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ABSTRACT Quantum computing is commonly considered one highly efficient computing method with
the potential to revolutionize computation technology and solve problems that are currently unsolvable.
However, due to the limitation of hardware equipment and an immature experimental base, quantum
technology is still in its early stages and is far from achieving the expected performance, especially in
solving large-scale complex problems. To break through these barriers, we propose a parallelized quantum
annealing algorithm based on Lagrangian relaxation. The proposed algorithm divides the large-scale
problem into several small problems and then employs multiple quantum computers to solve them. Our
proposed approach overcomes the limited number of qubits and allows quantum computing to solve large-
scale optimization problems. Additionally, we incorporate a local search method to ensure this Lagrangian
relaxation based quantum algorithm achieves an optimal solution. We use the proposed parallelized
quantum annealing algorithm to solve optimal scheduling problems in network function virtualization
networks. The problem is expressed in a linear optimization model that is NP-hard. Our proposed algorithm
presents excellent time performance in solving this virtualized network functions scheduling problem,
compared with the Lagrangian relaxation based classical algorithm.

INDEX TERMS Lagrangian relaxation, quantum algorithm, network function virtualization, quantum
computing, virtualized network functions scheduling problem, optimization problem, tabu search algorithm.

. INTRODUCTION

N RECENT decades, quantum computing entered people’s

vision and has made significant strides in its develop-
ment. In the 1980s, the idea of quantum computing was
initially suggested by physicist Richard Feynman [1]. He
conceived of building hardware based on quantum theories
to simulate quantum dynamic systems. Now researchers
are realizing this vision and extending the application of
quantum computing to the fields of medical development [2],
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encryption decoding, communication networks [3], financial
planning [4], [5], and also artificial intelligence [6], [7].
Quantum computing follows the laws of quantum mechanics
to handle problems so that unique quantum characteristics
make quantum computing deliver enhanced computational
efficiency. In studying quantum computing technology in
depth, researchers find that quantum annealing shows promi-
nent potential superiority in solving optimization problems
because the optimal problems have subtle similarities to
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the fundamental theory of quantum annealing from the
mathematical aspect. Based on these advantages, quantum
annealing is placed in great hopes to break the bottleneck
of classical computing and solve complex problems.

Quantum annealing is predominantly grounded in the
Ising model, a mathematical representation of a physical
system consisting of interacting spins. During the quan-
tum annealing process, the system evolves according to
the laws of quantum mechanics, exploring different spin
configurations in parallel. The system eventually reaches
its ground state, which represents the optimal solution to
the problem at hand. In previous works [8], [9], [10],
[11], quantum annealing has been proven to be effective in
solving certain NP-hard problems. Based on these research
results and also theoretical analysis, quantum annealing is
considered to have the potential to outperform classical
algorithms. However, the applications of quantum annealing
are restricted due to the limitation of the hardware. To fully
utilize the advantage of quantum annealing, some quantum
algorithms are designed to assist quantum annealing to tackle
optimization problems. Alanis et al. [11] proposed a multi-
objective dynamic programming framework to solve the
Pareto-optimal routing problem in communication networks.
The Evolutionary Quantum Pareto Optimization (EQPO)
algorithm, which takes advantage of quantum parallelism,
was developed based on this dynamic framework. It has
been proved that EQPO can find Pareto-optimal routes
in polynomial time. Feng et al. [12] tried to solve unit
commitment problems by a hybrid algorithm based on a
quantum approximate optimization algorithm and surrogate
Lagrangian relaxation. This algorithm does not need the
optimal dual value to assist the convergence and so it
expands the application scope of the algorithm. The Benders’
decomposition method was first combined with quantum
computing in [13]. Zhao et al. leveraged quantum annealers
to solve the master problem in Benders’ decomposition.
In [14], they developed a hybrid quantum-classical multi-
cuts Benders’ decomposition (HQCMBD) algorithm based
on the previous paper and applied it to solving the mixed
integer linear programming (MILP) model of the data center
energy management problem. The simulation results show
that the HQCMBD algorithm has better performance in
aspects of success rate, robustness, and so on. Spirited by
these works, and also to mitigate the issue of limited qubits,
we proposed a parallelized quantum annealing algorithm that
integrates quantum annealing with the Lagrangian relaxation
technique to reduce the need for qubits so that quantum
annealing can be employed to solve complex optimization
problems. Additionally, this algorithm incorporates a tabu
search method to assist the search for the global optimum. In
this paper, to validate the practicality and effectiveness of our
proposed algorithm, we use the proposed algorithm to solve
optimization problems in network function virtualization
(NFV) networks.

In recent years, NFV technology, as a transformative
technology of network management, has been attached to
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more importance and also more widely used in real-world
scenarios [15], [16]. NFV offers a virtualized environment
that allows network functions to operate on software plat-
forms, thereby enhancing the efficiency of network resource
utilization [17]. In NFV network, virtualized network func-
tions (VNFs), virtualizing network services, are typically
deployed on one or more virtual machines (VMs) that run on
standard servers or in clouds [18], [19]. A crucial challenge
in the networks is to efficiently schedule VNFs in response to
users’ requests, which is generalized as the VNFs scheduling
problem. The VNFs scheduling problem is intricate and
computationally demanding due to the numerous variables
and constraints. In previous work [3], we built an integer
linear programming (ILP) model to address a simplified
VNFs scheduling problem and leveraged quantum annealers
to solve it. Subject to the limited qubits and other hardware
constraints, quantum annealers cannot solve this problem
in large-scale cases and the simulation results presented
instability as the number of variables increased. To address
this issue, we develop a parallelized quantum annealing
algorithm in this paper. We present a more complex system
model of the NFV network and build an optimization model
of the VNFs scheduling problem based on it. This ILP model
has the objective function that minimizes the total delay
of all service chains, which includes processing delay on
VMs and transmission delay between them. The simulation
experiments demonstrate that our algorithm can efficiently
solve the VNFs scheduling problem on a large scale. The
contributions of this paper are summarized as follows:

1) We propose a novel parallelized quantum annealing
algorithm, which employs Lagrangian relaxation to
decompose problem models and leverages quantum
annealing to solve the sub-problem models. It also
includes the tabu search method that is used to assist
in converging to the optimal solution of the original
model.

2) An ILP model of the VNFs scheduling problem
is constructed. This optimization model only with
binary variables has the object of minimizing the total
processing delay and transmission delay in the NFV
network.

