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Abstract—The rapid advancement of machine learning (ML)
and the growing need for computational power have led to
the exploration of quantum computing, which offers significant
potential for faster complex calculations. However, Quantum
Machine Learning (QML) faces challenges due to the limited
number of qubits and noise of quantum circuits, particularly
with Noisy Intermediate-Scale Quantum (NISQ) devices. These
challenges severely limit the current capacity to train accurate
and stable Quantum Machine Learning Models. In this paper,
we propose a novel framework for QML that employs the
knowledge distillation method to harness the power of well-
trained classical machine learning (CML) models and enhance
the training performance of QML models. In this framework,
we utilize the well-trained CML as a teacher model to assist
the training of the student QML model using the knowledge
distillation method. By distilling knowledge from the robust
CML model, our framework can potentially address the problem
of the barren plateau which hinders effective model training.
Knowledge distillation is well suited for this framework through
the transfer of knowledge without parameter sharing. Through
empirical tests, our framework has demonstrated not only an
increase in the accuracy of QML models but also a notable
improvement in training stability.

Index Terms—Quantum Computing, Machine Learning, Quan-
tum Machine Learning, Knowledge Distillation.

I. INTRODUCTION

Recent advancements in machine learning can largely be
attributed to the increasing size of models to leverage the
increasing volume of data across many domains of appli-
cations [1]. The increase in model size rapidly necessitates
advancements over traditional paradigms in computing to
compensate for the computational power necessary for han-
dling immense data volume [2]. This necessity is particularly
evident in the realm of modern communication and networking
systems. In this context, quantum computing has emerged as
a promising alternative to classical computing [3]. Quantum
computers leverage quantum phenomena, such as superposi-
tion and entanglement, which can potentially accelerate the
training and inference speed of machine learning models,
especially for complex problems and large datasets [4]-[6].
Quantum machine learning (QML), a multidisciplinary field
that combines quantum computing and machine learning,
aims to harness the power of quantum computing to solve
complex problems efficiently [7], [8]. Variational quantum
circuits (VQC) can be employed to construct QML models.
VQC has been applied in hybrid quantum-classical models
that utilize current classical optimization techniques such as
stochastic gradient descent, while taking advantage of the

quantum speed-up provided in utilizing a parameterized quan-
tum circuit. Quantum circuits are constructed using quantum
gates. These quantum circuits’ parameters can be optimized
using an objective function, in a fashion like the training
of model parameters in classical models. Recently, QML
has emerged in various applications, including understanding
nanoparticles, crafting novel materials through molecular and
atomic mapping, molecular modeling for drug discovery and
medical research, and probing the deeper structures of the
human body [9], [10]. Additionally, QML plays a crucial
role in enhancing communication networks by enabling ad-
vanced data processing and decision-making capabilities at
unprecedented speeds and efficiencies. In [11], the authors
envision 6G wireless networks as a transformative leap in
telecommunications, driven by the integration of machine
learning, quantum computing, and quantum machine learning,
to enable highly adaptive, efficient, and responsive network
orchestration and management.

However, current quantum computers, often referred to as
Noisy Intermediate-Scale Quantum (NISQ) devices [12], [13],
are still in the early stage and face challenges of a limited
number of qubits and inherent noise in quantum circuits.
These limitations not only hinder the development of large-
scale Quantum Machine Learning (QML) models but also
impact the performance and efficiency of these models. The
constraints of available quantum hardware, coupled with the
inherent noise, limit the scalability of QML models. Scaling
up to a larger number of qubits is challenging due to physical
constraints and increasing complexity in error correction and
control. The inherent noise in quantum circuits, which scales
with the depth of QML models, can significantly affect the per-
formance and applicability of QML algorithms. One method
to mitigate this issue is to use a relatively shallow model [14].
However, it will lead to a decrease in final performance.

Given the limitations in quantum computing capacity, par-
ticularly in scaling up QML models, there’s a pressing need
to find efficient training methods for QML. Current quantum
computing capacity necessitates measures to reduce training
efforts required to construct large-scale QML models. There-
fore, we explore the concept of transferring the advanced
capabilities of current classical machine learning models into
the quantum domain, in order to enhance the efficiency
of the QML model. The current classical machine learning
(CML) models for vision tasks, such as DenseNet [15] and
ResNet [16], are state-of-the-art for image classification tasks.

