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ABSTRACT Quantum computing is commonly considered one highly efficient computing method with

the potential to revolutionize computation technology and solve problems that are currently unsolvable.

However, due to the limitation of hardware equipment and an immature experimental base, quantum

technology is still in its early stages and is far from achieving the expected performance, especially in

solving large-scale complex problems. To break through these barriers, we propose a parallelized quantum

annealing algorithm based on Lagrangian relaxation. The proposed algorithm divides the large-scale

problem into several small problems and then employs multiple quantum computers to solve them. Our

proposed approach overcomes the limited number of qubits and allows quantum computing to solve large-

scale optimization problems. Additionally, we incorporate a local search method to ensure this Lagrangian

relaxation based quantum algorithm achieves an optimal solution. We use the proposed parallelized

quantum annealing algorithm to solve optimal scheduling problems in network function virtualization

networks. The problem is expressed in a linear optimization model that is NP-hard. Our proposed algorithm

presents excellent time performance in solving this virtualized network functions scheduling problem,

compared with the Lagrangian relaxation based classical algorithm.

INDEX TERMS Lagrangian relaxation, quantum algorithm, network function virtualization, quantum

computing, virtualized network functions scheduling problem, optimization problem, tabu search algorithm.

I. INTRODUCTION

INRECENT decades, quantum computing entered people’s

vision and has made significant strides in its develop-

ment. In the 1980s, the idea of quantum computing was

initially suggested by physicist Richard Feynman [1]. He

conceived of building hardware based on quantum theories

to simulate quantum dynamic systems. Now researchers

are realizing this vision and extending the application of

quantum computing to the fields of medical development [2],

encryption decoding, communication networks [3], financial

planning [4], [5], and also artificial intelligence [6], [7].

Quantum computing follows the laws of quantum mechanics

to handle problems so that unique quantum characteristics

make quantum computing deliver enhanced computational

efficiency. In studying quantum computing technology in

depth, researchers find that quantum annealing shows promi-

nent potential superiority in solving optimization problems

because the optimal problems have subtle similarities to
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the fundamental theory of quantum annealing from the

mathematical aspect. Based on these advantages, quantum

annealing is placed in great hopes to break the bottleneck

of classical computing and solve complex problems.

Quantum annealing is predominantly grounded in the

Ising model, a mathematical representation of a physical

system consisting of interacting spins. During the quan-

tum annealing process, the system evolves according to

the laws of quantum mechanics, exploring different spin

configurations in parallel. The system eventually reaches

its ground state, which represents the optimal solution to

the problem at hand. In previous works [8], [9], [10],

[11], quantum annealing has been proven to be effective in

solving certain NP-hard problems. Based on these research

results and also theoretical analysis, quantum annealing is

considered to have the potential to outperform classical

algorithms. However, the applications of quantum annealing

are restricted due to the limitation of the hardware. To fully

utilize the advantage of quantum annealing, some quantum

algorithms are designed to assist quantum annealing to tackle

optimization problems. Alanis et al. [11] proposed a multi-

objective dynamic programming framework to solve the

Pareto-optimal routing problem in communication networks.

The Evolutionary Quantum Pareto Optimization (EQPO)

algorithm, which takes advantage of quantum parallelism,

was developed based on this dynamic framework. It has

been proved that EQPO can find Pareto-optimal routes

in polynomial time. Feng et al. [12] tried to solve unit

commitment problems by a hybrid algorithm based on a

quantum approximate optimization algorithm and surrogate

Lagrangian relaxation. This algorithm does not need the

optimal dual value to assist the convergence and so it

expands the application scope of the algorithm. The Benders’

decomposition method was first combined with quantum

computing in [13]. Zhao et al. leveraged quantum annealers

to solve the master problem in Benders’ decomposition.

In [14], they developed a hybrid quantum-classical multi-

cuts Benders’ decomposition (HQCMBD) algorithm based

on the previous paper and applied it to solving the mixed

integer linear programming (MILP) model of the data center

energy management problem. The simulation results show

that the HQCMBD algorithm has better performance in

aspects of success rate, robustness, and so on. Spirited by

these works, and also to mitigate the issue of limited qubits,

we proposed a parallelized quantum annealing algorithm that

integrates quantum annealing with the Lagrangian relaxation

technique to reduce the need for qubits so that quantum

annealing can be employed to solve complex optimization

problems. Additionally, this algorithm incorporates a tabu

search method to assist the search for the global optimum. In

this paper, to validate the practicality and effectiveness of our

proposed algorithm, we use the proposed algorithm to solve

optimization problems in network function virtualization

(NFV) networks.

