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Abstract—The growth of hydrogen infrastructure is expected
to aid in the integration of fluctuating renewable energy in
distribution systems. To leverage the hydrogen system flexi-
bility, this work presents a mixed-binary quadratic program
(MBQP) model for synergistic operations of hydrogen and power
distribution systems, wherein truck-mounted mobile hydrogen
storage facilities are modeled for the schedule of their routes and
loading/unloading quantities. A quantum-assisted combinatorial
Benders’ decomposition algorithm is designed for our MBQP
model to deploy the solving of master and sub-problems on a
quantum processing unit (QPU) and a classical CPU, respectively.
The master problem is reformulated as a quadratic unconstrained
binary optimization (QUBO) problem, which can be efficiently
solved by quantum annealers. The proposed approach was tested
on a hybrid quantum annealing and classical computing platform.
Results show a trend to outperform the CPU-based commercial
solvers as the problem scale increases.

Index Terms—Quantum Computing, Combinatorial Benders’
Decomposition, Hydrogen, Mobile Hydrogen Storage, Power
Distribution System.

NOMENCLATURE
Indices
b,t,z Index for buses, time periods and zones
Sets
B Set of total buses
Broot Set of substation buses
HE Set of electrolyzors
HE, Set of electrolyzors connected with bus b
HE . Set of electrolyzors in zone z
HR Set of steam methane reformers
HR. Set of steam methane reformers in zone z
2% Set of photovoltaic generator systems
T Set of hourly time periods

This work was supported by National Science Foundation (NSF) un-
der Grants CNS-2107216, CNS-2128368, CMMI-2222810, ECCS-2302469,
ECCS-2045978. (Corresponding Author: Lei Fan.)

Mingze Li is with the Department of Electrical and Computer Engineering,
and the Department of Engineering Technology, University of Houston,
Houston, TX 77204 USA (e-mail: mli44@cougarnet.uh.edu)

Siyuan Wang is with the Energy Systems and Infrastructure Analysis
Division, Argonne National Laboratory, Lemont, IL 60439, USA (e-mail:
siyuan.wang @anl.gov)

Lei Fan is with the Department of Engineering Technology, and the
Department of Electrical and Computer Engineering, University of Houston,
Houston, TX 77204 USA (e-mail: Ifan8 @central.uh.edu).

Zhu Han is with the Department of Electrical and Computer Engineering
at the University of Houston, Houston, TX 77004 USA, and also with the
Department of Computer Science and Engineering, Kyung Hee University,
Seoul, South Korea, 446-701 (e-mail: zhan2 @uh.edu).

TK

Z
Parameters
Ni

Abt

Ql

RE

V.ip 5PV,q
L, t 7Si,t

k%!

Kb) Vb

fuel
lding
%rd
il d
vy
Dz,t
dzst7ze'n,
€2,0
€z,|7T]
NTK.,
D
Pyt
D
Ayt

Tmns Tm,n

S, m,n

unlding
) G

Q.09

Set of trucks
Set of hydrogen zones

Power-to-hydrogen efficiency of electrolyzor ¢
Local marginal price (LMP) from the whole-
sale market received at bus b and time ¢
Loading capacity of mobile hydrogen storage
(MHS) @

Maximum production of hydrogen producer %
Hydrogen mass that can be stored in zone z
Active/Reactive power limit of photovoltaic
generation system ¢

Lower/upper limit power of squared voltage
magnitude at bus b

Cost of transportation

Cost of loading/unloading of truck ¢

Cost of steam methane reformer ¢

Hydrogen load in zone z at time ¢

Route length from zone zg; to zey

Hydrogen storage at the initial time period
Hydrogen storage at the last time period
Maximum truck quota in zone z at time ¢
Active electricity load at bus b and time ¢
Reactive electricity load at bus b and time ¢
Resistance, reactance of branch (m,n)
Maximum power capacity of branch (m,n)
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Loading level of MHS ¢ in time ¢

Active/reactive flow from bus m to n at time ¢
Hydrogen generation of steam methane re-
former ¢ at time ¢

Active/Reactive power generation of bus b at
time ¢

Active/Reactive power consumption of elec-
trolyzor ¢ at time ¢

Active/Reactive power generation of solar sta-
tion ¢ at time ¢

Loading/Unloading hydrogen quantity of MHS
7 in site z and time ¢

Power rate of bus b at time ¢

Binary variable indicating if MHS ¢ is in zone
z at the end of time ¢, 1 indicates that MHS 7
is in zone z



I. INTRODUCTION

HE integration of renewable energy sources into power

distribution systems presents a significant challenge due
to the fluctuating nature of these resources. A series of studies
are proposed to analysis and utilize renewable power recently
[1]. Hydrogen networks can potentially offer flexibility for
power systems to address the aforementioned issue because
they have relatively low needs for real-time energy balancing.
Leveraging this feature eventually requires mathematical mod-
els for the two systems’ synergistic operations, and advanced
solution approaches to tackle the expected model size increase
in the future.

