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Abstract—The growth of hydrogen infrastructure is expected
to aid in the integration of fluctuating renewable energy in
distribution systems. To leverage the hydrogen system flexi-
bility, this work presents a mixed-binary quadratic program
(MBQP) model for synergistic operations of hydrogen and power
distribution systems, wherein truck-mounted mobile hydrogen
storage facilities are modeled for the schedule of their routes and
loading/unloading quantities. A quantum-assisted combinatorial
Benders’ decomposition algorithm is designed for our MBQP
model to deploy the solving of master and sub-problems on a
quantum processing unit (QPU) and a classical CPU, respectively.
The master problem is reformulated as a quadratic unconstrained
binary optimization (QUBO) problem, which can be efficiently
solved by quantum annealers. The proposed approach was tested
on a hybrid quantum annealing and classical computing platform.
Results show a trend to outperform the CPU-based commercial
solvers as the problem scale increases.
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Decomposition, Hydrogen, Mobile Hydrogen Storage, Power
Distribution System.

NOMENCLATURE

Indices

b, t, z Index for buses, time periods and zones

Sets

B Set of total buses

Broot Set of substation buses

HE Set of electrolyzors

HEb Set of electrolyzors connected with bus b
HEz Set of electrolyzors in zone z
HR Set of steam methane reformers

HRz Set of steam methane reformers in zone z
PV Set of photovoltaic generator systems

T Set of hourly time periods
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T K Set of trucks

Z Set of hydrogen zones

Parameters

ηi Power-to-hydrogen efficiency of electrolyzor i
λ̂b,t Local marginal price (LMP) from the whole-

sale market received at bus b and time t
Ci Loading capacity of mobile hydrogen storage

(MHS) i
Hi Maximum production of hydrogen producer i
Ez Hydrogen mass that can be stored in zone z

S
PV,p

i,t , S
PV,q

i,t Active/Reactive power limit of photovoltaic

generation system i
V b, V b Lower/upper limit power of squared voltage

magnitude at bus b
cfuel Cost of transportation

cldingi , cunldingi Cost of loading/unloading of truck i
cprdi Cost of steam methane reformer i
Dhyd

z,t Hydrogen load in zone z at time t
dzst,zen Route length from zone zst to zen
ez,0 Hydrogen storage at the initial time period

ez,|T | Hydrogen storage at the last time period

NTKz,t Maximum truck quota in zone z at time t
pDb,t Active electricity load at bus b and time t

qDb,t Reactive electricity load at bus b and time t
rm,n, xm,n Resistance, reactance of branch (m,n)

Sm,n Maximum power capacity of branch (m,n)

Decision Variables

emhs
i,t Loading level of MHS i in time t

fPm,n,t, f
Q
m,n,t Active/reactive flow from bus m to n at time t

hi,t Hydrogen generation of steam methane re-

former i at time t
prootb,t , qrootb,t Active/Reactive power generation of bus b at

time t
pHE
i,t , q

HE
i,t Active/Reactive power consumption of elec-

trolyzor i at time t
pPV
i,t , q

PV
i,t Active/Reactive power generation of solar sta-

tion i at time t
qldingi,z,t , q

unlding
i,t Loading/Unloading hydrogen quantity of MHS

i in site z and time t
ub,t Power rate of bus b at time t
xi,z,t Binary variable indicating if MHS i is in zone

z at the end of time t, 1 indicates that MHS i
is in zone z



2

I. INTRODUCTION

THE integration of renewable energy sources into power

distribution systems presents a significant challenge due

to the fluctuating nature of these resources. A series of studies

are proposed to analysis and utilize renewable power recently

[1]. Hydrogen networks can potentially offer flexibility for

power systems to address the aforementioned issue because

they have relatively low needs for real-time energy balancing.

Leveraging this feature eventually requires mathematical mod-

els for the two systems’ synergistic operations, and advanced

solution approaches to tackle the expected model size increase

in the future.

This growing interest in hydrogen as an intermediary for

excess renewable energy emphasizes the need to develop

robust strategies that optimize the integration of these two

critical sectors. Flexibly converting surplus renewable energy

to hydrogen meanwhile considering the storage capabilities

in the hydrogen system is urgently needed to investigate.

Recent studies have started to explore the interaction between

power and hydrogen sectors from various point of views.

For station level systems, a hydrogen filling station for fuel

cell vehicles is designed in [2]. The authors of [3] present a

control strategy for a stand-alone hybrid renewable energy and

hydrogen storage system. There has been some researchers

who utilize microgrid to achieve energy management [4].

For microgrid or local multi-energy systems, [5] presents an

operation strategy for a microgrid with renewable energy and a

power-to-hydrogen scheme. In [6], a deep deterministic policy

gradient based hybrid energy scheduling (H-DDPG) algorithm

is proposed to convert surplus renewable energy into hydrogen

through electrolysis. A hydrogen-based networked microgrids

planning approach is proposed in [7] in the presence of

renewable energy sources by using two-stage stochastic pro-

gramming with mixed-integer conic recourse. The utilization

of hydrogen in local energy systems for internet data centers

is explored in [8]. From a bulk power system perspective,

[9] investigated how power-hydrogen interactions can affect

power transmission expansion planning, with modeling of

hydrogen transportation networks and centralized hydrogen

storage. A generation capacity expansion is proposed in [10]

considering further considerations of H2-fired gas turbines

and energy storage systems. For power distribution systems, a

simplified power-to-hydrogen dispatch model is proposed for

the electricity-heat-hydrogen dispatch coordinated with active

distribution networks and district heating networks [11]. This

growing need to optimize the integration of hydrogen and

power systems is underscored by recent studies investigating

hydrogen storage’s roles within these networks [12]. Moreover,

developing risk-constrained bidding strategies for integrated

electricity-hydrogen energy systems is crucial to enhance their

economic viability in competitive markets [13]. Our recent

work [14] further presents a coordinated operation approach of

hydrogen and power distribution systems considering pipeline

hydrogen transportation systems. Pipeline would be economic

when the demand is relatively large in a future scenario. For

most current cases, truck-mounted mobile hydrogen storage

is a more viable way, the roles of which are worth further

investigation.