In recent years, NFV technology, as a transformative

technology of network management, has been attached to

more importance and also more widely used in real-world

scenarios [15], [16]. NFV offers a virtualized environment

that allows network functions to operate on software plat-

forms, thereby enhancing the efficiency of network resource

utilization [17]. In NFV network, virtualized network func-

tions (VNFs), virtualizing network services, are typically

deployed on one or more virtual machines (VMs) that run on

standard servers or in clouds [18], [19]. A crucial challenge

in the networks is to efficiently schedule VNFs in response to

users’ requests, which is generalized as the VNFs scheduling

problem. The VNFs scheduling problem is intricate and

computationally demanding due to the numerous variables

and constraints. In previous work [3], we built an integer

linear programming (ILP) model to address a simplified

VNFs scheduling problem and leveraged quantum annealers

to solve it. Subject to the limited qubits and other hardware

constraints, quantum annealers cannot solve this problem

in large-scale cases and the simulation results presented

instability as the number of variables increased. To address

this issue, we develop a parallelized quantum annealing

algorithm in this paper. We present a more complex system

model of the NFV network and build an optimization model

of the VNFs scheduling problem based on it. This ILP model

has the objective function that minimizes the total delay

of all service chains, which includes processing delay on

VMs and transmission delay between them. The simulation

experiments demonstrate that our algorithm can efficiently

solve the VNFs scheduling problem on a large scale. The

contributions of this paper are summarized as follows:

1) We propose a novel parallelized quantum annealing

algorithm, which employs Lagrangian relaxation to

decompose problem models and leverages quantum

annealing to solve the sub-problem models. It also

includes the tabu search method that is used to assist

in converging to the optimal solution of the original

model.

2) An ILP model of the VNFs scheduling problem

is constructed. This optimization model only with

binary variables has the object of minimizing the total

processing delay and transmission delay in the NFV

network.

3) We conduct simulation experiments to investigate the

performance of the proposed parallelized quantum

annealing algorithm and obtain excellent results that

indicate its superiority in solving efficiency and robust-

ness compared to the Lagrangian relaxation based

classical algorithm.

The rest of this paper is organized as follows. Section II

describes our proposed algorithm and elucidates its cru-

cial parts in detail. Section III introduces the system

model and ILP formulations of the VNFs scheduling

problem. This section also presents steps for decompos-

ing this optimal problem into two sub-problems using

Lagrangian relaxation, followed by the corresponding

transformed quadratic unconstrained binary optimization
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(QUBO) models. Section IV showcases the simulation

results and their analysis. Finally, Section V concludes the

paper.

II. PROPOSED LAGRANGIAN RELAXATION BASED

PARALLELIZED QUANTUM ANNEALING ALGORITHM

Existing quantum computers cannot be extensively used as

expected because their applications are currently hindered by

several significant limitations, including the limited number

of available qubits, the stability of quantum systems, and

embedding techniques. To overcome these difficulties and

fully exploit quantum annealing for large-scale problem-

solving, we develop a novel parallelized quantum annealing

algorithm combining quantum annealing, Lagrangian relax-

ation, and the tabu search method. In this section, we

introduce these three crucial techniques and explain the

proposed algorithm in detail. In Section II-A, there is a brief

introduction to quantum annealing principles and a clear

analysis of the annealing process. Section II-B shows how

to use the Lagrangian relaxation method to decompose the

programming model. Section II-C briefly explains the tabu

search algorithm. In Section II-D, our proposed algorithm is

developed on these computing techniques, and its framework

is shown.

A. QUANTUM ANNEALING

Quantum annealing is similar to the classical algorithm,

simulated annealing. Simulated annealing is a famous heuris-

tic algorithm designed to solve optimization problems by

searching the solution space through thermal fluctuations.

