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A B S T R A C T

Imaging nanomaterials in hybrid systems is critical to understanding the structure and functionality of these 
systems. However, current technologies such as scanning electron microscopy (SEM) may obtain high resolution/ 
contrast images at the cost of damaging or contaminating the sample. For example, to prevent the charging of 
organic substrate/matrix, a very thin layer of metal is coated on the surface, which will permanently contaminate 
the sample and eliminate the possibility of reusing it for following processes. Conversely, examining the sample 
without any modifications, in pursuit of high-fidelity digital images of its unperturbed state, can come at the cost 
of low-quality images that are challenging to process. Here, a solution is proposed for the case where no 
brightness threshold is available to reliably judge whether a region is covered with nanomaterials. The method 
examines local brightness variability to detect nanomaterial deposits. Very good agreement with manually ob
tained values of the coverage is observed, and a strong case is made for the method’s automatability. Although 
the developed methodology is showcased in the context of SEM images of Polydimethylsiloxane (PDMS) sub
strates on which silicone dioxide (SiO2) nanoparticles are assembled, the underlying concepts may be extended 
to situations where straightforward brightness thresholding is not viable.

1. Introduction

Nanomaterial-organic hybrid material systems have found extensive 
applications in composite, flexible and wearable electronics, energy 
storage systems, as well as medicine [1–5], etc. Many observational 
studies involve analyzing images for substrate coverage detection. Those 
may be underwater photographs to estimate the relative abundance of 
coral for example [6], lab images of biofilm coatings [7], or microscope 
digital images of substrates on which nanomaterials are deposited [8,9].

While imaging nanomaterials in hybrid systems is critical to under
stand the structure and functionality of these systems, it can be 
extremely challenging. Taking scanning electron microscopy (SEM) as 
an example, if the nanomaterials are deposited on top of or embedded 
into an organic substrate/matrix such as polymer or tissue, the charging 
of an organic (or even an inorganic) substrate can significantly disturb 
the imaging process. A common practice is to coat the surface with a thin 
conductive coating layer (e.g. metal) to eliminate charging and for 
biological samples, an additional dehydration process might be needed 
[10–12]. However, such processes could permanently contaminate or 

damage the sample and prevent it from further processing. Note that it is 
sometimes possible to remove the coating from SEM samples. Never
theless, the coating removal process usually involves new chemicals. In 
the case of nanoparticle assembly where the same substrate needs to be 
imaged at different assembly times, the introduced chemicals for the 
coating removal may alter the surface properties of the substrate and/or 
nanoparticles and change the assembly kinetics. Furthermore, while nm 
resolution in FE-SEM with ionic liquid [13,14] can be achieved and 
some systems do not need conductive layer coating, such cases do not 
cover conditions where imaging technology reaches its limits for some 
hard-to-image samples. To image the pristine sample without conduc
tive coatings, one can reduce the accelerating voltage or vacuum level at 
the cost of a compromised image resolution/contrast. When processing 
these digital images, such compromise creates difficulty for declaring 
whether a region is covered by the nanomaterials of interest, as a cri
terion for such an assessment would not be immediately obvious from 
the raw brightness data of the image and such conditions cannot be 
appropriately handled by existing software.

In a hybrid system, the coverage/content of nanomaterials on the 
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surface/cross section can be of great interests to establish the structure- 
property relationship. Therefore, many image processing efforts focus 
on coverage analysis. Image processing methods have also been reported 
for other applications. These include mixing time estimation from im
ages of a stirred transparent tank [15], studying image contrast by 
analyzing Sum Frequency Generation Imaging Microscopy (SFGIM) 
images of monodentate and bidentate alkanethiol Self-Assembled 
Monolayers (SAMs) 16], background estimation for precisely local
izing nanoscale light emitters [17], fast nanoparticle sizing using dy
namic light scattering [18,19] and counting of needle-shaped crystals by 
applying t he Radon transform to their digital microscope images [20]. 
For seabed photographs [6], the random point count is a popular 
method for estimating a certain species coverage. A set of random points 
is overlaid on the photograph and a user visually flags the points that 
happen to be over the species of interest. From the number of those 
designated points, a statistical estimate of that species coverage is then 
made.

When it comes to processing microscope images for a substrate’s 
covered fraction, the task consists of simply distinguishing empty re
gions from covered ones. More often than not, as in the case of the study 
by Carman and Budini cited earlier [8] for instance, the brightness 
contrast between empty and covered regions is high enough to easily 
determine a brightness threshold, below or above which a pixel can be 
designated as corresponding to a covered or a vacant area. However, 
such a clear cut through the brightness range is not always present. 
Sometimes, the overlap between the brightness ranges corresponding to 
empty and covered regions can be significant enough to throw off any 
coverage estimates based on simple brightness thresholding. Addressing 
such issues is typically attempted by contrast enhancement. A recently 
proposed model for image enhancement [21] has been shown to 
significantly improve the quality of raw underwater images in which 
high blurriness and color casts are often encountered. In the case dis
cussed herein, however, as will be illustrated shortly, contrast 
enhancement can do little to make the regions of interest more distin
guishable, at best, and can even exacerbate the problem, at worst.