This growing interest in hydrogen as an intermediary for
excess renewable energy emphasizes the need to develop
robust strategies that optimize the integration of these two
critical sectors. Flexibly converting surplus renewable energy
to hydrogen meanwhile considering the storage capabilities
in the hydrogen system is urgently needed to investigate.
Recent studies have started to explore the interaction between
power and hydrogen sectors from various point of views.
For station level systems, a hydrogen filling station for fuel
cell vehicles is designed in [2]. The authors of [3] present a
control strategy for a stand-alone hybrid renewable energy and
hydrogen storage system. There has been some researchers
who utilize microgrid to achieve energy management [4].
For microgrid or local multi-energy systems, [5] presents an
operation strategy for a microgrid with renewable energy and a
power-to-hydrogen scheme. In [6], a deep deterministic policy
gradient based hybrid energy scheduling (H-DDPG) algorithm
is proposed to convert surplus renewable energy into hydrogen
through electrolysis. A hydrogen-based networked microgrids
planning approach is proposed in [7] in the presence of
renewable energy sources by using two-stage stochastic pro-
gramming with mixed-integer conic recourse. The utilization
of hydrogen in local energy systems for internet data centers
is explored in [8]. From a bulk power system perspective,
[9] investigated how power-hydrogen interactions can affect
power transmission expansion planning, with modeling of
hydrogen transportation networks and centralized hydrogen
storage. A generation capacity expansion is proposed in [10]
considering further considerations of H2-fired gas turbines
and energy storage systems. For power distribution systems, a
simplified power-to-hydrogen dispatch model is proposed for
the electricity-heat-hydrogen dispatch coordinated with active
distribution networks and district heating networks [11]. This
growing need to optimize the integration of hydrogen and
power systems is underscored by recent studies investigating
hydrogen storage’s roles within these networks [12]. Moreover,
developing risk-constrained bidding strategies for integrated
electricity-hydrogen energy systems is crucial to enhance their
economic viability in competitive markets [13]. Our recent
work [14] further presents a coordinated operation approach of
hydrogen and power distribution systems considering pipeline
hydrogen transportation systems. Pipeline would be economic
when the demand is relatively large in a future scenario. For
most current cases, truck-mounted mobile hydrogen storage
is a more viable way, the roles of which are worth further

investigation.

These works have explored various aspects of the interaction
between power and hydrogen systems, but in the context
of power distribution systems, how electrolysis and mobile
hydrogen storage resources benefit hydrogen and power syn-
ergistic operations can be explored under near-future scenarios.
The routine scheduling of truck-mounted mobile hydrogen
storage facilities needs a detailed consideration. We also aim
to maximize the utilization of renewable generation with
flexible synergistic dispatch. When the electricity price from
the wholesale market is low or the power from a renewable
power station is sufficient, the coordinated system can convert
the surplus energy to hydrogen and transport them via the
truck-mounted mobile hydrogen storage system. Considering
these above facts, we model the synergistic operation as a
mixed-binary quadratic program (MBQP), wherein individual-
level route and loading/unloading scheduling of truck-mounted
mobile hydrogen storage facilities are modeled with more
realistic path-dependent travel costs.

To tackle the complex MBQP problem, the Benders’ de-
composition algorithm [15] is recognized as an efficient way
to solve the proposed mixed-binary programs. The rapid devel-
opment of quantum computing offers promising features that
can potentially outperform algorithms on classical computers.
Quantum computing is also showing its potential in the energy
domain [16], [17]. However, the hardware limit of current
quantum processing unit (QPU) hinders the validation through
scalability testing. To tackle this, we propose a quantum-
assisted combinatorial Benders’ decomposition approach that
can benefit from both classical and quantum computing ca-
pabilities. Comparing to Benders’ decomposition deployment
on pure CPU, trends of performance improvements can be
more visible with slightly larger-scale instances enabled by
our hybrid approach. Generally, the development of quantum
computing techniques can be categorized into two directions:
gate-based quantum computers and quantum annealers. Cur-
rently, the gate-based quantum computer is limited to less than
100 quantum bits [18]. D-Wave Systems Inc., on the other
hand, manufactures quantum annealers with 5,000 quantum
bits (qubits). A quantum annealer has just been verified for
its strong computation ability to solve binary optimization
problems [19]. The quantum annealing algorithm can only
be used to solve quadratic unconstrained binary optimization
(QUBO) at present. Some problems can be modeled using
QUBO and solved by a quantum annealer directly [20], [21].
However, our problem is a MBQP model and need to be
reformulated to QUBO.

With Benders’ decomposition, the MBQP model for syner-
gistic operation is separated to mixed-binary nonlinear master
problems and linear sub problems, which are deployed in
quantum and classical computers, respectively. The mixed-
binary nonlinear master problem is reformulated as a QUBO,
which can be solved by quantum annealers. Note although
various previous works have converted mixed-binary linear
programs (MBLPs) to QUBOs and applied to practical prob-
lems [22], our approach addresses a specific MBQP for
synergistic operations of hydrogen and power distribution
systems. Furthermore, our QUBO reformulation approach can
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Fig. 1. The framework of synergistic operation

be generically extended to addressing a class of MBQPs. There
has been studies to utilize quantum machines to solve Benders’
decomposition problems recently [23].

The contributions of this work are summarized in the
following.

« A MBQP model is proposed for synergistic operations
of hydrogen and power distribution systems, in which
truck-mounted mobile hydrogen storage facilities are
modeled in individual level to schedule their routes and
loading/unloading quantities.

« A tailored quantum assisted combinatorial quantum Ben-
ders’ decomposition algorithm is designed to solve the
MBQP model. The resulting mixed-binary quadratic mas-
ter problems and linear subproblems are solved on quan-
tum and conventional computers, respectively.

e In comparison to classical computer based Benders’
decomposition, our hybrid quantum approach shows a
trend to be more scalable, especially in solving nonlinear
master problems with a fair number of cuts added.