In theory, quantum annealing should perform better than

simulated annealing because quantum annealing leverages

quantum fluctuations rather than thermal fluctuations to get

the optimal solution [20]. Quantum annealing applies quan-

tum efforts like quantum tunneling to accelerate searching

the ground state of an Ising Hamiltonian which corresponds

to the optimal solution of the optimization problems. This

process follows the quantum evolution of the time-dependent

Schrödinger equation. The Schrödinger equation is

i
d

dt
|�(t)〉 = H(t)|�(t)〉, (1)

where ψ(t) is the state vector of the quantum system and

the H(t) is the Hamiltonian operator. This equation is the

general description of the quantum system evolution. It is a

great challenge to solve this equation directly because the

computational complexity increases exponentially when the

problem complexity increases. Quantum annealing basically

follows adiabatic evolution, which points out that the quan-

tum system will stay in the ground state if the Hamiltonian

related to the dynamics changes slowly enough.

To obviously analyze the quantum annealing process,

the Hamiltonian of the whole quantum system in adiabatic

evolution is briefly explained as

H(t) = A(t)Hi + B(t)Hf , (2)

where A(t) and B(t) are time-dependent prefactors and they

control the evolution process [21], [22]. Hi and Hf are

the initial Hamiltonian and final Hamiltonian, respectively.

Both can be expressed by linear combinations of several

eigenstates. At the beginning of the adiabatic evolution, the

whole system is at the minimum energy eigenstate of the

initial Hamiltonian state. In other words, A(0) = 1 and

B(0) = 0. In the evolution process, A(t) gradually decreases

while B(t) gradually increases so A(t) and B(t) are supposed

to be differentiable. Finally, at time T , the end of the

annealing process, A(T) reaches 0, and B(T) arrives at 1,

which means the whole quantum system finishes the state

change from the initial Hamiltonian state to the ground state

of the final Hamiltonian. The ground state is the eigenstate

with the lowest eigenvalue, which means the whole system

is at the lowest energy eigenstate. Finally, the system will

stay at the ground state of the final Hamiltonian in the ideal

case.

For quantum computing, the final Hamiltonian can be

represented by the Ising model with operators σ zi , which

shows the interaction state of n qubits in a 2
n dimension

Hilbert space. If qubits are prepared as spins, σ zi is the spin

component state of spins projected on axis z component. The

Ising model can be expressed as

H =
∑

i

hiσ
z
i +

∑

i<j

Jijσ
z
i σ

z
j , (3)

where σ zi can be set as 1 or −1. hi indicates how the external

field affects the qubit σ zi . Jij is the coupling parameter of

σ zi and σ zj . The external field can have effects on the spin

state which can be spin-up and spin-down. The two spin

states have different energy levels. The sign of hi represents

which spin state is more preferred under the influence of

the external field. The value of hi is determined by the

field strength and the energy of the spin particle. Every spin

can be considered as a magnetic dipole that can produce

a small magnetic field so every spin is influenced by its

neighbor magnetic field. The sign of Jij shows whether

these spins prefer to be aligned or anti-aligned with their

neighbors. It determines the ferromagnetic characteristics of

the substance. The value of Jij indicates the coupling strength

of the neighbor spins. It mostly depends on the distance

between these two interactional spins.

For the whole process of quantum annealing, the Ising

model can be expressed as

H(s) = −
A(s)

2

(

∑

i

σ xi

)

+
B(s)

2

⎛

¿

∑

i

hiσ
z
i +

∑

i<j

Jijσ
z
i σ

z
j

À

⎠, (4)

where σ xi is the spin component state of spins projected

on axis x component. A(s) and B(s) are two prefactors that

change along time. s = t/tannealing, which means s denotes

the progress of the whole annealing process. tannealing is
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the total time of quantum annealing. The first term is the

initial Hamiltonian which is generally set at the lowest-

energy eigenstate in practice. The second term is the final

Hamiltonian. Before starting quantum annealing, the system

is situated in the lowest-energy eigenstate of the initial

Hamiltonian. In the quantum annealing process, the state of

spins is changed and their interaction makes efforts on the

Hamiltonian of the whole quantum system. Consequently,

the final Hamiltonian is produced and then the whole system

tends to evolve into the lowest-energy eigenstate of the final

Hamiltonian, which is also called the ground state of the

final Hamiltonian. In ideal conditions, the evolution process

adheres to the adiabatic evolution, which presents that the

whole system always stays at the lowest-energy state so it

is easy to achieve the lowest-energy eigenstate of the final

Hamiltonian. However, the quantum annealing process is

fraught with complexities, and there may be other energy

levels close to the ground state. The system may decide to

move to these energy levels and stay at these energy levels at

the end of the quantum annealing. Consequently, the system

may only find the local minimum of the objective function

rather than the global minimum at the end.