3) We conduct simulation experiments to investigate the
performance of the proposed parallelized quantum
annealing algorithm and obtain excellent results that
indicate its superiority in solving efficiency and robust-
ness compared to the Lagrangian relaxation based
classical algorithm.

The rest of this paper is organized as follows. Section II
describes our proposed algorithm and elucidates its cru-
cial parts in detail. Section III introduces the system
model and ILP formulations of the VNFs scheduling
problem. This section also presents steps for decompos-
ing this optimal problem into two sub-problems using
Lagrangian relaxation, followed by the corresponding
transformed quadratic unconstrained binary optimization
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(QUBO) models. Section IV showcases the simulation
results and their analysis. Finally, Section V concludes the

paper.

Il. PROPOSED LAGRANGIAN RELAXATION BASED
PARALLELIZED QUANTUM ANNEALING ALGORITHM
Existing quantum computers cannot be extensively used as
expected because their applications are currently hindered by
several significant limitations, including the limited number
of available qubits, the stability of quantum systems, and
embedding techniques. To overcome these difficulties and
fully exploit quantum annealing for large-scale problem-
solving, we develop a novel parallelized quantum annealing
algorithm combining quantum annealing, Lagrangian relax-
ation, and the tabu search method. In this section, we
introduce these three crucial techniques and explain the
proposed algorithm in detail. In Section II-A, there is a brief
introduction to quantum annealing principles and a clear
analysis of the annealing process. Section II-B shows how
to use the Lagrangian relaxation method to decompose the
programming model. Section II-C briefly explains the tabu
search algorithm. In Section II-D, our proposed algorithm is
developed on these computing techniques, and its framework
is shown.

A. QUANTUM ANNEALING

Quantum annealing is similar to the classical algorithm,
simulated annealing. Simulated annealing is a famous heuris-
tic algorithm designed to solve optimization problems by
searching the solution space through thermal fluctuations.
In theory, quantum annealing should perform better than
simulated annealing because quantum annealing leverages
quantum fluctuations rather than thermal fluctuations to get
the optimal solution [20]. Quantum annealing applies quan-
tum efforts like quantum tunneling to accelerate searching
the ground state of an Ising Hamiltonian which corresponds
to the optimal solution of the optimization problems. This
process follows the quantum evolution of the time-dependent
Schrodinger equation. The Schrodinger equation is

d _
i V@) =HOIY®), ey

where 1 (7) is the state vector of the quantum system and
the H(t) is the Hamiltonian operator. This equation is the
general description of the quantum system evolution. It is a
great challenge to solve this equation directly because the
computational complexity increases exponentially when the
problem complexity increases. Quantum annealing basically
follows adiabatic evolution, which points out that the quan-
tum system will stay in the ground state if the Hamiltonian
related to the dynamics changes slowly enough.

To obviously analyze the quantum annealing process,
the Hamiltonian of the whole quantum system in adiabatic
evolution is briefly explained as

H(t) = A(WH; + B()Hy, 2
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where A(¢) and B(f) are time-dependent prefactors and they
control the evolution process [21], [22]. H; and Hy are
the initial Hamiltonian and final Hamiltonian, respectively.
Both can be expressed by linear combinations of several
eigenstates. At the beginning of the adiabatic evolution, the
whole system is at the minimum energy eigenstate of the
initial Hamiltonian state. In other words, A(0) = 1 and
B(0) = 0. In the evolution process, A(f) gradually decreases
while B(#) gradually increases so A(f) and B(¢) are supposed
to be differentiable. Finally, at time 7, the end of the
annealing process, A(T) reaches 0, and B(T) arrives at 1,
which means the whole quantum system finishes the state
change from the initial Hamiltonian state to the ground state
of the final Hamiltonian. The ground state is the eigenstate
with the lowest eigenvalue, which means the whole system
is at the lowest energy eigenstate. Finally, the system will
stay at the ground state of the final Hamiltonian in the ideal
case.

For quantum computing, the final Hamiltonian can be
represented by the Ising model with operators o, which
shows the interaction state of n qubits in a 2" dimension
Hilbert space. If qubits are prepared as spins, o is the spin
component state of spins projected on axis z component. The
Ising model can be expressed as

H = Zhiaiz + ZJUUiZOjZ, 3)
i i<j

where Uf can be set as 1 or —1. A; indicates how the external
field affects the qubit o;. Jj; is the coupling parameter of
of and of. The external field can have effects on the spin
state which can be spin-up and spin-down. The two spin
states have different energy levels. The sign of A; represents
which spin state is more preferred under the influence of
the external field. The value of &; is determined by the
field strength and the energy of the spin particle. Every spin
can be considered as a magnetic dipole that can produce
a small magnetic field so every spin is influenced by its
neighbor magnetic field. The sign of J; shows whether
these spins prefer to be aligned or anti-aligned with their
neighbors. It determines the ferromagnetic characteristics of
the substance. The value of J;; indicates the coupling strength
of the neighbor spins. It mostly depends on the distance
between these two interactional spins.

For the whole process of quantum annealing, the Ising
model can be expressed as

H(s) = —? (Z a;f)

i
B(s)
+ | i+ Y deiof | @
i i<j

where o7 is the spin component state of spins projected
on axis x component. A(s) and B(s) are two prefactors that
change along time. s = f/tanpealing. Which means s denotes
the progress of the whole annealing process. fannealing 1S
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the total time of quantum annealing. The first term is the
initial Hamiltonian which is generally set at the lowest-
energy eigenstate in practice. The second term is the final
Hamiltonian. Before starting quantum annealing, the system
is situated in the lowest-energy eigenstate of the initial
Hamiltonian. In the quantum annealing process, the state of
spins is changed and their interaction makes efforts on the
Hamiltonian of the whole quantum system. Consequently,
the final Hamiltonian is produced and then the whole system
tends to evolve into the lowest-energy eigenstate of the final
Hamiltonian, which is also called the ground state of the
final Hamiltonian. In ideal conditions, the evolution process
adheres to the adiabatic evolution, which presents that the
whole system always stays at the lowest-energy state so it
is easy to achieve the lowest-energy eigenstate of the final
Hamiltonian. However, the quantum annealing process is
fraught with complexities, and there may be other energy
levels close to the ground state. The system may decide to
move to these energy levels and stay at these energy levels at
the end of the quantum annealing. Consequently, the system
may only find the local minimum of the objective function
rather than the global minimum at the end.

