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1. Introduction

Nonlinear optimization, also known as nonlinear programming (NLP), is a branch of mathematical optimization
concerned with solving problems in which the objective function, constraints, or both exhibit nonlinearity.
Although nonlinear optimization problems are common in various application fields such as engineering, man-
agement, economics, and finance, these problems are in general nonconvex with complicated landscape features
like multiple local stationary points, valleys, and plateaus. As the number of variables grows, the complexity of
the problem could grow rapidly, posing a significant challenge in obtaining globally optimal solutions.

Several open-source and commercial software packages, including Ipopt (Kawajir et al. 2006), Gurobi (Gurobi
Optimization, LLC 2021), and CPLEX (Blieklu et al. 2014), have been developed to tackle large-scale nonlinear
optimization problems. Although these optimizers can incorporate powerful heuristics to enhance performance
for certain problem instances, there is no polynomial-time guarantee for these optimizers because nonlinear opti-
mization is generally NP-hard. Often, the problem structure is unknown, and there is no commonly agreed-upon
go-to optimizer for nonlinear optimization in practice.

Quantum computers are emerging technologies that can leverage the laws of quantum mechanics to offer the-
oretical and practical advantages over classical computers in solving large-scale computational problems. Unlike
their classical counterparts, quantum computers utilize a unique phenomenon known as quantum tunneling to
accelerate the solution of nonconvex optimization problems. Specifically, a quantum particle can pass through a
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high potential barrier that would be insurmountable classically because of insufficient energy. This exotic behav-
ior enables a quantum computer to bypass suboptimal solutions, efficiently navigating the complex landscape of
nonlinear optimization.

Recently, Leng et al. (2023b) proposed a novel quantum algorithm named quantum Hamiltonian descent
(QHD). QHD is inspired by the observation that many first-order (i.e., gradient-based) methods can be inter-
preted as dynamical processes governed by physical laws. For example, it has been shown that the cele-
brated Nesterov accelerated gradient descent algorithm can be modeled by a time-dependent Lagrangian
mechanical system that would find local minima in the system (Su et al. 2016, Wibisono et al. 2016). By
upgrading the classical Lagrangian mechanics to quantum mechanics, we end up with a minimum-finding
quantum process, just like gradient descent. Additionally, this quantum dynamical process demonstrates the
quantum tunneling effect, making it a competitive candidate for solving nonconvex optimization problems.
Simulating this quantum dynamical process on a quantum computer gives rise to QHD, a simple but power-
ful quantum algorithm for continuous optimization, especially nonlinear problems with nonconvex objective
functions. A follow-up work by Leng et al. (2023a) shows that QHD can solve a family of hard optimization
instances in polynomial time, whereas an empirical study suggests that these problem instances are intracta-
ble for many classical optimization algorithms such as branch-and-bound, stochastic gradient descent, the
interior point method, etc.

A key feature of QHD is that it is formulated as a quantum evolution, which can be simulated on both digi-
tal and analog quantum computers. This feature allows us to implement QHD to tackle real-world tasks with
near-term realizable quantum computers. Digital quantum computers perform computation by applying a
sequence of elementary quantum gates to an initial quantum state. These machines exhibit provable quantum
advantages over classical (digital) computers for certain computational tasks; however, they require a large
number of digital (i.e., error-corrected) qubits. Although there has recently been a groundbreaking experimen-
tal demonstration of early fault tolerance (Google Quantum Al 2023, Singh et al. 2023, Sivak et al. 2023, Bluv-
stein et al. 2024), existing digital quantum computers have not yet reached the size necessary to accelerate the
solution of real-world problems in application domains such as management, finance, and engineering (Bever-
land et al. 2022, Dalzell et al. 2023). Analog quantum computers solve computational tasks by configuring and
emulating a real quantum system and then performing quantum measurements. These devices are easier to
fabricate, control, and scale (O’Brien et al. 2009, Saffman 2016, Wendin 2017), although they are unavoidably
noisy, and no general error correction technique is currently practical (Lloyd and Slotine 1998, Atalaya et al.
2021). Leng et al. (2023b) proposed a systematic technique named Hamming encoding that enables us to imple-
ment QHD to solve quadratic programming (QP) problems on analog quantum computers with an Ising
Hamiltonian. This technique is exemplified in solving 75-dimensional nonconvex QP problems, where the
noisy real-machine implementation of QHD outperforms existing open-source nonlinear optimization soft-
ware like Ipopt.

In this paper, we develop QHDOPT, an end-to-end implementation of QHD for nonlinear optimization. A nota-
ble feature of QHDOPT is that it supports the deployment of QHD to multiple quantum computing hardware,
including gate-based quantum computers such as IonQ, and analog quantum computers such as D-Wave.
QHDOPT provides a user-friendly interface, with which a nonlinear optimization problem can be specified via
either matrix/numeric or symbolic description. Then, the implementation of QHD is fully automatized, and the
(approximate) optimal solutions will be returned once the computation is completed. The midlevel compilation
and cross-hardware deployment are achieved by utilizing SimuQ, a framework for programming and compiling
quantum Hamiltonian systems, for Hamiltonian-oriented programming (HOP; Peng et al. 2024).

1.1. Organization

The rest of this paper is organized as follows.' In Section 1.2, we explain the general problem formulation for
nonlinear optimization problems that can be processed and solved by QHDOPT. In Section 1.3, we discuss the
workflow of QHDOPT, including the quantum backend and classical refinement. In Section 1.4, we discuss several
unique design features of QHDOPT, especially the multibackend compatibility achieved by incorporating the
HOP framework. In Section 2, we briefly review the QHD algorithm and its implementation on both digital and
analog quantum computers. Then, in Section 3, we sketch the workflow of the software, including all major steps
in the implementation of QHD and classical postprocessing. Section 4 provides two worked examples of model-
ing and solving nonlinear optimization problems. In Section 5, we review the current state and trend of quantum
optimization software. We conclude with a comparison of QHDOPT with other available open-source optimizers
in Section 6.
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1.2. Problem Formulation: Box-Constrained Nonlinear Optimization
The package QHDOPT solves nonlinear programming problems of the following form:

min f(x1, ..., %) = > ogilx) + > pilugilx) (1.1a)
i=1 =1

univariate part bivariate part

st Li<x;<U, Yie{l,... n}, (1.1b)

where x1,...,x, are n variables subject to the box constraint x; € [L;, U;] CR for each i=1,...,n, and the indices
ki t;e{l,...,n} and k; # {; for each j=1,...,m. The functions g;(x;), pj(xkj), and q]‘(X(j) are real univariate differen-
tiable functions defined on R. Note that the univariate part in (1.1a) has at most # terms because we can always
combine separate univariate functions of a fixed variable x; into a single one. However, there is no upper bound
for the integer m (i.e., the number of bivariate terms).”

The nonlinear optimization problem (1.1) is in general NP-hard (Hochbaum 2007) and can be used to model
several common classes of optimization problems, including linear programming, quadratic programming, and
polynomial optimization (with box constraints). In the following examples, we show how to formulate some
standard nonlinear optimization problems in the form of (1.1a).

Example 1 (Box-Constrained Quadratic Programming). A quadratic programming problem with a box constraint
takes the form

min fx):= %xTQx +b"x (1.2a)
st.0<x<1, (1.2b)

where Q € R™" is a symmetric matrix, and b is a real-valued vector of dimension n. The objective function can be

written as
n

f)=>" G Qix; + bm) + > Qoo
=1

1<k<t<n

This function is represented by (1.1a) by choosing

1 .
Qi(x) = EQi,ixf +bix;, Vi=1,...,n, (1.3a)

)

5 (1.3b)

pi(xe) = Qi ex,  qi(xe) = x¢,  Vj€ {1, e
Here (kj, {;) are the jth pair in the enumeration {(k,{): 1 < k < £ < n}.
Although the problem formulation can handle only box constraints, we note that many optimization problems
with more sophisticated constraints can be reformulated in the form of (1.1) by adding the constraints as a pen-
alty term in the objective function.