B. LAGRANGIAN RELAXATION

The Lagrangian relaxation technique is a crucial tool in

assisting to solve optimization problems [23], [24], [25]. It

works based on the separability of problem models and the

decomposition makes the models much easier to solve due

to removing the complex constraints. The method involves

relaxing the coupling constraints through the use of Lagrange

multipliers, which leads the models to approach the optimal

solutions of original problems in the solving process.

Assume there is an integer programming model shown as

LIP = min
x1,...,xI

I
∑

i=1

Li(xi) (5a)

s.t. aixi ≤ bi, i = 1, . . . , I, (5b)
I

∑

i=1

cixi ≤ d, (5c)

where xi are variables, and ai, bi, ci and d are constants.

The objective function can be divided into I terms based on

the variables xi. There are I constraints, which make the IP

model hard to solve. Thus, Lagrangian relaxation is applied

to relax these constraints and then add them to the objective

function. The new model is

LLR(λ) = min
x1,...,xI

I
∑

i=1

Li(xi) + λ

(

I
∑

i=1

cixi − d

)

(6a)

s.t. aixi ≤ bi, i = 1, . . . , I. (6b)

This new model can be divided into I sub-models that

everyone only has variables xi and then the surrogate subgra-

dient method is leveraged to update λ. The process is briefly

FIGURE 1. The framework of the proposed Lagrangian relaxation based parallelized

quantum annealing algorithm.

shown in Fig. 1. In our proposed algorithm, this process

is structured into two distinct levels, the low level and the

high level. At the low level, the sub-models are individually

solved by quantum computing and get the optimal solution

and also the value of xi, which is used to update λ. At

the high level, the coordination between the sub-problems is

performed through the updating of the Lagrange multiplier λ.

The iterations of updating λ and solving sub-models cannot

end until the solutions tend to converge. At the same time, the

optimal feasible solution of the original model is achieved.

The Lagrangian relaxation method is easier to use in many

cases and the process is convenient to adjust depending on

problems.

C. TABU SEARCH ALGORITHM

The tabu search algorithm is a neighborhood search algo-

rithm and it is widely used in finding the approximate

solution to NP-hard combinatorial optimization problems

[26], [27], [28]. The tabu search algorithm continuously

searches for better solutions in the neighborhood by iterations

and then replaces the current solution to achieve optimal

solutions step by step. During the search process, the

information of found solutions is recorded in the tabu

list. This tabu list not only prevents the algorithm from

cycling back to already explored solutions but also enables

it to escape local optima by allowing moves that may

seem non-beneficial. Thus, this mechanism significantly

enhances the efficiency and effectiveness of the search

process. The tabu search algorithm has a strong dependence

on the initial solution, and a good initial solution can

markedly shorten the search process. In our proposed

algorithm, the final result achieved by the Lagrangian

relaxation based parallelized quantum annealing algorithm

is a good initial solution. Therefore, we choose this

method to rapidly converge the solution found by quantum

annealing to the global optimum with reasonable parameter

settings.
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FIGURE 2. The flowchart of the proposed Lagrangian relaxation based parallelized

quantum annealing algorithm.

D. PROPOSED ALGORITHM

We propose a Lagrangian relaxation based parallelized quan-

tum annealing algorithm based on Lagrangian relaxations

to solve large-scale optimization problems. The workflow

protocol of the algorithm is shown in Fig. 2. We first build

the integer programming model and then decompose it by

Lagrangian relaxations to form several sub-problem models

LLRi. Then we use quantum annealing to solve these sub-

problem models LLRi separately and get the optimal solutions

to these models and the value of xi at these points. The

value of λ is updated based on the subgradient methods.

Finally, we check if the objective function value ZLR can

satisfy the stop criterion or not. Z
(p)
LR denotes the objective

function value got in the previous iteration. ε is a sufficiently

small value. Thus, the solving process stops repeating when

the solution result of every iteration does not change. If

the stop criterion cannot be reached, the updated λ will

replace the previous one and then we will solve sub-problem

models again. Actually, quantum annealing may lead to the

FIGURE 3. The diagram of the NFV network.

issue of achieving the local optimal solution rather than the

global optima because of the limit of hardware equipment.