B. LAGRANGIAN RELAXATION
The Lagrangian relaxation technique is a crucial tool in
assisting to solve optimization problems [23], [24], [25]. It
works based on the separability of problem models and the
decomposition makes the models much easier to solve due
to removing the complex constraints. The method involves
relaxing the coupling constraints through the use of Lagrange
multipliers, which leads the models to approach the optimal
solutions of original problems in the solving process.
Assume there is an integer programming model shown as

Lip = min ZL,‘()C,) (52)
""" i=1
s.t. aix; < b;, i=1,...,1, (5b)
1
Z cixi <d, (5¢)
i=1

where x; are variables, and a;, b;, ¢; and d are constants.
The objective function can be divided into / terms based on
the variables x;. There are I constraints, which make the IP
model hard to solve. Thus, Lagrangian relaxation is applied
to relax these constraints and then add them to the objective
function. The new model is

i i
Lir(M) = xlmmxl 21 Li(x;) + A (Zl CiXj — d) (6a)
= 1=

s.t. aix; <b;, i=1,...,1. (6b)

This new model can be divided into / sub-models that
everyone only has variables x; and then the surrogate subgra-
dient method is leveraged to update X. The process is briefly
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i i(x)) + 4 X —d
X:r.l.l.r’ln Z(L (x, )) + (; CiX, )

=i

s.t. a;x; < b;,

1
min Ly(x1) + A(c1¢, ——d)
X1 1

Gl axy < by.

1= gl

~ o~

1
min L;(x;) + A(cix; —~d)
X 1

CPU: calculate A

| CPU: Tabu search algorithm |

| Optimal solution: x;... x; ... |

FIGURE 1. The framework of the proposed Lagrangian relaxation based parallelized
quantum annealing algorithm.

shown in Fig. 1. In our proposed algorithm, this process
is structured into two distinct levels, the low level and the
high level. At the low level, the sub-models are individually
solved by quantum computing and get the optimal solution
and also the value of x;, which is used to update A. At
the high level, the coordination between the sub-problems is
performed through the updating of the Lagrange multiplier A.
The iterations of updating A and solving sub-models cannot
end until the solutions tend to converge. At the same time, the
optimal feasible solution of the original model is achieved.
The Lagrangian relaxation method is easier to use in many
cases and the process is convenient to adjust depending on
problems.

C. TABU SEARCH ALGORITHM

The tabu search algorithm is a neighborhood search algo-
rithm and it is widely used in finding the approximate
solution to NP-hard combinatorial optimization problems
[26], [27], [28]. The tabu search algorithm continuously
searches for better solutions in the neighborhood by iterations
and then replaces the current solution to achieve optimal
solutions step by step. During the search process, the
information of found solutions is recorded in the tabu
list. This tabu list not only prevents the algorithm from
cycling back to already explored solutions but also enables
it to escape local optima by allowing moves that may
seem non-beneficial. Thus, this mechanism significantly
enhances the efficiency and effectiveness of the search
process. The tabu search algorithm has a strong dependence
on the initial solution, and a good initial solution can
markedly shorten the search process. In our proposed
algorithm, the final result achieved by the Lagrangian
relaxation based parallelized quantum annealing algorithm
is a good initial solution. Therefore, we choose this
method to rapidly converge the solution found by quantum
annealing to the global optimum with reasonable parameter
settings.
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Initialize A

. 1
LLRi = mmx Li(xi) + A(cixi - Td)
1r v ]
s.t. aix; < b;.

Solve Ly g; by quantum annealing independently

—-| Obtain the objective function value Zyg; and the value of x; |

| Calculate Zyg=3"_, Zyp; I

| Update A based on subgradients and step sizes |

_7®
|22AR | < €2
ZLR ~

Check stop criterion:

Yes

| Output variables: x; |

—‘ Check if x; satisfy all constraints in the original model?

No

Tabu search: find a feasible solution in the
neighborhood of x;

Yes

I Retrieve: x;

FIGURE 2. The flowchart of the proposed Lagrangian relaxation based parallelized
quantum annealing algorithm.

D. PROPOSED ALGORITHM

We propose a Lagrangian relaxation based parallelized quan-
tum annealing algorithm based on Lagrangian relaxations
to solve large-scale optimization problems. The workflow
protocol of the algorithm is shown in Fig. 2. We first build
the integer programming model and then decompose it by
Lagrangian relaxations to form several sub-problem models
Lir;. Then we use quantum annealing to solve these sub-
problem models Ly r; separately and get the optimal solutions
to these models and the value of x; at these points. The
value of A is updated based on the subgradient methods.
Finally, we check if the objective function value Zir can
satisfy the stop criterion or not. Zl(uplg denotes the objective
function value got in the previous iteration. € is a sufficiently
small value. Thus, the solving process stops repeating when
the solution result of every iteration does not change. If
the stop criterion cannot be reached, the updated A will
replace the previous one and then we will solve sub-problem
models again. Actually, quantum annealing may lead to the
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FIGURE 3. The diagram of the NFV network.

issue of achieving the local optimal solution rather than the
global optima because of the limit of hardware equipment.
Furthermore, the Lagrangian relaxation method only reaches
the approximate optimal solution of the original problem.
Thus, we design post-process steps that leverage tabu search
after quantum annealing in our algorithm to help converge
and achieve the optimal solution. In Section V, we use the
proposed Lagrangian relaxation based parallelized quantum
annealing algorithm to solve an optimization problem in
communication networks and explain this process in detail.

lll. USE CASE IN COMMUNICATION NETWORK

NFV emerges to standardize functions in a wireless network
and enhances the flexibility and scalability of networks to
accommodate new services efficiently. Among the various
optimization problems inherent in NFV networks, network
resource allocation problems, especially the VNFs schedul-
ing problem, stand out. The VNFs scheduling problem is
arranging VMs to process functions of service chains to
minimize the delay of all service chains’ processing. In
Section III-A, we explain the system model of NFV networks
and build the integer linear programming (ILP) model to
describe the VNFs scheduling problem. In Section III-B,
the Lagrangian relaxation method is employed to divide the
whole problem into two subproblems. These subproblems
are transformed into QUBO models in Section III-C. Finally,
we operate the proposed algorithm mentioned in Section II
to solve the VNFs scheduling problem. The whole solving
process is concisely described in Section III-D.

A. SYSTEM MODEL AND ILP FORMULATION

In the NFV network system, as shown in Fig. 3, the
hardware providing computing and storage resources usually
is abstracted as VMs and these VMs connect through
virtual links. Each VM can run several virtual functions
to conduct computing following users’ requests. If a user
request requires processing large amounts of data among
different data centers, the processing delay at the VMs and
the transmission delay between them cannot be ignored. A
user request is fulfilled through the operation of a service
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chain, which combines several VNFs in the network. Hence,
the total delay in processing the request is the time it takes
for data to be processed by VNFs of the service chain and
the transmission delay between the corresponding VMs. The
model proposed in this paper is built to provide the best
arrangement to minimize the total delay of all activated
service chains in the network.

