruction phase, the dealer is
not allowed to participate, and each party that receives a share simply forwards
it to all others. The parties run Reed-Solomon decoding on the shares received.
If there is no unique decoding (meaning that the dealer is cheating), the parties
output a default value. Observe that:

e If the dealer is honest, then it must have sent valid shares to all parties,
and privacy holds since ¢ = 1 (and we assume just one corrupted party).
During the reconstruction, the adversary can introduce only one error, which
is eliminated using Reed Solomon decoding.

e If the dealer is corrupted and sent only one incorrect share (i.e., provided 3
shares that lie on the same line, and 1 that does not), then reconstruction will
be successful. Specifically, since the participants are honest and forward the
messages they received from the dealer, then all parties will have just a single
error and 3 correct points, and therefore the single error can be eliminated
using the Reed Solomon decoding. If the dealer distributed more than a single
error, then no party will be able to decode, and all parties will output a default
value.

This protocol 7ep.yss indeed perfectly implements the fg, in the presence of
a rushing adversary. However, it does not remain secure in the presence of a
super-rushing adversary, who corrupts, say, P;:

e In the first round, the honest P, shares its input by to four shares si, s3, 4, S5
by giving each party P; its share s;, for i € {1,3,4,5}.

e After the corrupted P receives a share s; from Ps, party P; sends to some
honest party, say Ps, a random point in the field as its “share.”

e At this point, P3 receives all its round-1 messages: a share from P; and a
share from P, and proceeds to the next round—the reconstruction phase.
In this phase, Ps; forwards the two shares it received to everyone (and, in
particular, sends s3 to everyone).

e The adversary P; receives ss3, and together with s; that it received directly
from the dealer, P, it can reconstruct bs.

e Finally, P; chooses b; as a function of by, and provides valid shares for b; to
all parties. Note that it can even choose the polynomial such that it would
even agree with the share it already provided to Ps, seemingly providing no
error whatsoever!

The above attack shows that things might go wrong, and the super-rushing
adversary can break the “independence of inputs” requirement in secure proto-
cols. It is important to note also that the above protocol does have a “committal
round” when considering rushing adversaries—there is a specific round in the
protocol (round 1) in which the inputs of all parties (that provide inputs) is
well-defined. As we show, the problem is that the “output revealing round” is
too close to the committal round, and the ability of super-rushing adversaries
that can progress some parties to the next round, enables learning the output
before the conclusion of the committal round.

402 @G. Asharov et al.

Single-Input Functionalities. A specific class of functionalities where “inde-
pendence of inputs” is not a concern is the case where only one party provides an
input. As a warmup towards our general positive result, we consider such func-
tionalities first. We show that for single-input functionalities, any protocol that
is secure against non-rushing adversaries, is already secure against super-rushing
adversaries.

For simplicity, let us assume in this technical overview that the input provider
is honest and holds input x. In the ideal model, the input provider sends its input
to the trusted party, the trusted party computes f(z) = (y1,...,Yn), and gives
each honest party P; its output y;. The ideal adversary (the simulator) cannot
influence this execution in any way. Focus for now just on the correctness of the
protocol. The real-world adversary, has this extra capability of “peeking into the
future.” The question is whether this ability can be used to break the correctness
of the protocol, that is, to cause some P; output a value that is not y;.

The key reason why super-rushing is not a concern for this class of func-
tionalities, is that we can simulate round r + 1 message of every honest party.
Specifically, we construct from the super-rushing adversary exponentially many
adversaries—one for every possible execution that might occur with this partic-
ular super-rushing A’. For every possible combination of random tapes of the
honest parties (p;);¢r (where I denotes the set of corrupted parties), we con-
struct a rushing adversary A[(p;);jgr]. This rushing adversary internally simu-
lates the protocol, with each honest party P; using p; as its random tape (and no
input), while the input provider input x, and interacting with the super-rushing
adversary A’. The rushing adversary then constructs all expected incoming and
outgoing messages of the protocol in each round for all parties. After generating
these messages, A[(p;);¢r] executes the protocol with the real honest parties.
If, by chance, the actual honest parties use the same random tapes (p;)je¢r,
the adversary knows exactly how to behave and what messages to send in each
round. Otherwise, the adversary aborts.

The key insight is that if the super-rushing adversary A’ were to gain any
advantage (i.e., break correctness), there would exist some execution where one
of these rushing adversaries A also gains an advantage. However, the latter is
impossible because of the perfect security of the protocol. The above intuition
addresses just correctness, but a similar argument holds for other security prop-
erties. The formal proof also addresses a full simulation of the super-rushing
adversary and the scenario where the input provider is corrupted. For the full
details, we refer the reader to the full version of the paper.

Crucially, the above argument breaks down when there are two input
providers. In that case, the ideal world requires this extra property of “inde-
pendence of inputs.” The real-world adversary can peek into the future, learn
some information about the input of the honest party, and use this information
to correlate its input. Such behavior is possible in the real world but is not
allowed in the ideal world.

MPC in the Presence of Super-Rushing Adversaries 403

General Functionalities: Our Main Possibility Result. We now turn our
attention to the crux of our contribution, which is a possibility result for general
functionalities. We focus in this overview on the simpler case—protocols that
admit a committal round CR and an output revealing round ORR, but for which
ORR > CR+1.

When considering rushing adversaries, the existence of CR and ORR guaran-
tee the following in the real execution:

e Committal round: CR is the point in the execution where the inputs of all
parties are committed, and the adversary can no longer influence the outputs
of the honest parties after that point.

e Output revealing round: There is no leakage on the honest parties inputs’
until ORR. That is, ORR is the first (and only point) in the execution where
the parties learn the outputs, and the adversary learns at that point the infor-
mation about the honest parties inputs’ that is implied from those outputs.

Intuitively, in the real world, the adversary does have some extra power to
look into future rounds. However, such protocols provide the adversary A’ with
no information on the outputs until ORR. Moreover, the adversary cannot look
“too much” into the future, without progressing the protocol and providing
messages. When CR > ORR + 1, the guarantee is that when A’ peeks into round
ORR, then A’ must have already provided its inputs in CR, and therefore, A’
cannot influence anything at this point.