Furthermore, the Lagrangian relaxation method only reaches

the approximate optimal solution of the original problem.

Thus, we design post-process steps that leverage tabu search

after quantum annealing in our algorithm to help converge

and achieve the optimal solution. In Section V, we use the

proposed Lagrangian relaxation based parallelized quantum

annealing algorithm to solve an optimization problem in

communication networks and explain this process in detail.

III. USE CASE IN COMMUNICATION NETWORK

NFV emerges to standardize functions in a wireless network

and enhances the flexibility and scalability of networks to

accommodate new services efficiently. Among the various

optimization problems inherent in NFV networks, network

resource allocation problems, especially the VNFs schedul-

ing problem, stand out. The VNFs scheduling problem is

arranging VMs to process functions of service chains to

minimize the delay of all service chains’ processing. In

Section III-A, we explain the system model of NFV networks

and build the integer linear programming (ILP) model to

describe the VNFs scheduling problem. In Section III-B,

the Lagrangian relaxation method is employed to divide the

whole problem into two subproblems. These subproblems

are transformed into QUBO models in Section III-C. Finally,

we operate the proposed algorithm mentioned in Section II

to solve the VNFs scheduling problem. The whole solving

process is concisely described in Section III-D.

A. SYSTEM MODEL AND ILP FORMULATION

In the NFV network system, as shown in Fig. 3, the

hardware providing computing and storage resources usually

is abstracted as VMs and these VMs connect through

virtual links. Each VM can run several virtual functions

to conduct computing following users’ requests. If a user

request requires processing large amounts of data among

different data centers, the processing delay at the VMs and

the transmission delay between them cannot be ignored. A

user request is fulfilled through the operation of a service
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chain, which combines several VNFs in the network. Hence,

the total delay in processing the request is the time it takes

for data to be processed by VNFs of the service chain and

the transmission delay between the corresponding VMs. The

model proposed in this paper is built to provide the best

arrangement to minimize the total delay of all activated

service chains in the network.

We abstract the system model from the real network

system. It is assumed that there are several types of VMs

in the network and VMs can provide some different virtual

functions f k. These functions f k, with k indicating the type

of functions, may be operated on more than one type of

VMs. For example, VM 1 can process function f 1, f 3 and

f 4. f 3 can be served on VM 1, VM 2 and VM 5. In the

model, the number of VMs in the network is M, and also m

and n are indexes of VMs. We divide the running time of

VMs, denoted as Tmax, into multiple time slots, and every

time slot has the length of �T . Every VM can only process

one function in one time slot. In the NFV network, VMs

communicate with each other by one virtual link. The virtual

link between VM m and VM n is denoted as l(m,n). Every

virtual link can only serve data transmitting for one instance

of the virtual function at the same time. When the NFV

network receives the users’ request, the service chains will

be invoked to process users’ data. As shown in Fig. 3, the

service chain 1 is used to meet the request of users. The

virtual functions of service chain 1 are operated on VMs

that can provide corresponding VNFs.

There are I service chains that are ready to process

data following the customers’ requests submitted to the

NFV network. Service chains can be regarded as sequences

of virtual functions with specific orders. In our system

model, all virtual functions and service chains are instantized

to clearly denote different individuals. These instances of

virtual functions are denoted as f kij , which means the virtual

function is the jth in the service chain i and it is divided

into the kth type of function. All VMs that can process f kij
compose the set Vkij. Appropriate VM is chosen from this set

to process these f kij . In the system model, the processing time

of f kij is denoted as tijm, which is calculated by Wijm/Cm.

The size of data that needs to be processed is Wijm and the

computing rate of VM m is denoted as Cm. Tijm is the number

of time slots, which the total time length corresponds to

tijm. Tij(m,n) is the number of time intervals occupied by the

transmission of f kij processing results through the virtual link

l(m,n). Based on the system model, we build an ILP model

with binary decision variables, xijm, yijmt, zijmt, pijmt, uijmn,

and vijmnt, to minimize the total delay including processing

delay and transmission delay in processing customers’

requests. All properties of the system model are expressed

in the constraints of the ILP model. Constraints related to

arranging VMs to employ virtual functions to process data

are listed in Appendix A equation (48)-(58), which are also

explained in [3]. Decision variables, xijm, yijmt, zijmt, and

pijmt, are introduced to formulate these constraints. One other

constraint is shown as

uij(m,n) ≤ xijm, ∀i, j,m, n. (7)