II. MBQP MODEL FOR SYNERGISTIC OPERATIONS WITH
TRUCK-MOUNTED HYDROGEN STORAGE

In this section, we describe a mathematical programming
model for the synergistic operations for power distribution
system and the hydrogen system. Then the hydrogen can be
produced by electrolyzers with electricity.

A. Objective Function

The objective function is defined as the sum of the opera-
tion costs for hydrogen production, transportation, and power
distribution systems.

min o= Cthrd + Cthrs + Cele. (])

We denote the cost of hydrogen production by C"2P*d, The
cost of each steam methane reformer is represented by cfrd,
which is assumed a constant value. The amount of hydrogen
production of steam methane reformer ¢ at time period t is

defined as h; +.
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We also use C"?'™S to model the hydrogen transportation
cost. The loading and unloading cost is modeled as a linear
function and the fuel cost for traveling is modeled as a
quadratic function of distance. Our model operates on an
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Fig. 2. The framework of hydrogen system

hourly time scale, meaning that it is designed to simulate
and optimize hydrogen production, transportation, and energy
usage in hourly increments. Given the current limitations in
the computational power of quantum computers, we have
constrained the model to focus on transportation within a small
geographical area, such as an urban region. This allows for
the assumption that a truck can transport hydrogen or goods
from one area to another within one hour, reducing the overall
complexity of the problem and making it more manageable
with the available quantum computing resources. Therefore,
only when z; ., +—1 and x; ., . are both equal to 1, the fuel
cost is added to the objective function; otherwise, it will be
ZEero.
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Next, B,.,t contains substation bus(es). 5\b,t is the local
marginal price (LMP) from the wholesale electricity market,
while pgg"t is the power generation from each substation bus at
time ¢. Then, the electricity cost from the wholesale electricity

market can be described as,
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B. Hydrogen Distribution System Constraints

The hydrogen production and truck-mounted mobile hydro-
gen storage facilities are modeled in this section. Fig. 2 shows
the framework of hydrogen distribution system. There are 2
steam methane reformers in Zones 3 and 4, which can produce
hydrogen to meet the loads in Zones 1 and 2. The hydrogen
is transported from the producer side to the consumer side
by trucks. There are routines between the two zones. An
extra electrolyzor can be added to Zone 3 to transform extra
electricity to hydrogen from power distribution system. The
modeling of the hydrogen system is shown below.

1) Hydrogen Production: The hydrogen production of
steam methane reformers and electrolyzors cannot exceed the



upper bound H; in each time period. Then the bounds for two
types of hydrogen production units are shown as,

0<h+<H; VieHR,teT,
0<m pllPE <H, VieHELeT.

(52)
(5b)

2) Hydrogen Mass Balance: The constraints represent the
balance at the zonal level as,
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where the level of hydrogen mass in each time period is
determined by the input and output of hydrogen. This includes
hydrogen production through steam methane reformers and
electrolyzers, as well as hydrogen loads and the amount of
hydrogen loaded and unloaded by trucks. (6a) limits that
the hydrogen mass cannot exceed the capacity that can be
stored. (6b) defines the hydrogen mass level at the end of
time horizon.

3) Mobile Hydrogen Storage: Here we have an assumption
that vehicles can travel from one zone to any other zone in one
interval, and fuel cost for traveling is modeled as a quadratic
function of distance. The upper bound limits for loading and
unloading amount for each truck in each zone are modeled
in (7a) and (7b), respectively. Constraints (7c) represent each
truck can only be in one zone in each period. (7d) limited the
maximum number of trucks for a zone at each time period.
Constraints (7e) and (7f) represent the tank storage dynamics
and their state of charge limits.

0<qlE<Cimi. VieTKVz€ Z,teT, (7a)
0< g™ < Ty mi.g,Vie TK,Vz€ 2T,  (Tb)
iz =1VieTKteT, (7c)
z€EZ

> @it SNTK.,Vze Z,teT, (7d)
i€TK

e =t Y G- e Vi e TR e T,

ZEZ zEZ
(7e)

0< e <O VieTK, teT. (7)

C. Power Distribution System Constraints

The physical characteristics of electricity delivery, renew-
able energy generation, and electrolysis are modeled in this
subsection.

1) Power Balance: We model power flow balance for active
and reactive power in (8a) and (8b), respectively. Here, if bus
b is a substation bus, 1p¢p,,,, = 1; otherwise, 1y¢p,,,, = 0.
Constraint (8c) is added to limit the power flow to zero in
disconnected branches. Constraints (8c) and (8d) represents
the active and reactive power from solar generation systems
are less than their limits.
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2) Branch Flow and Voltage Limits: We model the power
flow and voltage limits as,
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Constraints (9a) represent the power flow between m and n.
Constraints (9b) constraint the power flow limits. Constraints
(9c) represent the voltage magnitude limits.

Power flow limit constraints in (9b) can be linearized with
ny linear constraints as,
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where ¢F = = sin(2k7/ng), and
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D. Discussion on Possible Model Extensions

Although our zones are within a one-hour distance, here
we discuss the possibility of expanding the model to account
for delays, which allows us to handle scenarios where trans-
portation times exceed this simple assumption. In such cases,
we introduce a new group of binary variables, x; ., ¢, where ¢
represents the truck, zg represents the truck is on its way, and
t represents the time period. These variables are essential for
tracking whether truck ¢ is en route at time ¢.