To actually simulate the super-rushing adversary A’, we use the simulator
of the rushing adversary. The technical difficulty in the proof is that we need to
invoke this underlying simulator multiple times on different behaviors of (rush-
ing) adversaries and to show that all the invocations are consistent.

In more detail, the super-rushing adversary A’ might ask for round r + 1
messages of some honest party P; before it actually provided all the corrupted
parties’ messages for round r. The simulator S’ of A’ then feeds the rushing
simulator S of all round-r messages that were sent from corrupted parties to
Pj, and with dummy messages from the corrupted parties to the other honest
parties. The simulator S’ obtains back all the round r + 1 messages that the
honest parties send to the corrupted parties, and extracts from this the messages
that P; sends in round r 4 1. Based on this information, the adversary might
provide messages from corrupted parties to honest parties in round r. We then
will have to restart the simulator S and provide it with updated information of
corrupted parties to honest parties in round r. However, since all the messages
that P; has received in round r are identical between the two executions of S,
it must provide the exact same outgoing messages in round r + 1 for P;.

Our proof assumes some structure of the underlying simulator S that is used
to simulate rushing adversaries. Nevertheless, we show that such requirements
are quite natural and are satisfied for several protocols in the literature. We refer
the reader to Sect. 5 for the formal treatment.

404 @G. Asharov et al.

Organization. The rest of the paper is organized as follows. After the pre-
liminaries in Sect. 3, we provide some separations between rushing and super-
rushing in Sect.4. The main theorem is given in Sect.5, and we discuss the
statistical setting in Sect. 6. Due to space limitation, we defer some of the proofs
to the full version of the paper.

3 Preliminaries

Protocols. An n-party protocol m = (Py, ..., P,) is an n-tuple of PPT interac-
tive Turing machines (ITM). The term party P; refers to the i*® ITM. Each party
P; starts with input x; € {0,1}* and random coins p; € {0,1}*. An adversary
A is another ITM describing the behavior of the corrupted parties. We con-
sider malicious, computationally unbounded adversaries, that can deviate from
the protocol in an arbitrary way. For simplicity we focus on static corruptions,
meaning that the adversary decides on the set of parties to corrupt before the
beginning of the execution.? That is, the adversary starts the execution with
input that contains the identities of the corrupted parties, their private inputs,
and an additional auxiliary input z.

3.1 Communication Model

As standard for information-theoretic MPC, we assume that each party can com-
municate with every other party over an ideally secure communication channel,
meaning that the adversary cannot eavesdrop nor alter honest-to-honest com-
munication.

Synchronous Communication. We say that a protocol 7 is executed over
a synchronous communication network if the protocol proceeds in a lock-step
manner, round by round. That is, there is a global round counter that is known
to all parties and advances in a sequential manner. Each round consists of a send
phase (where parties send their messages for this round) followed by a receive
phase (where they receive messages from other parties). All parties begin the
protocol at round 1, and for every round r € N, all parties advance from round r
to round 7 + 1 in a synchronized way in the sense that no party advances to
round 7 + 1 before all honest parties have completed their round r operations.
Specifically, it is guaranteed that every message sent in round r is delivered to
its destination, and this is done before any message is sent for round r+1. When
a party P; sends a message m to party P; in round r, we denote the message
together with the metadata by (i, 7,7, m).

We will also consider protocols that are defined in the broadcast model. Here,
in every round each party may send private messages using the point-to-point

2 This makes our separations stronger, and in the perfect-security setting any statically
secure protocol satisfying a few basic requirements is also adaptively secure [7,21,33].

MPC in the Presence of Super-Rushing Adversaries 405

channels, and also broadcast a message that will arrive to all parties in the same
round.

In every round, every party can send a message to any other party as a
function of its input, its randomness, its history of incoming messages, and the
identity of the recipient. For simplicity, and unless stated otherwise, we will
consider protocols where in each round there is all-to-all communication, i.e.,
every party sends a (possibly empty) message to every other party (either over
point-to-point channels or via the broadcast channel), and where the number
of rounds is fixed and known ahead of time. Our results can be extended to
message-oblivious protocols [24,25] which means that the decision of whether
party P; should send a message to party P; in round r is determined by the pro-
tocol, regardless of the input or the random tape. We further assume that every
corrupted party always sends a message when supposed to (this is a standard
assumption for synchronous protocols, as the recipient can identify the event
where a party is cheating by not sending a message when it is supposed to, and
can pretend receiving a default message instead).

We note that in a synchronous, message-oblivious protocol, each honest party
knows how many messages it should receive in a given round and from whom. As
such, every honest party can generate its messages for round r 4+ 1 immediately
after receiving all of its messages for round r. The synchrony assumption, how-
ever, ensures that those messages are delivered to their destinations only after
all round-r messages have been delivered to all honest parties.

Rushing and Non-rushing Adversaries. In the synchronous setting, two
common types of adversaries are considered in the literature: rushing and non-
rushing. A rushing adversary has the ability to schedule the order in which
messages are delivered within a given round; as such, the corrupted parties can
choose their messages to be sent in round r after receiving the messages sent
by honest parties to corrupted parties in round r. That is, in round r, the
adversary initially obtains all messages of the form (j,4,r,) for an honest P; and
a corrupted P;, and based on this information produces the messages (i, 7,7, ")
for each corrupted P; to each an honest P;.

In contrast, a non-rushing adversary must choose the corrupted parties’ mes-
sages for round r independently of the messages sent by honest parties in round 7.
That is, in round r, the adversary initially generates all the messages (i, j,,-)
from a corrupted P; and an honest P; and only later obtains the messages of the
form (j,i,r,-) for every honest P; to every corrupted P;.

We emphasize the both for rushing and non-rushing adversaries, it is guar-
anteed that every message of the form (4,7, r,-) is delivered at its destination
before the delivery of any message of the form (¢, j',r + 1, -).