If xijm equals 1, it signifies that VM m is used to process

the virtual function f kij . If uij(m,n) equals 1, it means that the

virtual link l(m,n) is used to transmit the results of f kij . Thus,

constraint (7) shows that the link l(m,n) may be chosen to

transmit the result of jth function in service i because the

VM m is chosen to process the function f kij . Constraint (7)

indicates the relationship between xijm and uij(m,n). If VM

m conducts processing function f kij , which means xijm =

1, then the link l(m,n) can be used to transmit the result,

which denotes as uij(m,n) = 1. There is one other constraint

shown as

N
∑

m=1

uij(m,n) =

N
∑

m′=1

ui(j+1)(n,m′),

∀i, j; n ∈ Vk
′

i(j+1). (8)

Constraint (8) shows that the VM n must be the end point

of the link that is used to transmit the result of jth function

in service i and also it must be the start point of the link

that is responsible to transmit the result of (J+1)th function.

In other words, constraint (8) keeps the continuity of the

service chain. There is also one constraint shown as
∑

m∈Vkij

∑

n∈Vk
′

i(j+1)

uij(m,n) = 1, ∀i, j. (9)

Constraint (9) limits that there is only one link that can

be occupied to transmit the result of any function f kij . Thus,

there should be only one uij(m,n) that equals to 1 for all

possible values of m and n. One other constraint is shown as

(

1 − uij(m,n)

)

· vij(m,n)t = 0, ∀i, j,m, n, t. (10)

If vij(m,n)t equals 1, it means that the virtual link l(m,n)

starts to transmit the results of f kij at the beginning of the

time slot t. Constraint (10) indicates that vij(m,n)t could be 1

if and only if uij(m,n) equals to 1. It is because only when

the link is chosen to transmit the result of any functions, the

link will serve this transmission in the time slot t. There is

one other constraint shown as

I
∑

i=1

J
∑

j=1

vij(m,n)t +

I
∑

i′=1

J
∑

j′=1

vi′j′(n,m)t ≤ 1.

∀m, n, t. (11)

Constraint (11) presents that there is only one transmission

allowed between VM m and VM n in the time slot t.

For example, if the virtual link l(m,n) is used to transmit

the processing results of f kij in the time slot t, which

means vij(m,n)t = 1, both l(m,n) and l(n,m) cannot transmit

other data in this time slot. There is also one constraint

shown as

VOLUME 5, 2024 4265
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Tmax
∑

t=1

vij(m,n)t = Tij(m,n) · uij(m,n),

∀i, j; m ∈ Vkij, n ∈ Vk
′

i(j+1). (12)

Constraint (12) indicates that the result of the function

f kij must be transmitted reaching the required transmission

time Tij(m,n). If and only if VM m can process function f kij
and VM n can process function f k

′

i(j+1)
, the link l(m,n) can be

selected, and then there should be the presence of Tij(m,n).

There is one other constraint shown as

Tmax
∑

³=1

pijm(t−³+1) ≥
∑

n∈Vk
′

i(j+1)

vij(m,n)t,

∀i, j, t; m ∈ Vkij. (13)

Constraint (13) ensures that starting the transmission of

function results must be after completing processing this

function. Thus, there must be one pijmt′ that equals 1 in

previous time slots when we find vij(m,n)t = 1. One other

constraint is shown as

Tmax
∑

´=1

zi(j+1)n(t+´) ≥
∑

m∈Vkij

vij(m,n)t,

∀i, j, t; n ∈ Vk
′

i(j+1). (14)

If zi(j+1)nt equals 1, it signifies that VM n starts to process

the virtual function f k
′

i(j+1)
at the beginning of the time

slot t. Constraint (14) guarantees that starting processing

f k
′

i(j+1)
must be after receiving the results of last function f kij .

Therefore, if there is one zi(j+1)nt that equals 1, we can find

vij(m,n)t′ = 1 in previous time slots. One other constraint is

shown as

uij(m,n) = vij(m,n)t = 0,

∀i, j, t; m /∈ Vkij or n /∈ Vk
′

i(j+1). (15)

Constraint (15) shows that if VM m cannot process

function f kij or VM n cannot process function f k
′

i(j+1)
, which

implies that neither l(m,n) nor l(n,m) will not be used to

transmit the results of function f kij , vij(m,n)t and uij(m,n) must

be 0.