These works have explored various aspects of the interaction

between power and hydrogen systems, but in the context

of power distribution systems, how electrolysis and mobile

hydrogen storage resources benefit hydrogen and power syn-

ergistic operations can be explored under near-future scenarios.

The routine scheduling of truck-mounted mobile hydrogen

storage facilities needs a detailed consideration. We also aim

to maximize the utilization of renewable generation with

flexible synergistic dispatch. When the electricity price from

the wholesale market is low or the power from a renewable

power station is sufficient, the coordinated system can convert

the surplus energy to hydrogen and transport them via the

truck-mounted mobile hydrogen storage system. Considering

these above facts, we model the synergistic operation as a

mixed-binary quadratic program (MBQP), wherein individual-

level route and loading/unloading scheduling of truck-mounted

mobile hydrogen storage facilities are modeled with more

realistic path-dependent travel costs.

To tackle the complex MBQP problem, the Benders’ de-

composition algorithm [15] is recognized as an efficient way

to solve the proposed mixed-binary programs. The rapid devel-

opment of quantum computing offers promising features that

can potentially outperform algorithms on classical computers.

Quantum computing is also showing its potential in the energy

domain [16], [17]. However, the hardware limit of current

quantum processing unit (QPU) hinders the validation through

scalability testing. To tackle this, we propose a quantum-

assisted combinatorial Benders’ decomposition approach that

can benefit from both classical and quantum computing ca-

pabilities. Comparing to Benders’ decomposition deployment

on pure CPU, trends of performance improvements can be

more visible with slightly larger-scale instances enabled by

our hybrid approach. Generally, the development of quantum

computing techniques can be categorized into two directions:

gate-based quantum computers and quantum annealers. Cur-

rently, the gate-based quantum computer is limited to less than

100 quantum bits [18]. D-Wave Systems Inc., on the other

hand, manufactures quantum annealers with 5,000 quantum

bits (qubits). A quantum annealer has just been verified for

its strong computation ability to solve binary optimization

problems [19]. The quantum annealing algorithm can only

be used to solve quadratic unconstrained binary optimization

(QUBO) at present. Some problems can be modeled using

QUBO and solved by a quantum annealer directly [20], [21].

However, our problem is a MBQP model and need to be

reformulated to QUBO.

With Benders’ decomposition, the MBQP model for syner-

gistic operation is separated to mixed-binary nonlinear master

problems and linear sub problems, which are deployed in

quantum and classical computers, respectively. The mixed-

binary nonlinear master problem is reformulated as a QUBO,

which can be solved by quantum annealers. Note although

various previous works have converted mixed-binary linear

programs (MBLPs) to QUBOs and applied to practical prob-

lems [22], our approach addresses a specific MBQP for

synergistic operations of hydrogen and power distribution

systems. Furthermore, our QUBO reformulation approach can
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Fig. 1. The framework of synergistic operation

be generically extended to addressing a class of MBQPs. There

has been studies to utilize quantum machines to solve Benders’

decomposition problems recently [23].

The contributions of this work are summarized in the

following.

• A MBQP model is proposed for synergistic operations

of hydrogen and power distribution systems, in which

truck-mounted mobile hydrogen storage facilities are

modeled in individual level to schedule their routes and

loading/unloading quantities.

• A tailored quantum assisted combinatorial quantum Ben-

ders’ decomposition algorithm is designed to solve the

MBQP model. The resulting mixed-binary quadratic mas-

ter problems and linear subproblems are solved on quan-

tum and conventional computers, respectively.

• In comparison to classical computer based Benders’

decomposition, our hybrid quantum approach shows a

trend to be more scalable, especially in solving nonlinear

master problems with a fair number of cuts added.

II. MBQP MODEL FOR SYNERGISTIC OPERATIONS WITH

TRUCK-MOUNTED HYDROGEN STORAGE

In this section, we describe a mathematical programming

model for the synergistic operations for power distribution

system and the hydrogen system. Then the hydrogen can be

produced by electrolyzers with electricity.

A. Objective Function

The objective function is defined as the sum of the opera-

tion costs for hydrogen production, transportation, and power

distribution systems.

min ϕ = Ch2prd + Ch2trs + Cele. (1)

We denote the cost of hydrogen production by Ch2prd. The

cost of each steam methane reformer is represented by cprdi ,

which is assumed a constant value. The amount of hydrogen

production of steam methane reformer i at time period t is

defined as hi,t.

Ch2prd =
∑

t∈T

∑

i∈HR

cprd
i · hi,t. (2)

We also use Ch2trs to model the hydrogen transportation

cost. The loading and unloading cost is modeled as a linear

function and the fuel cost for traveling is modeled as a

quadratic function of distance. Our model operates on an

Fig. 2. The framework of hydrogen system

hourly time scale, meaning that it is designed to simulate

and optimize hydrogen production, transportation, and energy

usage in hourly increments. Given the current limitations in

the computational power of quantum computers, we have

constrained the model to focus on transportation within a small

geographical area, such as an urban region. This allows for

the assumption that a truck can transport hydrogen or goods

from one area to another within one hour, reducing the overall

complexity of the problem and making it more manageable

with the available quantum computing resources. Therefore,

only when xi,zst,t−1 and xi,zen,t are both equal to 1, the fuel

cost is added to the objective function; otherwise, it will be

zero.