We abstract the system model from the real network
system. It is assumed that there are several types of VMs
in the network and VMs can provide some different virtual
functions f*. These functions f¥, with k indicating the type
of functions, may be operated on more than one type of
VMs. For example, VM 1 can process function f 1 f3 and
f*. f3 can be served on VM 1, VM 2 and VM 5. In the
model, the number of VMs in the network is M, and also m
and n are indexes of VMs. We divide the running time of
VMs, denoted as Tmax, into multiple time slots, and every
time slot has the length of AT. Every VM can only process
one function in one time slot. In the NFV network, VMs
communicate with each other by one virtual link. The virtual
link between VM m and VM n is denoted as /(). Every
virtual link can only serve data transmitting for one instance
of the virtual function at the same time. When the NFV
network receives the users’ request, the service chains will
be invoked to process users’ data. As shown in Fig. 3, the
service chain 1 is used to meet the request of users. The
virtual functions of service chain 1 are operated on VMs
that can provide corresponding VNFs.

There are [ service chains that are ready to process
data following the customers’ requests submitted to the
NFV network. Service chains can be regarded as sequences
of virtual functions with specific orders. In our system
model, all virtual functions and service chains are instantized
to clearly denote different individuals. These instances of
virtual functions are denoted as flj‘, which means the virtual
function is the j; in the service chain i and it is divided
into the ky, type of function. All VMs that can process fk
compose the set Vk Appropriate VM is chosen from this set
to process these fk In the system model, the processing time
of ftk is denoted as t#;,, which is calculated by Wi;,/Cp.
The size of data that needs to be processed is W, and the
computing rate of VM m is denoted as C,. T, is the number
of time slots, which the total time length corresponds to
tijm- Tijgn,ny 1s the number of time intervals occupied by the
transmission of f;‘ processing results through the virtual link
l(m,ny- Based on the system model, we build an ILP model
with binary decision variables, Xijm, Yijme> Zijmes Pijmt> Wijmns
and Vjj, to minimize the total delay including processing
delay and transmission delay in processing customers’
requests. All properties of the system model are expressed
in the constraints of the ILP model. Constraints related to
arranging VMs to employ virtual functions to process data
are listed in Appendix A equation (48)-(58), which are also
explained in [3]. Decision variables, Xjjm, Yijms> Zijms» and
Dijme» are introduced to formulate these constraints. One other
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constraint is shown as

Uij(m,n) = Xijm, Vi’jv m,n. @)

If xjm equals 1, it signiﬁes that VM m is used to process
the virtual function f If wj(m,ny equals 1, it means that the
virtual link I, ») is used to transmit the results of fk Thus,
constraint (7) shows that the link [, ,) may be chosen to
transmit the result of j* function in service i because the
VM m is chosen to process the function f; Constraint (7)
indicates the relationship between X, and ujjin . If VM
m conducts processing function flj‘, which means x;, =
1, then the link /() can be used to transmit the result,
which denotes as u;jn,n) = 1. There is one other constraint
shown as

N N
Z Uij(m,n) = Z UiGj+1)(n,m’)»
m=1 m'=1

Vi,j, ne€ V(/+1) ®)
Constraint (8) shows that the VM n must be the end point
of the link that is used to transmit the result of j” function
in service i and also it must be the start point of the link
that is responsible to transmit the result of (J+ D™ function.
In other words, constraint (8) keeps the continuity of the
service chain. There is also one constraint shown as

Z Z Uij(m,n) = 1,

mEV nEVt(/-H)

Vi, j. )

Constraint (9) limits that there is only one link that can
be occupied to transmit the result of any function flk Thus,
there should be only one ujj ) that equals to 1 for all
possible values of m and n. One other constraint is shown as

(l - uij(m,n)) : Vij(m,n)t - Oa Vivja m,n, t. (10)

If vijonnye equals 1, it means that the virtual link I, .
starts to transmit the results of fl.’? at the beginning of the
time slot 7. Constraint (10) indicates that v;ji, ) could be 1
if and only if w;j(n,») equals to 1. It is because only when
the link is chosen to transmit the result of any functions, the
link will serve this transmission in the time slot ¢. There is
one other constraint shown as

Z Z Vijim,mt + Z Z Vitj (nmyt =

i=1 j=1 i'=1j=1
Vm, n, t.

1)

Constraint (11) presents that there is only one transmission
allowed between VM m and VM n in the time slot ¢.
For example, if the virtual link /() is used to transmit
the processing results of fi/? in the time slot ¢, which
means Vi, = 1, both [y, ) and Iy ) cannot transmit
other data in this time slot. There is also one constraint
shown as
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Tmax
Z Vijommyt = Tijom,n) - Uijom,n)»
t=1

me Vk

5 (12)

Vi, J; ne V(] +1)-
Constraint (12) indicates that the result of the function

fk must be transmitted reaching the required transmission
time Tjjn,ny. If and only if VM m can process function f
and VM n can process function f (+1)» the link Zgp, ) can be

selected, and then there should be the presence of Tjjm,n)-
There is one other constraint shown as

TmﬂX
Zpljm(t atl) = Z Vij(m,n)t»
Vl(/+l)
Vi j.t; me V. (13)

Constraint (13) ensures that starting the transmission of
function results must be after completing processing this
function. Thus, there must be one pj,y that equals 1 in
previous time slots when we find vjjgu,n) = 1. One other
constraint is shown as

Tmax

Zzl(/+1)"(f+/3) = Z Vij(m,n)t>

me Vk

Vi,j,t; ne V(;+1) (14)

If zj(j+-1)n: €quals 1, it signifies that VM n starts to process
the virtual function fl.k/. 41y at the beginning of the time
slot ¢. Constraint (14) guarantees that starting processing
fllg 1) Must be after receiving the results of last function flj‘
Therefore, if there is one z;j11)n that equals 1, we can find
Vijm,myr = 1 in previous time slots. One other constraint is
shown as

Uij(m,n) = Vij(m,n)t = 0,

Vi, j. t, né¢v, 15)

Constraint (15) shows that if VM m cannot process
function f.k or VM n cannot process function f iG+1)° which
implies that neither /() nor [, will not be used to
transmit the results of function flj‘, Vijm,nye and Ujjm, ) MUSt
be 0.