These above constraints (7), (8), (9), (10), (11), (12),

(13), (14), (15) describe how the users’ data is transmitted

along the service chain between different VMs. One other

constraint is shown as

siJ =

M
∑

m=1

Tmax
∑

t=1

piJmt · (t − 1) · �T, ∀i. (16)

Eq. (16) is used to calculate siJ , which represents the

completion time of processing f kiJ that is the last function of

the service chain i. piJmt = 1 means that VM m completes

processing f kiJ at the beginning of the time slot t. Therefore,

the finishing time of the service chain i can be known by

calculating the equation (16). All in all, the ILP model of

VNFs scheduling problem can be expressed as

ZIP = min
s

I
∑

i=1

siJ,

s.t. (7)−(16), (48)−(58), (17)

where constraint (48)-(58) are listed in Appendix A. The

objective function aims to minimize the total processing

time of all service chains. In the following subsection, the

Lagrangian relaxation method is leveraged to decompose this

ILP model and transform these sub-problem models into

QUBO forms.

B. LAGRANGIAN RELAXATION

We combine (16) and (17), and have

ZIP = min
p

I
∑

i=1

M
∑

m=1

Tmax
∑

t=1

piJmt · (t − 1) · �T. (18)

We use Lagrangian relaxation method to trans-

form (7), (13), and (14), and then add them to the original

objective function. Now the objective function should be

ZIP = min
x,p,z,u,v

I
∑

i=1

M
∑

m=1

Tmax
∑

t=1

piJmt · (t − 1) · �T

+

I
∑

i=1

J
∑

j=1

∑

m∈Vkij

Tmax
∑

t=1

λijmt

⎛

⎜

¿

∑

n∈Vk
′

i(j+1)

vij(m,n)t

−

Tmax
∑

³=1

pijm(t−³+1)

À

⎟

⎠

+

I
∑

i=1

J
∑

j=1

∑

n∈Vk
′

i(j+1)

Tmax
∑

t=1

λijnt

⎛

⎜

¿

∑

m∈Vkij

vij(m,n)t

−

Tmax
∑

´=1

zi(j+1)n(t+´)

À

⎠

+

I
∑

i=1

J
∑

j=1

N
∑

m=1

N
∑

n=1

λijmn
(

uij(m,n) − xijm
)

, (19)

with

λijmn ≥ 0, ∀i, j,m, n, (20)

λijmt ≥ 0, ∀i, j, t; m ∈ Vkij, (21)

λijnt ≥ 0, ∀i, j, t; n ∈ Vk
′

i(j+1). (22)

Lagrange multipliers λijmn, λijmt, and λijnt are used to

control the influence of these three constraints on the new

objective function. These constraints are relaxed through the

transformation to reduce the complexity of the original ILP

model. This new optimization problem can be divided into
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two sub-problems. The objective function of the first sub-

problem is

ZIP1 = min
x,p,z

I
∑

i=1

Tmax
∑

t=1

(

M
∑

m=1

piJmt · (t − 1) · �T

−

J
∑

j=1

∑

m∈Vkij

λijmt

Tmax
∑

³=1

pijm(t−³+1)

−

J
∑

j=1

∑

n∈Vk
′

i(j+1)

λijnt

Tmax
∑

´=1

zi(j+1)n(t+´)

À

⎟

⎠

−

I
∑

i=1

J
∑

j=1

N
∑

m=1

N
∑

n=1

λijmnxijm. (23)

The first sub-problem is with constraints (48)-(58)

and (20)-(22). This sub-problem is to give the optimal

assignment of VMs to process these service chains following

the system model. The objective function of the second sub-

problem is

ZIP2 = min
u,v

I
∑

i=1

J
∑

j=1

Tmax
∑

t=1
⎛

⎜

¿

∑

m∈Vkij

λijmt
∑

n∈Vk
′

i(j+1)

vij(m,n)t

+
∑

n∈Vk
′

i(j+1)

λijnt
∑

m∈Vkij

vij(m,n)t

À

⎟

⎠

+

I
∑

i=1

J
∑

j=1

N
∑

m=1

N
∑

n=1

λijmnuij(m,n). (24)

The second sub-problem has constraints (8)-(12), (15),

and (20)-(22). This sub-problem aims to arrive at the

optimization of total transmission time while neglecting

processing delay.