Super-Rushing Adversaries. We will also consider stronger adversaries that
we call super-rushing. Similarly to rushing adversaries, a super-rushing adversary
can reorder messages within a given round, but, as opposed to rushing adver-

406 @G. Asharov et al.

saries, it can also reorder messages between different rounds, i.e., deliver certain
messages for round r + 1 before all messages for round r have been delivered.
Effectively, in an execution of a message-oblivious protocol, an honest party
can generate its messages for round r + 1 immediately after receiving all of its
messages for round r; a super-rushing adversary can then deliver some of those
messages before all honest parties have received all their messages for round r.

The Interface of the Adversary. For concreteness, and to simplify notations
in our proofs, we will use the following interface between the adversary and the
honest parties:

e The adversary can send a message from a corrupted party to an honest party.
e The adversary can request a message from an honest party to a corrupted

party.

We assume that the adversary is well behaved in the following sense. First,
the adversary always sends a message from a corrupted party to an honest party
when supposed to, and second, if the adversary requests a message corresponding
to (j*,i*,r+1) for an honest P« and a corrupted P;-, then the following holds:

e If the adversary is non-rushing, then the adversary must have sent all of the
messages corresponding to (i,j,7’) for every corrupted P;, honest P;, and
v <r4+1.

o If the adversary is rushing, then the adversary must have sent all of the
messages corresponding to (,7,7’) for every corrupted P;, honest P;, and
<.

e If the adversary is super-rushing, then the adversary must have sent all of
the messages corresponding to (i, 7,7’) for every corrupted P;, honest P;, and
r’ <r —1, and also all of the messages corresponding to (i,5*,7’) for every
corrupted P; and v’ = r.

We remark that the above requirement for super-rushing is for the case of all-to-
all communication. In general, the requirement is that the adversary can request
a message (j*,7*,r + 1) if Pj- has received all the messages expected to arrive
by the protocol in round r (recall that in the general case, we assume the protocol
is message-oblivious, and so the communication pattern is fixed).

4 Separating Rushing from Super-Rushing

In this section, we show simple protocols that are secure against rushing adver-
saries but are insecure against super-rushing adversaries. We start by defining
the (2,5)-simultaneous-broadcast functionality, followed by two protocols that
securely realize it against a rushing adversary corrupting one party but are inse-
cure against a super-rushing adversary. Next, we show that as opposed to security
against rushing adversaries that remains secure under sequential composition,
security against super-rushing adversaries does not.

MPC in the Presence of Super-Rushing Adversaries 407

4.1 Rushing Security Does not Imply Super-Rushing Security

(2,5) simultaneous broadcast. The functionality used in our separations is
a variant of simultaneous broadcast [23], which involves five parties. Parties P;
and P, hold input bits b; and bs, respectively, whereas parties Ps, Py, and P;
have no input (formally, their input is the empty string A). All parties learn the
pair of bits (b1, by). We emphasize that as opposed to naive parallel composition
of broadcast protocols, if P; is corrupted for ¢ € {1,2}, then its input must
remain independent of the input of the other honest party P;_;. That is, the
functionality to compute is

fsb(bb an)‘a)‘7 >‘) = (y7 Y,Y,Y, y) where Yy = (bh b2)

4.1.1 A Protocol with No Committal Round We proceed to present the
protocol msppasic (Protocol 4.1) that securely realizes fg, in the presence of a
rushing adversary but not in the presence of a super-rushing adversary. This is
a basic protocol, described in [38], in which each of the parties P, and P, send
their input bits to the non-input parties Ps, P4, and P5, who then echo these
messages to everyone.

Protocol 4.1. (7sp-basic (@ basic (2,5)-simultaneous-broadcast protocol))

Round 1:

e For i € {1,2}, party P; sends its input bit b; to P3, Py, and Ps.

e For j € {3,4,5} and i € {1,2}, denote by b] the bit P; received from P;;
in case P; did not receive a message from P, or if the message is not a
bit, then P; sets b] := 0.

Round 2: o

e For j € {3,4,5}, party P; sends the pair of bits (b],b3) to all parties.

e For k € [5] and j € {3,4,5}, denote by (bjlgk,b%_’k) the pair of bits P
received from Pj; in case Py did not receive a message from P, or if the
message is not a pair of bits, then P} sets bgék =0 for ¢ € {1,2}.

Output:
e For k € [5] and i € {1,2}, party Py sets c¥ := maj{b3~k b=k p2—F].
e For k € [5], party P, outputs (c¥, ck).

We proceed to state in Lemma 4.2 that the protocol is secure in the presence
of a rushing adversary, and refer the reader to the full version for its proof.

Lemma 4.2. Protocol Tsp_pasic 1-securely realizes fsp with perfect security in the
presence of a malicious rushing adversary.

We proceed to show that msppasic is vulnerable to attacks by a super-rushing
adversary that cannot be simulated. Intuitively, a corrupted P; can send a round-
1 message to P3 and learn the input of P, before it sends the first-round messages
to Py and Ps. This breaks the independence of inputs in fqp,.

408 @G. Asharov et al.

Lemma 4.3. Protocol wep_pasic does not 1-securely realize fsp, with perfect security
in the presence of a super-rushing adversary.

Proof. We start by constructing the following super-rushing adversary.

The Super-Rushing Adversary A,. The adversary A, corrupts P; and
proceeds as follows:

1. Send 0 to the party Ps as the message in round 1.

2. Upon receiving the round-2 message from P of the form (6371, 0371), send
the round-1 message b3 ! to Py and Ps.

3. Receive round-2 messages: (b}71,6371) from Py and (6571, 6371) from Ps,
and halt.

The proof of the lemma follows from Claims 4.4 and 4.5 showing that for
any simulator S, the distributions of REAL., . 11} 4, and IDEALy, 1) s are not
identical.

Claim 4.4. Consider an execution of Tsppasic on uniformly sampled inputs
b1,ba «— {0,1} with the adversary As corrupting Py. Denote by (yi,y2) the
common output value of the honest parties. Define the event Eea where y1 = ys.
Then, Pr[Eeal] = 1, where the probability is over the choice of by and by (note
that the protocol and the adversary are deterministic).

Proof. The execution of 7gp pasic on (b1, be) with A, corrupting P; proceeds as
follows:

e P sends by to P3, Py, and Ps.

