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Abstract—The rapid advancement of machine learning (ML)
and the growing need for computational power have led to
the exploration of quantum computing, which offers significant
potential for faster complex calculations. However, Quantum
Machine Learning (QML) faces challenges due to the limited
number of qubits and noise of quantum circuits, particularly
with Noisy Intermediate-Scale Quantum (NISQ) devices. These
challenges severely limit the current capacity to train accurate
and stable Quantum Machine Learning Models. In this paper,
we propose a novel framework for QML that employs the
knowledge distillation method to harness the power of well-
trained classical machine learning (CML) models and enhance
the training performance of QML models. In this framework,
we utilize the well-trained CML as a teacher model to assist
the training of the student QML model using the knowledge
distillation method. By distilling knowledge from the robust
CML model, our framework can potentially address the problem
of the barren plateau which hinders effective model training.
Knowledge distillation is well suited for this framework through
the transfer of knowledge without parameter sharing. Through
empirical tests, our framework has demonstrated not only an
increase in the accuracy of QML models but also a notable
improvement in training stability.

Index Terms—Quantum Computing, Machine Learning, Quan-
tum Machine Learning, Knowledge Distillation.

I. INTRODUCTION

Recent advancements in machine learning can largely be

attributed to the increasing size of models to leverage the

increasing volume of data across many domains of appli-

cations [1]. The increase in model size rapidly necessitates

advancements over traditional paradigms in computing to

compensate for the computational power necessary for han-

dling immense data volume [2]. This necessity is particularly

evident in the realm of modern communication and networking

systems. In this context, quantum computing has emerged as

a promising alternative to classical computing [3]. Quantum

computers leverage quantum phenomena, such as superposi-

tion and entanglement, which can potentially accelerate the

training and inference speed of machine learning models,

especially for complex problems and large datasets [4]–[6].

Quantum machine learning (QML), a multidisciplinary field

that combines quantum computing and machine learning,

aims to harness the power of quantum computing to solve

complex problems efficiently [7], [8]. Variational quantum

circuits (VQC) can be employed to construct QML models.

VQC has been applied in hybrid quantum-classical models

that utilize current classical optimization techniques such as

stochastic gradient descent, while taking advantage of the

quantum speed-up provided in utilizing a parameterized quan-

tum circuit. Quantum circuits are constructed using quantum

gates. These quantum circuits’ parameters can be optimized

using an objective function, in a fashion like the training

of model parameters in classical models. Recently, QML

has emerged in various applications, including understanding

nanoparticles, crafting novel materials through molecular and

atomic mapping, molecular modeling for drug discovery and

medical research, and probing the deeper structures of the

human body [9], [10]. Additionally, QML plays a crucial

role in enhancing communication networks by enabling ad-

vanced data processing and decision-making capabilities at

unprecedented speeds and efficiencies. In [11], the authors

envision 6G wireless networks as a transformative leap in

telecommunications, driven by the integration of machine

learning, quantum computing, and quantum machine learning,

to enable highly adaptive, efficient, and responsive network

orchestration and management.

However, current quantum computers, often referred to as

Noisy Intermediate-Scale Quantum (NISQ) devices [12], [13],

are still in the early stage and face challenges of a limited

number of qubits and inherent noise in quantum circuits.

These limitations not only hinder the development of large-

scale Quantum Machine Learning (QML) models but also

impact the performance and efficiency of these models. The

constraints of available quantum hardware, coupled with the

inherent noise, limit the scalability of QML models. Scaling

up to a larger number of qubits is challenging due to physical

constraints and increasing complexity in error correction and

control. The inherent noise in quantum circuits, which scales

with the depth of QML models, can significantly affect the per-

formance and applicability of QML algorithms. One method

to mitigate this issue is to use a relatively shallow model [14].

However, it will lead to a decrease in final performance.

Given the limitations in quantum computing capacity, par-

ticularly in scaling up QML models, there’s a pressing need

to find efficient training methods for QML. Current quantum

computing capacity necessitates measures to reduce training

efforts required to construct large-scale QML models. There-

fore, we explore the concept of transferring the advanced

capabilities of current classical machine learning models into

the quantum domain, in order to enhance the efficiency

of the QML model. The current classical machine learning

(CML) models for vision tasks, such as DenseNet [15] and

ResNet [16], are state-of-the-art for image classification tasks.