1139



2024 IEEE International Conference on Communications; Selected Areas in Communications: Quantum Communications and
Information Technology

On the CIFAR-10 dataset, ResNet-110 has achieved 6.61
percent error and DensNet-190 has achieved 3.46 percent error.
A commonality between these networks was breakthroughs
in model design to allow training at larger model depths
to be effective. With the abundance of these well-trained,
well-performing models, we propose a novel framework that
utilizes the knowledge distillation (KD) approach to distilling
the knowledge of the CML model into the QML model to
improve the performance of QML. KD is originally a model
compression technique in which a larger, cumbersome model
is used to train a smaller, lightweight model [17]. This is
performed by matching output logits between a “teacher” and
a “student” model. The teacher model is pre-trained before the
distillation, allowing for the ideal performance of the teacher
model to guide the student in the learning process. While
KD is normally used for model compression, it may be used
as a method for transferring learning between models [18].
Therefore, in this work, a well-trained CML model may be
used as a teacher to transfer knowledge using KD to a student
QML model. Our contributions are listed as follows.

« We propose a novel knowledge distillation-based QNN
framework by leveraging the knowledge of CML models
to enhance the training efficiency of QNNs. This inno-
vative approach represents a significant advancement in
integrating classical and quantum computing methodolo-
gies

o By harnessing the strength of the CML models, our
approach can not only enhance the performance of the
inherently resource-constrained QNN but also increase
the stability of the training process.

o Through extensive simulations, we demonstrate that the
proposed framework can significantly accelerate the con-
vergence and improve the training performance.

The rest of the paper is organized as follows. In Section II,
we introduce the preliminaries of quantum computing basics
and quantum neural networks. In Section III, we illustrate the
structure of the quantum neural network used in this work.
We present the proposed knowledge distillation based QNN
framework in IV. We evaluate the performance of the proposed
framework in Section V. Finally, we conclude our paper in
Section VI.

II. PRELIMINARIES

A. Qubits, Quantum Gates, Measurements & Quantum Cir-
cuits

In contrast to the binary nature of traditional bits, a qubit
can simultaneously occupy a superposition of the |0) and |1)
states. There are multiple technological methods for producing
qubits, including superconducting qubits and trapped-ions,
among others. In quantum computing, quantum gates play a
pivotal role, analogous to classical logic gates in conventional
computing. While classical gates operate on bits that take
either a 0 or 1 value, quantum gates act on qubits, which
can exist in a superposition denoted as |¢) = «|0) + B |1).
Quantum gates guide the evolution of these qubit states, facil-
itating quantum operations. Simple gates, such as the Pauli-X

(X), Pauli-Y (Y), and Pauli-Z (Z) gates, manipulate individual
qubits. In contrast, multi-qubit gates, like the Controlled-NOT
(CNOT) or general controlled-U gates, interact with multi-
ple qubits, harnessing the entanglement property unique to
quantum mechanics. Multiple gate operations are encapsulated
within a quantum circuit. To discern the end state of a quantum
algorithm, qubits are measured. Quantum measurement in
quantum computing involves collapsing the superposition of
a qubit into a definite state, either |0) or |1) [19]. This process
is probabilistic, based on the qubit’s superposition before mea-
surement. Measuring a qubit fundamentally alters its state, a
principle of quantum mechanics. Additionally, measuring one
qubit can instantly affect another entangled qubit, a property
used in quantum information transfer. Quantum measurement
is essential for translating quantum information into classical
data, concluding the quantum computation process.

B. Quantum Neural Network

Quantum Neural Networks (QNNs) leverage quantum
mechanics to enhance computational capabilities, centering
around a Parameterized Quantum Circuit (PQC). This ar-
chitecture includes a data encoding circuit for translating
classical information into quantum states, the PQC itself, and
measurement operations to extract outcomes. In data encoding,
a common method is angle encoding, which converts classical
features into quantum rotations, often with each feature requir-
ing its own qubit. However, multiple features can be encoded
on a single qubit through sequential rotations, noting that qubit
rotations are periodic with a 27 interval.

The PQC comprises layers of quantum entanglements and
parametric single-qubit rotations, known as parametric layers
(PLs). Entangling operations create quantum correlations be-
tween qubits, and the rotations explore potential solutions. The
challenge in QNN design mirrors that in classical computing,
involving finding the optimal number of PLs for a given task
and balancing computational efficiency and noise resilience.