Example 2 (Spherical Constraints). Consider the optimization problem with 7 variables:

n
mxinf(x) = Zajx]- (1.4a)
=1
sty x=1, (1.4b)
=1

where a; are real scalars for all j=1,...,n. The feasible set of this problem is the n-dimensional sphere with
radius one, which cannot be directly recast as a box in the form of (1.1b). Meanwhile, we observe that all the vari-
ables must take values between zero and one because the unit sphere is contained in the unit (hyper)cube. There-
fore, we can reformulate (1.4) to a box-constrained optimization problem by the penalty method:

2
n n
rrgnf(x) = Zoc]-x]- +A Zx]z -11, (1.5a)
=1 =1

st0<x<l (1.5b)
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This new problem can be handled by our software QHDOPT because the objective function (1.5a) involves only
uni- and bivariate monomials. As the penalty coefficient A > 0 grows, we can show that the solution to the box-
constrained problem (1.5) will eventually converge to the optimal solution to the original problem (1.4).

It is worth noting that the problem formulation supported by QHDOPT is restrictive, and there exist many gen-
eral nonlinear optimization problems that cannot be directly expressed in (1.1). For example, our formulation
cannot deal with objective functions involving trivariate monomials (e.g., xyz). Although, in theory, QHD can
handle box-constrained optimization models given access to ideal quantum hardware, in QHDOPT, we limit the
appearance of trivariate parts or higher to cater to the current quantum hardware restrictions.

Additionally, we note that there may be several corner cases that are representable by (1.1) but would require
an excessively long time for QHDOPT to parse and solve. For example, when the objective function involves thou-
sands of bivariate functions, it might take QHDOPT minutes to compile and implement the automatic differentia-
tion subroutine based on JAX. We advise users to prioritize the use cases with low-degree polynomials, bounded
exponential functions, and simple trigonometric functions.

1.3. Solving Problems in QHDOPT

QHDOPT utilizes the quantum Hamiltonian descent algorithm to facilitate the solution of nonlinear and noncon-
vex optimization problems. Theoretically, quantum Hamiltonian descent, when running with an ideal fault-
tolerant quantum computer, can solve many optimization problems up to global optimality given a sufficiently
long run time (Leng et al. 2023b). However, at the current stage, because of the lack of fault tolerance, we can
implement quantum Hamiltonian descent only in a low-precision and noisy manner, which significantly reduces
the solution quality promised by the theoretical guarantee. To mitigate the noisy performance of near-term quan-
tum hardware with limited resources, we adopt a hybrid quantum-classical computing workflow in QHDOPT to
achieve optimal performance, as illustrated in Figure 1(b).

1.3.1. Preprocessing and Problem Encoding. First, we map a box-constrained nonlinear optimization problem
to a quantum-mechanical system with finite degrees of freedom. This reduced quantum model can be regarded
as a finite-precision approximation of the original QHD model. Then, this quantum model is embedded into a
larger quantum system that is natively executable using one of the supported quantum backends. This process is
called Hamiltonian programming. Although the quantum hardware “sees” only a reduced version of the original
problem, the Hamiltonian embedding technique (Leng et al. 2024) ensures that the spatial structure inherited from
the original problem is preserved and naturally encoded in the quantum operator. Therefore, QHDOPT allows us
to run a coarse-grained version of QHD on near-term quantum devices.

Figure 1. (Color online) An Overview of QHDOPT

(a) (b)
Domain Applications Hamiltonian-Oriented
Engineering, Management, Programmin
Economics, Finance SymPy / QP ca g
l ( Box-Constrained
uantum Algorithm s Nonlinear Optimization
Quantum Hailtonian QUL min ]?(x)
Descent (QHD) \ Interface - xenl 7
Quantum Software f QHDOPT QH];)S C}eglem%?nﬁion
QHDOPT | Postprocessor (HO —— A — A
l SimquCompiIer
Quantum Hardware < Optir!nal > Device Instruction
D-Wave, lonQ, Solution Hgey (t)

Classical Simulator (QuTiP)

Notes. Panel (a) shows building the stack of quantum computing for nonlinear optimization. Panel (b) shows the workflow of QHDOPT, inspired
by the Hamiltonian-oriented programming paradigm.
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1.3.2. Deployment and Decoding. Then, the quantum operator that encodes the original nonlinear optimization
problem is constructed and executed on a quantum backend. Currently, QHDOPT supports three backends: the
D-Wave quantum computer, the IonQ) quantum computer, and a classical simulator based on QuTiP (a Python-
based quantum simulation software). The measurement results from quantum devices are in 0-1 format (i.e., bina-
ries), which requires a decoder to recover the corresponding solution in the continuous space (e.g., the unit box).

1.3.3. Classical Refinement. Limited by the size and coherent time of current quantum devices, the quantum-
generated solutions are of low precision and intrinsically noisy. QHDOPT relies on classical local search algo-
rithms, such as first- and second-order methods, to improve numerical precision. Currently, QHDOPT supports
two local optimizers: a general-purpose interior point method (Ipopt) and a truncated Newton method (TNC)
implemented in SciPy. Although we do not include other local search subroutines in QHDOPT, we note that
generic local optimizers allowing box constraints should work as well.

Because QHDOPT leverages local search algorithms as refiners, the output solutions are necessarily locally opti-
mal (i.e., first- or second-order stationary points, depending on the choice of refinement subroutine). That being
said, we would like to note that the QHD algorithm, when executed on a large fault-tolerant quantum computer,
is able to find the global minimum for a large family of nonconvex functions with mild assumptions, provided
that the run time is sufficiently long (Leng et al. 2023b, theorem 2). The performance of QHDOPT for practical pro-
blems, however, heavily depends on the quality of near-term quantum devices, which are often of limited scale
and prone to physical noise. Meanwhile, it is also possible to refine the quantum-generated solutions using a
global solver (e.g., Gurobi, BARON). In this case, the global optimality is guaranteed, but the postprocessing
time could be significantly longer. Because of the limited time frame, we leave a global-solver-based refinement
as future work.

1.4. Unique Design Features
In what follows, we discuss a few unique design features of our software.

1.4.1. Hamiltonian-Oriented Programming. QHDOPT exploits the QHD algorithm to solve nonlinear optimization
problems. This quantum algorithm is formulated as a Hamiltonian simulation (i.e., simulating the evolution of a
quantum-mechanical system), encompassing a novel abstraction of computation on quantum devices, which we
call Hamiltonian-oriented programming. In contrast to the conventional circuit-based quantum computation par-
adigm, where theorists describe quantum algorithms in terms of quantum circuits, the HOP paradigm describes
quantum algorithms as a single or a sequence of quantum Hamiltonian evolution. This new paradigm enables us
to build a stack of quantum applications by leveraging the native programmability of quantum hardware in the
development of quantum algorithms and software, as illustrated in Figure 1(a). The HOP paradigm is empow-
ered by SimuQ, a recent framework for programming and compiling quantum Hamiltonian systems by Peng
et al. (2024). In SimuQ, the programming and simulation of quantum Hamiltonian systems are wrapped in user-
friendly Python methods. This makes the high-level programming and deployment of Hamiltonian-oriented
quantum algorithms accessible to users with little exposure to real-machine engineering and manipulation. A
detailed discussion on the Hamiltonian programming and compilation in QHDOPT is available in Section 3.