These above constraints (7), (8), (9), (10), (11), (12),
(13), (14), (15) describe how the users’ data is transmitted
along the service chain between different VMs. One other

constraint is shown as

k
m ¢ sz/ or z(;+1)

M Tmax

U=y Y pum-(t—1)- AT, Vi

m=1 r=1

(16)

Eq. (16) is used to calculate s;;, which represents the
completion time of processing f,’} that is the last function of
the service chain i. pjj,; = 1 means that VM m completes
processing fl'} at the beginning of the time slot ¢. Therefore,
the finishing time of the service chain i can be known by
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calculating the equation (16). All in all, the ILP model of
VNFs scheduling problem can be expressed as

Z]p = min E SiJ,
K
i=1

sk, (7)—(16), (48)—(58), a7

where constraint (48)-(58) are listed in Appendix A. The
objective function aims to minimize the total processing
time of all service chains. In the following subsection, the
Lagrangian relaxation method is leveraged to decompose this
ILP model and transform these sub-problem models into
QUBO forms.

B. LAGRANGIAN RELAXATION
We combine (16) and (17), and have

M Tmax
Zip = min ZZmem (t=1)-AT. (18
i=1 m=1 t=1
We use Lagrangian relaxation method to trans-

form (7), (13), and (14), and then add them to the original
objective function. Now the objective function should be

M deX
Zp = _min ZZZM, (t—1)- AT
X,p,z,u,v
i=1 m=1 t=1
I J Tmax
T2 D D | D Vi
i=1 j=1 k =1 K
=17 mEVU "GV,-(;+1)
Tmax

- Z Pijm(t—a+1)
a=1

Z Vij(m,n)t

i=1 j=1 neVi | 1= meVy
Tmax
- Z Zi(j+Dn(t+B)
p=I
J N N
+ Z Z Z Z Kijmn(uij(m,n) - xijm)a (19)
i=1 j=1 m=1n=1
with
)\ijmn Z Oa Viaja ma na (20)
hijm =0, Vi j.t;  meV, @1
b = 0. Vijiti neVE . (22)

Lagrange multipliers Ajun, Ajme, and Ajn, are used to
control the influence of these three constraints on the new
objective function. These constraints are relaxed through the
transformation to reduce the complexity of the original ILP
model. This new optimization problem can be divided into
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two sub-problems. The objective function of the first sub-
problem is

I Tmax

Zip1 = mln Z Z(szlmt (t—1)-AT

i=1 t=1

TleX

B Z Z Mijmt Zpum(t a+1)

Jj= 1mer
Tmax

J
—Z Z ij”tzzi(/+1)"(f+ﬁ)

1 =1
= z(,+1) b

- XI: 22 i Kijmn i

i=1 j=1 m=1n=1

(23)

The first sub-problem is with constraints (48)-(58)
and (20)-(22). This sub-problem is to give the optimal
assignment of VMs to process these service chains following
the system model. The objective function of the second sub-
problem is

J Tmax

Zipy = mm Z Z Z

i=1 j=1 t=1

Z)‘ijmt Z Vij(m,n)t

¥ i
meVy n€Vig11)

+ E )\ijm E Vij(m,n)t
4 k
neVii, mevi

I J N N
+ D002 D it
i=1 j=1 m=1 n=1

The second sub-problem has constraints (8)-(12), (15),
and (20)-(22). This sub-problem aims to arrive at the
optimization of total transmission time while neglecting
processing delay.

We use the subgradient iterative technique to update the
set of Lagrange multipliers Ajjmn, Ajme, and Ay In every
iteration K, Ajjmn, Aijme, and Ajjp, are updated to help converge
to the optimal solution. The equations we used to update
Aijmn are shown as

o _ o H

(24)

81 = Wistmm) ~ Nijm> (25)
(k+1) (k) ), (k)
)Lymn = max (0 )Lymn + &1 N ) (26)

g(l ) is the subgradient that along to direction of constraint (7)

in the ky, iteration. The subgradient g ) and the step size y(k)
control the change of A;,,. We also use the same method

to calculate Ay, and Ay, These equations are shown as

Tmax
(k) (k) ®)
Z Vijm.myt Zl’ijmo—wl)’
a=1

Vzu+1)

27
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TABLE 1. List of constraint-penalty pairs.

Constraint Equivalent Penalty

x1+ax2=1 P(I1+I271)2

1 +x2 + 23 <1 | P(rize + 123 + 223)

z1 +x2 < 3 P(z1+ 32 — a3+ > aimy)?

1+ 20 =0 P(z1 +x2—b)2

(k+1) (®) ® k)
)”l/mt = max (0 )\'ljmf +g2 ¢ )’ (28)

® _ %) g
8 = Z Vijonmr — Zzi(/+l)n(f+ﬁ)’ 29)

meV!‘i B=1

(k+1) ®) y o

)”zjnf = max (0’ )‘l]nt +8 2 ) (30)

(g2, y2) and (g3, y3) are pairs of problem subgradients and
step size parameters related to constraints (13) and (14).
We initially set Lagrange multipliers and then they updated
according to equations (25)-(30) in iterations. After finishing
every iteration, we calculate the solution of the whole
problem model (17). If the results of any iteration reach the
stop criterion, we will terminate the iteration and get the final
solutions. Before using the proposed algorithm to solve this
problem, we also need to transform these two sub-problem
models into QUBO models independently.

C. QUBO MODEL
The QUBO model distinguishes itself by comprising solely
an objective function that includes quadratic terms, devoid of
explicit constraints. As a result, to convert the ILP model into
a QUBO model, it is essential to transfer all constraints into
equivalent quadratic penalties which are then incorporated
into the objective function. These transformations ensure
that the restrictive conditions of the original constraints are
preserved within the objective function, thereby guiding the
model towards reaching the optimal solution. We transform
all constraints following the rules shown in Table 1. x1, x2
and x3 are used to denote binary decision variables of original
constraints. r; denotes the binary slack variable introduced
in penalty terms. a; and b are constants. P is the penalty
coefficient, which is a sufficiently large positive constant.
We transform all constraints to penalty terms and all
penalty terms of the QUBO model are listed below. We
transform (48) and (49) to equations shown as

