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Imaging nanomaterials in hybrid systems is critical to understanding the structure and functionality of these
systems. However, current technologies such as scanning electron microscopy (SEM) may obtain high resolution/
contrast images at the cost of damaging or contaminating the sample. For example, to prevent the charging of
organic substrate/matrix, a very thin layer of metal is coated on the surface, which will permanently contaminate
the sample and eliminate the possibility of reusing it for following processes. Conversely, examining the sample
without any modifications, in pursuit of high-fidelity digital images of its unperturbed state, can come at the cost
of low-quality images that are challenging to process. Here, a solution is proposed for the case where no
brightness threshold is available to reliably judge whether a region is covered with nanomaterials. The method
examines local brightness variability to detect nanomaterial deposits. Very good agreement with manually ob-
tained values of the coverage is observed, and a strong case is made for the method’s automatability. Although
the developed methodology is showcased in the context of SEM images of Polydimethylsiloxane (PDMS) sub-
strates on which silicone dioxide (SiO2) nanoparticles are assembled, the underlying concepts may be extended

to situations where straightforward brightness thresholding is not viable.

1. Introduction

Nanomaterial-organic hybrid material systems have found extensive
applications in composite, flexible and wearable electronics, energy
storage systems, as well as medicine [1-5], etc. Many observational
studies involve analyzing images for substrate coverage detection. Those
may be underwater photographs to estimate the relative abundance of
coral for example [6], lab images of biofilm coatings [7], or microscope
digital images of substrates on which nanomaterials are deposited [8,9].

While imaging nanomaterials in hybrid systems is critical to under-
stand the structure and functionality of these systems, it can be
extremely challenging. Taking scanning electron microscopy (SEM) as
an example, if the nanomaterials are deposited on top of or embedded
into an organic substrate/matrix such as polymer or tissue, the charging
of an organic (or even an inorganic) substrate can significantly disturb
the imaging process. A common practice is to coat the surface with a thin
conductive coating layer (e.g. metal) to eliminate charging and for
biological samples, an additional dehydration process might be needed
[10-12]. However, such processes could permanently contaminate or

damage the sample and prevent it from further processing. Note that it is
sometimes possible to remove the coating from SEM samples. Never-
theless, the coating removal process usually involves new chemicals. In
the case of nanoparticle assembly where the same substrate needs to be
imaged at different assembly times, the introduced chemicals for the
coating removal may alter the surface properties of the substrate and/or
nanoparticles and change the assembly kinetics. Furthermore, while nm
resolution in FE-SEM with ionic liquid [13,14] can be achieved and
some systems do not need conductive layer coating, such cases do not
cover conditions where imaging technology reaches its limits for some
hard-to-image samples. To image the pristine sample without conduc-
tive coatings, one can reduce the accelerating voltage or vacuum level at
the cost of a compromised image resolution/contrast. When processing
these digital images, such compromise creates difficulty for declaring
whether a region is covered by the nanomaterials of interest, as a cri-
terion for such an assessment would not be immediately obvious from
the raw brightness data of the image and such conditions cannot be
appropriately handled by existing software.

In a hybrid system, the coverage/content of nanomaterials on the
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surface/cross section can be of great interests to establish the structure-
property relationship. Therefore, many image processing efforts focus
on coverage analysis. Image processing methods have also been reported
for other applications. These include mixing time estimation from im-
ages of a stirred transparent tank [15], studying image contrast by
analyzing Sum Frequency Generation Imaging Microscopy (SFGIM)
images of monodentate and bidentate alkanethiol Self-Assembled
Monolayers (SAMs) 16], background estimation for precisely local-
izing nanoscale light emitters [17], fast nanoparticle sizing using dy-
namic light scattering [18,19] and counting of needle-shaped crystals by
applying t he Radon transform to their digital microscope images [20].
For seabed photographs [6], the random point count is a popular
method for estimating a certain species coverage. A set of random points
is overlaid on the photograph and a user visually flags the points that
happen to be over the species of interest. From the number of those
designated points, a statistical estimate of that species coverage is then
made.