Ch2trs =
∑

t∈T

∑

z∈Z

∑

i∈T K

(cldingi · qldingi,z,t + cunldingi · qunldingi,z,t )+

∑

t∈T

∑

i∈T K

∑

zst∈Z

∑

zen∈Z

cfuel · dzst,zen · xi,zen,t · xi,zst,t−1. (3)

Next, Broot contains substation bus(es). λ̂b,t is the local

marginal price (LMP) from the wholesale electricity market,

while prootb,t is the power generation from each substation bus at

time t. Then, the electricity cost from the wholesale electricity

market can be described as,

Cele =
∑

t∈T

∑

b∈Broot

λ̂b,t · p
root
b,t . (4)

B. Hydrogen Distribution System Constraints

The hydrogen production and truck-mounted mobile hydro-

gen storage facilities are modeled in this section. Fig. 2 shows

the framework of hydrogen distribution system. There are 2

steam methane reformers in Zones 3 and 4, which can produce

hydrogen to meet the loads in Zones 1 and 2. The hydrogen

is transported from the producer side to the consumer side

by trucks. There are routines between the two zones. An

extra electrolyzor can be added to Zone 3 to transform extra

electricity to hydrogen from power distribution system. The

modeling of the hydrogen system is shown below.

1) Hydrogen Production: The hydrogen production of

steam methane reformers and electrolyzors cannot exceed the
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upper bound Hi in each time period. Then the bounds for two

types of hydrogen production units are shown as,

0 ≤ hi,t ≤ Hi ∀i ∈ HR, t ∈ T , (5a)

0 ≤ ηi · p
HE
i,t ≤ Hi ∀i ∈ HE , t ∈ T . (5b)

2) Hydrogen Mass Balance: The constraints represent the

balance at the zonal level as,

0 ≤ ez,0 +
t
∑

τ=1

(

∑

i∈HRz

hi,τ +
∑

i∈HEz

ηi · p
HE
i,τ −

∑

i∈T K

qldingi,z,τ

+
∑

i∈T K

qunldingi,z,τ −Dhyd
z,τ

)

≤ Ez, ∀z ∈ Z, t ∈ T \{|T |}.

(6a)

ez,0 +
∑

τ∈T

(

∑

i∈HRz

hi,τ +
∑

i∈HEz

ηi · p
HE
i,τ −

∑

i∈T K

qldingi,z,τ +

∑

i∈T K

qunldingi,z,τ −Dhyd
z,τ

)

= ez,|T |, ∀z ∈ Z, (6b)

where the level of hydrogen mass in each time period is

determined by the input and output of hydrogen. This includes

hydrogen production through steam methane reformers and

electrolyzers, as well as hydrogen loads and the amount of

hydrogen loaded and unloaded by trucks. (6a) limits that

the hydrogen mass cannot exceed the capacity that can be

stored. (6b) defines the hydrogen mass level at the end of

time horizon.

3) Mobile Hydrogen Storage: Here we have an assumption

that vehicles can travel from one zone to any other zone in one

interval, and fuel cost for traveling is modeled as a quadratic

function of distance. The upper bound limits for loading and

unloading amount for each truck in each zone are modeled

in (7a) and (7b), respectively. Constraints (7c) represent each

truck can only be in one zone in each period. (7d) limited the

maximum number of trucks for a zone at each time period.

Constraints (7e) and (7f) represent the tank storage dynamics

and their state of charge limits.

0 ≤ qldingi,z,t ≤ Ci · xi,z,t, ∀i ∈ T K, ∀z ∈ Z, t ∈ T , (7a)

0 ≤ qunldingi,z,t ≤ Ci · xi,z,t, ∀i ∈ T K, ∀z ∈ Z, t ∈ T , (7b)
∑

z∈Z

xi,z,t = 1, ∀i ∈ T K, t ∈ T , (7c)

∑

i∈T K

xi,z,t ≤ NTKz,t, ∀z ∈ Z, t ∈ T , (7d)

emhs
i,t+1 = emhs

i,t +
∑

z∈Z

qldingi,z,t −
∑

z∈Z

qunldingi,z,t , ∀i ∈ T K, t ∈ T ,

(7e)

0 ≤ emhs
i,t ≤ Ci, ∀i ∈ T K, t ∈ T . (7f)

C. Power Distribution System Constraints

The physical characteristics of electricity delivery, renew-

able energy generation, and electrolysis are modeled in this

subsection.

1) Power Balance: We model power flow balance for active

and reactive power in (8a) and (8b), respectively. Here, if bus

b is a substation bus, 1b∈Broot
= 1; otherwise, 1b∈Broot

= 0.

Constraint (8c) is added to limit the power flow to zero in

disconnected branches. Constraints (8c) and (8d) represents

the active and reactive power from solar generation systems

are less than their limits.
∑

(b,n)∈L

fPb,n,t −
∑

(m,b)∈L

fPm,b,t = 1b∈Broot
· prootb,t +

∑

i∈Wb

pPV
i,t −

∑

i∈HEb

pHE
i,t − pDb,t, ∀b ∈ B, ∀t ∈ T , (8a)

∑

(b,n)∈L

fQb,n,t −
∑

(m,b)∈L

fQm,b,t = 1b∈Broot
· qrootb,t +

∑

i∈Wb

qPV
i,t −

∑

i∈HEb

qHE
i,t − qDb,t, ∀b ∈ B, ∀t ∈ T , (8b)

pPV
i,t ≤ S

PV,p

i,t ∀i ∈ PV, ∀t ∈ T , (8c)

qPV
i,t ≤ S

PV,q

i,t ∀i ∈ PV, ∀t ∈ T . (8d)

2) Branch Flow and Voltage Limits: We model the power

flow and voltage limits as,

um,t − un,t = 2
(

rm,n · fPm,n,t + xm,n · fQm,n,t

)

,

∀(m,n) ∈ L, ∀t ∈ T , (9a)

fP 2
m,n,t + fQ 2

m,n,t ≤ S2
m,n,

∀(m,n) ∈ L, ∀t ∈ T , (9b)

V 2
b ≤ ub,t ≤ V

2

b , ∀b ∈ B, ∀t ∈ T . (9c)

Constraints (9a) represent the power flow between m and n.