III. QUANTUM NEURAL NETWORKS

Machine learning is a powerful technique used to identify
and extract hidden patterns from vast sets of data. This is
achieved by adjusting a set of parameters within a mathe-
matical framework to ensure that the predictions or outputs
it produces align closely with the actual data. The specific
mathematical framework or method used to identify these
patterns is termed a “machine learning algorithm.”

For a clearer picture, consider a machine learning algorithm
as a recipe. This recipe, when followed with a certain set
of ingredients (parameters), will produce a specific dish (pre-
diction). Now, to make the dish taste its best (i.e., have the
most accurate prediction), one needs to adjust and refine the
ingredients’ quantity and quality (tuning the parameters). Once
we’ve fine-tuned these ingredients to perfection, our recipe,
now tailor-made, is termed a “model”.

Taking this a step further into the realm of quantum comput-
ing, there’s a burgeoning field known as QML. QML leverages
the principles of quantum mechanics to potentially speed up
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complex computations and offer efficient algorithms. With the
rapid advancements in quantum hardware and the increasing
availability of quantum computers and simulators on cloud
platforms, the execution of QML algorithms is becoming more
practical and feasible. This opens up a new frontier in machine
learning, offering the potential for breakthroughs in processing
speeds and algorithmic capabilities.

Neural networks are a specialized category within the vast
landscape of machine learning algorithms. At their core, neural
networks are composed of multiple layers that process data in
a sequential manner, where each layer contributes to refining
the input data for the subsequent layer.

Visualize each layer in a neural network as a series of
computations. The fundamental computation within each layer
involves multiplying the input (often represented as ‘z’) by a
weight matrix (denoted as ‘W), and then adding a bias term
(represented as ‘b’). This resultant value is then passed through
a non-linear function called an activation function (symbolized
as ‘¢(-)’). Mathematically, this operation can be expressed as:

f(@) = o(Wx +b). (1)

The beauty of a neural network lies in its layered structure.
The output from one layer doesn’t just end there; it serves as
the input for the next layer. This chain of transformations, from
the first layer to the last, can be expressed as a composition
of functions:

fl@)=LypoL,_10...0L(x). (2)

This structure allows neural networks to capture complex
patterns and relationships in the data. However, for this system
to work effectively, it’s crucial that the weight matrix ‘W’ and
the bias vector ‘b’ for each layer are set correctly. These are
not set manually but are “learned” from data.

In a quantum context, the idea is to transform this classical
expression into its quantum analog:

f(z)) = [6(Wz +b)).

There are several key components and challenges:

1) Data Encoding: This step involves translating classical
data z into quantum states |1)(x)). Typically, data encod-
ing methods use amplitude encoding or basis encoding
to represent classical data in quantum states.

2) Affine Transformation: Applying the weight matrix W
on the quantum data |¢(x)) and adding the bias |b) is
non-trivial in a quantum setup. While quantum gates can
implement various transformations on quantum states,
direct implementation of bias addition isn’t straightfor-
ward, as quantum gates are unitary (and thus linear).

3) Non-linear Activation Function: The non-linear ac-
tivation function ¢(]-)) is even more challenging in
the quantum realm. All operations in the qubit model
based on available unitary gates are inherently linear,
making it a challenge to directly port classical non-linear
functions.

In our study, we draw upon the continuous-variable model
outlined in the referenced paper [20]. The affine transforma-
tion, represented by Wz +b, is achieved through the sequential
application of the operations D o Uy o S o U;. Here, each Uy
stands for the k" interferometer. The set S consists of m
squeezers, while D represents a collection of m displacement
gates. The nonlinear activation function, symbolized by ¢(-),
is realized using a series of Kerr gates. When the composite
operation ¢ o D o Uy 0 S o U; is applied to a quantum state
|), it yields the target state.

Given these challenges, direct implementations of classical
neural networks in quantum circuits aren’t simple translations.
Quantum neural networks (QNNs) require novel architectures
and paradigms that align with quantum mechanics principles.

For instance, non-linearity in QNNs can be introduced in
several ways, including:

o Using measurements, which are inherently non-linear, to
induce non-linearity in the system.

o Adapting non-linear quantum phenomena, like the behav-
ior of certain quantum systems at specific energy levels.