2

Plij Z)Cijm_1 s

k
meVij

Vi, j, €1y

2
Tmax
Pwm(Zz,-jm —x,-jm) . Viji meVi (32

=1
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Eq. (31) is transformed from (48). When and only when
one X, equals 1 with m € Vl]; this penalty with penalty
coefficient Py; will not add a big positive value to the
objective function. This design ensures that, to find the
minimum, the QUBO model will not allow more than one
Xjjm to equal to 1. Thus, (31) has the same function with (48).
Eq. (32) is transformed from (49). This penalty requires that
Xjjm and ZIT;“?" Zijme Must have the same values so it has the
same effect as constraint (49) on the problem models. We
transform (50) to the equation shown as

>
AWV G

Eq. (33) is equivalent to (50). Constraint (50) ensures that
only one yjj,; may be chosen to be set as 1 in any case. If this
constraint does not be followed, the terms in (33) will add
a large constant to the objective function. This mechanism
will lead the QUBO model to follow constraint (50). We
transform (51) to the equation shown as

Pyt (yijml 'yi’j’mt) , Vm,t. (33)

Pt (Ve = Xgn¥i )+ Vi jom. 1. (34)

Yijme 1 binary variable so y;,, is equal to the square of
Yijme- This characteristic of binary variables facilitates the
direct transformation of constraint (51). If the values of x;jy,
and y;jm; don’t obey constraint (51), these terms in (34) will
lead the solution away from the minimum. We transform (52)
to the equation shown as

Tmax 2
P2ijm Z Yijmt — Tijmxijm s
=1

Vij; me V. (35)

Eq. (35) will add a large value to the objective function
with the assistance of a penalty if constraint (52) is not
satisfied, which means the right-hand side terms have
different values from the left-hand side terms. Thus, the
optimizer will try to set values of x;j,, and yjj,, to obey the
constraint (52). We transform (53) to the equation shown as

P2ijml (Zijmt . pijml)’ Viajv m, 1. (36)

If both zjjm; and pyj, are equal to 1, terms in (36) will add
a large constant to the objective function, so the optimizer
will avoid this case. That is what constraint (53) tries to
do. Thus, we can transform (53) into the terms in (36). We
transform (54), (55) and (56) to the equations shown as

2
P3ijml (yijm(t—l) — Yiimt + Zijmt — pijmt) ,

Vi,j,t; me v{j (37)
Tijm 2
Pijme Z Zijm(t—a+1) = Yijmt T Tlijme |
a=1
Vij.t; me V. (38)
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2
Tmax
Prijwe | ZiG+vym'e — Z Zptjm(t—ﬂ+1)+rtjm’t ,
mevk f=1
ij
Vij.r om eV, (39)

Eq. (37) can force the solution to follow the con-
straint (54). Eq. (38) is transformed from (55) by adding a
binary slack variable 7y, Eq. (39) is equivalent to (56)
and slack variables are also needed in this transformation.
We only add one binary slack variable to (39) because the
maximum difference between the right-hand side and the
left-hand side of constraint (56) is 1. We transform (57)
and (58) to the equations shown as

2 2 2
P3ijm * Xijm + PSijmt *Yijme + P6ijmt " Zijmt

+ Plijmi - P Vijiti m &V, (40)

2

Tmax

Pjj Z ZZijmt_l

k =1
mev;; t

Tmax

+ P3jj ZZPijmz—l ,

k=1
meVij

Vi, j. 41)

To form the QUBO formulation of sub-problem 1, all
terms in equations (31)-(41) need to be integrated into the
right-hand side of (23). The new model of sub-problem
1 denotes as Zp,. All constraints of the second sub-
problem are also transformed into penalty terms. Here are
the transformation results. We transform (8) to the equation
shown as

N N 2
Plijn(Z Wijmm) = Y ”i(i+1)(n,m’)> ;
m=1 m'=1
Vi,j; ne Vl.’;]. 1) (42)

Eq. (42) has the same effect as (8) because if there is a
case that does not satisfy (8), the penalty term in (42) will
affect the objective function. Thus, to minimize the objective
function, the solver is inclined to steer clear of any case
that would trigger this penalty, thereby enforcing compliance
with the conditions outlined in (8). We transform (9) and (10)
to the equations shown as

2
Pyl 33 gy —1| . Vij.  @3)
meV{; ”evzk(;ﬂ)
Plijmnt (V,Zj(m,n)t — Ujj(m,n) Vij(m,n)t)’
Vi, j,m,n,t. (44)

Eq. (9) is transformed into (43) following the same idea
as the transformation of constraint (48). Eq. (44) obviously
has the same effect as constraint (10). It specifically avoids
the scenarios that there exits y;j,, equals 1 while no x;, is
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equal to 1. Constraint (11) is transformed to the equation
shown as

Pmﬂ[

>
#i*)VGA)
+ )

AV G A7)

+ )

(i)Y (A

We transform constraint (11) to (45) following the same

principle used in the transformation of constraint (50). Any

Vijm,n)t OF Viju,m) 18 set as 1, and then others cannot be

equal to 1. Otherwise, these penalty terms in (45) will lead

the objective function away from the optimal solution. We
transform (12) to the equations shown as

Vij(m,n)t * Vi*j* (m,n)t

Vi'j (nm)t * Vit (n,m)t

2

Viinat " Vigmye | > Ym,n,t. (45)

2

Tmax
Pijmn (Z Vijmmyr — Tijomn) - Mij(m,n)> ,

t=1

Vij.ti mgVE or ng Vi, (46)

Eq. (46) is equivalent to constraint (12). If the values of
Vijm,nyr and i, »y) cannot satisfy the constraint (12), (46)
will add a big value to the objective function so the final
solution cannot be minimum. Thus, (46) has the same effects
as the constraint (12). Constraint (15) is transformed to the
equation shown as

2 2
P2jjmn - Wiitm,n) + Psijmnt - Viitm,n)t>
me Vi, n¢ Vi (47)

1

Vi, j, t;
If and only if the Vijn,n): and wujon,,) Wwhere m € Vi];. and
ne Vlk(; 1) equal to 1, (47) will lead the objective function to
the optimal solution. Thus, (47) has the same function as the
constraint (15). All terms in equations (42)-(47) need to be
added to the right-hand side of (24) to formulate the QUBO
model of sub-problem 2. These penalty terms maintain the
integrity of the original constraints within the transformed
model. This new model of sub-problem 2 denotes as Zjp,
and the whole QUBO model denotes as Zjp.