By incorporating these binary variables in (7c), the model
can effectively capture the state of the trucks over time.
Specifically, when z; ., . = 1, it indicates that truck % is on its
way at time ¢. Conversely, when z; ., ; = 0, the truck is either
loading, unloading, or has already completed its trip. This
prevents redundant distance calculations for trucks that are
already in transit, as their movement is now defined through



the binary variables. To encourage the mobility of MHS, we
replace the constraint (3) to:
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where 7" is the maximum transportation time.

Moreover, this approach allows the model to account for
variable travel times, such as traffic or operational slowdowns,
by adjusting the relevant constraints on the binary variables.
For example, if we need at least k£ hours to travel from z; to
z9, then we have:

Tit+ Timrr <1, VT €1,2, . k—1ie TK. (12)

Further capturing the trucks’ movements in time dependent
transitions, transportation models can be more flexible, scal-
able, and capable of addressing more realistic scenarios where
travel times are not fixed but influenced by external factors
in the future. This can not only avoid redundancy but also
ensure the model’s computational efficiency while accurately
reflecting the dynamic nature of transportation delays.

III. QUANTUM ASSISTED COMBINATORIAL BENDERS’
DECOMPOSITION

As our model is a mixed-binary quadratic model, it is
difficult to solve directly by a classical solver. In this section,
we split the variables in a mixed binary program into a
mixed binary subproblem and a pure binary quadratic master
problem. Then we transform the master problem to a QUBO
problem and solve it by quantum annealing.

Original
problem
Master
problem

Q matrix

QPU

Binary solution

{Optimility cut} [ pr ] [Feasible cut}

feasible?
No

No

converge?

1t

Yes

Fig. 3. Flow Chart of Benders’ Decomposition

The Quantum Benders’ Decomposition process begins by
breaking down the original problem into a master problem
and a sub problem. The master problem generates an initial

solution, which is then passed to the subproblem to check its
feasibility. In this flow, the subproblem assesses whether the
proposed solution is feasible. If the solution is infeasible, an
infeasible cut is added to the master problem, and the process
repeats. If the solution is feasible, the subproblem checks
for convergence. If the convergence criterion is not met, a
feasible cut is added, and the master problem is solved again.
In the context of quantum computing, quantum annealer can
be used to solve the master problem by transforming it into
a quadratic unconstrained binary optimization (QUBO) form,
utilizing the Q matrix to get a binary solution. This iterative
process continues, alternating between the master problem and
subproblem until convergence is achieved, at which point a
final solution is found.

A. Quantum Assisted Benders’ Decomposition

The proposed synergistic operations model in Section II is
a large-scale mixed integer quadratic programming model as

OP: r)xcn;l X' U/'x+y ' U'y+c¢'x+d y+h'z, (132
s.t. Giz > by, (13b)
Goz = by, (13c)
Aix < bg, (13d)
Aox = by, (13e)
Asx + Gsz > bs, (13f)
Ay < be, (13g)
Asy = by, (13h)
Agy + Gyuz > bg, (131)
rex, z {01}, (13j)
yey, y€{0,1}, (13k)
zez, z2>0. (131)

Here z is a vector with binary variables and U is its nonlinear
corresponding coefficient matrix in the objective function, c
is the corresponding coefficient vector for linear functions
in the objective function, and A is its coefficient matrix
in constraints. y is a vector with non-negative continuous
variables, where

y={f7, 9, p ¢ p"E ¢"E pW gV u, b,

lding7 (14)

q
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and G is its corresponding coefficient matrix in constraints. h "
is the coefficient vector of variable y in the objective function.
Objective (13a) represents the function (1); constraint (13b)
represents constraints (8c), (8d), (9¢), (10), (5a)-(6a) and (7f);
constraint (13c) represents constraints (8a), (8b), (9a), (6b),
(7e); constraint (13d) and (13g) represents (7d); constraint
(13e) and constraint (13h) represents (7¢); constraint (13f) and
constraint (13i) represents (7a) and (7b).

To tackle such a complex model, we proposed a quantum
assisted combinatorial Benders’ decomposition approach. This
approach will divide the original problem into a binary master
problem and a subproblem. The binary master problem is a
linear constrained quadratic binary programming model, which



can be solved by the quantum anneal algorithm. The subprob-
lem can be solved independently, and the solutions can then
be combined to obtain a solution to the original problem. This
decomposition technique is particularly effective for problems
that have a special structure, such as linear programs with a
large number of constraints.

Combinatorial Benders’ decomposition emerges as a pivotal
strategy for optimizing the use of scarce qubits in quantum
computing, specifically tailored for mixed integer program-
ming (MIP) problems. This technique cleverly minimizes the
number of binary variables within the master problem. Such
a reduction is crucial given the premium on qubits, enabling
more efficient allocation and utilization of these limited quan-
tum resources. By strategically lowering the binary variable
count in the master problem, the approach compensates for the
qubit scarcity by potentially making the integer subproblem
more complex. However, this trade-off is worthwhile, as it
directly addresses the bottleneck of limited qubit availability,
ensuring that computational tasks are more manageable and
aligned with the quantum hardware’s capacity.