Constraints (9b) constraint the power flow limits. Constraints

(9c) represent the voltage magnitude limits.

Power flow limit constraints in (9b) can be linearized with

nk linear constraints as,

φkm,nf
P
m,n,t + χk

m,nf
Q
m,n,t ≤ ψk

m,n,

∀(m,n) ∈ L, ∀t ∈ T , ∀k = 1, .., nk, (10)

where φkm,n = cos(2kπ/nk), χ
k
m,n = sin(2kπ/nk), and

ψk
m,n = Sm,n · cos(π/nk).

D. Discussion on Possible Model Extensions

Although our zones are within a one-hour distance, here

we discuss the possibility of expanding the model to account

for delays, which allows us to handle scenarios where trans-

portation times exceed this simple assumption. In such cases,

we introduce a new group of binary variables, xi,z0,t, where i
represents the truck, z0 represents the truck is on its way, and

t represents the time period. These variables are essential for

tracking whether truck i is en route at time t.
By incorporating these binary variables in (7c), the model

can effectively capture the state of the trucks over time.

Specifically, when xi,z0,t = 1, it indicates that truck i is on its

way at time t. Conversely, when xi,z0,t = 0, the truck is either

loading, unloading, or has already completed its trip. This

prevents redundant distance calculations for trucks that are

already in transit, as their movement is now defined through
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the binary variables. To encourage the mobility of MHS, we

replace the constraint (3) to:

Ch2trs =
∑

t∈T

∑

z∈Z

∑

i∈T K

(cldingi · qldingi,z,t + cunldingi · qunldingi,z,t )+

∑

t∈T

T̂
∑

T=1

∑

i∈T K

∑

zst∈Z

∑

zen∈Z

cfuel · dzst,zen · xi,zen,t · xi,zst,t−T ,

(11)

where T̂ is the maximum transportation time.

Moreover, this approach allows the model to account for

variable travel times, such as traffic or operational slowdowns,

by adjusting the relevant constraints on the binary variables.

For example, if we need at least k hours to travel from z1 to

z2, then we have:

xi,z1,t + xi,z2,t+T ≤ 1, ∀T ∈ 1, 2, ..., k − 1, i ∈ T K. (12)

Further capturing the trucks’ movements in time dependent

transitions, transportation models can be more flexible, scal-

able, and capable of addressing more realistic scenarios where

travel times are not fixed but influenced by external factors

in the future. This can not only avoid redundancy but also

ensure the model’s computational efficiency while accurately

reflecting the dynamic nature of transportation delays.

III. QUANTUM ASSISTED COMBINATORIAL BENDERS’

DECOMPOSITION

As our model is a mixed-binary quadratic model, it is

difficult to solve directly by a classical solver. In this section,

we split the variables in a mixed binary program into a

mixed binary subproblem and a pure binary quadratic master

problem. Then we transform the master problem to a QUBO

problem and solve it by quantum annealing.

Fig. 3. Flow Chart of Benders’ Decomposition

The Quantum Benders’ Decomposition process begins by

breaking down the original problem into a master problem

and a sub problem. The master problem generates an initial

solution, which is then passed to the subproblem to check its

feasibility. In this flow, the subproblem assesses whether the

proposed solution is feasible. If the solution is infeasible, an

infeasible cut is added to the master problem, and the process

repeats. If the solution is feasible, the subproblem checks

for convergence. If the convergence criterion is not met, a

feasible cut is added, and the master problem is solved again.

In the context of quantum computing, quantum annealer can

be used to solve the master problem by transforming it into

a quadratic unconstrained binary optimization (QUBO) form,

utilizing the Q matrix to get a binary solution. This iterative

process continues, alternating between the master problem and

subproblem until convergence is achieved, at which point a

final solution is found.

A. Quantum Assisted Benders’ Decomposition

The proposed synergistic operations model in Section II is

a large-scale mixed integer quadratic programming model as

OP: min
x,y

x¦U¦
1 x+ y¦U¦

2 y + c¦x+ d¦y + h¦z, (13a)

s.t. G1z ≥ b1, (13b)

G2z = b2, (13c)

A1x ≤ b3, (13d)

A2x = b4, (13e)

A3x+G3z ≥ b5, (13f)

A4y ≤ b6, (13g)

A5y = b7, (13h)

A6y +G4z ≥ b8, (13i)

x ∈ x, x ∈ {0, 1}, (13j)

y ∈ y, y ∈ {0, 1}, (13k)

z ∈ z, z ≥ 0. (13l)

Here x is a vector with binary variables and U is its nonlinear

corresponding coefficient matrix in the objective function, c
is the corresponding coefficient vector for linear functions

in the objective function, and A is its coefficient matrix

in constraints. y is a vector with non-negative continuous

variables, where

y ={fP , fQ, proot, qroot, pHE , qHE , pW , qW , u, h,

qlding, qunlding, emhs} (14)

and G is its corresponding coefficient matrix in constraints. h¦

is the coefficient vector of variable y in the objective function.

Objective (13a) represents the function (1); constraint (13b)

represents constraints (8c), (8d), (9c), (10), (5a)-(6a) and (7f);

constraint (13c) represents constraints (8a), (8b), (9a), (6b),

(7e); constraint (13d) and (13g) represents (7d); constraint

(13e) and constraint (13h) represents (7c); constraint (13f) and

constraint (13i) represents (7a) and (7b).

To tackle such a complex model, we proposed a quantum

assisted combinatorial Benders’ decomposition approach. This

approach will divide the original problem into a binary master

problem and a subproblem. The binary master problem is a

linear constrained quadratic binary programming model, which
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can be solved by the quantum anneal algorithm. The subprob-

lem can be solved independently, and the solutions can then

be combined to obtain a solution to the original problem. This

decomposition technique is particularly effective for problems

that have a special structure, such as linear programs with a

large number of constraints.