Py sends 0 to Ps.

P5 sends (0,b3) to Py, Py, Py, and Ps.

Py sends by to Py and Ps.

Py sends (by,bs) to Py, Ps, P3, and Ps.

Similarly, P5 sends (bg, bg) to Pl, PQ, Pg, and P4.

e For k € {2,3,4,5}, party P outputs ¢; = maj{0,ba,b2} and ¢y =
maj{ba, b2, b2}, i.e., outputs (be, ba).

It is always the case that y; = ya, and thus Pr [Eea] = 1 O

Claim 4.5. Let S be a arbitrary simulator. Consider an ideal computation of

fsb on uniformly sampled inputs by, by — {0, 1} with the simulator S corrupting

Py. Denote by (y1,y2) the common output value of the honest parties. Define the
1

event Eigeal where y1 = ya. Then, Pr [Eideal] = 5, where the probability is over the

choice of by and by and the randomness of S.

Proof. The ideal computation of fg, on (b1, bs) with S corrupting P; proceeds
as follows:

e P, sends by to the trusted party.
e P sends a bit b to the trusted party.

MPC in the Presence of Super-Rushing Adversaries 409

e The trusted party sends (b, b2) to all parties.

It follows that for every b € {0, 1} it holds that

Pr [|deal] Pr [b =]
:Pr[b 2 ‘ bQ —0] Pr[bg :0]+Pr[b:b2 ‘ bQ :1] 'PI‘[bQ :1]
2 2 2 O
This concludes the proof of Lemma 4.3. O

4.1.2 A Protocol with Committal Round but ORR = CR + 1 A closer
look at the protocol 7sp.pasic indicates that the protocol does not admit a com-
mittal round, i.e., a specific round CR such that the simulator can first simulate
the protocol until round CR (including), next extract the corrupted party’s input
and send it to the trusted party to obtain the output, and then resume the sim-
ulation from round CR + 1 till the end. Indeed, in case P; with ¢ € {1,2} is
corrupted, the simulator must extract the corrupted party’s input in the first
round, whereas if P; with j € {3,4,5} is corrupted, the simulator must obtain
the output to simulate the first round. One may wonder whether the source of
the separation between rushing and super-rushing adversaries lies in the lack of
a committal round.

Our second separation shows that this is not the case. That is, we show
a protocol for (2,5) simultaneous broadcast, mTep.yss, that admits a committal
round and is secure against a rushing adversary, yet is not secure against a
super-rushing adversary. The protocol is based on the one-round verifiable secret
sharing (VSS) from [37] for 5 parties with ¢ = 1. The one-round sharing phase is
vanilla Shamir sharing—the dealer picks a polynomial of degree 1 (a line), and
gives each party one point. The dealer does not participate in the reconstruc-
tion phase, and during reconstruction the parties (excluding the dealer) simply
exchange their shares. That is, each party receives four shares, and can recon-
struct if there is at most one error; in case there is no unique decoding (i.e.,
if three shares are co-linear, and one share does not lie on the same line), the
parties output a default value.

In our protocol, P, and P, share their input in the first round, and the
parties reconstruct the pair of bits in the second round. The protocol is secure
against a rushing adversary, and the first round is a committal round. However,
as before, a super-rushing adversary can advance a single sender to proceed to
round 2 to obtain an additional share on the honest-party’s polynomial. That is,
it can recover the entire sharing polynomial of the honest party from ¢t +1 = 2
shares, and thereby, the input of the other honest party. Thus, a super-rushing
adversary in an execution of the protocol 7gp.ss can violate input independence.

We provide the full details of the protocol in the full version.

410 @G. Asharov et al.

4.2 Super-Rushing Security is not Maintained Under Sequential
Composition

Sequential composition is a basic requirement of MPC protocols; it enables a
simple form of a modular design in the following sense. Given an n-ary function-
ality f with a protocol 7y that securely realizes f, one can construct another
protocol 7 in the f-hybrid model that securely realizes another function g by
invoking the ideal computation of f multiple times, such that the invocations of
f are done sequentially and each new invocation of f begins after the previous
invocation has completed. The sequential composition operation ensures security
of the protocol 777 that is obtained by replacing each invocation of f with an
execution of . The standard definition of MPC ensures sequential composition
in the presence of a rushing adversary [19,39].

In this section, we present a simple example highlighting that security is
not maintained under sequential composition in the presence of a super-rushing
adversary. The high-level idea is that a super-rushing adversary can learn infor-
mation related to the second execution of 7y to influence the first execution.
We note that the technique of [46] of adding a dummy synchronization round
between the executions enables sequential composition; however, as before, our
focus is on unmodified protocols.?> We refer the reader to the full version for the
counterexample and the formal theorem statement.

5 Sufficient Conditions for Perfect Security
with Super-Rushing Adversary

In this section, we show sufficient conditions under which security in the pres-
ence of a rushing adversary implies security in the presence of a super-rushing
adversary. Our theorem considers protocols that satisfy some requirements, such
as the existence of a committal round. Moreover, it assumes that the protocol
can be proven secure against a rushing adversary using a simulator the follows
some specific structure. We start with the definitions of the requirements from
the simulation.

5.1 Compatible Simulation

Our requirements from the simulation of the rushing adversary are as follows:

3 We note that a similar issue arises when sequentially composing protocols with prob-
abilistic termination, i.e., protocols in which fast parties may complete the execution
before slow parties do, and further a party does not know whether it is fast or slow
[28]. Such protocols naturally arise when using randomized Byzantine agreement as
a subroutine in an MPC protocol. Sequential composition theorems in this setting
indeed add a “local” dummy round in which a party does not communicate and
ignores all incoming messages in this round to avoid super-rushing attacks [28,29].

MPC in the Presence of Super-Rushing Adversaries 411

Definition 5.1. A simulator S (2,1, (x;)icr; ps) for a protocol m simulating a
rushing adversary A, where z is the auxiliary input, I is the set of corrupted
parties, x; is P;’s original input for each i € I, and ps is the randomness of S,
parameterized by a set B = (5;) g1 from some domain B, is called compatible if
it satisfies the following properties:

e Simulation via virtual honest parties: S computes the view of the adver-

sary by simulating virtual honest parties with default inputs, and follows the
structure as described in Structure 5.2.