In Problem [OP], where x and z represents a set of binary
variables and y encapsulates a mixture of continuous and
additional binary variables, combinatorial Benders’ decompo-
sition diverges from the traditional Benders’ decomposition
approach. Unlike the classical method, where the subproblems
are solved as linear programs, the combinatorial variant retains
a portion of the binary variables within the subproblem. This
adjustment transforms the subproblem into a mixed binary
programming (MBP) challenge. When the binary variables,
denoted as z, are held constant, the formulation gives rise to
a specific subproblem, [SP]. This nuanced approach adapts
to the complex nature of the variables involved, leading to
a strategic partitioning of the problem that accommodates
both discrete and continuous decision elements. We denote
the subproblem [SP] as:

SP: 9(X) = miny ' U y + h7z
s.t. Gz > by,

Goz = bo,

Gzz > by — A3,

Agy < bs,

Asy = br,

Agy + G4z > bg,

y; €{0,1} Vjey,

z; >0 Vjeaz,

15)

and the master problem

MP: minx'U"x + ¢Tx + 0(x)
s.t. Ajx = b3,
Aox < by
xz; € {0,1}.

(16)

According to [24], if a solution ¥ of [MP] leads to an
infeasible [SP], then zV is infeasible for problem [OP]. Thus

at least one component of z¥ should be changed to make [SP]
feasible. This is formulated as a feasibility cut

Z x; + Z (1—z)>1,

PV — U
vy =0 vy =1

a7

which is appended to problem [MP]. The feasibility cut (17) is
identical to the combinatorial Benders’ cuts presented in [24].
If problem [SP] is feasible, with an optimal objective value
6 = hTyv, then the optimal solution of problem [OP] is the
best objective function value of problem [MP]. In that case,
an optimality cut

MY > ai+ MUY (L—2)+ 60> KTy,

ST
ixy =0

(18)
iz =1
is generated and appended to problem [MP]. M" is a big-

M parameter that would make constraint (18) only active for
x = z". Hence, the updated master problem is as follows:

FMP: min x' U 'x+c¢'x+6 (19a)
sty mia=1VieTKteT, (19b)
z2€EZ
> wina SNTK. ¥z Z,teT, (19¢)
€T
MY w+ MY Y (1—a)+0>d"y"
iixy =0 ixy=1
Yo e VE, (19d)
Somi+ Y (T-x) =1, YweVR (1)
ixy =0 ixy =1
zex,ze{0,1}". (19f)

The sets of the extreme points and the extreme rays of the
feasible region of subproplem, are denoted by VP and VR,
respectively. Master problem [MP] is a relaxation of original
problem [OP] when subsets of V¥ and V® are present. There-
fore, solving [MP] yields a lower bound (LB) on the optimal
solution of problem [OP]. Similar to the classical Benders’
decomposition algorithm, the upper and lower bounds are used
as a stopping criteria for the cutting plane algorithm.

Overall, Benders’ decomposition is a powerful tool for
solving large-scale optimization problems. However, though
the master problem is simplified, it is still difficult to solve
when the problem size is large. Thus, in the next section, we
transform the master problem to a QUBO problem and utilize
the advantage of quantum annealer to solve it.

B. QUBO Model

Quantum annealing (QA) provides a new method to solve
QUBO problems. Some researchers have been proposed to
utilize QA [25]. To solve this problem efficiently, we further
reformulate problem [FMP] to a QUBO problem, which can
be solved by quantum annealing.

In recent years, quantum annealer has been developed as
a new and effective approach to solve a QUBO problem. A
quantum annealer can be used to solve discrete optimization
problems with specific structures because it tends to retain
lowest energy state. If a problem can be expressed as the



energy states of a system, it can be fed to quantum annealers
to solve. The QPU of a quantum annealer, which functions
like the CPU in a classical computer, is made up of connected
qubits that create a graph topology. This creates a physical
system whose energy is measured by a function of its states
called the Hamiltonian [26]. An arbitrary QUBO problem can
be expressed by a Hamiltonian function:

N—-2 N-1 N-1
F=>"3% Jijofe? + > hiof. (20)
1=0 j=1+1 1=0

The Pauli-z matrix, denoted as O‘Z , acts on qubit 7 and

has eigenvalues of il The coefﬁ01ent Ji,; determines the
relationship between oZ and crj , which corresponds to the
entanglement part of the model. On the other hand, h;
corresponds to the individual part. While z; € {0,1} and
oZ € {+1,-1}, x; is reformulated as (1 — o) /2. Hence,
solving the QUBO problem is to finding a bmary vector x*
that minimizes f by converting the variables z; to o7, i.e.,

x* = argmin f(x). (1)
X
Now consider problem [FMP], the initial binary decision
variables make up the vector x € X with a length of n.
In order to reformulate the master problem into the QUBO
formulation, we need to represent the continuous variable 6
using binary bits.

0= Z 21u1+n 22 Uj+(1+n+ny)-

1—777‘

(22)

Objective Function: Because the quantum computer only
accepts a quadratic polynomial over binary variables. Follow-
ing the principle of the QUBO formulation, we convert the
objective function to be a QUBO matrix as follows:

iy fi_
XlTUTX1 + Z QZUi_A,_ﬂ — Z 2]uj+(l+ﬂ+’ﬁ+) (23)
7=0

i=—n

=x1'U'x1+c¢'u, (24)

where u is the vector of binary decision variables u;, and c
is the coefficient vector. Consequently, we can merge the two
binary vectors and transform (24) to

Qopj = XT(U + diag(c))x
=x'Qx. (25)
According to the definition, the QUBO model is uncon-
strained. However, constraints (19b) - (19¢) need to be added

to the Hamiltonian function added to QUBO model as a
penalty term [27]. For example (19b) is transformed to