1.4.2. Multibackend Compatibility. In QHDOPT, we utilize SimuQ as an intermediate layer for the programming
of QHD and leverage the SimuQ compiler to realize multibackend compatibility. Through SimuQ, QHDOPT ini-
tially constructs a hardware-agnostic Hamiltonian representation of QHD (i.e., Hamiltonian embedding) that
can be deployed on various quantum backends, including D-Wave devices, IonQ devices, and classical simula-
tors via QuTiP (Johansson et al. 2012).

1.4.3. Automatic Differentiation. QHDOPT relies on JAX, a high-performance numerical computing library, to per-
form automatic differentiation of smooth, nonlinear objective functions. This feature enables QHDOPT to seam-
lessly postprocess quantum-generated solutions using local search optimizers.

2. Quantum Hamiltonian Descent

In our software, we utilize QHD to solve box-constrained nonlinear optimization problems as described in (1.1).
QHD solves a continuous optimization problem by simulating a quantum dynamical system governed by an
evolutionary partial differential equation called the Schrodinger equation. Here, we give a high-level review of this
quantum algorithm, and more details can be found in Leng et al. (2023b).
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2.1. Mathematical Formulation and Interpretation

Consider a nonlinear objective function f(x) with a box constraint Q= {(x1,...,x,) eR":L; < x; < U;, Vi=1,
...,n}. To solve this optimization problem, QHD requires simulating the following Schrédinger equation over
the feasible set Q3 with Dirichlet boundary condition, that is, W(t,x) = 0 for x € Q,

i%\lf(t, X) = {e‘f’f <— %A) + e)‘*f(x)] W(t, x), (2.1)
subject to an initial state \P'(f, x) = Wo(x). Here, the operator A:= "7, % is the Laplacian operator defined in the

interior of (), and the time-dependent functions e* and e** control the total energy distribution of the quantum
system. In practice, the initial state Wy(x) is often chosen as a quantum state that is easy to prepare, for example,
a Gaussian state or a uniformly random state. For general (nonconvex) optimization problems, it is observed that
an inverse polynomially decaying ¢#* and polynomially increasing e* (e.g., ¢, = —log(1 + yt2), x; = log(1 + yt?)
with a positive y) work well for many test problems (Leng et al. 2023b). With a Gaussian initial state and smooth
time-dependent functions, the dynamics generated by (2.1) can be simulated using O(nT) elementary gates and
O(T) queries to the objective function f (Childs et al. 2022).

Physically, Equation (2.1) describes the time evolution of a quantum particle in the box Q. The time-dependent
functions e?' and e* control the total energy distribution of this quantum particle: when their ratio, e /e*, is
large, the kinetic energy dominates and the particle tends to bounce around; otherwise, the potential energy
takes over and the particle tends to stay still. If we choose these functions such that lim;_,.e?: /eX* = 0, the kinetic
energy of the system is dissipated over time, and eventually the quantum particle will take a low-energy configu-
ration. At this point, if we measure this quantum particle, the measured position (which must lie in the feasible
set ) is likely to give an approximate solution to the problem f(x). In some sense, QHD can be regarded as a
quantum version of Polyak’s heavy ball method (Polyak 1964, Attouch et al. 2000).

QHD describes a quantum particle exploring the optimization landscape f(x). When a high-energy barrier
emerges, the quantum particle may leverage the quantum tunneling effect to go through the barrier and find a
lower local minimum. However, simulating the quantum evolution (2.1) with a classical computer would require
exponential space and time, making this idea impractical as a classical optimization algorithm. On the other
hand, the evolution (2.1) can be efficiently simulated using a quantum computer, which makes QHD a genuine
quantum algorithm that can leverage the quantum tunneling effect for nonconvex optimization. Theoretically, it
has been shown that QHD can efficiently find the global minimum for certain nonconvex problems with expo-
nentially many local minima, whereas many classical optimizers such as simulated annealing (SA) and stochastic
gradient descent (SGD) appear to require a much longer time to obtain a global solution (Leng et al. 2023a).
Numerical experiments also show that QHD outperforms classical first- and second-order methods in a broad
class of nonconvex problems with many local stationary points (Leng et al. 2023b).

2.2. Real-Machine Implementation

Quantum Hamiltonian descent is formulated as a Hamiltonian simulation task, that is, solving a quantum
Schrodinger equation as in (2.1). Although efficient quantum algorithms, such as those proposed by Childs et al.
(2022), can tackle this simulation task exponentially faster than any known classical algorithms, these quantum
simulation algorithms require large fault-tolerant quantum computers. Such ideal quantum computing hardware
has not yet been realized because of the immature progress of quantum technology.

To fully exploit the limited programmability of current quantum hardware such as D-Wave and IonQ, QHDOPT
employs a technique named Hamiltonian embedding (Leng et al. 2024) to implement QHD. This technique
enables us to map the QHD Hamiltonian to a larger Hamiltonian, and the latter can be natively simulated on
existing quantum devices. This real-machine implementation technique is detailed in Section 3.2.

3. The Workflow of QHDOPT

3.1. Modeling of Nonlinear Problems

QHDOPT offers support for two Python-based input formats: the SymPy format for symbolic input and the QP for-
mat for numerical input (i.e., arrays). These two input formats enable users to define their target optimization pro-
blems both efficiently and with great flexibility.

3.1.1. SymPy Format. SymPy (Meurer et al. 2017) is a Python package that supports symbolic expression pro-
cesses. Users can specify f(x) in (1.1) by declaring variables in SymPy and constructing the expression, as in the
code snippet in Figure 2(a). Here, we import necessary functions like exp from SymPy and QHD from package
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Figure 2. (Color online) Input Formats in QHDOPT

(a) An example using the SymPy input format (b) An example using the QP input format

1 | from ghdopt import QHD 1 | from ghdopt import QHD
2 | from sympy import symbols, exp 2

3 3/ =1[-8, 3],

4 'x, y = symbols("x y") 4 [3, —4]]

5 f = y*+1.5 (y-0.75) » exp(4+x) 5 b = [3, -1]

6 6

model = QHD.SymPy(f, [x, y]) model = QHD.QP(Q, b)

Note. QHDOPT supports both symbolic and numerical input formats.

QHDOPT in Lines 1 and 2. We declare variables x and y in SymPy using symbols in Line 3, where the passed string
is for SymPy to print the expressions. In Line 4, we construct the function f(x), where y x% 1. 5 represents the expo-
nential y1'5, exp (4%x) represents e**, and so on. Last, we create a QHD model instance in Line 5 and pass £ and
a symbol list [x, y] to it, informing the QHD model the target optimization function is f with symbols x and y.

3.1.2. QP Format. For users with specific interests in QP, we provide a more efficient input model for them. To
specify a QP instance with objective function f(x) = 1xTQx +b"x, we can directly input the matrices Q and b, as
in the code snippet in Figure 2(b). First, we construct Q by a nested Python list or a NumPy array in Lines 2 and 3.
It is required that Q forms a symmetric square matrix. Then we input the vector b as b. Similar to SymPy, we con-

struct the instance by calling the QP method from QHDOPT and pass Q, b into it.

3.2. Hamiltonian Programming and Compilation
Once a nonlinear optimization problem f(x) is defined using one of the supported input formats, QHDOPT will
form a Hamiltonian description of the corresponding QHD algorithm, as described in (2.1). This Hamiltonian
description serves as an intermediate layer in the compilation stack and is independent of the choice of the back-
end (i.e., hardware agnostic). Although QHDOPT automates this process, making manual execution unnecessary
in most cases, we provide detailed discussions for readers who are interested in gaining a deeper understanding
of our software’s design.