Simulation for every default inputs: The simulation works for every set
of default input (B;)jgr in some domain B over the possible inputs of the
function. That is, we denote by S[B] the simulator that uses B = (B;);q¢r
as default inputs. That is, for every real-world rushing adversary A, and for
every (3 it holds that:

{REALTI',.A(Z),I(:E)}$6({0’1}*)n = {IDEALf,S[ﬁ](Z)7I(:E)}$6({0’1}*)n

Structure 5.2. (Structure of simulation via virtual honest parties)

1.

Initialization: S interacts with the real-world adversary A(z, 1, (z;)icr) as
an oracle, in a round-by-round fashion. S initializes simulated honest parties
denoted as (PJ) je1, and initializes each 13j with default input £;.
Simulation for rounds r = 1,...,CR: In each round r < CR the simulator
sends to A all the messages from the honest parties to the corrupted parties,
each is computed according to the next-message function of the protocol 7
on the default input and the simulated incoming messages. The adversary A
then replies with all messages {m;_,;};¢rier where m;_, ; is the message from
corrupted P; to an honest P; in round 7.

At the end of round CR: The simulator sends to the trusted party the
input values of the corrupted parties, {2} }icr.

. Simulation for rounds r = CR+1,...,ORR — 1: Proceeds as in the simu-

lation of rounds r =1,...,CR.
At the end of round ORR — 1:
The simulator receives from the trusted party the output values of the cor-
rupted parties, {y; }icr.
Simulator for round r = ORR: Let J = [n] \ I. For every party j* & I,
there exists a function SimOut;- such that:

m?*REI = SimOut;~ ((yi)iej, m[JOELR]_I], m?f?f”) ,
where for A,B C [n], and R C [1,...,0ORR], m% 5 = (m" ,)acaben.rer-
That is, the messages from P;- to the corrupted parties in the final round
is a function of the outputs of the corrupted parties, the honest-to-honest
communication in all rounds up to ORR — 1, and the messages P;- received
from the corrupted parties up to round ORR — 1.

412 @G. Asharov et al.

7. The simulator outputs whatever A outputs, without loss of generality, its
view.

Intuitively, we assume that the simulator works by simulating honest parties
with some default inputs (and that the simulation can work with any set of
default inputs, as standard in secret-sharing-based simulations), and then at the
ORR the simulator can “fix” the results. We highlight one important aspect of
SimOut;-—the function to generate the messages that honest Pj- sends in the
last round—this function is based on all honest parties’ communication up to
round ORR — 1, on the outputs of the corrupted parties, and on all the messages
Pj« received in round ORR — 1; however, the function is independent of the
messages other honest parties received in round ORR — 1. This clearly holds in
the real protocol (as incoming messages that honest parties receive in round r
will be propagated in outgoing messages in round r + 1), and we require that it
would also hold in the simulation.

Broadcast. For simplicity and to ease the presentation, we present the simula-
tion where the parties use only point-to-point communication and no broadcast.
For protocols with broadcast, we remark that SimOut should also obtain all the
messages that Pj« received over its point-to-point channels and over the broad-
cast channel.

5.2 The Main Theorem
We show the following theorem:

Theorem 5.3. Let [be an n-ary functionality and let ™ be an n-party protocol
with all-to-all communication. Assume that:

o 7 t-securely realizes f with perfect security against rushing adversaries;

o 7 admits a committal round CR, an output-revealing round ORR, and it holds
that ORR > CR + 1;

e The simulator S is compatible as per Definition 5.1.

Then, m t-securely realizes f with perfect security against super rushing adver-
saries.

5.3 Examples

Before proving Theorem 5.3, we first demonstrate that several well-known secret-
sharing-based protocols from the literature meet the conditions stated in Theo-
rem 5.3. We assume the reader has some familiarity with those protocols.

MPC in the Presence of Super-Rushing Adversaries 413

The BGW Protocol. We consider the BGW protocol [15] and its proof of
security [8]. The simulator described in [8, Theorem 7.2] simulates the protocol
by considering virtual honest parties, assigning them default inputs of 0 (of
course, this is arbitrary), and then executing the protocol honestly using those
inputs. The committal round is the end of the VSS round, in which the simulator
extracts the inputs of the corrupted parties.

VSS. Before proceeding, we provide further details on the VSS. We claim that
the shared polynomial can be reconstructed by analyzing the all-to-all communi-
cation and the information transmitted over the broadcast channel. To see this,
recall that to share a secret s, the dealer selects a bivariate polynomial S(z,y)
of degree t in both variables such that S(0,0) = s. The dealer then sends each
party P; a pair of univariate polynomials, (f;(x),g;(y)) = (S(z,), S(j,y))- The
parties perform verification steps, during which each party Py receives sub-shares
fj(k) and g;(k). Finally, After some additional verification steps, the parties vote
over the broadcast channel on whether to accept or reject the shares.

If the dealer is honest, the parties will always accept, and from the shares
sent to all honest parties, the polynomial S(x,y) of the dealer and the secret
s can be determined. Similarly, if the dealer is corrupted and the shares are
accepted, there must be at least t4 1 honest parties that accepted, and their sub-
shares can be used to reconstruct the univariate shares, and then the bivariate
shares. The shared polynomial can be reconstructed by inspecting the all-to-all
communication and the information transmitted over the broadcast channel.

The Circuit Emulation. The protocol maintains an invariant where the value
of each wire in the emulated circuit is hidden by a random degree-t polynomial
F(x), with each party P; holding the share F(j). Similar to VSS, other sub-
protocols of BGW, such as multiplication, adhere to this structure, where honest-
to-honest communication (along with information on the broadcast channel) is
sufficient to reconstruct the polynomials that hide the wire values, as well as
the shares held by each party (and in fact, the entire adversary’s view). It is
important to note that in the simulation, the constant term of all internal wires
is incorrect.