D. ALGORITHM

The framework of the proposed Lagrangian relaxation
based parallelized quantum annealing algorithm is shown in
Algorithm 1, which is used to solve the VNFs scheduling
problem in this paper. To solve this optimization problem,
we first build the ILP model and then decompose it by
Lagrangian relaxations to form two sub-problems, which are
explained at great length in Section III. We transfer these
models to QUBO forms and then use quantum annealing
to solve these subproblems separately. Quantum computers
will return their optimal solutions to the classical computer.
The variables’ values in optimal solutions are used to update
Lagrange multipliers Ajmun, Ajme, and Ajjy. If the solutions
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Algorithm 1 Lagrangian Relaxation Based Parallelized
Quantum Annealing Algorithm

1: Require: parameters, I, J, M; the functions in service

chain i, flj‘, the set of VMs which can process fk vk,

i i
the NFV network; the value of penalty coefficients;

2: Imitialize: Ajjyn, Aijmes Aijnes Y15 V2> V35

3: find a feasible Tpax;

4: Zipx < —00Q;

5. while | (Z, — ZD*)/Z |> € do

6: solve the QUBO model of subproblem 1 and the
QUBO model of subproblem 2 individually by hybrid
solvers;

o get Zipys Zipys Zips Xijms Yijmts Zijmes Pijmes Uijmn, and
Vijmnts

8: update A, Ajjmes and Ajjmn by (25), (26), (27), (28),
(29), (30);

9: end while

10: output Zip, Xjjm, Yijmt> Zijmt> Pijmt> Uijmns> Vijmnt’

11: find the neighborhood of the current solution;

12: search the possible optimal solution and update the tabu
list;

13: reach the optimal solution;

14: return Zp, Xijm> Yijmt> Zijmts Pijmt> Uijmn> Vijmnt-

cannot meet the stop criterion, these updated multipliers
will be used to solve sub-problem models again. Finally,
the solutions after several iterations satisfy the stop criterion
and the loop ends to output an approximal optimal solution
to the original model. There are steps of tabu search that
can generate the neighborhood of the current solution and
then search for the optimal solution to the original problem
model.

IV. EXPERIMENT

In this section, we verify the feasibility of the proposed
Lagrangian relaxation based parallelized quantum annealing
algorithm and analyze its advantages in solving VNFs
scheduling problems under many cases.

A. QUANTUM COMPUTING IMPLEMENTATION

The whole proposed algorithm and Lagrangian relaxation
based classical algorithm run in the Python 3.8 environment.
The quantum annealing part of our proposed algorithm
was operated on the D-Wave quantum annealers by hybrid
solvers named hybrid_binary_quadratic_model_version2.
These hybrid solvers preprocessed the uploaded QUBO
models and leveraged quantum annealers to solve them.
The hybrid solver can tackle the model with up to
1,000, 000 variables and employ over 5,000 qubits. The
quantum process units (QPU) have the topology with the
Pegasus graph. The QUBO models were embedded on QPU
through corresponding packages in D-Wave ocean software
to automatically use minor embedding and it can simplify
the operations of using quantum annealing. The two sub-
problems, formed by the Lagrangian relaxation method
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FIGURE 4. The solver running time of solving sub-problem 1 (¢) and sub-problem 2 (b) of case a. (c) is the solver running time per iteration. The solver running time of solving
sub-problem 1 (d) and sub-problem 2 (¢) of case b. (f) is the solver running time per iteration.

shown in Section III, were solved by two independent
hybrid solvers simultaneously to shorten the simulation time
further. Compared with the proposed hybrid algorithm, the
Lagrangian relaxation based classical algorithm replaced the
hybrid solvers with the Cplex solvers.

B. SIMULATION SETUP

To show the performance of the proposed Lagrangian
relaxation based parallelized quantum annealing algorithm,
we randomly set different parameters I, J, and M, and
different service chains to generate different cases. These
parameters are used to provide an expected Tax by a greedy
algorithm. Lagrange multipliers Ajjns, Ajjme and Ajjm, are set
to 1 initialy. In practice, the transmitting rate of data is
relatively small so the time delay of transmitting is set as
one time slot in all cases. The assumption helps reduce the
complexity of QUBO models. We randomly set the value of
the workload of all functions in service chains to objectively
evaluate the general performance of the proposed algorithm.
The penalty coefficients of QUBO models are set to 1, 000
times larger than the solutions. Different penalty terms have
different penalty coefficients depending on the situations of
corresponding constraints. The hybrid solver may solve the
sub-problem models several times to achieve the optimal
solution in some iterations. Furthermore, to prevent over-
convergence while running these two algorithms, the stop
criterion starts working after 30 iterations.
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C. SIMULATION RESULT

In this subsection, we investigate the simulation results of
the VNFs scheduling problem in many cases. The data
presented in Fig. 4 compares the running time of hybrid
solvers, which incorporate quantum annealing, against that
of Cplex solvers in two distinct cases. For sub-problem 1, it
is obviously shown that hybrid solvers obtain the solutions
in a much shorter time per iteration compared with classical
solvers. These results verify that quantum annealing has
superiority while solving complex QUBO models. Based on
our observations, the QUBO models in cases a and b are
complex for Cplex solvers so Cplex solvers may perform
several restarting to reach the optimal solution in iterations. It
results in significantly varying classical solver running times
per iteration. For sub-problem 2, the classical solvers can
get the solution faster than hybrid solvers, which is because
the preprocessing procedure consumes a certain amount of
time while using hybrid solvers. In case b, the hybrid solver
may not reach the optimal solution of sub-problem 2 models,
so the solver is employed several times in some iterations.
The solver running time per iteration depends on the longer
solver running time between solving sub-problem 1 and
sub-problem 2 so that the running time of hybrid solvers
is shorter than classical solvers per iteration. The classical
solver running time per iteration is contributed by the time of
solving sub-problem 1. The accumulated solver running time
of solving cases a and b is shown in Fig. 5. It is significantly
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TABLE 2. Time Consuming

Case | Parameter Hybrid Solver Classical Solver
Run Time (s) Run Time (s)

c (2,2,2,6) 116.83 664.40
d (2,2,2,7) 104.83 621.92
e (2,2,3,8) 119.81 13,204.85
¥ (2,3,2,8) 248.55 > 150, 000.00
g | (3,2,2,10) 182.68 > 150, 000.00
| (2,3,3,11) 374.41 > 150, 000.00

presented that the total classical solver running time is much
higher than the hybrid solver running time.