There are two major steps in the construction of the Hamiltonian description of QHD, namely, spatial discretiza-
tion and Hamiltonian embedding.

3.2.1. Spatial Discretization. First, we need to perform spatial discretization of the QHD Hamiltonian (which is
an unbounded operator) so that it can be described by a finite-dimensional quantum system. For a thorough and
mathematically rigorous discussion, readers are encouraged to refer to Leng et al. (2023b, appendix F.2.1). Given
a nonlinear optimization in the form of (1.1), the QHD Hamiltonian reads the following:

) = e (< 38) +et | gt + > ) |,
i=1 =1

which acts on any Lz-integrable functions over the feasible set Q = {(xy,...,x,) eR": L;< x; <U;, Vi=1,...,n}.
Here, for simplicity, we assume the feasible set is the unit box, thatis, L; =0and U;=1foralli=1,...,n. We uti-
lize the centered finite difference scheme to discretize this differential operator. Suppose that we divide each
dimension of the unit box Q using N quadrature points {0,%, ...,(N — 2)h,1} (where h = 1/(N — 1)); the resulting
discretized QHD Hamiltonian is an N"-dimensional operator of the form

H(t) = e —lLd +eYFy, (3.1)
2

where (assuming k; < {; forallj=1,...,m)

n
Ld:ZI® e ® L ®...1,
i=1 the ith operator

Fi= I -® D) ®..I+) ®--® Dp) & - D) Q..L
2 Dis:) 2, ) Dl

the ith operator the kjth operator the ¢;th operator
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Here, I is the N-dimensional identity operator, and L and D(g) are N-dimensional matrices given by (g is a differ-
entiable function defined on [0,1], and g; := g(ih) fori =0,...,N — 1)

-2 1 S0
1 -2 1 Q1
L=—|... ... ... .|, D=
1 2 1 o2
1 -2 gN-1

The trldlagonal L matrix corresponds to the finite difference discretization of the second-order differential opera-
tor 4, and the diagonal matrix D(g) corresponds to the finite difference discretization of the univariate function
g(x). Note that L has a global phase —2/h?; that is, L = L’ — 2 /h?, with L’ containing only the off-diagonal part of
L. Because the global phase does not affect the quantum evolution (therefore, the result of the QHD algorithm),
we replace L with L’ in the rest of the discussion.

3.2.2. Hamiltonian Embedding. The discretized QHD Hamiltonian, as described in (3.1), is a Hermitian matrix
with an explicit tensor product decomposition structure. This particular structure allows us to leverage the Ham-
iltonian embedding technique (Leng et al. 2024) to construct a surrogate Hamiltonian H(t) such that the QHD
algorithm (i.e., simulating the Hamiltonian H(t)) can be executed by simulating H(t). In our case, the surrogate
Hamiltonian H(t) is an Ising-type quantum Hamiltonian that involves at most 7N qubits and max(n,m)N two-
body interaction terms. This means H() can be efficiently simulated on current quantum computers, including
IonQ’s trapped ion systems and D-Wave’s quantum annealer.

To construct the Hamiltonian embedding of H(t), the first step is to build the Hamiltonian embeddings of the
N-by-N matrices L” and D(g) (for arbitrary differentiable function g). Both are sparse matrices, so we can utilize
the embedding schemes provided in Leng et al. (2024, section 2.3). QHDOPT allows users to choose from three
embedding schemes: Hamming,3 unary, and one-hot.* In Table 1, we list the details of these embedding schemes
when applied to L” and D(g). We note that the Hamming embedding scheme only works for quadratic program-
ming, whereas the other two schemes (unary, one-hot) work for a broader class of nonlinear functions such as
exponential functions. To be consistent with our source code, we adopt the left-to-right zero-indexing system for
bits/qubits, for example, 15011,13.

In Table 1, the integer 7 represents the number of qubits used to embed an N-dimensional matrix. The opera-
tors X, Yy, and ny are the Pauli-X, Pauli-Y, and number operator acting at site k, respectively,

A R

Because the Hamming embedding scheme is allowed only for quadratic programming, we do not consider the Ham-
ming embedding for general nonlinear funchons 8. Instead, we consider only the embedding of the 1dent1ty and qua-
dratic functions, that is, g(x) = x and g(x) = x%; their corresponding Hamming embeddings are &; = Zk oy and
&y = (£1)%, respectively.

Now, we denote £”[A] as a Hamiltonian embedding of an N-by-N Hermitian matrix A acting on sites
(i—Dr,(i—1r+1,...,ir—1, wherei=1,...,n. Then, using the rules of building Hamiltonian embeddings (Leng
et al. 2024, theorem 2) we obtain an nr—qublt Hamiltonian that embeds the discretized QHD Hamiltonian H (f):

H(t) = e —%Zl £ [L’]) + et Z ED[D(g:)] + Z EW[D(p)1EPD(g)] |- (3.2)

j=1

Table 1. Embedding Schemes Supported by QHDOPT

Embedding Supported Number of

scheme input format  Supported backend qubits Embedding of L’ Embedding of D(g)

Hamming  QP, SymPy QuTiP, IonQ, D-Wave r=N-1 Z,’(;[l) Xy /h? Only for QP, see discussions in Section 3.2.2
Unary QP, SymPy QuTiP, IonQ, D-Wave r=N-1 Z;;é Xy /h? Z,’;é (9 — grk_1)0% + 901

One-hot QP, SymPy  QuTiP, IonQ r=N  S30GXee1 + Y Yi)/(2H) it g1k
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Example 3 (One-Hot Embedding for x1x;). We give a simple example for the Hamiltonian embedding of the discre-
tized QHD Hamiltonian when the objective function is f(x1,x2) = x1x;. This objective involves only a single bivar-
iate term with p(x) = g(x) = x. We use the one-hot embedding with N =r = 3. Then, the Hamiltonian embeddings
of L’ and D(x) are

1
22

respectively. As a result, the full Hamiltonian embedding reads

1
(XoX1 +XiX2 + YY1 +Y1Y2), E[D(x)]=no+-ny,

IME >

~ 2e?
A = % (XX + X0 Xz + XXy + XoX5 + YoYi1 + Y1 Ya + YaYa + YaYs) +

e’“n+1n n+1n
0F5m 3tony ).

In QHDOPT, we use SimuQ to construct the Hamiltonian embedding F(t). The users need to specify only the
number of qubits r (for each continuous variable), the embedding scheme, and a desired backend in the
model .optimize () function, as detailed in the next subsection.

3.3. Deployment and Postprocessing

When the Hamiltonian embedding H(t) of a given problem is built, it can be executed on a supported quantum
backend by running optimize () (refer to Section 4 for sample code). The quantum measurement results are
then retrieved from the executing backend in the form of bitstrings. Following this, QHDOPT implements a series
of classical postprocessing subroutines. These include decoding the raw measurement results (i.e., bitstrings)
into low-resolution solutions and refining them via a classical local solver. The refined solutions are then
returned to the users as final results.