Simulating the Output Wires. Assume for simplicity that |I| = ¢. When
reaching an output wire that is associated with some corrupted P;«, the sim-
ulator can use honest-to-honest communication to reconstruct the polynomial
F;« (x) that hides that output wire. The adversary already knows F;- (¢) for every
i €1, ie., it knows ¢ points on a degree-t polynomial, which still does not fully
determine the polynomial. Moreover, the constant term of Fj«(x) in the simula-
tion is incorrect.

At the point, the simulator “corrects” the polynomial by interpolating
another degree-t polynomial F;«(x) such that Fj«(i) = F;« (i) for every i € I,
and fi*(O) = y;, where y; is the true output on that wire. Those ¢ + 1 points

414 @G. Asharov et al.

fully determine this polynomial. Each honest party P; then sends to Pj« the

shares Fj. (4)- The functions SimOut;- are defined along those lines, while the
important property is that the “invariant” of the simulation can be reconstructed
from the honest-to-honest communication up until round ORR — 1.

Other Protocols. We remark that the above simulation strategy also holds
for other protocols that have a similar structure as BGW, such as [3,9,31], and
protocols that are based on multiplication triplets with offline-online phases, e.g.,
[1,26].

5.4 Proof of Theorem 5.3

Proof. Fix a super-rushing adversary A’. We construct a simulator §’. The sim-
ulator is described as two processes that are run in parallel:

1. The interaction with the super-rushing adversary A’; The simulator sends
and receives messages to that adversary.

2. The interaction with the rushing simulator . The simulator &’ (together
with A’) behaves as a rushing adversary when interacting with S. Since we
know exactly how S simulates the view of the adversary, we do not use it to
generate messages; rather, we use it to extract the effective inputs from A’.

The Super-Rushing Simulator S'(z, I, (z;)icr). We now construct the sim-
ulator &’ for the super-rushing adversary A’. The simulator receives as input
the auxiliary input z, the set of corrupted parties I, and the initial inputs of the
corrupted parties. The simulator proceeds as follows:

1. Initialize M, ..., Morr < 0, and output values (y;);cr = L.

2. Sample randomness pg for the invocations of the underlying simulator S, and
invoke the simulator S(z, I, (z;)ier; ps)-

3. Invoke the super-rushing adversary A’(z, I, (z;)icr)-

4. &' invokes the simulated honest parties Jgj for every j ¢ I with some default
inputs. Extract the randomness for each simulator honest 15j from pg in a
similar way as S works.

5. Interaction with A’ for every r = 1,...,ORR: Send and receive messages
from A’ as follows:

Send messages to A’: Whenever the adversary A’ asks to receive the mes-

sage (j*,1*,r) for j* ¢ I and i* € I:

(a) If there exists a message (j*,i",7,mj._;.)
as the result and break.

(b) If there is no message (j*,7%,7,m/._,.) in M,, then verify that all mes-
sages (i,j*,7 — 1) are in M,_; for all i € I (i.e., the adversary provided
all the messages from the corrupted parties to Pj- in round r — 1; when
r = 1 this holds vacuously) and all messages (j,j*,7 — 1) are also in
M, _1 (again, for » = 1 this holds vacuously). If this does not hold, call
this event notSuperRushing and abort.

€ M,, then give m. ;. to A’

MPC in the Presence of Super-Rushing Adversaries 415

(¢) fr=1,...,0RR — 1 and there is no message (j*,7*,r,m%._,,.) in M,:

]*}Z

Invoke the next message function of the virtual honest party Pj« on all
its incoming messages at round r» — 1. Add all the messages to M .
(d) If r = ORR and there is no message (j*,i",r,m}._;.) in M,:

i.

ii.

iii.

Verify that (y;);er # L are stored (see Step 6b) If not, call this event
noOutputs and abort.

Verify that all the messages from honest parties to honest parties are
stored in all My, ..., Morr—1. If not, call this event notReadyForORR
and abort.

Compute:

: ORR—1 ORR—1
mF& = SimOut;- ((yi)iela mBJ ! B]])

Add those messages to MORR

(e) Give to A’ the message (j*,i*,7,m"._,.) that was just generated.

]—)’L

Receive messages from the adversary Whenever A’ sends a message

N
m;

(a message from corrupted P; to honest P; in round r add the tuple

(i,7,m,m; ;) to M.
6. Interaction with S for every r =1,...,0RR:
(a) Once all the messages (k,¢,r,-) € M, for all k € [n] and ¢ € [n]:
i. Receive from S all the messages from the honest parties to the cor-

ii.

rupted parties in round r. Verify that all the received messages are
exactly the same in M,.. Otherwise, call this event notConsistent, and
abort.

Output all the messages from the corrupted parties to the honest
parties that are in M,..

(b) In round CR + 1: In addition to the messages from the honest parties
to the corrupted parties for round CR + 1, the simulator S also outputs
the extracted inputs (z});er. Send (z)ze[to the trusted party as the
effective inputs of the corrupted parties, and receive back (y;)ies. Store
those values.

7. Output whatever A’ outputs, and halt.

We now show that the simulator is valid. We have the following claims, which
are proven in the full version.

Claim 5.4. The following holds during an execution of a simulator S':

1. &' never aborts due to noSuperRushing event in Step 5b.

2. S’ never aborts due to noOutputs event in Step 5(d)i.

3. 8’ never aborts due to notReadyForORR event in Step 5(d)ii.
4. 8’ never aborts due to notConsistent event in Step 6(a)i.

The simulator S’ perfectly simulates A’. We now show that the outputs
of the real and ideal are identically distributed. We prove this via the following
hybrid experiments:

416 @G. Asharov et al.

1. HYBg: This is the ideal execution; The output of this execution is the view of
the adversary A’ and the output of the honest parties in the ideal world.

2. HYB1: In this hybrid experiment, the simulator S’ receives from the trusted
party the inputs of the honest parties (z;),¢ as input. Then, we modify both
S’ and S, and use the real inputs (z;);¢r instead of default inputs for the
simulator honest parties ﬁj for every j & I.

3. HYBy: We change the generation of the messages m]QES for every j ¢ I and
i € I inside 8’ and S. Instead of generating them according to the simulator
using SimOut, we generate each m;_,; using the next-message function of P;
on all its incoming messages in round ORR — 1 (and its private input and
private state).