2024 IEEE International Conference on Communications; Selected Areas in Communications: Quantum Communications and 
Information Technology

1139



On the CIFAR-10 dataset, ResNet-110 has achieved 6.61

percent error and DensNet-190 has achieved 3.46 percent error.

A commonality between these networks was breakthroughs

in model design to allow training at larger model depths

to be effective. With the abundance of these well-trained,

well-performing models, we propose a novel framework that

utilizes the knowledge distillation (KD) approach to distilling

the knowledge of the CML model into the QML model to

improve the performance of QML. KD is originally a model

compression technique in which a larger, cumbersome model

is used to train a smaller, lightweight model [17]. This is

performed by matching output logits between a “teacher” and

a “student” model. The teacher model is pre-trained before the

distillation, allowing for the ideal performance of the teacher

model to guide the student in the learning process. While

KD is normally used for model compression, it may be used

as a method for transferring learning between models [18].

Therefore, in this work, a well-trained CML model may be

used as a teacher to transfer knowledge using KD to a student

QML model. Our contributions are listed as follows.

• We propose a novel knowledge distillation-based QNN

framework by leveraging the knowledge of CML models

to enhance the training efficiency of QNNs. This inno-

vative approach represents a significant advancement in

integrating classical and quantum computing methodolo-

gies

• By harnessing the strength of the CML models, our

approach can not only enhance the performance of the

inherently resource-constrained QNN but also increase

the stability of the training process.

• Through extensive simulations, we demonstrate that the

proposed framework can significantly accelerate the con-

vergence and improve the training performance.

The rest of the paper is organized as follows. In Section II,

we introduce the preliminaries of quantum computing basics

and quantum neural networks. In Section III, we illustrate the

structure of the quantum neural network used in this work.

We present the proposed knowledge distillation based QNN

framework in IV. We evaluate the performance of the proposed

framework in Section V. Finally, we conclude our paper in

Section VI.

II. PRELIMINARIES

A. Qubits, Quantum Gates, Measurements & Quantum Cir-

cuits

In contrast to the binary nature of traditional bits, a qubit

can simultaneously occupy a superposition of the |0ð and |1ð
states. There are multiple technological methods for producing

qubits, including superconducting qubits and trapped-ions,

among others. In quantum computing, quantum gates play a

pivotal role, analogous to classical logic gates in conventional

computing. While classical gates operate on bits that take

either a 0 or 1 value, quantum gates act on qubits, which

can exist in a superposition denoted as |ψð = α |0ð + β |1ð.
Quantum gates guide the evolution of these qubit states, facil-

itating quantum operations. Simple gates, such as the Pauli-X

(X), Pauli-Y (Y ), and Pauli-Z (Z) gates, manipulate individual

qubits. In contrast, multi-qubit gates, like the Controlled-NOT

(CNOT) or general controlled-U gates, interact with multi-

ple qubits, harnessing the entanglement property unique to

quantum mechanics. Multiple gate operations are encapsulated

within a quantum circuit. To discern the end state of a quantum

algorithm, qubits are measured. Quantum measurement in

quantum computing involves collapsing the superposition of

a qubit into a definite state, either |0ð or |1ð [19]. This process

is probabilistic, based on the qubit’s superposition before mea-

surement. Measuring a qubit fundamentally alters its state, a

principle of quantum mechanics. Additionally, measuring one

qubit can instantly affect another entangled qubit, a property

used in quantum information transfer. Quantum measurement

is essential for translating quantum information into classical

data, concluding the quantum computation process.

B. Quantum Neural Network

Quantum Neural Networks (QNNs) leverage quantum

mechanics to enhance computational capabilities, centering

around a Parameterized Quantum Circuit (PQC). This ar-

chitecture includes a data encoding circuit for translating

classical information into quantum states, the PQC itself, and

measurement operations to extract outcomes. In data encoding,

a common method is angle encoding, which converts classical

features into quantum rotations, often with each feature requir-

ing its own qubit. However, multiple features can be encoded

on a single qubit through sequential rotations, noting that qubit

rotations are periodic with a 2π interval.

The PQC comprises layers of quantum entanglements and

parametric single-qubit rotations, known as parametric layers

(PLs). Entangling operations create quantum correlations be-

tween qubits, and the rotations explore potential solutions. The

challenge in QNN design mirrors that in classical computing,

involving finding the optimal number of PLs for a given task

and balancing computational efficiency and noise resilience.