As there are usually only two region categories to be distinguished on 

a substrate (either covered or empty), the random point count with vi
sual detection can indeed serve the purpose, with more random pixels 
yielding a coverage estimate that is closer to the true value. However, 
when high accuracy is required for a substantial number of images, 
manual pixel selections for each of those images become onerous, and 
prohibitively time expensive. The importance of a special type of 
nanomaterials, 2D materials, has been elucidated in two recent reviews 
on their key role in strain engineering [22] and Surface-Enhanced 
Raman Spectroscopy (SERS) [23]. Novel, ecofriendly techniques of 
assembling 2D materials on flexible polymer substrates, for future 
hybrid flexible electronics applications, have also been recently reported 
[24,25]. Therefore, the prospect of flexible devices that involve nano
materials, e.g., 2D materials assembled on flexible substrates[24,25], 
will necessitate future elaborate studies exploring ways to enhance the 
assembly speed and quality. This will inevitably entail a high volume of 
images to be assessed for coverage, highlighting the need for robust and 
automatable processing techniques. In this paper, a solution to the case 
when simple brightness thresholding is not enough, is proposed.

1.1. Covered Fraction Detection

Fig. 1a, shows an example that is representative of the kind of images 
that this communication is concerned with. In this SEM image, the 
grayscale brightness contrast between the covered and empty regions is 
not high enough to prevent the brightness ranges corresponding to those 
regions from significantly overlapping, or in this instance, one engulfing 
the other (Fig. 1b). Note the inside region of each particle which hap
pens to be dimmer than the periphery and hence could be mistaken for 
an empty region. This renders simple brightness thresholding for 
coverage detection unreliable.

The top row of Fig. 2 shows a version of the image in Fig. 1a, where 
the covered regions were manually marked (Fig. 2a) in black (0 
brightness value), next to another where the maxima have been located 
using the ImageJ software (Fig. 2b). Since no pixels in the empty regions 
are completely dark (see the red curve in Fig. 1), a quick count of the 
black pixels in the manually marked version yielded a coverage value of 

Fig. 1. (a): SEM image of a location on a substrate covered by silicon dioxide particles (glass beads). The red and blue squares enclose the manually sampled regions 
from the empty, and covered parts of the substrate, respectively. scale bar: 3 μm (b): The brightness distributions exhibited by the empty and covered regions.
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0.2619. The maxima found using ImageJ still missed many particles 
while mistakenly marking locations in empty regions. The middle row 
(Fig. 2c-e) shows processed versions of the original image, where 
contrast has been enhanced in ImageJ. Although particle covered re
gions are much more pronounced, it can be seen how the problem is 
made worse. The particle peripheral regions are now much brighter than 
their interior, in addition to empty regions racking up more bright and 
dark pixels, thereby further widening the brightness range overlap, as 
confirmed by their corresponding distributions shown in the bottom row 
(Fig. 2f-h).

The data of the original image in Fig. 1 needs to be manipulated in a 
way such that a signal corresponding to the deposits stands out. If bij 

denotes the grayscale brightness value corresponding to the pixel in the 
ith row and jth column, bij is defined as the average value of b over a 
window that is centered around that pixel. The window’s height and 
width are denoted as 2r1 + 1 and 2r2 + 1 , respectively. bij is then given 
by Eq. 1. 

Fig. 2. (a): A manually marked version of the original image in Fig. 1a. (b): another version where maxima are located to seek particles. (c-e) Contrast-enhanced 
versions of the original image, at 10% (c), 30% (d), and 50% (e) saturated pixels. (f-h): The brightness distributions corresponding to the enhanced versions in (c-e). 
All scale bars: 3 μm .
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bij =

∑k=i+r1
k=i−r1

∑l=j+r2
l=j−r2

bkl

(2r1 + 1)(2r2 + 1)
(1) 

The corresponding standard deviation would then be obtained as: 

sij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑k=i+r1
k=i−r1

∑l=j+r2
l=j−r2

(
bkl − bij

)2

(2r1 + 1)(2r2 + 1)

√

(2) 

sij is normalized by its maximum value as s∗
ij =

sij

max(sij)

Fig. 3b shows a color map of s∗
ij next to the original image (Fig. 3a). 