4. nyBs: We change the outputs of the honest parties. Instead of using the
outputs as generated by the trusted party, we use the outputs as generated
by the simulated honest parties executed by S.

5. HyBy: This is the real execution: The output is the view of the adversary A’
and the outputs of the honest parties.

We will conclude the proof by showing that any two consecutive hybrids are
identically distributed. See full details in the full version. O

5.5 Extensions

In this section, we show extensions of Theorem 5.3. Before proceeding, we note
that our definition of a committal round CR and an output revealing round ORR,
implicitly requires that ORR > CR.

Input Committal Synchronization. Suppose that we have a protocol 7 that
securely realizes a functionality f with compatible simulation but for which
ORR = CR + 1. Consider the following protocol 7’ that is identical to = with the
following instruction added for each party after the committal round CR:

1. If all round CR messages of the protocol 7 are received, then send ready to
all the parties.
2. Proceed to round CR + 1 of 7 only after receiving ready from all parties.

This results in a protocol where ORR > CR 4 1. We term this transformation,
input committal synchronization and state the following corollary.

Corollary 5.5. Let f be an n-ary functionality, and suppose that the protocol ©
satisfies all the requirements of Theorem 5.3, except for ORR > CR+1. Then, the
protocol ™' with input committal synchronization securely realizes f with perfect
security against super-rushing adversaries.

Committal Round Over Broadcast (a special case of [15]). Consider the
BGW protocol for the computation of a linear function. This protocol satisfies
all of our sufficient conditions except the condition that ORR > CR + 1. To see
this, observe that the BGW protocol for the computation of linear functions is
as follows:

MPC in the Presence of Super-Rushing Adversaries 417

1. Each party with an input, executes a VSS of its input.

2. The parties perform a local computation on the shares they have received
from all the VSS instances to obtain shares on the output wires.

3. The parties execute a reconstruction of the outputs by reconstructing the
sharings on the output wires.

The protocol admits a committal round (the last round of the VSS) and an
output revealing round that immediately follows the committal round. Hence,
for this protocol, ORR = CR + 1.

We can derive the security of BGW for linear functions against super-rushing
adversaries using Corollary 5.5 at the cost of incurring an additional round. How-
ever, we observe that the committal round CR of this protocol is over the broad-
cast channel. Therefore, if an honest party completes CR, i.e., if the adversary
provided all messages to some honest P;- and requires to see its round CR + 1
messages, then the view of all other honest parties P; in round CR + 1 is also
determined and must be the same set of messages. We show the proof of the
following corollary in the full version:

Corollary 5.6. Let f be an n-ary functionality, and suppose that 7 satisfies all
the requirements of Theorem 5.3, except for ORR > CR+ 1, however, CR occurs
over the broadcast channel. Then, the protocol m securely realizes f with perfect
security against super-rushing adversaries.

6 A Separation for the Statistical Setting

Let f be an n-party functionality and let m be a protocol that satisfies all our
sufficient conditions in Theorem 5.3, except that 7 achieves only statistical secu-
rity against rushing adversaries. We show that security against super-rushing
adversaries is not always implied by security against rushing adversaries.

To that end, consider the BGW protocol for n = 5 parties with ¢ = 1 cor-
ruptions (which satisfies all our sufficient conditions, including perfect security)
with the following modifications:

1. The parties first execute an instance of the (2, 5) simultaneous broadcast pro-
tocol Tgp pasic (from Sect.4.1.1) on uniformly random inputs 71,79 < {0,1}",
where k denotes the statistical security parameter. Let (y1,y2) denote the
output of the parties in this phase.

2. If y1 = yo, the parties reveal their private inputs.

3. The parties then execute the BGW protocol on their actual inputs.

The above protocol securely computes f with perfect security against rushing
adversaries conditioned on y; # ys. From Lemma 4.2, we have that mgp-pasic is
perfectly secure in the presence of a rushing adversary. Therefore, the input
of P; is independent of the input o of P», and vice versa, even if one of them is
cheating. As a result, Pr[y; = y2] < 27" in the presence of a rushing adversary
and the modified BGW protocol securely realizes f with statistical security in the
presence of a rushing adversary. In fact, the simulator can completely ignore the

418 @G. Asharov et al.

bad event in the simulation, and the statistical distance would be 27*. As such,
the modified protocol still admits a committal round and an output revealing
round.

From Claim 4.4, we have that, in the presence of a super-rushing adversary
in the protocol, Pry; = y2] = 1. As a result, in the real execution of the above
protocol, there exists a super-rushing adversary that learns the inputs of the
honest parties before the execution of the modified BGW protocol. Such behavior
cannot be simulated by any simulator in the ideal execution and therefore, the
above protocol is not secure against a super-rushing adversary.

References

1. Abraham, 1., Asharov, G., Patil, S., Patra, A.: Detect, pack and batch: perfectly-
secure MPC with linear communication and constant expected time. In: EURO-
CRYPT 23, Part II. vol. 14005, pp. 251-281 (2023)

2. Abraham, I., Asharov, G., Patil, S., Patra, A.: Perfect asynchronous MPC with
linear communication overhead. In: EUROCRYPT ’24, Part V. vol. 14655, pp.
280-309 (2024)

3. Abraham, 1., Asharov, G., Yanai, A.: Efficient perfectly secure computation with
optimal resilience. In: TCC ’21, pp. 66-96 (2021)

4. Appan, A., Chandramouli, A., Choudhury, A.: Network agnostic perfectly secure
multiparty computation against general adversaries. IEEE Trans. Inf. Theory
71(1), 644-682 (2025)

5. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-
complexity of malicious MPC. In: EUROCRYPT ’19, Part II. vol. 11477, pp. 504—
531 (2019)

6. Applebaum, B., Kachlon, E., Patra, A.: The round complexity of perfect MPC
with active security and optimal resiliency. In: FOCS 20, pp. 1277-1284 (2020)