Utilizing the Pennylane Tensorflow plug-in [21], quantum
circuits can be seamlessly integrated as Keras layers along-
side classical layers. This integration permits the leveraging
of Keras’ native loss functions and optimization algorithms
for the parameter update process. Predominantly, the models
employ the Categorical Crossentropy as the loss function and
utilize the Stochastic Gradient Descent for optimization. The
Categorical Crossentropy loss function is formulated as:

LYy, 9) == vilog (i), 3)

where y represents the true categorical labels and ¢ denotes
the predicted probabilities.

The integration of quantum principles with classical neural
networks is an active research area, with constant devel-
opments and innovations to overcome these challenges and
harness the potential power of quantum computing for machine
learning tasks.
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Fig. 1. The flow chart of knowledge distillation based QNN.
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IV. KNOWLEDGE DISTILLATION BASED QUANTUM
MACHINE LEARNING FRAMEWORK

We propose to leverage knowledge distillation (KD) [17],
which is a model compression method to transfer the learning
capabilities from a complex “teacher” model to a typically
simpler “student” model. The overview of our framework is
illustrated in Figure 1. In our proposed framework, we assume
that the student model is our QML model, and the teacher
model is the pre-trained CML model before the distillation,
allowing for the ideal performance of the teacher model to
guide the student in the learning process. The goal of KD is
to force a student QML model to mimic the output of the
teacher CML model by utilizing knowledge distilled from the
teacher. During KD, the student QML model is trained by
using a loss function in which loss is calculated by matching
the logits between the student QML model and the teacher
CML model. Logits are the nuanced probability distributions
generated by the teacher model. Unlike hard targets that only
offer label information, logits or soft targets disclose the
predicted probabilities across all classes. The logits of i-th
class can be represented as z; = W;x + b, where W; is the
weight corresponding to the i-th class and b is the bias vector.
The softmax layer converts logits into the output probabilities
for each class as follows,

e
pi = o
. J
>;€

Hence, to prevent the loss of valuable information, it is often
advantageous to employ logits z rather than the predicted
probabilities p during the training of the student model.

Given any data sample z in the training dataset, let 2%
and z% be the logits on i-th class, which are the inputs
to the softmax layer, of the teacher CML model and the
student QML model, respectively. The goal of our proposed
framework is to minimize the difference between the softmax
results of the teacher p% = softmax(z%./7) and the student
ps = softmax(z5/7) using KL divergence, where 7 is the
temperature to control the probability distribution over classes,
to essentially smooth the probability distribution, thereby
capturing the nuanced relationships between different classes
as learned by the teacher model. Then, the loss function for
KD on the QML student model is

LyP = -y KL(py,ps)- ©)

“4)

With this loss function, the logits information is transferred
from the teacher to the student. Currently, in the field of QML,
supervised training with hard targets has proven to be effective.
By leveraging the soft targets of a pre-trained CML model as
well as the hard targets of a classical dataset, the training
performance of a QML model can be further improved.

V. PERFORMANCE EVALUATION

A. Simulation Settings

In the simulation, we utilize the PennyLane and TensorFlow
packages for training the QNN models, employing Qiskit for

TABLE I
PARAMETERS OF CLASSICAL LAYERS

Sequential Model
Flatten | Dense | Dense | Dense | Dense
28%28 128 64 32 14

MNIST

circuit compilations and noise simulations, and leveraging the
SciPy package for optimization tasks. All numerical experi-
ments are run on the Intel Xeon W-2195 CPU with 256GB of
RAM.

To build the proposed framework, we utilize the CNN as
the teacher model. Specifically, the architecture comprises two
convolutional layers and two pooling layers, followed by two
fully connected layers, The data flow of the framework is
structured as follows:

o Classical network: Composed of 2 hidden layers, each
with 10 neurons using Exponential Linear Units (ELU)
as the activation function. The output layer consists of 14
neurons.

« Data encoding: The output vector from the classical net-
work is transformed into a quantum state by the circuit,
utilizing components such as squeezers, interferometers,
displacement gates, and Kerr gates.

e Quantum network: Consists of 4 layers of QNN as
shown in Fig. 2.

o Measurement: The expectation value of the Pauli-X gate,
(pr| X |dr), is evaluated for each gmode state |@y,) for the
kth gmode.

After measurement of the quantum circuit, we get the soft

target of the training set and can calculate the distillation loss
by Eq. (5). Then we combine the loss by:

L=al’+(1-a)LlP, (6)
where « is a balance parameter.