=P() mi—1)VieTKteT, (26)
z€Z
where P is the penalty weight. Only when ) __ > 2; . ; equal

to 1, 54 gets the minimum value.
For constraint (19c¢), the equivalent penalty is

Hy = Py( Y @iy — NTK.;+sL,)°,Vz€ Z,teT,
i€TK
27

where s’ is a slack variable, s! , > 0.
Then, for constraint (19d) and (19e) according to [25], the
equivalent penalty is

wxy =0 vy =1
—d"y’ — 2} (28)
Hy =P > x4+ » (1-z)+0-1-s} (29
wixy =0 vy =1
while the final QUBO formulation is:
Qfin = Qopj + Hi + Hy + Hs + Hy. (30)

IV. QUANTUM PROCESSING UNIT SOLVER WORKFLOW

Solving optimization problems with a QPU, involves a few
critical steps using quantum annealing. First, the problem must
be converted into a compatible format, either as a QUBO
or Ising model. Secondly, this mathematical representation
is then mapped onto the QPU’s qubits through a process
known as embedding, which aligns the problem variables
with the QPU’s qubit topology. Thirdly, before execution,
parameters controlling the quantum annealing process, such
as annealing time and qubit interactions, are finely tuned. The
QPU then performs quantum annealing, guiding the qubits
toward the lowest-energy state, which represents the problem’s
optimal solution. After the process, the QPU outputs the qubit
states, which are translated back into the problem variables,
especially if embedding was used.

In Benders’ decomposition, particularly within the frame-
work of quantum annealing, the sampling strategy is adap-
tive and contingent on the increasing complexity of the
problem. As the decomposition progresses and the number
of qubits—representing the problem’s dimensionality—grows,
a correspondingly larger number of samples is required to
explore the solution space effectively and to increase the prob-
ability of finding the minimum energy state. The complexity
of the energy landscape escalates with the addition of each
qubit, enhancing the likelihood of encountering local minima.

To articulate this strategy, the following formulation is
employed:

Samples = « - qubits - In(/3 - iteration), (31)

where o and [ are scaling factors. The factor « establishes
the base number of samples, which is then multiplied by the
current count of qubits. The logarithmic term In(;3 - iteration)
allows the sample size to increase in a manner that is log-
arithmically proportional to the number of iterations, thereby
ensuring that the number of samples grows in accordance with
the problem’s increasing complexity.

V. SIMULATION AND RESULTS

The proposed approach is tested on a hybrid hydrogen
and power system. The electricity part is based on IEEE 33-
bus system. The hydrogen route and demand configurations
are illustrated in Fig. 2, which includes three trucks, four
zones, and two steam methane reformers. For testing purposes,
electrolyzors and solar plants are added to the IEEE 33-bus



system. Modeling of truck-mounted mobile hydrogen storage
facilities and benefits of synergistic operations of the power
and hydrogen system are demonstrated in Subsection V-A with
24-hour cases. We further show how the proposed quantum
assisted combinatorial Benders’ decomposition algorithm out-
performs the classical version in Subsection V-B with various
cases under the limit of current QPU hardware.

A. Performance of Coordinated Dispatch

The cost of hydrogen production is assumed to be $640 per
ton, and the efficiency of the power-to-hydrogen process is
around 53%.

In this section, we design different cases to evaluate the
performance of a synergistic system. The following five cases
are discussed:

o Case 1: The base case is considered with a photovoltaic
(PV) generation system at Bus 2, and without electrolyzer
(which indicates no interactions between hydrogen and
power systems), while the number of trucks is 3.

o Case 2: An electrolyzer is placed at Bus 4, which is close
to the PV generation system at Bus 2, while the number
of trucks is 3.

o Case 3: The electrolyzer in Case 2 is relocated from Bus
4 to Bus 16 to be far away from the PV generation system
at Bus 2, while the number of trucks is 3.

o Case 2a: The electrolyzer is placed at Bus 4, while the
number of trucks is 4.

o Case 3a: The parameter is similar to Case 3, while the
capacity of truck is 1.5 ton.

In Tables II and IV, the dispatch results in Cases 1, 2 and 3
at Hours 6-9 are listed. For Case 1, there is no electrolyzor and
the hydrogen is mainly produced by steam methane reformers
in Zones 1 & 2, then transported by trucks to meet the demands
in Zones 3 & 4. In Case 2, the electrolyzor is located in
Bus 4, which is near the solar generation systems. Thus,
the hydrogen demands are mainly supplied by solar power
which is transformed to electricity by solar generation and
then transformed to hydrogen by electrolyzor. In Case 3,
the electrolyzor is far away from solar generation system.
Though the solar power is sufficient, its delivery in power
distribution system is limited by the capacity of transmission
lines. Thus, the steam methane reformers and electrolyzor
work simultaneously to produce hydrogen. The parameters
of Case 3a are similar to Case 3 but the storage capacity of
trucks is 1.5 ton. It leads to that the truck can not transport
the hydrogen in time. Thus, we require SMR produce more
hydrogen to satisfy the demand.