Combinatorial Benders’ decomposition emerges as a pivotal

strategy for optimizing the use of scarce qubits in quantum

computing, specifically tailored for mixed integer program-

ming (MIP) problems. This technique cleverly minimizes the

number of binary variables within the master problem. Such

a reduction is crucial given the premium on qubits, enabling

more efficient allocation and utilization of these limited quan-

tum resources. By strategically lowering the binary variable

count in the master problem, the approach compensates for the

qubit scarcity by potentially making the integer subproblem

more complex. However, this trade-off is worthwhile, as it

directly addresses the bottleneck of limited qubit availability,

ensuring that computational tasks are more manageable and

aligned with the quantum hardware’s capacity.

In Problem [OP], where x and z represents a set of binary

variables and y encapsulates a mixture of continuous and

additional binary variables, combinatorial Benders’ decompo-

sition diverges from the traditional Benders’ decomposition

approach. Unlike the classical method, where the subproblems

are solved as linear programs, the combinatorial variant retains

a portion of the binary variables within the subproblem. This

adjustment transforms the subproblem into a mixed binary

programming (MBP) challenge. When the binary variables,

denoted as x̄, are held constant, the formulation gives rise to

a specific subproblem, [SP]. This nuanced approach adapts

to the complex nature of the variables involved, leading to

a strategic partitioning of the problem that accommodates

both discrete and continuous decision elements. We denote

the subproblem [SP] as:

SP: θ(x) = miny¦U¦
2 y + hT z

s.t. G1z ≥ b1,

G2z = b2,

G3z ≥ b5 −A3x,

A4y ≤ b6,

A5y = b7,

A6y +G4z ≥ b8,

yj ∈ {0, 1} ∀j ∈ y,

zj ≥ 0 ∀j ∈ z,

(15)

and the master problem

MP: minx¦U¦x+ cTx+ θ(x)

s.t. A1x = b3,

A2x ≤ b4

xi ∈ {0, 1}.

(16)

According to [24], if a solution xv of [MP] leads to an

infeasible [SP], then xv is infeasible for problem [OP]. Thus

at least one component of xv should be changed to make [SP]

feasible. This is formulated as a feasibility cut
∑

i:xv

i
=0

xi +
∑

i:xv

i
=1

(1− xi) ≥ 1, (17)

which is appended to problem [MP]. The feasibility cut (17) is

identical to the combinatorial Benders’ cuts presented in [24].

If problem [SP] is feasible, with an optimal objective value

θv = hT yv , then the optimal solution of problem [OP] is the

best objective function value of problem [MP]. In that case,

an optimality cut

Mv
∑

i:xv

i
=0

xi +Mv
∑

i:xv

i
=1

(1− xi) + θ ≥ hT yv, (18)

is generated and appended to problem [MP]. Mv is a big-

M parameter that would make constraint (18) only active for

x = xv . Hence, the updated master problem is as follows:

FMP: min
x

x¦U¦x+ cTx+ θ (19a)

s.t.
∑

z∈Z

xi,z,t = 1, ∀i ∈ T K, t ∈ T , (19b)

∑

i∈T K

xi,z,t ≤ NTKz,t, ∀z ∈ Z, t ∈ T , (19c)

Mv
∑

i:xv

i
=0

xi +Mv
∑

i:xv

i
=1

(1− xi) + θ ≥ dT yv

∀v ∈ V P, (19d)
∑

i:xv

i
=0

xi +
∑

i:xv

i
=1

(1− xi) ≥ 1, ∀v ∈ V R, (19e)

x ∈ x, x ∈ {0, 1}n. (19f)

The sets of the extreme points and the extreme rays of the

feasible region of subproplem, are denoted by V P and V R,

respectively. Master problem [MP] is a relaxation of original

problem [OP] when subsets of V P and V R are present. There-

fore, solving [MP] yields a lower bound (LB) on the optimal

solution of problem [OP]. Similar to the classical Benders’

decomposition algorithm, the upper and lower bounds are used

as a stopping criteria for the cutting plane algorithm.

Overall, Benders’ decomposition is a powerful tool for

solving large-scale optimization problems. However, though

the master problem is simplified, it is still difficult to solve

when the problem size is large. Thus, in the next section, we

transform the master problem to a QUBO problem and utilize

the advantage of quantum annealer to solve it.

B. QUBO Model

Quantum annealing (QA) provides a new method to solve

QUBO problems. Some researchers have been proposed to

utilize QA [25]. To solve this problem efficiently, we further

reformulate problem [FMP] to a QUBO problem, which can

be solved by quantum annealing.

In recent years, quantum annealer has been developed as

a new and effective approach to solve a QUBO problem. A

quantum annealer can be used to solve discrete optimization

problems with specific structures because it tends to retain

lowest energy state. If a problem can be expressed as the



7

energy states of a system, it can be fed to quantum annealers

to solve. The QPU of a quantum annealer, which functions

like the CPU in a classical computer, is made up of connected

qubits that create a graph topology. This creates a physical

system whose energy is measured by a function of its states

called the Hamiltonian [26]. An arbitrary QUBO problem can

be expressed by a Hamiltonian function:

f =
N−2
∑

i=0

N−1
∑

j=i+1

Ji,jσ
Z
i σ

Z
j +

N−1
∑

i=0

hiσ
Z
i . (20)

The Pauli-z matrix, denoted as σZ
i , acts on qubit i and

has eigenvalues of ±1. The coefficient Ji,j determines the

relationship between σZ
i and σZ

j , which corresponds to the

entanglement part of the model. On the other hand, hi
corresponds to the individual part. While xi ∈ {0, 1} and

σZ
i ∈ {+1,−1}, xi is reformulated as

(

1− σZ
i

)

/2. Hence,

solving the QUBO problem is to finding a binary vector x∗

that minimizes f by converting the variables xi to σZ
i , i.e.,

x∗ = argmin
x

f(x). (21)

Now consider problem [FMP], the initial binary decision

variables make up the vector x ∈ X with a length of n.