7. Asharov, G., Cohen, R., Shochat, O.: Static vs. adaptive security in perfect MPC: a
separation and the adaptive security of BGW. In: ITC ’22. vol. 230, pp. 15:1-15:16
(2022)

8. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. J. Cryptol. 30(1), 58-151 (2017)

9. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication for any t<n/3.
In: CRYPTO '11, pp. 240-258 (2011)

10. Bacho, R., Collins, D., Liu-Zhang, C., Loss, J.: Network-agnostic security comes
(almost) for free in DKG and MPC. In: CRYPTO ’23, Part 1. vol. 14081, pp.
71-106 (2023)

11. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: A foun-
dation of time-lock puzzles in UC. In: EUROCRYPT ’21, Part III. vol. 12698, pp.
429-459 (2021)

12. Beaver, D.: Foundations of secure interactive computing. In: CRYPTO ’91. vol. 576,
pp. 377-391 (1991)

13. Beerliova-Trubiniové, Z., Hirt, M., Nielsen, J.B.: On the theoretical gap between
synchronous and asynchronous MPC protocols. In: PODC 10, pp. 211-218 (2010)

14. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
STOC '93, pp. 52-61 (1993)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

MPC in the Presence of Super-Rushing Adversaries 419

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC ’88, pp. 1-10 (1988)

Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: PODC ’94, pp. 183-192 (1994)

Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous
fallback guarantees. In: TCC ’19, Part I. vol. 11891, pp. 131-150 (2019)

Blum, E., Zhang, C.L., Loss, J.: Always have a backup plan: fully secure syn-
chronous MPC with asynchronous fallback. In: CRYPTO ’20, Part II. vol. 12171,
pp. 707-731 (2020)

Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143—202 (2000)

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS ’01, pp. 136-145 (2001)

Canetti, R., Damgard, 1., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: EUROCRYPT ’01, pp. 262—
279 (2001)

Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC ’88, pp. 11-19 (1988)

Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: FOCS ’85,
pp. 383-395 (1985)

Chor, B., Kushilevitz, E.: A communication-privacy tradeoff for modular addition.
Inf. Process. Lett. 45(4), 205-210 (1993)

Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus protocols in
realistic failure models (extended abstract). In: PODC ’85, pp. 152-162 (1985)
Choudhury, A., Patra, A.: An efficient framework for unconditionally secure mul-
tiparty computation. IEEE Trans. Inf. Theory 63(1), 428-468 (2017)

Cohen, R.: Asynchronous secure multiparty computation in constant time. In: PKC
’16, Part II. vol. 9615, pp. 183-207 (2016)

Cohen, R., Coretti, S., Garay, J.A., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. J. Cryptol. 32(3), 690-741 (2019)

Cohen, R., Coretti, S., Garay, J.A., Zikas, V.: Round-preserving parallel compo-
sition of probabilistic-termination cryptographic protocols. J. Cryptol. 34(2), 12
(2021)

Coretti, S., Garay, J.A., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: ASTACRYPT ’16, Part II. vol.
10032, pp. 998-1021 (2016)

Cramer, R., Damgard, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: EUROCRYPT ’00. vol. 1807, pp. 316—
334 (2000)

Damgard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: CRYPTO ’07. vol. 4622, pp. 572-590 (2007)

Damgard, I., Nielsen, J.B.: Adaptive versus static security in the UC model. In:
Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS,
vol. 8782, pp. 10-28. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12475-9.2

Dodis, Y., Micali, S.: Parallel reducibility for information-theoretically secure com-
putation. In: CRYPTO ’00. vol. 1880, pp. 74-92 (2000)

Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288-323 (1988)

https://doi.org/10.1007/978-3-319-12475-9_2
https://doi.org/10.1007/978-3-319-12475-9_2

420

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

@G. Asharov et al.

Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374-382 (1985)

Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-
able secret sharing and secure multicast. In: STOC ’01, pp. 580-589 (2001)
Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: CRYPTO ’02. vol. 2442, pp. 178-193 (2002)

Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press (2004)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC ’87, pp. 218—
229 (1987)

Goyal, V., Liu, Y., Song, Y.: Communication-efficient unconditional MPC with
guaranteed output delivery. In: CRYPTO ’19, Part II, pp. 85-114 (2019)

Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party
computation with optimal resilience (extended abstract). In: EUROCRYPT ’05.
vol. 3494, pp. 322-340 (2005)

Hofheinz, D., Miiller-Quade, J.: A synchronous model for multi-party computation
and the incompleteness of oblivious transfer. ITACR Cryptol. ePrint Arch, p. 16
(2004). http://eprint.iacr.org/2004/016

Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent composition of secure pro-
tocols in the timing model. J. Cryptol. 20(4), 431-492 (2007)

Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: TCC ’13. vol. 7785, pp. 477-498 (2013)

Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: STOC ’06, pp. 109-118 (2006)

Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382401 (1982)

Liu-Zhang, C., Maurer, U.: Synchronous constructive cryptography. In: TCC ’20,
Part II. vol. 12551, pp. 439-472 (2020)

Micali, S., Rogaway, P.: Secure computation (abstract). In: CRYPTO ’91. vol. 576,
pp. 392-404 (1991)

Micali, S., Rogaway, P.: Secure computation (unpublished manuscript) (1992), pre-
liminary version in [49]. (All references within refer to the unpublished manuscript.)
Nielsen, J.B.: On Protocol Security in the Cryptographic Model. Ph.D. thesis,
University of Aarhus (2003)

Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228-234 (1980)

Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS
’86, pp. 160-164 (1986)

http://eprint.iacr.org/2004/016

	Peeking Into the Future: MPC Resilient to Super-Rushing Adversaries*-6pt
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	3 Preliminaries
	3.1 Communication Model

	4 Separating Rushing from Super-Rushing
	4.1 Rushing Security Does not Imply Super-Rushing Security
	4.2 Super-Rushing Security is not Maintained Under Sequential Composition

	5 Sufficient Conditions for Perfect Security with Super-Rushing Adversary
	5.1 Compatible Simulation
	5.2 The Main Theorem
	5.3 Examples
	5.4 Proof of Theorem 5.3
	5.5 Extensions

	6 A Separation for the Statistical Setting
	References