When it comes to processing microscope images for a substrate’s
covered fraction, the task consists of simply distinguishing empty re-
gions from covered ones. More often than not, as in the case of the study
by Carman and Budini cited earlier [8] for instance, the brightness
contrast between empty and covered regions is high enough to easily
determine a brightness threshold, below or above which a pixel can be
designated as corresponding to a covered or a vacant area. However,
such a clear cut through the brightness range is not always present.
Sometimes, the overlap between the brightness ranges corresponding to
empty and covered regions can be significant enough to throw off any
coverage estimates based on simple brightness thresholding. Addressing
such issues is typically attempted by contrast enhancement. A recently
proposed model for image enhancement [21] has been shown to
significantly improve the quality of raw underwater images in which
high blurriness and color casts are often encountered. In the case dis-
cussed herein, however, as will be illustrated shortly, contrast
enhancement can do little to make the regions of interest more distin-
guishable, at best, and can even exacerbate the problem, at worst.

As there are usually only two region categories to be distinguished on
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a substrate (either covered or empty), the random point count with vi-
sual detection can indeed serve the purpose, with more random pixels
yielding a coverage estimate that is closer to the true value. However,
when high accuracy is required for a substantial number of images,
manual pixel selections for each of those images become onerous, and
prohibitively time expensive. The importance of a special type of
nanomaterials, 2D materials, has been elucidated in two recent reviews
on their key role in strain engineering [22] and Surface-Enhanced
Raman Spectroscopy (SERS) [23]. Novel, ecofriendly techniques of
assembling 2D materials on flexible polymer substrates, for future
hybrid flexible electronics applications, have also been recently reported
[24,25]. Therefore, the prospect of flexible devices that involve nano-
materials, e.g., 2D materials assembled on flexible substrates[24,25],
will necessitate future elaborate studies exploring ways to enhance the
assembly speed and quality. This will inevitably entail a high volume of
images to be assessed for coverage, highlighting the need for robust and
automatable processing techniques. In this paper, a solution to the case
when simple brightness thresholding is not enough, is proposed.

1.1. Covered Fraction Detection

Fig. 1a, shows an example that is representative of the kind of images
that this communication is concerned with. In this SEM image, the
grayscale brightness contrast between the covered and empty regions is
not high enough to prevent the brightness ranges corresponding to those
regions from significantly overlapping, or in this instance, one engulfing
the other (Fig. 1b). Note the inside region of each particle which hap-
pens to be dimmer than the periphery and hence could be mistaken for
an empty region. This renders simple brightness thresholding for
coverage detection unreliable.

The top row of Fig. 2 shows a version of the image in Fig. 1a, where
the covered regions were manually marked (Fig. 2a) in black (0
brightness value), next to another where the maxima have been located
using the ImageJ software (Fig. 2b). Since no pixels in the empty regions
are completely dark (see the red curve in Fig. 1), a quick count of the
black pixels in the manually marked version yielded a coverage value of
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Fig. 1. (a): SEM image of a location on a substrate covered by silicon dioxide particles (glass beads). The red and blue squares enclose the manually sampled regions
from the empty, and covered parts of the substrate, respectively. scale bar: 3 ym (b): The brightness distributions exhibited by the empty and covered regions.
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Fig. 2. (a): A manually marked version of the original image in Fig. 1a. (b): another version where maxima are located to seek particles. (c-e) Contrast-enhanced
versions of the original image, at 10% (c), 30% (d), and 50% (e) saturated pixels. (f-h): The brightness distributions corresponding to the enhanced versions in (c-e).

All scale bars: 3 um.

0.2619. The maxima found using ImageJ still missed many particles
while mistakenly marking locations in empty regions. The middle row
(Fig. 2c-e) shows processed versions of the original image, where
contrast has been enhanced in ImageJ. Although particle covered re-
gions are much more pronounced, it can be seen how the problem is
made worse. The particle peripheral regions are now much brighter than
their interior, in addition to empty regions racking up more bright and
dark pixels, thereby further widening the brightness range overlap, as
confirmed by their corresponding distributions shown in the bottom row
(Fig. 2f-h).

The data of the original image in Fig. 1 needs to be manipulated in a
way such that a signal corresponding to the deposits stands out. If b
denotes the grayscale brightness value corresponding to the pixel in the
i row and j* column, by is defined as the average value of b over a

window that is centered around that pixel. The window’s height and

width are denoted as 2r; + 1 and 2r; + 1, respectively. by is then given
by Eq. 1.
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Fig. 3b shows a color map of s;; next to the original image (Fig. 3a).

sj is normalized by its maximum value as s; =

Note how in the color map, individual particles can be easily made out
against the substrate. The values of r; and r, that made the particles so
discernible in this example are r; = 3 and rp = 3. These values may
vary depending on the image resolution and magnification. It is now
clear that sj; is the signal sought after for coverage detection. This be-
comes especially apparent when a map of sj; is viewed in 3D as shown in
Fig. 3c. Covered regions seem to feature sharp cliffs surrounded by
empty regions. Let n be the total number of mapped pixels. The fraction
F(7) of pixels whose s* value is above a certain thresholdz (0 <7<1)
is then obtained as:

_ ZH(S; —r)

F(7) 0

3

The summation in Eq. 3 is performed over all the mapped pixels, and
H is the Heaviside step function. When 7 gradually decreases from 1 to

Fig. 3. (a) The original image next to its corresponding (b) color map of s; (a top view of ¢), (c) a surface plot of s;

4
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0, F increases slowly until 7 approaches 0, close to which the cliffs’ bases
would make F shoot up towards 1. Therefore, the coverage, which will
be denoted as §, would be the value of F around which its slope briefly
stabilizes (due to the flat faces of the cliffs near their bases) before the
sharp increase begins. In Fig. 3d, the x-axis is the threshold index rep-
resenting ¢ as it decreases from 1 to O (in decrements of 1/1000, which
happens to provide enough resolution to compute the gradient in this
instance). Compared to the value of 0.2619 computed earlier from the
manually marked regions, the detected value in Fig. 3d is 0.2684, a hint
to the technique’s validity.

Fig. 4 shows the same procedure outlined above, but this time using
the normalized brightness gradient magnitude, g instead of the S; -
While Fig. 4a does show that gradient contours yield a signal that, at
least visually, makes the deposits stand out, Fig. 4b reveals how poorly it
does so compared to the significantly more pronounced contrast with
which s;; differentiates the empty and covered regions (Fig. 3¢). This is

further confirmed in Fig. 4c, where the featureless rise of the red curve
makes it challenging to pinpoint any possible value for the coverage. It
may be argued that a watershed method, which relies on gradients to
identify shapes and objects, could be used to flag the particles by picking
circular ridges in the gradient map then counting them. However, even if
this were to be applied to the more discerning s* map, the uncertainties
brought on by distorted outlines of closely packed particles would still
need to be dealt with, rendering the endeavor more complicated than it
has to be. This is not to mention cases where the features of interest
exhibit random, rather than regular and consistent shapes.

Fraction
Normalized fraction gradient

Detected
coverage*“

-

200 400

Threshold index

;> (d) coverage detection. Scale bar: 3 ym.
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Fig. 4. (a) The normalized brightness gradient magnitude contours, (b) a 3D plot of the normalized gradient magnitude, and (c) F(z) and its normalized gradient

based on (b).

1.2. Automated detection

When hundreds, or even thousands of images such as the one shown
in Fig. 1 need to be processed for coverage, manually performing the
procedure developed in the previous section clearly becomes unrealistic.
Therefore, some precisely quantifiable feature of F(r) (Eq. 3) that can
serve as a reliable predictor of §, is worth pursuing. In the experimental
work that entailed the use of such SEM imaging, 125 images were
manually processed for §, following the method described earlier. Pre-
liminary mining of those results revealed an attribute of F(7) that seems
to predict 6 reasonably well. Explicitly, it is the average value of F over
aninterval a < 7 < b containing z = 0.05. This average value is denoted
as Fo o5 .

- /i F (r)dr
Foos = 7“1) — ()]
a

Fig. 5 shows the correlation between Fy o5 and § as unraveled by the
results from the 125 images, when the values of a and b were set to 0.04
and 0.09, respectively.

Barring the occasional scatter, the high R value of 0.99 reflects the
tightness of this correlation.

The results shown in Fig. 3d, and Fig. 5 are not final. They illustrate a
general method, as the values of r; , 7>, a and b may still be optimized to
make it as accurate as it can be. Optimization techniques are abundantly
covered in the literature, and those parameters’ optimal values per-
taining to this specific set of 125 images, are not the focus of this study.
Another set where the resolution, the particle (or feature) size, or the
magnification are different would be expected to yield different optimal
values. Whatever those values may be though, if they correspond to a
subset of images that is representative enough of an entire set of interest,
the resulting correlation can then be used to quickly estimate the
coverage for the remainder of that set.

2. Conclusion

In conclusion, a method for substrate coverage detection in the case
where simple brightness thresholding is not appropriate, is proposed
and discussed. In the absence of a clear brightness contrast between
covered and vacant regions, the high contrast of featureful deposits
against a featureless substrate is quantified and used instead. The level
of detail in the technical discussions should be enough for an interested
reader to implement this method in any suitable coding language.
Further expounding on the implementation side, this method clearly
does not warrant a dedicated software package but can indeed be useful
as a new tool to be added to any image processing software’s toolbox.
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