In order to reformulate the master problem into the QUBO

formulation, we need to represent the continuous variable θ
using binary bits.

θ̄ =

n̄+
∑

i=−n

2iui+n −

n̄
−

∑

j=0

2juj+(1+n+n̄+). (22)

Objective Function: Because the quantum computer only

accepts a quadratic polynomial over binary variables. Follow-

ing the principle of the QUBO formulation, we convert the

objective function to be a QUBO matrix as follows:

x1
¦U¦x1 +

n̄+
∑

i=−n

2iui+n −

n̄
−

∑

j=0

2juj+(1+n+n̄+) (23)

= x1
¦U¦x1 + c¦u, (24)

where u is the vector of binary decision variables ui, and c
is the coefficient vector. Consequently, we can merge the two

binary vectors and transform (24) to

Qobj = x¦(U + diag(c))x

= x¦Qx. (25)

According to the definition, the QUBO model is uncon-

strained. However, constraints (19b) - (19e) need to be added

to the Hamiltonian function added to QUBO model as a

penalty term [27]. For example, (19b) is transformed to

H1 = P1(
∑

z∈Z

xi,z,t − 1)2, ∀i ∈ T K, t ∈ T , (26)

where P1 is the penalty weight. Only when
∑

z∈Z xi,z,t equal

to 1, H1 gets the minimum value.

For constraint (19c), the equivalent penalty is

H2 = P2(
∑

i∈T K

xi,z,t −NTKz,t + s1z,t)
2, ∀z ∈ Z, t ∈ T ,

(27)

where s1z,t is a slack variable, s1z,t ≥ 0.

Then, for constraint (19d) and (19e), according to [25], the

equivalent penalty is

H3 =P3{M
v
∑

i:xv

i
=0

xi +Mv
∑

i:xv

i
=1

(1− xi) + θ

− dT yv − s2z,t}
2, (28)

H4 =P4{
∑

i:xv

i
=0

xi +
∑

i:xv

i
=1

(1− xi) + θ − 1− s3z,t}
2, (29)

while the final QUBO formulation is:

Qfin = Qobj +H1 +H2 +H3 +H4. (30)

IV. QUANTUM PROCESSING UNIT SOLVER WORKFLOW

Solving optimization problems with a QPU, involves a few

critical steps using quantum annealing. First, the problem must

be converted into a compatible format, either as a QUBO

or Ising model. Secondly, this mathematical representation

is then mapped onto the QPU’s qubits through a process

known as embedding, which aligns the problem variables

with the QPU’s qubit topology. Thirdly, before execution,

parameters controlling the quantum annealing process, such

as annealing time and qubit interactions, are finely tuned. The

QPU then performs quantum annealing, guiding the qubits

toward the lowest-energy state, which represents the problem’s

optimal solution. After the process, the QPU outputs the qubit

states, which are translated back into the problem variables,

especially if embedding was used.

In Benders’ decomposition, particularly within the frame-

work of quantum annealing, the sampling strategy is adap-

tive and contingent on the increasing complexity of the

problem. As the decomposition progresses and the number

of qubits—representing the problem’s dimensionality—grows,

a correspondingly larger number of samples is required to

explore the solution space effectively and to increase the prob-

ability of finding the minimum energy state. The complexity

of the energy landscape escalates with the addition of each

qubit, enhancing the likelihood of encountering local minima.

To articulate this strategy, the following formulation is

employed:

Samples = α · qubits · ln(β · iteration), (31)

where α and β are scaling factors. The factor α establishes

the base number of samples, which is then multiplied by the

current count of qubits. The logarithmic term ln(β · iteration)
allows the sample size to increase in a manner that is log-

arithmically proportional to the number of iterations, thereby

ensuring that the number of samples grows in accordance with

the problem’s increasing complexity.

V. SIMULATION AND RESULTS

The proposed approach is tested on a hybrid hydrogen

and power system. The electricity part is based on IEEE 33-

bus system. The hydrogen route and demand configurations

are illustrated in Fig. 2, which includes three trucks, four

zones, and two steam methane reformers. For testing purposes,

electrolyzors and solar plants are added to the IEEE 33-bus
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system. Modeling of truck-mounted mobile hydrogen storage

facilities and benefits of synergistic operations of the power

and hydrogen system are demonstrated in Subsection V-A with

24-hour cases. We further show how the proposed quantum

assisted combinatorial Benders’ decomposition algorithm out-

performs the classical version in Subsection V-B with various

cases under the limit of current QPU hardware.

A. Performance of Coordinated Dispatch

The cost of hydrogen production is assumed to be $640 per

ton, and the efficiency of the power-to-hydrogen process is

around 53%.

In this section, we design different cases to evaluate the

performance of a synergistic system. The following five cases

are discussed:

• Case 1: The base case is considered with a photovoltaic

(PV) generation system at Bus 2, and without electrolyzer

(which indicates no interactions between hydrogen and

power systems), while the number of trucks is 3.

• Case 2: An electrolyzer is placed at Bus 4, which is close

to the PV generation system at Bus 2, while the number

of trucks is 3.

• Case 3: The electrolyzer in Case 2 is relocated from Bus

4 to Bus 16 to be far away from the PV generation system

at Bus 2, while the number of trucks is 3.

• Case 2a: The electrolyzer is placed at Bus 4, while the

number of trucks is 4.

• Case 3a: The parameter is similar to Case 3, while the

capacity of truck is 1.5 ton.