In Table 2, the solver running time of two algorithms
in 6 cases are shown in detail. The first column shows
the parameter setting of (I, J, M, Tpax). The second column
and the third column present the solver running times in
the whole iteral procedure by hybrid solvers and classical
solvers. The last column shows the gain of hybrid solvers
over classical solvers. In all listed cases, hybrid solvers
present significant advantages in solving time. For case c,
the hybrid solver running time of the whole process is
116.83s but the classical solver running time is up to 664.4s,
which shows that our proposed algorithm has significant
advantages. For other cases, which are with larger QUBO
sizes and more complex formulations, the hybrid solver can
achieve much more superiority. Under cases f, g, and h, for
every iteration, the classical solver cannot find the optimal
solution to subproblem 1 in a reasonable time. It is because
the model in these cases is too complex for the classical
solver and it gets stuck in the search process. However, these
cases are much easier for hybrid solvers to achieve optimal
solutions in a short time. These results present our proposed
algorithm can solve large-scale VNFs scheduling problems
much faster than the Lagrangian relaxation based classical
algorithm.

Fig. 6 showcases the performance of our proposed algo-
rithm versus a classical algorithm based on Lagrangian
relaxation through the analysis of simulation results across
25 attempts for each algorithm. In case a, the hybrid solver
running times for all iterations fall within the range of 90s
to 150s. The distribution of hybrid solver running time for
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FIGURE 7. Histograms of the solver running time per iteration in case a and b.

all iterations concentrates in the range of 521s to 551s, but
some results are around 617s, which is much higher than
others. This noted deviation suggests classical solvers may
meet occasional challenges in reaching the optimal solution.
In case b, most simulation results using hybrid solvers obtain
the solver running time between 96s and 132s. However, the
classical solver results are dispersed and distributed between
11,400s and 15, 600s. It signifies that hybrid solvers are
much more stable in solving the VNFs scheduling problems
in this scenario. The analysis of 200 iterations results from
the hybrid solver and the classical solver are shown in
Fig. 7. It is found that the running times of hybrid solvers
present more concentrated distributions in these two cases.
For some iterations, hybrid solvers are employed more than
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one time because hybrid solvers fail to achieve the optimal
solutions sometimes. From Figs. 6 and 7, it can be seen that
our proposed hybrid algorithm shows better performance in
robustness.

V. CONCLUSION

In this paper, we proposed a Lagrangian relaxation based
parallelized quantum annealing algorithm, designed to tackle
complex optimization problems by effectively breaking them
down into smaller and more manageable sub-problems. The
success of our proposed hybrid algorithm in addressing the
VNFs scheduling problem illustrates its applicability and
effectiveness in solving large-scale optimization problems.
From the results of the case study, we can find that the
time performance of the proposed algorithm is better in
all cases compared with the Lagrangian relaxation based
classical algorithm. For cases with relatively fewer variables,
hybrid solvers spend 116.83s to solve the models but
classical solvers spend 5.69 times more than hybrid solvers.
Hybrid solvers can reach the solutions to some relatively
large-scale cases in 374.41s but these cases are unsolvable
for classical solvers in a certain time. Furthermore, our
proposed algorithm shows excellent advantages in the aspect
of robustness. Based on these experimental results, this
paper demonstrates that the Lagrangian relaxation based
parallelized quantum annealing algorithm can effectively
solve complex ILP models that cannot be solved by the
algorithm proposed in [3]. This advantage stems from the
fact that the parallelized quantum annealing algorithm avoids
the limitations imposed by a restricted number of qubits.

APPENDIX A

The settings of VMs will influence the arrangement of
scheduling virtual functions to process users’ data, so the
following constraints are used to represent the characteristics
of VMs and to prevent unreasonable arrangements. Xy,
Yijmes Zijme and pjjy,, are binary decision variables in these
constraints. One of these constraints is shown as

> xgm=1. Vij.

k
me Vij

(48)

Vl.'; denotes the set of VMs that can allow function flj‘ runs

on it. If x;, is equal to 1, it means that the function f: is
arranged on VM m to operate. Constraint (48) shows that
only one VM that belongs to Vi’; can be used to process

function flf One other constraint is shown as

Tmax

. k

Xijm = Z Zijmes Vi j; mE Vij‘
=1

(49)

Zijm: denotes when the function flj‘ starts to be processed on
VM m. Constraint (49) limits that if and only if VM m is
employed to process the function f;j‘, there will be a starting
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time of process function flj‘ on VM m. One other constraint
is shown as

(50)

1 J
ZZyijm, <1, Vm,t.

i=1 j=1

Yiime denotes that, at the time slot £, VM m is processing
the function flj‘ Constraint (50) represents that VM m can
process only one function at the same time. One other
constraint is shown as

(1 — xijm) Vi =0, Vi, j,m,t. 51

Constraint (51) shows that if and only if VM m is arranged
to process the function flj‘ VM m can process it in time slot
t. One other constraint is shown as

Tmax

. k
Z)’ijmt = Tijm * Xijm, Vi,j, mée V,:/'-
t=1

(52)

Constraint (52) describes that if VM m is chosen to serve
the function fl.]? , it must work for f;‘ in the required time Tjjy,.
One other constraint is shown as

Zijmt 'pijmt = O’ Vi’j’ m, r. (53)

Pijm: denotes that VM m finishes processing the function
f;‘ before the beginning of the time slot 7. Constraint (53)

represents the mutually exclusive relationship of zj,, and
Dijme in the same time slot. One other constraint is shown as

Yijm(t—1) = Yijme + Zijmt — Pijme = 0,

Vi j.t; me V. (54)

Constraint (54) forces time-dependent decision variables,
Zijmt» Yijme» and pjjme, must follow the logical order. One other
constraint is shown as

Tijm
Z Zijm(t—a+1) = Yijmts Vi, j,

a=l1

meVi. (55
Constraint (55) uses Zjj, and yjj, to makes sure that VM

m process the function flf for enough long time. One other
constraint is shown as

Tmax
Z Zpijm(t—ﬂ—H) Z ZiG+Dm'ts
meVk =1
i
Vi om eV, (56)

Constraint (56) presents that after finishing processing the
function fl]/‘, fz]E; ) will be processed in some time slots.
Other constraints are shown as

Xijm = Yijmt = Zijmt = Pijmt = 0,

Vij.t;  m¢ Vi, (57)
Tinax Tinsx

DD dm= Y Y pim=1 Vij (58
mEVg =1 meVl.’; =1
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Constraint (57) guarantees that all decision variables
related to VM m which cannot provide corresponding virtual
functions, cannot equal to 1. Constraint (58) shows that VMs
can only start processing the function flj‘ for one time and
also only finish processing it for one time. The detailed
explanations of constraint (48)-(58) are shown in [3].
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