The dispatch results in Cases 1, 2, and 3 at Hours 11-14
are listed in Table III. We notice that in Case 2, even when
there is no solar generation, eletrolyzor can also buy electricity
from the wholesale market when the electricity price is lower
than the hydrogen generation cost. From Fig. 4 we have the
dispatchability of solar generation. The blue columns represent
the available solar power. In Case 1, solar power can only
be used in the power distribution system. Thus, the power
utilization level is low, and most solar energy is wasted. In
Case 2, the eletrolyzor transforms electricity to hydrogen and
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Fig. 4. Comparison of the dispatched solar power in cases with forecasted
solar power generation
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stores it in truck tanks in zones when the solar power is
sufficient. Thus, the power is fully utilized from Hours 7-
10. However, the power transformation is also limited by the
storage level and in zones. When the tank in the connected
zone is full and the trucks cannot transport the extra hydrogen
in time, the electrolyzor cannot transport hydrogen to the
hydrogen system. Thus, the power utilization level drops in
11-14 hours. In Case 3, the utilization level is higher than
in Case 1 but limited by the capacity of transmission lines.
Thus, the electrolyzor should be relocated to the bus which is
close to the renewable power generation unit to improve the
utilization level.

The proposed synergistic operation approach enhances the
dispatchability of solar power generation, as shown in Fig. 4.
Compared to Case 1, the total curtailment reduces dramatically
in Case 2. This is because the electrolyzor can transform the
extra solar energy into hydrogen and store it in the storage. The
utilization level drops during time periods 11 to 14 because
the truck storage is full and reaches the maximum ability of
transportation. Compared to Case 2, the total curtailment also
reduces in Case 2a. Because we have more mobile trucks to
store hydrogen. Thus, the utilization level is limited by the
mobile truck capacity.

Fig. 6 illustrates how the coordinated system improves solar
power utilization across different scenarios by balancing the
availability of solar power and the proximity of the solar
station to the hydrogen electrolyzor.

In Fig. 6a, where the solar power is sufficient, and the



TABLE I
TRUCK ROUTE RESULTS FOR HOURS 2-10
2 3 4 5 6 7 8 9 10
T1 Z1: -1.35 Z3: +1.35 72:0 72:-0.15 Z3:0 Z3:40.15 72:-0.3 Z1:-1.48 Z3:+1.78
T2 72:0 72:0 72:-0.81 71:0 Z1:-1.18 73:0 73:0 7342 72:-2
T3 72: -2 72:0 73:0 73:0 73:42 72:-2 73:42 71:-2 73:4+1.35
* Zx:y means loading y ton hydrogen from zone number x (i.e., Zx)
TABLE II TABLE IV
DISPATCH RESULTS FOR HOURS 6-9 DISPATCH RESULTS FOR DIFFERENT TRUCK CAPACITY
. Truck Storage (ton) Hydrogen Production (ton) . Truck Storage (ton) | Hydrogen Production (ton)
Cases | Time | 7)™ "1 13 | HE  HRI HR2 Cases | Time | 7™ "y ™ 13 HE HRI HR2
6 1.22 2 1.09 / 1 1 6 2 2 0.27 0.064 1 0
Case 1 7 0.51 2 1.09 / 1 0.49 Case 3 7 2 2 0.27 0.064 1 0
; 8 2 2 0 / 1 1 N 8 2 2 2 0.077 0.46 1
9 2 1.26 2 / 1 0 9 0.15 1.2 0 0.076 0 1
6 1.84 0 2 0 / / 6 1.5 1.5 1.23 0.064 1 0
Case 2 7 2 0 0 0 / / Case 3a 7 1.5 1.5 0.27 0.064 1 0
" 8 1.69 0 2 0.26 / / 8 1.5 1.5 1.5 0.077  0.82 1
9 0.21 2 0 1.12 / / 9 034 14 0 0.076 0 1
6 2 2 0.27 | 0.064 1 0
Case 3 7 2 2 0.27 | 0.064 1 0
ase 8 2 2 2 | 0077 046 1
9 0.15 1.2 0 0.076 0 1 Solar Power Utilzation __ Solar Power Utiization
=
/ \ =as
TABLE III s I \ H
DISPATCH RESULTS FOR HOURS 11-14 Bl | ‘\\ goof
& I’ \\ &
o . Truck Storage (ton) | Hydrogen Production (ton) f /‘L I |
Cases | Ti TT T2 T3 HE  HRI HR2 _ | | \ _ [P IS s w—
11 2 0 0.69 / 1 1 ’ Time (Hours) “ ' Time (Hours) /
Case 1 g 3 1(')3 g ; (l) i (a) Solar Scenario 1, close to HE (b) Solar Scenario 1, far from HE
}411 g (2) 3 1 4{05 0/3 } Solar Power Utilization Solar Power Utilization
Case 2 12 2 2 0 1.06 / / | [ . ““”“"“”"‘EJJS:“’,- |
13 0 0 2 1.06 / / _ R / |
4 0 2 2 .06/ / E N | \
11 0 0 0 0.075 1 1 e i / \
Case 3 12 2 0 0 0.075 0.72 1 o o ’/ — \ 1
13 0 0 2 0.075 0 1 " v J/ —k
14 0 2 0 0.075 0.57 1 0 w \

solar station is located near the hydrogen electrolyzor, both
the electricity system and the hydrogen production system
can make full use of the available solar power. This allows
the hydrogen system to benefit from the solar energy to
produce hydrogen, as shown by the effective utilization in
the coordinated mode. The close proximity allows efficient
energy transfer, reducing losses and ensuring that both systems
optimize the renewable energy resource.