In Tables II and IV, the dispatch results in Cases 1, 2 and 3

at Hours 6-9 are listed. For Case 1, there is no electrolyzor and

the hydrogen is mainly produced by steam methane reformers

in Zones 1 & 2, then transported by trucks to meet the demands

in Zones 3 & 4. In Case 2, the electrolyzor is located in

Bus 4, which is near the solar generation systems. Thus,

the hydrogen demands are mainly supplied by solar power

which is transformed to electricity by solar generation and

then transformed to hydrogen by electrolyzor. In Case 3,

the electrolyzor is far away from solar generation system.

Though the solar power is sufficient, its delivery in power

distribution system is limited by the capacity of transmission

lines. Thus, the steam methane reformers and electrolyzor

work simultaneously to produce hydrogen. The parameters

of Case 3a are similar to Case 3 but the storage capacity of

trucks is 1.5 ton. It leads to that the truck can not transport

the hydrogen in time. Thus, we require SMR produce more

hydrogen to satisfy the demand.

The dispatch results in Cases 1, 2, and 3 at Hours 11–14

are listed in Table III. We notice that in Case 2, even when

there is no solar generation, eletrolyzor can also buy electricity

from the wholesale market when the electricity price is lower

than the hydrogen generation cost. From Fig. 4 we have the

dispatchability of solar generation. The blue columns represent

the available solar power. In Case 1, solar power can only

be used in the power distribution system. Thus, the power

utilization level is low, and most solar energy is wasted. In

Case 2, the eletrolyzor transforms electricity to hydrogen and

Fig. 4. Comparison of the dispatched solar power in cases with forecasted
solar power generation

Fig. 5. Cost comparison of the four cases

stores it in truck tanks in zones when the solar power is

sufficient. Thus, the power is fully utilized from Hours 7-

10. However, the power transformation is also limited by the

storage level and in zones. When the tank in the connected

zone is full and the trucks cannot transport the extra hydrogen

in time, the electrolyzor cannot transport hydrogen to the

hydrogen system. Thus, the power utilization level drops in

11-14 hours. In Case 3, the utilization level is higher than

in Case 1 but limited by the capacity of transmission lines.

Thus, the electrolyzor should be relocated to the bus which is

close to the renewable power generation unit to improve the

utilization level.

The proposed synergistic operation approach enhances the

dispatchability of solar power generation, as shown in Fig. 4.

Compared to Case 1, the total curtailment reduces dramatically

in Case 2. This is because the electrolyzor can transform the

extra solar energy into hydrogen and store it in the storage. The

utilization level drops during time periods 11 to 14 because

the truck storage is full and reaches the maximum ability of

transportation. Compared to Case 2, the total curtailment also

reduces in Case 2a. Because we have more mobile trucks to

store hydrogen. Thus, the utilization level is limited by the

mobile truck capacity.

Fig. 6 illustrates how the coordinated system improves solar

power utilization across different scenarios by balancing the

availability of solar power and the proximity of the solar

station to the hydrogen electrolyzor.

In Fig. 6a, where the solar power is sufficient, and the
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TABLE I
TRUCK ROUTE RESULTS FOR HOURS 2-10

2 3 4 5 6 7 8 9 10
T1 Z1: -1.35 Z3: +1.35 Z2:0 Z2:-0.15 Z3:0 Z3:+0.15 Z2:-0.3 Z1:-1.48 Z3:+1.78
T2 Z2:0 Z2:0 Z2:-0.81 Z1:0 Z1:-1.18 Z3:0 Z3:0 Z3:+2 Z2:-2
T3 Z2: -2 Z2:0 Z3:0 Z3:0 Z3:+2 Z2:-2 Z3:+2 Z1:-2 Z3:+1.35

* Zx:y means loading y ton hydrogen from zone number x (i.e., Zx)

TABLE II
DISPATCH RESULTS FOR HOURS 6-9

Cases Time
Truck Storage (ton) Hydrogen Production (ton)
T1 T2 T3 HE HR1 HR2

Case 1

6 1.22 2 1.09 / 1 1
7 0.51 2 1.09 / 1 0.49
8 2 2 0 / 1 1
9 2 1.26 2 / 1 0

Case 2

6 1.84 0 2 0 / /
7 2 0 0 0 / /
8 1.69 0 2 0.26 / /
9 0.21 2 0 1.12 / /

Case 3

6 2 2 0.27 0.064 1 0
7 2 2 0.27 0.064 1 0
8 2 2 2 0.077 0.46 1
9 0.15 1.2 0 0.076 0 1

TABLE III
DISPATCH RESULTS FOR HOURS 11-14

Cases Time
Truck Storage (ton) Hydrogen Production (ton)
T1 T2 T3 HE HR1 HR2

Case 1

11 2 0 0.69 / 1 1
12 2 1.3 2 / 1 1
13 0 0 0 / 0 1
14 0 2 2 / 0.3 1

Case 2

11 2 0 2 1.405 / /
12 2 2 0 1.06 / /
13 0 0 2 1.06 / /
14 0 2 2 1.06 / /

Case 3

11 0 0 0 0.075 1 1
12 2 0 0 0.075 0.72 1
13 0 0 2 0.075 0 1
14 0 2 0 0.075 0.57 1

solar station is located near the hydrogen electrolyzor, both

the electricity system and the hydrogen production system

can make full use of the available solar power. This allows

the hydrogen system to benefit from the solar energy to

produce hydrogen, as shown by the effective utilization in

the coordinated mode. The close proximity allows efficient

energy transfer, reducing losses and ensuring that both systems

optimize the renewable energy resource.

In Fig. 6b, despite having sufficient solar power, the solar

station is located far from the hydrogen electrolyzor. This

geographical distance limits the utilization of solar power, pri-

marily because of the constraints of the electricity transmission

lines. The transmission capacity is insufficient to transport the

full amount of available solar energy, leading to a reduction in

the overall utilization of solar power by the hydrogen system.

As a result, the solar energy that can be directed to the

hydrogen electrolyzor is limited, reflecting suboptimal use of

the resource.