Note how in the color map, individual particles can be easily made out 
against the substrate. The values of r1 and r2 that made the particles so 
discernible in this example are r1 = 3 and r2 = 3 . These values may 
vary depending on the image resolution and magnification. It is now 
clear that s∗

ij is the signal sought after for coverage detection. This be
comes especially apparent when a map of s∗

ij is viewed in 3D as shown in 
Fig. 3c. Covered regions seem to feature sharp cliffs surrounded by 
empty regions. Let n be the total number of mapped pixels. The fraction 
F(τ) of pixels whose s∗ value is above a certain threshold τ (0 ≤ τ ≤ 1 ) 
is then obtained as: 

F(τ) =

∑
H

(
s∗
ij − τ

)

n
(3) 

The summation in Eq. 3 is performed over all the mapped pixels, and 
H is the Heaviside step function. When τ gradually decreases from 1 to 

0, F increases slowly until τ approaches 0, close to which the cliffs’ bases 
would make F shoot up towards 1 . Therefore, the coverage, which will 
be denoted as δ , would be the value of F around which its slope briefly 
stabilizes (due to the flat faces of the cliffs near their bases) before the 
sharp increase begins. In Fig. 3d, the x-axis is the threshold index rep
resenting τ as it decreases from 1 to 0 (in decrements of 1/1000 , which 
happens to provide enough resolution to compute the gradient in this 
instance). Compared to the value of 0.2619 computed earlier from the 
manually marked regions, the detected value in Fig. 3d is 0.2684 , a hint 
to the technique’s validity.

Fig. 4 shows the same procedure outlined above, but this time using 
the normalized brightness gradient magnitude, g∗

ij , instead of the s∗
ij . 

While Fig. 4a does show that gradient contours yield a signal that, at 
least visually, makes the deposits stand out, Fig. 4b reveals how poorly it 
does so compared to the significantly more pronounced contrast with 
which s∗

ij differentiates the empty and covered regions (Fig. 3c). This is 
further confirmed in Fig. 4c, where the featureless rise of the red curve 
makes it challenging to pinpoint any possible value for the coverage. It 
may be argued that a watershed method, which relies on gradients to 
identify shapes and objects, could be used to flag the particles by picking 
circular ridges in the gradient map then counting them. However, even if 
this were to be applied to the more discerning s∗ map, the uncertainties 
brought on by distorted outlines of closely packed particles would still 
need to be dealt with, rendering the endeavor more complicated than it 
has to be. This is not to mention cases where the features of interest 
exhibit random, rather than regular and consistent shapes.

Fig. 3. (a) The original image next to its corresponding (b) color map of s∗
ij (a top view of c), (c) a surface plot of s∗

ij , (d) coverage detection. Scale bar: 3 μm .
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1.2. Automated detection

When hundreds, or even thousands of images such as the one shown 
in Fig. 1 need to be processed for coverage, manually performing the 
procedure developed in the previous section clearly becomes unrealistic. 
Therefore, some precisely quantifiable feature of F(τ) (Eq. 3) that can 
serve as a reliable predictor of δ , is worth pursuing. In the experimental 
work that entailed the use of such SEM imaging, 125 images were 
manually processed for δ , following the method described earlier. Pre
liminary mining of those results revealed an attribute of F(τ) that seems 
to predict δ reasonably well. Explicitly, it is the average value of F over 
an interval a < τ < b containing τ = 0.05 . This average value is denoted 
as F0.05 . 

F0.05 =

∫ b
a F(τ)dτ
b − a

(4) 

Fig. 5 shows the correlation between F0.05 and δ as unraveled by the 
results from the 125 images, when the values of a and b were set to 0.04 
and 0.09, respectively.

Barring the occasional scatter, the high R value of 0.99 reflects the 
tightness of this correlation.

The results shown in Fig. 3d, and Fig. 5 are not final. They illustrate a 
general method, as the values of r1 , r2 , a and b may still be optimized to 
make it as accurate as it can be. Optimization techniques are abundantly 
covered in the literature, and those parameters’ optimal values per
taining to this specific set of 125 images, are not the focus of this study. 
Another set where the resolution, the particle (or feature) size, or the 
magnification are different would be expected to yield different optimal 
values. Whatever those values may be though, if they correspond to a 
subset of images that is representative enough of an entire set of interest, 
the resulting correlation can then be used to quickly estimate the 
coverage for the remainder of that set.

2. Conclusion

In conclusion, a method for substrate coverage detection in the case 
where simple brightness thresholding is not appropriate, is proposed 
and discussed. In the absence of a clear brightness contrast between 
covered and vacant regions, the high contrast of featureful deposits 
against a featureless substrate is quantified and used instead. The level 
of detail in the technical discussions should be enough for an interested 
reader to implement this method in any suitable coding language. 
Further expounding on the implementation side, this method clearly 
does not warrant a dedicated software package but can indeed be useful 
as a new tool to be added to any image processing software’s toolbox.
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