In Fig. 6b, despite having sufficient solar power, the solar
station is located far from the hydrogen electrolyzor. This
geographical distance limits the utilization of solar power, pri-
marily because of the constraints of the electricity transmission
lines. The transmission capacity is insufficient to transport the
full amount of available solar energy, leading to a reduction in
the overall utilization of solar power by the hydrogen system.
As a result, the solar energy that can be directed to the
hydrogen electrolyzor is limited, reflecting suboptimal use of
the resource.

In Fig. 6c, the solar power availability is limited, but
the electricity system is capable of fully utilizing what is

20 B 10 35 20
Time (Hours)

(d) Solar Scenario 2, close to HE

g 8
Time (Hours)
(c) Solar Scenario 2, far from HE

Fig. 6. Comparisons of Scenarios with Different Renewable Power Utilization
Level

available. However, the hydrogen production system is unable
to access renewable solar power due to the limited supply.
The coordinated system ensures that the available solar power
is directed to meet the electricity demand first, leaving the
hydrogen system without renewable power, which signifies
that the prioritization of energy use is towards electricity
consumption.

In Fig. 6d, the solar station is again located near the
hydrogen electrolyzor. Although the total solar power is not
as abundant, the proximity to the electrolyzor allows the
hydrogen system to effectively tap into the renewable energy
source. This leads to an improvement in the hydrogen system’s
ability to utilize the available solar power. The coordinated
mode ensures that the solar power is used efficiently, with
a focus on supplying the electrolyzor, demonstrating how
geographical proximity and system coordination can maximize
renewable energy usage for hydrogen production.
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This analysis highlights how the coordinated system dynam-
ically adjusts based on the spatial and resource conditions, op-
timizing solar power utilization and ensuring effective energy
use across electricity and hydrogen systems.

We use 4 different cases to evaluate the performance of
our synergistic model, while the performance is shown in
Fig. 5. In Case 1, there is no electrolyzor and the power
and hydrogen system is independent. For Case 2, there is
a electrolyzor close to the solar generation system. In Case
2, our proposed synergistic model save 66% money from
$41,229 to $15,183, as the electrolyzor can fully utilize the
renewable power from the solar generation system. Especially,
the hydrogen generation cost in Case 1 is $14,906 and in Case
2 it is zero. In Case 3, the total cost is $39,973, lower than
Case 1 but much higher than Case 2. Because the electrolyzor
is far from solar generation system and the utilization level of
renewable power is low.

The performance of Case 2a is shown in Figs. 4 and 5 to
evaluate the performance of different number of trucks in the
coordinate system. The Case 2a has the same parameters of
Case 2 except the number of trucks is 4 rather than 3. From
Case 2, we notice that at time periods 11 to 14 there is a
sharp decrease of renewable power utilization level. Because
all trucks are on their way and cannot transport the transformed
hydrogen to other zones in time. However, in Case 2a we have
sufficient trucks and can fully utilize the renewable power from
solar generator unit. Fig. 5 also shows that more trucks can
decrease the hydrogen production cost. The routine of 3 trucks
are listed in Table I, our model select the transportation routine
which achieves the minimum fuel cost.

B. Performance of Quantum Assisted Combinatorial Benders’
Decomposition

We tested cases with different sizes to compare the per-
formance of our quantum-assisted combinatorial Benders’ de-
composition algorithms with a classical version whose master
problems are solved by commercial solvers on conventional
computers. The experiments were conducted using the Gurobi
solver and the D-Wave annealer. The result of the master
problem is shown in Fig. 7. We notice that with the increase of
Benders’ cuts, the time consumption of the classical solver in
each round increases exponentially because more constraints
are added. What is more, the nonlinear problem is difficult
for classical solvers to solve. However, the time consumption
of quantum annealer at each iteration for the master problem
remains relatively stable because as the complexity of quantum
annealing mainly depends on the number of qubits.

Figs. 7 (d), (e), and (f) show the cumulative time com-
parisons of difference methods for master problem-solving.
Although the classical solver (labeled as ‘Gurobi’) requires
less time compared to the quantum solver (labeled as ‘QPU”)
in a smaller-sized problem in (b), our algorithm shows a
trend to outperform the classical version as the problem scale
increases in Figs. 7 (e) and (f). The classical solver’s time
requirement appears to grow at an exponential rate with the
problem size increases, reflecting the expected computational
complexity for larger instances. In contrast, the quantum

solver’s curve shows a milder increase. This indicates that the
quantum solver, leveraging the principles of quantum mechan-
ics, scales better with problem size and thus can save more
time as problems become more complex. It suggests a potential
computational advantage of quantum solvers over classical
ones in dealing with large-scale optimization problems, where
classical methods become impractical due to their steep rise
in time complexity. This indicates that the QPU solver scales
better with problem size and suggests that for sufficiently large
and complex problem instances, the QPU solver may become
the more time-efficient option compared to Gurobi.

Overall, the quantum assisted combinatorial Benders’ de-
composition algorithm and quantum annealer have advantages
when the size of the optimization problem becomes larger.

VI. CONCLUSION

To improve the operation efficiency of hydrogen and power
distributed systems, this paper proposed a synergistic dispatch
approach, which leverages the flexibility from the hydrogen
system to accommodate renewable energy fluctuations. Our
simulation results demonstrated that, with the ability of energy
conversion, the synergistic dispatch could reduce over 66%
system cost in the specific test system. The efficiency of
renewable power utilization is also improved. Our simulation
results also demonstrated the computational efficiency of the
proposed Benders’ decomposition on hybrid quantum and
classical computers.
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