3.3.1. Deployment on Quantum Devices. Currently, QHDOPT supports three backend devices for deployment,
including classical simulators (e.g., QuTiP), IonQ, and D-Wave. For all three backend devices, the quantum register
is initialized to the uniform superposition state. On the IonQ device, the uniform superposition state can be pre-
pared using a single layer of Hadamard gates; on the D-Wave device, the uniform superposition state is the default
initial state, and it can be prepared in microseconds. When deployed on IonQ, QHDOPT uses ¢, = —log(1 + y#?) and
X: =log(1+ yt?) for the time-dependent functions (see Section 2.1 for details). The time-dependent functions on
D-Wave are more restricted, and they can be specified only as piecewise linear functions. We find the default
annealing schedule (20 ms) provided by the D-Wave device usually works well in practice. We also showcase user-
specified time-dependent functions (annealing schedules) in a notebook in the “examples” folder.

Here, we demonstrate the deployment procedures in QHDOPT using the D-Wave backend, although the same
process applies to the other two backends. In Figure 3, a snippet of the source code for the function QHD.
dwave_exec () is displayed. After programming the Hamiltonian embedding and the quantum system realiz-
ing QHD (Lines 2 and 3), we initiate an abstract D-Wave machine (Line 5). Then QHDOPT employs SimuQ to

Figure 3. (Color online) Deploying and Executing QHD on the D-Wave Quantum Computer

1 | def dwave_exec (self, verbose=0):

2 Hamiltonian, T = ...

3 self.gs.add_evolution (Hamiltonian, T) # Hamiltonian embedding
4

5 dwp = DWaveProvider (self.api_key) # initiate D-Wave machine

6 .

7 dwp.compile (self.qgs, self.shots)

8 .

9 dwp.run ()

10

11

12 self.raw_result = dwp.results/()

13 raw_samples = []

14 for i in range (self.shots):

15 raw_samples.append (QHD.spin_to_bitstring(self.raw_result[i]))
16

17 return raw_samples
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Figure 4. (Color online) Bitstring-to-Vector Decoder in QHDOPT

1 |def bitstring_to_vec(self, bitstring, d, r):

2 if self.embedding_scheme == ’unary’:

3 return QHD.unary_bitstring_to_vec (bitstring, d, r)
4 elif self.embedding_scheme == ’onehot’:

5 return QHD.onehot_bitstring_to_vec(bitstring, d, r)
6 elif self.embedding_scheme == "hamming’ :

7 return QHD.hamming_bitstring_to_vec(bitstring, d, r)
8 else:

9 raise ("Illegal embedding scheme.")

compile the Hamiltonian embedding into low-level device instructions readable by D-Wave (Line 7) using
SimuQ’s DWaveProvider (), effectively generating Hamiltonian Hge,(t) on the D-Wave devices. Next, the
instructions are sent to the D-Wave quantum computer to execute (Line 9), and the raw quantum samples are
collected by QHDOPT as bitstrings (Lines 12-17).

3.3.2. Decoding. As we have seen, the real-machine results are in the bitstring format because they are retrieved
by computational basis measurements in the quantum computer. These bitstrings need to be converted to
floating-point arrays via the built-in decoder, as presented in Figure 4. This decoder maps a bitstring to a
floating-point array that represents a low-resolution solution to the input optimization problem. For example, if
we use the unary embedding for a two-dimensional problem with resolution parameter » = 4, the decoder will
map an eight-bit string to a length two array. For example, 00010011 is mapped to [0.25,0.5]. More details of the
embedding schemes and their decoding are available in Leng et al. (2024).

3.3.3. Refinement. Limited by the size of current quantum devices, in most cases, we can only use a small resolu-
tion parameter (e.g., r = 8) in the real-machine implementation of QHD. Therefore, the retrieved measurement
results are merely low-resolution solutions to the specified optimization problem. To improve the precision of the
solutions, QHDOPT then postprocesses the measurement results using local search classical optimization methods.

In principle, any generic local optimizers allowing box constraints should work as well; because of the limited
resources, we provide two classical refinement options for the users in QHDOPT, including the TNC using SciPy
and the interior point method using Ipopt. TNC is a quasi-Newton method, and the interior point method
exploited by Ipopt is a second-order method. These classical refiners require the gradient and/or Hessian infor-
mation of the objective functions. For quadratic programming problems (using the QP input format), the gradi-
ent and Hessian can be computed explicitly:

Vf(x) =Qx, Hf(x)=Q.

For more general nonlinear optimization problems specified using the SymPy input format, QHDOPT computes
the gradient and Hessian information by employing JAX (Frostig et al. 2018), a high-performance numerical com-
puting library developed by Google, to perform autodifferentiation.

The postprocessed results can be retrieved from model.post_processed_samples. By default, the post-
processing subroutine is enabled and automatically executed by running optimize (). However, users can also
disable postprocessing by specifying optimize (fine_tune=False). In this case, model.post_processed_
samples returns None type.

4. Examples Using QHDOPT
In this section, we exhibit two simple examples showcasing the use cases of QHDOPT.

4.1. Quadratic Programming
We first consider a two-dimensional quadratic programming problem, whose objective function is defined as
follows:

TR W N T N L N

for x,y € [0,1].
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Figure 5. (Color online) Solving a Quadratic Programming Problem Using QHDOPT

from ghdopt import QHD

# Using QP input format

Q= 1[[-2, 1],[1, -17]

b = [3/4, 1/4]

model = QHD.QP (Q, b, bounds=(0,1))

0NN N AW~

# Deployment # 1: D-Wave (default embedding scheme: unary)
9 |model.dwave_setup (8, api_key="DWAVE_API_KEY")
10 'model.optimize ()

12 | # Deployment # 2: IonQ (default embedding scheme: one-hot)
13 'model.iong_setup (6, api_key="TIONQ_API_KEY", time_discretization=30)
14 'model.optimize ()

16 | # Model 3: QuTiP simulator (default embedding scheme: one-hot)
17 'model.qutip_setup (6, post_processing _method="IPOPT")
18 'model.optimize ()

In Figure 5, we exemplify using QHDOPT to solve this QP problem with all three backends. Note that the appli-
cation programming interface (API) key (not included in QHDOPT) is required to access cloud-based quantum
computers such as D-Wave and IonQ. By default, QHD.optimize () automatically executes the SciPy TNC
method to fine-tune the raw quantum measurement data. To switch to the Ipopt optimizer in the fine-tuning
step, one can specify post_processing method="IPOPT” in the setup, as shown in line 17.

4.2. Nonlinear Optimization Involving Exponential Function
Next, we consider the following nonlinear minimization problem with the objective function

flx,y) = ]/3/2 _ oW (]/ — Z), x,y€[0,1]. 4.2)

This objective function f(x, y) is not a polynomial; it involves a fractional power and an exponential function. In
Figure 6(a), we illustrate a sample code that runs QHDOPT to solve the problem defined above. The function is
constructed using the SymPy input format, then deployed on the D-Wave quantum computer with resolution
parameter r = 8. We may set verbose = 1 to print a detailed summary of this execution, including the best-so-
far coarse and fine-tuned solutions, as well as a total run-time breakdown, as shown in Figure 6(b).