III. QUANTUM NEURAL NETWORKS

Machine learning is a powerful technique used to identify

and extract hidden patterns from vast sets of data. This is

achieved by adjusting a set of parameters within a mathe-

matical framework to ensure that the predictions or outputs

it produces align closely with the actual data. The specific

mathematical framework or method used to identify these

patterns is termed a “machine learning algorithm.”

For a clearer picture, consider a machine learning algorithm

as a recipe. This recipe, when followed with a certain set

of ingredients (parameters), will produce a specific dish (pre-

diction). Now, to make the dish taste its best (i.e., have the

most accurate prediction), one needs to adjust and refine the

ingredients’ quantity and quality (tuning the parameters). Once

we’ve fine-tuned these ingredients to perfection, our recipe,

now tailor-made, is termed a “model”.

Taking this a step further into the realm of quantum comput-

ing, there’s a burgeoning field known as QML. QML leverages

the principles of quantum mechanics to potentially speed up
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complex computations and offer efficient algorithms. With the

rapid advancements in quantum hardware and the increasing

availability of quantum computers and simulators on cloud

platforms, the execution of QML algorithms is becoming more

practical and feasible. This opens up a new frontier in machine

learning, offering the potential for breakthroughs in processing

speeds and algorithmic capabilities.

Neural networks are a specialized category within the vast

landscape of machine learning algorithms. At their core, neural

networks are composed of multiple layers that process data in

a sequential manner, where each layer contributes to refining

the input data for the subsequent layer.

Visualize each layer in a neural network as a series of

computations. The fundamental computation within each layer

involves multiplying the input (often represented as ‘x’) by a

weight matrix (denoted as ‘W ’), and then adding a bias term

(represented as ‘b’). This resultant value is then passed through

a non-linear function called an activation function (symbolized

as ‘φ(·)’). Mathematically, this operation can be expressed as:

f(x) = φ(Wx+ b). (1)

The beauty of a neural network lies in its layered structure.

The output from one layer doesn’t just end there; it serves as

the input for the next layer. This chain of transformations, from

the first layer to the last, can be expressed as a composition

of functions:

f(x) = Lm ◦ Ln−1 ◦ . . . ◦ L1(x). (2)

This structure allows neural networks to capture complex

patterns and relationships in the data. However, for this system

to work effectively, it’s crucial that the weight matrix ‘W ’ and

the bias vector ‘b’ for each layer are set correctly. These are

not set manually but are “learned” from data.

In a quantum context, the idea is to transform this classical

expression into its quantum analog:

f(|xð) = |φ(Wx+ b)ð.

There are several key components and challenges:

1) Data Encoding: This step involves translating classical

data x into quantum states |ψ(x)ð. Typically, data encod-

ing methods use amplitude encoding or basis encoding

to represent classical data in quantum states.

2) Affine Transformation: Applying the weight matrix W
on the quantum data |ψ(x)ð and adding the bias |bð is

non-trivial in a quantum setup. While quantum gates can

implement various transformations on quantum states,

direct implementation of bias addition isn’t straightfor-

ward, as quantum gates are unitary (and thus linear).

3) Non-linear Activation Function: The non-linear ac-

tivation function φ(|·ð) is even more challenging in

the quantum realm. All operations in the qubit model

based on available unitary gates are inherently linear,

making it a challenge to directly port classical non-linear

functions.

In our study, we draw upon the continuous-variable model

outlined in the referenced paper [20]. The affine transforma-

tion, represented by Wx+b, is achieved through the sequential

application of the operations D ◦ U2 ◦ S ◦ U1. Here, each Uk

stands for the kth interferometer. The set S consists of m
squeezers, while D represents a collection of m displacement

gates. The nonlinear activation function, symbolized by φ(·),
is realized using a series of Kerr gates. When the composite

operation φ ◦ D ◦ U2 ◦ S ◦ U1 is applied to a quantum state

|xð, it yields the target state.

Given these challenges, direct implementations of classical

neural networks in quantum circuits aren’t simple translations.

Quantum neural networks (QNNs) require novel architectures

and paradigms that align with quantum mechanics principles.

For instance, non-linearity in QNNs can be introduced in

several ways, including:

• Using measurements, which are inherently non-linear, to

induce non-linearity in the system.

• Adapting non-linear quantum phenomena, like the behav-

ior of certain quantum systems at specific energy levels.