In Fig. 6c, the solar power availability is limited, but

the electricity system is capable of fully utilizing what is

TABLE IV
DISPATCH RESULTS FOR DIFFERENT TRUCK CAPACITY

Cases Time
Truck Storage (ton) Hydrogen Production (ton)
T1 T2 T3 HE HR1 HR2

Case 3

6 2 2 0.27 0.064 1 0
7 2 2 0.27 0.064 1 0
8 2 2 2 0.077 0.46 1
9 0.15 1.2 0 0.076 0 1

Case 3a

6 1.5 1.5 1.23 0.064 1 0
7 1.5 1.5 0.27 0.064 1 0
8 1.5 1.5 1.5 0.077 0.82 1
9 0.34 1.4 0 0.076 0 1

(a) Solar Scenario 1, close to HE (b) Solar Scenario 1, far from HE

(c) Solar Scenario 2, far from HE (d) Solar Scenario 2, close to HE

Fig. 6. Comparisons of Scenarios with Different Renewable Power Utilization
Level

available. However, the hydrogen production system is unable

to access renewable solar power due to the limited supply.

The coordinated system ensures that the available solar power

is directed to meet the electricity demand first, leaving the

hydrogen system without renewable power, which signifies

that the prioritization of energy use is towards electricity

consumption.

In Fig. 6d, the solar station is again located near the

hydrogen electrolyzor. Although the total solar power is not

as abundant, the proximity to the electrolyzor allows the

hydrogen system to effectively tap into the renewable energy

source. This leads to an improvement in the hydrogen system’s

ability to utilize the available solar power. The coordinated

mode ensures that the solar power is used efficiently, with

a focus on supplying the electrolyzor, demonstrating how

geographical proximity and system coordination can maximize

renewable energy usage for hydrogen production.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Houston. Downloaded on June 13,2025 at 02:41:35 UTC from IEEE Xplore.  Restrictions apply. 
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This analysis highlights how the coordinated system dynam-

ically adjusts based on the spatial and resource conditions, op-

timizing solar power utilization and ensuring effective energy

use across electricity and hydrogen systems.

We use 4 different cases to evaluate the performance of

our synergistic model, while the performance is shown in

Fig. 5. In Case 1, there is no electrolyzor and the power

and hydrogen system is independent. For Case 2, there is

a electrolyzor close to the solar generation system. In Case

2, our proposed synergistic model save 66% money from

$41,229 to $15,183, as the electrolyzor can fully utilize the

renewable power from the solar generation system. Especially,

the hydrogen generation cost in Case 1 is $14,906 and in Case

2 it is zero. In Case 3, the total cost is $39,973, lower than

Case 1 but much higher than Case 2. Because the electrolyzor

is far from solar generation system and the utilization level of

renewable power is low.

The performance of Case 2a is shown in Figs. 4 and 5 to

evaluate the performance of different number of trucks in the

coordinate system. The Case 2a has the same parameters of

Case 2 except the number of trucks is 4 rather than 3. From

Case 2, we notice that at time periods 11 to 14 there is a

sharp decrease of renewable power utilization level. Because

all trucks are on their way and cannot transport the transformed

hydrogen to other zones in time. However, in Case 2a we have

sufficient trucks and can fully utilize the renewable power from

solar generator unit. Fig. 5 also shows that more trucks can

decrease the hydrogen production cost. The routine of 3 trucks

are listed in Table I, our model select the transportation routine

which achieves the minimum fuel cost.

B. Performance of Quantum Assisted Combinatorial Benders’

Decomposition

We tested cases with different sizes to compare the per-

formance of our quantum-assisted combinatorial Benders’ de-

composition algorithms with a classical version whose master

problems are solved by commercial solvers on conventional

computers. The experiments were conducted using the Gurobi

solver and the D-Wave annealer. The result of the master

problem is shown in Fig. 7. We notice that with the increase of

Benders’ cuts, the time consumption of the classical solver in

each round increases exponentially because more constraints

are added. What is more, the nonlinear problem is difficult

for classical solvers to solve. However, the time consumption

of quantum annealer at each iteration for the master problem

remains relatively stable because as the complexity of quantum

annealing mainly depends on the number of qubits.

Figs. 7 (d), (e), and (f) show the cumulative time com-

parisons of difference methods for master problem-solving.

Although the classical solver (labeled as ‘Gurobi’) requires

less time compared to the quantum solver (labeled as ‘QPU’)

in a smaller-sized problem in (b), our algorithm shows a

trend to outperform the classical version as the problem scale

increases in Figs. 7 (e) and (f). The classical solver’s time

requirement appears to grow at an exponential rate with the

problem size increases, reflecting the expected computational

complexity for larger instances. In contrast, the quantum

solver’s curve shows a milder increase. This indicates that the

quantum solver, leveraging the principles of quantum mechan-

ics, scales better with problem size and thus can save more

time as problems become more complex. It suggests a potential

computational advantage of quantum solvers over classical

ones in dealing with large-scale optimization problems, where

classical methods become impractical due to their steep rise

in time complexity. This indicates that the QPU solver scales

better with problem size and suggests that for sufficiently large

and complex problem instances, the QPU solver may become

the more time-efficient option compared to Gurobi.

Overall, the quantum assisted combinatorial Benders’ de-

composition algorithm and quantum annealer have advantages

when the size of the optimization problem becomes larger.

VI. CONCLUSION

To improve the operation efficiency of hydrogen and power

distributed systems, this paper proposed a synergistic dispatch

approach, which leverages the flexibility from the hydrogen

system to accommodate renewable energy fluctuations. Our

simulation results demonstrated that, with the ability of energy

conversion, the synergistic dispatch could reduce over 66%

system cost in the specific test system. The efficiency of

renewable power utilization is also improved. Our simulation

results also demonstrated the computational efficiency of the

proposed Benders’ decomposition on hybrid quantum and

classical computers.
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