5. The State of Software for Quantum Optimization

Software packages are crucial for lowering the barrier to developing and implementing quantum programs
across broad user communities. Upon examining the current landscape of quantum software for mathematical
optimization, we observe that the majority of the software dedicated to quantum optimization focuses on

Figure 6. (Color online) Solving a Nonlinear Optimization Problem Using QHDOPT

(a) Deploying QHD on D-Wave (b) Execution summary

1 from sympy import symbols, exp I |« Coarse solution
2 | from ghdopt import QHD 2 Minimizer: [1. 0. 1.]
3 3 Minimum: -1.0

. ) 4 |+ Fine-tuned solution
4 | # Using SymPy input format 5 Minimizer: [1. 0. 1.]
5 %, y = symbols("x y") 6 Minimum: -1.0
6 f = y+xx1.5 — exp(4+x) = (y-0.75) 7 Success rate: 1.0
7 'model = QHD.SymPy(f, [x, vyl, 8 |+ Runtime breakdown
8 bounds=(0, 1)) 9 SimuQ compilation: 0.000 s
9 10 Backend QPU runtime: 0.119 s

. . 11 Backend overhead time: 3.825 s

10 | # Deploying QHD on the D-Wave device 12 Decoding time: 0.019 s
11 'model.dwave_setup (8, api_key="API_KEY") 13 Fine-tuning time: 0.161 s
12 'model.optimize (verbose=1) 14 |+ Total time: 4.124 s

Note. The backend overhead time includes network transmission time, queue time, etc.
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addressing combinatorial and discrete optimization problems, with limited options available for continuous
optimization.

Generally, a combinatorial optimization problem can be reformulated as a quadratically unconstrained binary
optimization (QUBO) problem, the solution of which is believed to be a promising application of quantum com-
puting (Quintero and Zuluaga 2023). There is a rich collection of libraries for quantum and quantum-inspired
optimization that can be employed to generate QUBO reformulations, including QUBO. j1 (Xavier et al. 2023),
Amplify (Matsuda 2020), PyQUBO (Zaman et al. 2021), and qubovert (losue 2022). These QUBO problems can
be tackled by several methods, such as quantum annealing, quantum approximate optimization algorithm
(QAOA; Farhi et al. 2014), and other hybrid approaches (Yamamoto et al. 2017). D-Wave’s Ocean SDK (D-Wave
Quantum Systems Inc. 2023) enables users to interface with their direct QPU (i.e., quantum annealer) and hybrid
solvers and retrieve results. QuEra’s Blogade . j1 (QuEra Computing Inc. 2023) is a high-level language for con-
figuring programmable Rydberg atom arrays that can be used to implement annealing-type quantum algorithms
and discrete optimization problems like QUBO (Nguyen et al. 2023). The Los Alamos Advanced Network Science
Initiative has also released a package, named QuantumAnnealing.jl (Morrell et al. 2024), for the simulation
and execution of quantum annealing. Besides, several software packages have been published for programming
quantum circuits, including IBM’s Qiskit (Aleksandrowicz et al. 2019), Google’s Cirg (The Cirq Developers
2019), Amazon’s Braket SDK (Amazon Web Services 2024), Microsoft’s Q# (Singhal et al. 2022), and Xanadu's
PennyLane (Bergholm et al. 2018). These tools can be used to deploy QAOAs on gate-based quantum computers.

Although there have been a few proposals for solving continuous optimization problems using quantum or
hybrid computing devices such as photonic quantum computers (Verdon et al. 2019) and coherent continuous
variable machines (Khosravi et al. 2022), we are not aware of a software library customized for nonlinear contin-
uous optimization problems. In practice, some nonlinear optimization problems, such as quadratic program-
ming, may be reformulated as QUBO problems and handled by the aforementioned software tools. However, it
remains unclear whether this approach could lead to robust quantum advantages.

6. Comparison with Existing Tools

As we discussed in Section 3, QHDOPT first obtains some low-resolution solutions by executing the QHD algo-
rithm for a nonlinear optimization problem through Hamiltonian embedding. Next, the software employs a clas-
sical local search strategy for fast postprocessing of the raw quantum results. It is of interest to understand to
what extent the quantum component (i.e., the noisy implementation of QHD) improves the overall performance
of QHDOPT. To this end, we have designed a benchmark test to evaluate the performance of QHDOPT for non-
linear and nonconvex optimization problems.

6.1. Test Problems

We demonstrate the performance of QHDOPT using 15 randomly generated nonlinear optimization instances, all with
unit box constraints. Problem Instances 1-5 are NLP problems involving two or three continuous variables, as detailed
in Table 2. Problem Instances 6-10 are QP problems drawn from the benchmark devised in Leng et al. (2023b). Prob-
lem Instances 11-15 are NLP problems involving exponential functions, as specified in the following expression:

1NN N
flx) = 3 Z Z Q;jetel + Z bie™™. 6.1)
=1 j=1 i=1

The last 10 test instances (6-15) are intermediate-scale problems with 50 continuous variables, ranging from zero
to one. To ensure the successful mapping of these test problems to quantum computers with limited connectiv-
ity, these test problems are generated in a way such that their Hessians are sparse matrices.’

Table 2. Problem Instances 1-5 for Nonlinear Programming

Test index Problem description

1 flx,y) = —4x2 +3xy — 2y +3x —y

2 floy)=—2(x=1)" +12 ~ylog(3x+1) +5(2 — 2 —x - 1)’
3 fy) =y —e*(y-3)

4 f(x,y,z):(nyl)z(zfé) 7(2x71)z+y(2x7%)2

5 floy,2) =205 (22 =17 = 3(2y = f)°e = +log(x + (v —3)

Note. All the test instances are nonconvex problems with unit box constraints [0,1]".
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These instances were generated in a largely random manner, and each possesses multiple local solutions, mak-
ing them fairly challenging for classical optimization software. In our experiment, we observed that local solvers,
such as Ipopt, cannot find globally optimal (or even approximately optimal) solutions unless a large number of
random initial guesses are tried. BARON, a highly optimized commercial solver for global optimization, can find
globally optimal solutions to sparse quadratic programming problems in under one second, but it takes several
minutes to certify global optimality for nonlinear programming problems that involve exponential-type objectives.

6.2. Experiment Setup and Results

In this subsection, we discuss the basic setup of the experiment and the numerical results. We test QHDOPT with
two different postprocessing optimizers (i.e., Ipopt and SciPy TNC) using the randomly generated nonlinear pro-
gramming instances discussed in the previous section. As a comparison, we also run the two classical optimizers
on the same test instances using uniformly random initialization. These two classical optimizers are assessed as
baselines to illustrate the quantum advantage introduced by the D-Wave-implemented QHD. The classical com-
ponents in both experiments, including the decoding of D-Wave samples and classical refinement, were executed
on a 2022 MacBook Pro laptop with an Apple M2 chip. All the code is available in the online repository (Kushnir
et al. 2024). Our findings assert that QHD, when implemented with D-Wave, brings a significant advantage com-
pared with the standalone use of classical optimizers.

6.2.1. Experiment Setup for QHDOPT. We evaluate QHDOPT on this benchmark using the D-Wave Advantage_sys-
tem6.3 as the quantum backend. For a fair comparison, we use the unary embedding scheme for all instances,
including quadratic and nonquadratic problems. The anneal time is set to be the default value, that is, 20 ms. The
total quantum run time per shot (see the “QPU” columns in Table 3) is calculated as the arithmetic mean of the
“qpu_access_time” reported by D-Wave, which includes the programming, state preparation, annealing, and
decoding. Note that we do not include the transmission time and the task queuing time in our report. We test
QHDOPT with two postprocessing optimizers (i.e., Ipopt and SciPy TNC), and the classical postprocessing (more
precisely, classical refinement) time is reported in the “Classical refine” columns in Table 3. The standard devia-
tion of the classical refinement time is also reported in the parenthesis. Except for the initial guesses, both solvers
use the default parameters as provided with their Python APL

6.2.2. Baseline Using Classical Optimizers. As a comparison, we also test three classical optimizers for the same
set of problems: Ipopt, SciPy TNC, and BARON. The first two optimizers are initialized with 1,000 uniformly

Table 3. Performance of QHDOPT on 15 Randomly Generated Nonlinear Programming Test Instances