Utilizing the Pennylane Tensorflow plug-in [21], quantum

circuits can be seamlessly integrated as Keras layers along-

side classical layers. This integration permits the leveraging

of Keras’ native loss functions and optimization algorithms

for the parameter update process. Predominantly, the models

employ the Categorical Crossentropy as the loss function and

utilize the Stochastic Gradient Descent for optimization. The

Categorical Crossentropy loss function is formulated as:

LC(y, ŷ) = −
∑

i

yi log(ŷi), (3)

where y represents the true categorical labels and ŷ denotes

the predicted probabilities.

The integration of quantum principles with classical neural

networks is an active research area, with constant devel-

opments and innovations to overcome these challenges and

harness the potential power of quantum computing for machine

learning tasks.

Fig. 1. The flow chart of knowledge distillation based QNN.
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IV. KNOWLEDGE DISTILLATION BASED QUANTUM

MACHINE LEARNING FRAMEWORK

We propose to leverage knowledge distillation (KD) [17],

which is a model compression method to transfer the learning

capabilities from a complex “teacher” model to a typically

simpler “student” model. The overview of our framework is

illustrated in Figure 1. In our proposed framework, we assume

that the student model is our QML model, and the teacher

model is the pre-trained CML model before the distillation,

allowing for the ideal performance of the teacher model to

guide the student in the learning process. The goal of KD is

to force a student QML model to mimic the output of the

teacher CML model by utilizing knowledge distilled from the

teacher. During KD, the student QML model is trained by

using a loss function in which loss is calculated by matching

the logits between the student QML model and the teacher

CML model. Logits are the nuanced probability distributions

generated by the teacher model. Unlike hard targets that only

offer label information, logits or soft targets disclose the

predicted probabilities across all classes. The logits of i-th
class can be represented as zi = Wix + b, where Wi is the

weight corresponding to the i-th class and b is the bias vector.

The softmax layer converts logits into the output probabilities

for each class as follows,

pi =
ezi∑
j e

zj
. (4)

Hence, to prevent the loss of valuable information, it is often

advantageous to employ logits z rather than the predicted

probabilities p during the training of the student model.

Given any data sample x in the training dataset, let ziT
and ziS be the logits on i-th class, which are the inputs

to the softmax layer, of the teacher CML model and the

student QML model, respectively. The goal of our proposed

framework is to minimize the difference between the softmax

results of the teacher piT = softmax(ziT /τ) and the student

piS = softmax(ziS/τ) using KL divergence, where τ is the

temperature to control the probability distribution over classes,

to essentially smooth the probability distribution, thereby

capturing the nuanced relationships between different classes

as learned by the teacher model. Then, the loss function for

KD on the QML student model is

LKD
g = −τ2

∑

i

KL(piT , p
i
S). (5)

With this loss function, the logits information is transferred

from the teacher to the student. Currently, in the field of QML,

supervised training with hard targets has proven to be effective.

By leveraging the soft targets of a pre-trained CML model as

well as the hard targets of a classical dataset, the training

performance of a QML model can be further improved.

V. PERFORMANCE EVALUATION

A. Simulation Settings

In the simulation, we utilize the PennyLane and TensorFlow

packages for training the QNN models, employing Qiskit for

TABLE I
PARAMETERS OF CLASSICAL LAYERS

Sequential Model
Flatten Dense Dense Dense Dense

MNIST 28*28 128 64 32 14

circuit compilations and noise simulations, and leveraging the

SciPy package for optimization tasks. All numerical experi-

ments are run on the Intel Xeon W-2195 CPU with 256GB of

RAM.

To build the proposed framework, we utilize the CNN as

the teacher model. Specifically, the architecture comprises two

convolutional layers and two pooling layers, followed by two

fully connected layers, The data flow of the framework is

structured as follows:

• Classical network: Composed of 2 hidden layers, each

with 10 neurons using Exponential Linear Units (ELU)

as the activation function. The output layer consists of 14

neurons.

• Data encoding: The output vector from the classical net-

work is transformed into a quantum state by the circuit,

utilizing components such as squeezers, interferometers,

displacement gates, and Kerr gates.

• Quantum network: Consists of 4 layers of QNN as

shown in Fig. 2.

• Measurement: The expectation value of the Pauli-X gate,

ïφk|X|φkð, is evaluated for each qmode state |φkð for the

kth qmode.

After measurement of the quantum circuit, we get the soft

target of the training set and can calculate the distillation loss

by Eq. (5). Then we combine the loss by:

L = αLC + (1− α)LKD
g , (6)

where α is a balance parameter.

B. Training Dataset and Classical Data Encoding

The teacher models are trained for 20 epochs and the student

models are trained for 20 epochs using the Adam optimizer.