B. Training Dataset and Classical Data Encoding

The teacher models are trained for 20 epochs and the student
models are trained for 20 epochs using the Adam optimizer.
We utilize the MNIST and Fashion-MNIST datasets, both of
which contain 60,000 training samples and 10,000 test samples
distributed across 10 distinct classes. Each sample in these
datasets features 28 x28 attributes.

Classical feed-forward neural networks are employed for the
preprocessing of image data, primarily to condense the size of
the 2828 image matrices to more manageable, smaller-sized
vectors. This resizing aligns with the availability of parameters
designated for data encoding. During this process, the image
matrices are reshaped into vectors with a size of 28x28
= 784. Subsequently, through the utilization of dense layer
operations in Keras, featuring the “ELU” activation function,
these vectors are then diminished to even smaller sizes.

Following this reduction, the resultant output vectors un-
dergo encoding as quantum states within the data encoding
quantum circuit. This approach ensures that the preprocessed
image data is in an optimal state and size for the subsequent
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Fig. 2. The structure of variational circuits. a)Encoder b)Layer of quantum circuit

encoding and processing steps in a quantum computing envi-
ronment.

The output vectors produced by the classical neural network
exist in classical states. Subsequently, the quantum data encod-
ing circuit transforms these classical states into quantum states.
During the data encoding process, a variety of quantum gates
are utilized, including squeezers, interferometers, displacement
gates, and Kerr gates. The entries of a classical vector are used
as the parameters for these respective parameterized quantum
gates, facilitating the precise conversion from classical to
quantum states. This conversion is essential for harnessing the
advanced computational capabilities of quantum processing in
handling data representations and transformations.

C. Analysis on the Performance of the Proposed Framework

The performance of the proposed framework is shown in
Fig. 3. In this figure, we compare the model performance of
the original QNN model as the blue curve and the proposed
knowledge distillation-based QNN model as the green curve
on the MNIST and Fashion-MNIST datasets. The performance
is evaluated with two sample sizes, 10k and 60k. We find two
primary insights from the simulation results. Firstly, there is
an enhanced model accuracy, as the plots of accuracy and
loss clearly show that the models trained “With Teacher” via
knowledge distillation consistently outperform those trained
“Without Teacher”. This demonstrates a pronounced boost in
prediction precision. Secondly, the proposed framework can
accelerate the convergence and increase the training stability.
The plots on the second row, which show loss metrics, not only
highlight the declining “Student Loss” and “Distillation Loss”
trends across epochs, thereby attesting to the effectiveness of
knowledge distillation, but also exhibit the stability of our
models. Their loss descent is consistent and smooth, indicating
the robustness and dependable convergence of our approach. In
essence, the simulation results demonstrate the effectiveness of
the proposed framework in improving accuracy and ensuring
robust, stable model performance across diverse datasets.

We also conducted simulations on the MNIST600 dataset to
evaluate the impact of different quantum circuit configurations
on model performance. The results shown in Fig. 4 provide a

comparison of the model accuracy among different amounts
of qubit counts and circuit layer complexities. Each sub-figure
shows the model accuracy for a specific number of layers in
the quantum circuit. It is obvious that with a deeper QML
model, the model accuracy increases. However, we also note
that using more qubits to encode the training dataset does
not always lead to higher accuracy. There is a significant
increase in model performance when increasing the number
of qubits from two to three. Despite that, further increases do
not lead to better accuracy and are comparable to the results
with three qubits. Therefore, it is necessary to determine how
many qubits should be used to encode the classical data in
QML. This figure also demonstrates the performance of the
proposed knowledge distillation-based framework in different
quantum circuit configurations. The results clearly represent
that employing knowledge distillation consistently leads to
performance improvements across all tested configurations.
This signifies the robustness and effectiveness of the proposed
framework, highlighting its potential to enhance performance
in various quantum circuit setups.

VI. CONCLUSION

In this paper, we propose a novel application of knowledge
distillation for training QML models. Our framework effec-
tively enhances model accuracy and training stability across
various quantum circuit configurations. The experiment results
show that utilizing well-trained CML models as teachers is
significantly more effective than relying solely on the QML
models, since the QML models often suffer from issues such
as barren plateaus that have not been adequately addressed.
This work bridges the gap between translating the classical
model performance to a quantum computing paradigm, thereby
enabling faster and more complex computations compared to
classical computers.
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