QHD+Ipopt QHD+TNC

Test index QPU Classical refine SP TTS QPU Classical refine SpP TTS

1 1.15e-3 2.03e—1 (5.87e—4) 9.96e—1 2.05e—1 1.15e—-3 3.19e-2 (1.41e-5) 9.84e—1 3.68e—2
2 9.97e—4 3.16e—1 (8.08e—3) 9.23e—1 5.69e—1 9.97e—4 5.24e-2 (1.16e—4) 9.12e—-1 1.11e—1
3 1.08e—3 3.35e—1 (2.88e—3) 9.40e—1 5.50e—1 1.08e—3 2.96e—2 (1.17e—4) 9.82e—1 3.52e—2
4 1.25e-3 1.6e+0 (5.48¢—3) 7.98e—1 4.60e+0 1.25e—-3 1.28e—1 (2.68e—4) 8.67e—1 2.95e—1
5 1.23e—-3 3.64e—1 (1.08e—3) 9.62e—1 5.14e—-1 1.23e-3 5.75e—2 (3.34e—5) 9.82e—1 6.73e—2
6 1.69e—3 2.03e—2 (5.96e—3) 2.3%9e—1 3.74e—1 1.69e—3 1.57e—3 (4.85e—4) 2.08e—1 6.51e—2
7 2.04e-3 2.34e—2 (1.64e—3) 1.20e—1 9.42e—1 2.04e-3 1.99e—3 (4.92e—4) 1.20e—1 1.49e—1
8 1.49¢e-3 1.83e—2 (1.93e-3) 9.23e—1 3.96e—-2 1.49¢e-3 1.08e—3 (2.81e—4) 9.78e—1 5.14e—3
9 2.0le-3 1.81e—2 (3.90e—3) 4.36e—1 1.82e—1 2.0le-3 2.35e—3 (3.48e—4) 3.92e—1 4.44e-2
10 2.11e-3 2.02e—2 (5.62e—3) 1.09e—1 8.94e—1 2.11e-3 291e—3 (5.21e—4) 1.06e—1 2.06e—1
11 2.04e—3 9.91e—2 (2.24e-2) 3.42e-1 1.21e+0 2.04e-3 9.69e—3 (6.67e—4) 9.97e—1 1.17e-2
12 2.14e-3 9.25e—2 (1.38e—2) 4.45e—1 7.57e+0 2.14e-3 8.94e—3 (1.19e-3) 8.67e—1 3.32e-2
13 2.09e-3 1.62e—1 (2.08e—2) 2e—3 3.78e+2 2.09e-3 1.19e—2 (8.99e—4) 2.11e-1 2.80e—1
14 1.94e-3 5.8%9e—2 (1.33e—2) 3.83e—1 6.06e—1 1.94e-3 6.94e—3 (7.84e—4) 7.46e—1 3.56e—2
15 2.13e-3 8.26e—2 (1.13e—-2) 2.53e—1 1.36e+0 2.13e—3 8.75e—3 (6.67e—4) 8.88e—1 3.26e—2

Notes. “SP” represents success probability. The unit of the quantum run time (i.e., “QPU”), classical postprocessing time (i.e., “Classical refine”),
and time-to-solution (i.e., “TTS”) is seconds. The standard deviation of the classical postprocessing time is shown in parentheses. The lowest TTS
in a row is underlined.
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Table 4. Performance of Classical Optimizers on the Same 15 Randomly Generated Test Instances as a Baseline

Ipopt TNC BARON
Test index Avg. run time SP TTS Avg. run time SP TTS Run time
1 1.33e+1 (2.22e-3) 5.72e—1 7.19e+1 2.82e—1 (1.29¢-5) 5.64e—1 1.57e+0 1.00e—2
2 1.29¢e+1 (4.87e—3) 5.44e—1 7.56e+1 5.86e—1 (2.72e—4) 5.15e—1 3.73e+0 1.00e—2
3 2.09e+1 (1.61e—2) 6.78e—1 8.51e+1 6.85e—1 (1.08e—4) 5.6le—1 3.83e+0 1.00e—2
4 9.74e+0 (4.71e-3) 7.54e—1 3.20e+1 5.3le—1 (2.68¢e—4) 6.87e—1 2.10e+0 1.00e—2
5 1.43e+1 (2.78e—3) 6.27e—1 6.67e+1 6.42e—1 (3.30e—5) 6.23e—1 3.03e+0 1.00e—2
6 3.77e—2 (1.39e—2) 1.70e—1 9.4le—1 6.69e—3 (1.47e—3) 6.00e—3 5.12e+0 1.90e—1
7 5.44e—2 (1.50e—2) 8.00e—3 3.12e+1 5.00e—3 (7.01e—4) 2.00e—3 1.15e+1 4.00e—2
8 4.78e—2 (1.39¢-2) 4.05e—1 4.30e—1 5.04e—3 (1.59¢—-3) 2.40e—-2 9.57e—1 3.00e—2
9 4.83e—2 (1.22e-2) 7.00e—3 3.17e+1 5.83e—3 (8.76e—4) 1.00e—3 2.68e+1 3.00e—2
10 5.38e—2 (2.14e-2) 3.20e—2 7.65e+0 7.18e—3 (1.03e—3) 6.00e—3 5.50e+0 5.00e—2
11 9.88e—2 (3.23e—2) 9.28e—1 1.98e—1 9.13e—3 (1.01e—3) 7.00e—1 3.65e—2 1.20e+2
12 1.15e—1 (2.70e—2) 1.21e—-1 4.15e+0 8.88e—3 (1.27e-3) 1.71e—1 2.22e—1 1.20e+2
13 9.99e—2 (2.65e—2) 1.3e—2 3.52e+1 9.19e—3 (1.08e—3) 2.77e—1 1.38e—1 1.20e+2
14 1.10e—1 (4.73e—2) 6.30e—2 7.82e+0 9.56e—3 (1.15e—3) 1.08e—1 3.92e—1 1.20e+2
15 9.07e—-2 (2.81e—-2) 4.40e—-2 9.34e+0 9.06e—3 (1.02e—3) 2.74e—1 1.36e—1 1.20e+2

Notes. “SP” represents success probability. The unit of the classical optimizer run time (i.e., “Avg. run time” and “Run time”) and time-to-
solution (i.e., “TTS”) is seconds. The standard deviation of the run time is shown in parentheses. The lowest TTS in a row is underlined.

random guesses in the unit box [0,1]” (where d is the problem dimension), and the run-time data for the 1,000
runs have been collected. For a fair comparison, we use the same random seeds for both methods. BARON is exe-
cuted to generate global solutions with a two-minute timeout. Except for the initial guesses, all solvers use the
default parameters as provided with their Python API. Table 4 shows the run times of the three classical solvers:
for Ipopt and TNC, the arithmetic mean (and standard deviation) of the run time is reported; for BARON, the
total run time is reported.

Note that for the last five test instances, BARON failed to certify the global optimality of the obtained solutions
within the two-minute timeout window. In Table 5, we further investigate BARON’s solution quality. Our results
suggest that although BARON can find solutions as good as those from the other tested solvers in a comparable
timescale, a much longer time is required to prove the global optimality of the obtained solutions. Therefore, we
regard the solution returned by BARON as the global minimum.