We utilize the MNIST and Fashion-MNIST datasets, both of

which contain 60,000 training samples and 10,000 test samples

distributed across 10 distinct classes. Each sample in these

datasets features 28×28 attributes.

Classical feed-forward neural networks are employed for the

preprocessing of image data, primarily to condense the size of

the 28×28 image matrices to more manageable, smaller-sized

vectors. This resizing aligns with the availability of parameters

designated for data encoding. During this process, the image

matrices are reshaped into vectors with a size of 28×28

= 784. Subsequently, through the utilization of dense layer

operations in Keras, featuring the “ELU” activation function,

these vectors are then diminished to even smaller sizes.

Following this reduction, the resultant output vectors un-

dergo encoding as quantum states within the data encoding

quantum circuit. This approach ensures that the preprocessed

image data is in an optimal state and size for the subsequent
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Fig. 2. The structure of variational circuits. a)Encoder b)Layer of quantum circuit

encoding and processing steps in a quantum computing envi-

ronment.

The output vectors produced by the classical neural network

exist in classical states. Subsequently, the quantum data encod-

ing circuit transforms these classical states into quantum states.

During the data encoding process, a variety of quantum gates

are utilized, including squeezers, interferometers, displacement

gates, and Kerr gates. The entries of a classical vector are used

as the parameters for these respective parameterized quantum

gates, facilitating the precise conversion from classical to

quantum states. This conversion is essential for harnessing the

advanced computational capabilities of quantum processing in

handling data representations and transformations.

C. Analysis on the Performance of the Proposed Framework

The performance of the proposed framework is shown in

Fig. 3. In this figure, we compare the model performance of

the original QNN model as the blue curve and the proposed

knowledge distillation-based QNN model as the green curve

on the MNIST and Fashion-MNIST datasets. The performance

is evaluated with two sample sizes, 10k and 60k. We find two

primary insights from the simulation results. Firstly, there is

an enhanced model accuracy, as the plots of accuracy and

loss clearly show that the models trained “With Teacher” via

knowledge distillation consistently outperform those trained

“Without Teacher”. This demonstrates a pronounced boost in

prediction precision. Secondly, the proposed framework can

accelerate the convergence and increase the training stability.

The plots on the second row, which show loss metrics, not only

highlight the declining “Student Loss” and “Distillation Loss”

trends across epochs, thereby attesting to the effectiveness of

knowledge distillation, but also exhibit the stability of our

models. Their loss descent is consistent and smooth, indicating

the robustness and dependable convergence of our approach. In

essence, the simulation results demonstrate the effectiveness of

the proposed framework in improving accuracy and ensuring

robust, stable model performance across diverse datasets.

We also conducted simulations on the MNIST600 dataset to

evaluate the impact of different quantum circuit configurations

on model performance. The results shown in Fig. 4 provide a

comparison of the model accuracy among different amounts

of qubit counts and circuit layer complexities. Each sub-figure

shows the model accuracy for a specific number of layers in

the quantum circuit. It is obvious that with a deeper QML

model, the model accuracy increases. However, we also note

that using more qubits to encode the training dataset does

not always lead to higher accuracy. There is a significant

increase in model performance when increasing the number

of qubits from two to three. Despite that, further increases do

not lead to better accuracy and are comparable to the results

with three qubits. Therefore, it is necessary to determine how

many qubits should be used to encode the classical data in

QML. This figure also demonstrates the performance of the

proposed knowledge distillation-based framework in different

quantum circuit configurations. The results clearly represent

that employing knowledge distillation consistently leads to

performance improvements across all tested configurations.

This signifies the robustness and effectiveness of the proposed

framework, highlighting its potential to enhance performance

in various quantum circuit setups.

VI. CONCLUSION

In this paper, we propose a novel application of knowledge

distillation for training QML models. Our framework effec-

tively enhances model accuracy and training stability across

various quantum circuit configurations. The experiment results

show that utilizing well-trained CML models as teachers is

significantly more effective than relying solely on the QML

models, since the QML models often suffer from issues such

as barren plateaus that have not been adequately addressed.

This work bridges the gap between translating the classical

model performance to a quantum computing paradigm, thereby

enabling faster and more complex computations compared to

classical computers.
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Fig. 3. Comparative analysis of model performance: QNN model with teacher vs. QNN model without teacher on the MNIST dataset.

Fig. 4. The impact of different qubits and layers on model performance.
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