Table 5. Performance of BARON

Test index Best found obj. BARON Result 1 BARON Result 2
1 -3 -3 -3

2 0.354 0.354 0.354
3 —12.650 —12.650 —12.650
4 —0.882 —0.882 —0.882
5 —4.196 —4.196 —4.196
6 —1.188 —1.188 —1.188
7 —2.110 —2.110 —2.110
8 —-1.809 —1.809 —1.809
9 —2.269 —2.269 —2.269
10 —2.305 —2.305 —2.305
11 —31.256 —31.256 —31.256
12 —66.618 —66.618 —66.618
13 —56.762 —56.762 —56.762
14 —25.357 —25.357 —5.357
15 —59.342 —59.188 —59.342

Notes. BARON Result 1 (Result 2) indicates BARON’s best-found objective function value
(obj.) given a run time no longer than TNC’s (Ipopt’s) time-to-solution as reported in Table 4.
Except for instance 15, BARON always finds the optimal solution in the given time windows.
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Table 6. Time-to-Solution Data of All Four Methods (Unit: Seconds)

Test index QHD-+Ipopt QHD+TNC Ipopt TNC

1 2.05e—1 3.68e—2 7.19e+1 1.57e+0
2 5.69e—1 1.11e—1 7.56e+1 3.73e+0
3 5.50e—1 3.52e-2 8.51e+1 3.83e+0
4 4.60e+0 2.95e—1 3.20e+1 2.10e+0
5 5.14e—-1 6.73e—2 6.67e+1 3.03e+0
6 3.74e—1 6.5le—2 9.41e-1 5.12e+0
7 9.42e—1 1.49e—1 3.12e+1 1.15e+1
8 3.96e—2 5.14e-3 4.30e—1 9.57e—1
9 1.82e—1 4.44e-2 3.17e+1 2.68e+1
10 8.94e—1 2.06e—1 7.65e+0 5.50e+0
11 1.21e+0 1.17e-2 1.98e—1 3.65e—2
12 7.57e+0 3.32e—2 4.15e+0 2.22e—1
13 3.78e+2 2.80e—1 3.52e+1 1.38e—1
14 6.06e—1 3.56e—2 7.82e+0 3.92e—-1
15 1.36e+0 3.26e—2 9.34e+0 1.36e—1

Note. The lowest TTS per instance is underlined.

6.2.3. Performance Metric. In the experiments, we use time-to-solution (I'TS) as the key metric to evaluate the per-
formance of various optimization methods. TTS is defined as the total run time required by a method to achieve
at least 0.99 success probability. It can be calculated using the following formula:

In(1 — 0.99)
In(1 — ps) —"

where t is the (average) run time per shot, and p; is the success probability. For all the 15 test instances, the time-
to-solution data of four methods (QHD+Ipopt, QHD+TNC, Ipopt, and TNC) are presented in Table 6. For the
experiments involving QHD (i.e., the results in Table 3), t; is calculated as the sum of average QPU time and
average classical refinement time; for the experiments that involve only classical optimizers (i.e., the results in
Table 4), t, is equivalent to the (average) classical run time. The success probability p, is estimated by the fraction
of “successful” events in the 1,000 samples/trials. Here, a result x’ is considered successful if the optimality gap
f(x") — f(x") is less than 0.001, where x* is the solution obtained by BARON.

TTS:tox[

6.3. Interpretation of the Experiment Results

Based on the time-to-solution data as reported in Table 6, we observed that QHDOPT (QHD plus a classical opti-
mizer) always outperforms the standalone use of a classical optimizer for the 15 randomly generated test
instances. As for the two local optimizers, we find that SciPy TNC works better than Ipopt as a postprocessing
subroutine. Although the two optimizers usually return refined samples with comparable success probability,
SciPy TNC always shows a lower TTS due to a notably faster run time. This is potentially because TNC is a
quasi-Newton method that does not need to solve the full Newton linear system in the iterations.

Another interesting finding is that the classical refinement times of quantum-generated samples (see “Classical
refine” in Table 3) in QHDOPT are significantly shorter than the average run time of the direct use of local optimi-
zers (see “Avg. run time” in Table 4). For example, in Test Instance 1, the average postprocessing time (using
Ipopt) for a quantum-generated initial guess is 0.2 s, whereas the average run time of Ipopt given uniformly ran-
dom guesses is 13 s. To further investigate this phenomenon, we plot the distribution of objective function values
corresponding to three different sample groups, including (1) randomly generated initial guesses, (2) quantum
(D-Wave)-generated samples, and (3) TNC refined samples (using quantum-generated samples as initial
guesses), as shown in Figure 7.° Although the quantum-generated solutions are limited by low precision, it is
observed that they are still qualitatively better than random initial guesses. In the subsequent postprocessing,
QHDOPT performs a local search subroutine to refine solution quality by improving numerical accuracy. In other
words, the quantum sampler in QHDOPT can be regarded as a fast and efficient warm start that devises initial
guesses of better quality.
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Figure 7. (Color online) Comparison of Solution Quality Using Randomly Generated Initial Guesses, Quantum-Generated Sam-

ples, and Classically Refined Solutions
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7. Conclusion and Future Work

QHDOPT is the first open-source software leveraging quantum devices for nonconvex nonlinear optimization pro-
blems, providing an accessible interface for domain experts without quantum computing knowledge. Exploiting
the idea of Hamiltonian-oriented programming, it efficiently uses quantum devices by implementing the quan-
tum Hamiltonian descent algorithm with the SimuQ framework. We demonstrated QHDOPT’s effectiveness
through examples and benchmarks, showing its advantage over classical solvers, especially in large, complex
instances. However, the current limitations of quantum device programmability and scalability constrain our
benchmarks’ scale. Although QHD shows promise in solving complex optimization problems, further empirical
studies are needed for real-world performance evaluation.

There are several avenues for future development of QHDOPT. First, it is desired to broaden the problem class
that can be handled by QHDOPT. Currently, because of hardware limitations, QHDOPT supports only the optimi-
zation of box-constrained nonlinear problems defined as a sum of univariate and bivariate functions. We antici-
pate that, shortly, QHDOPT can be extended to address more complicated objective functions as quantum
technology and quantum algorithm design continue to coevolve. Second, although local search algorithms work
well to improve the precision of quantum-generated samples, to obtain a global optimality guarantee, it might
be promising to replace the refinement/postprocessing subroutine in QHDOPT with global optimizers (e.g., those
based on branch-and-bound). Third, with further progress on quantum engineering, QHDOPT is expected to sup-
port more quantum devices from different platforms, including commercial or laboratory devices, which is
essential to understanding the advantage of QHDOPT given different combinations of embedding schemes and
quantum devices. Last but not least, QHDOPT can be expanded into a plugin for various domain-specific tools,
including those in engineering, management, finance, and economics. Adaptions to specific domains are invalu-
able for users to better utilize quantum devices for their domain problems. Our overarching goal is to establish a
user-friendly tool, empowering individuals and organizations to harness the power of quantum devices to solve
challenging problems in the real world.
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Endnotes

! This paper is not intended to be a comprehensive tutorial or documentation on QHDOPT. Instead, we direct the readers to https:// github.
com/jiaqileng/QHDOPT for the source code, examples, tutorials, and documentation.

21t is generally impossible to combine a sum of products into a single product form. For example, we cannot find two univariate functions
p(x) and q(y) such that p(x)q(y) = sin(x)y + xeV.

3 The details of Hamming embedding can be found in Leng et al. (2023b, appendix F.3). Note that this embedding scheme is referred to as
“Hamming encoding” in Leng et al. (2023b, p. 52).
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4 More precisely, the one-hot embedding we implemented in QHDOPT is referred to as “penalty-free one-hot” embedding in Leng et al. (2024,
p- 11, Table 1).

5 Detailed expressions of these test instances are provided in the software repository; see the “examples” folder.

8 In Figure 7, we plot objective function values only for high-dimensional problems, that is, Test Instances 6-15.
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