We use the subgradient iterative technique to update the

set of Lagrange multipliers λijmn, λijmt, and λijnt. In every

iteration k, λijmn, λijmt, and λijnt are updated to help converge

to the optimal solution. The equations we used to update

λijmn are shown as

g
(k)
1

= u
(k)
ij(m,n) − x

(k)
ijm, (25)

λ
(k+1)
ijmn = max

(

0, λ
(k)
ijmn + g

(k)
1

µ
(k)
1

)

. (26)

g
(k)
1

is the subgradient that along to direction of constraint (7)

in the kth iteration. The subgradient g
(k)
1

and the step size µ
(k)
1

control the change of λijmn. We also use the same method

to calculate λijmt and λijnt. These equations are shown as

g
(k)
2

=
∑

n∈Vk
′

i(j+1)

v
(k)
ij(m,n)t −

Tmax
∑

³=1

p
(k)
ijm(t−³+1)

, (27)

TABLE 1. List of constraint-penalty pairs.

λ
(k+1)
ijmt = max

(

0, λ
(k)
ijmt + g

(k)
2

µ
(k)
2

)

, (28)

g
(k)
3

=
∑

m∈Vkij

v
(k)
ij(m,n)t −

Tmax
∑

´=1

z
(k)
i(j+1)n(t+´)

, (29)

λ
(k+1)
ijnt = max

(

0, λ
(k)
ijnt + g

(k)
3

µ
(k)
3

)

. (30)

(g2, µ2) and (g3, µ3) are pairs of problem subgradients and

step size parameters related to constraints (13) and (14).

We initially set Lagrange multipliers and then they updated

according to equations (25)-(30) in iterations. After finishing

every iteration, we calculate the solution of the whole

problem model (17). If the results of any iteration reach the

stop criterion, we will terminate the iteration and get the final

solutions. Before using the proposed algorithm to solve this

problem, we also need to transform these two sub-problem

models into QUBO models independently.

C. QUBO MODEL

The QUBO model distinguishes itself by comprising solely

an objective function that includes quadratic terms, devoid of

explicit constraints. As a result, to convert the ILP model into

a QUBO model, it is essential to transfer all constraints into

equivalent quadratic penalties which are then incorporated

into the objective function. These transformations ensure

that the restrictive conditions of the original constraints are

preserved within the objective function, thereby guiding the

model towards reaching the optimal solution. We transform

all constraints following the rules shown in Table 1. x1, x2

and x3 are used to denote binary decision variables of original

constraints. rl denotes the binary slack variable introduced

in penalty terms. al and b are constants. P is the penalty

coefficient, which is a sufficiently large positive constant.

We transform all constraints to penalty terms and all

penalty terms of the QUBO model are listed below. We

transform (48) and (49) to equations shown as

P1ij

⎛

⎜

¿

∑

m∈Vkij

xijm − 1

À

⎟

⎠

2

, ∀i, j, (31)

P1ijm

(

Tmax
∑

t=1

zijmt − xijm

)2

, ∀i, j; m ∈ Vkij. (32)
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Eq. (31) is transformed from (48). When and only when

one xijm equals 1 with m ∈ Vkij, this penalty with penalty

coefficient P1ij will not add a big positive value to the

objective function. This design ensures that, to find the

minimum, the QUBO model will not allow more than one

xijm to equal to 1. Thus, (31) has the same function with (48).

Eq. (32) is transformed from (49). This penalty requires that

xijm and
∑Tmax

t=1
zijmt must have the same values so it has the

same effect as constraint (49) on the problem models. We

transform (50) to the equation shown as

Pmt

⎛

¿

∑

(i 	=i′)∨(j 	=j′)

(

yijmt · yi′j′mt
)

À

⎠, ∀m, t. (33)

Eq. (33) is equivalent to (50). Constraint (50) ensures that

only one yijmt may be chosen to be set as 1 in any case. If this

constraint does not be followed, the terms in (33) will add

a large constant to the objective function. This mechanism

will lead the QUBO model to follow constraint (50). We

transform (51) to the equation shown as

P1ijmt

(

y2

ijmt − xijmyijmt

)

, ∀i, j,m, t. (34)

yijmt is binary variable so yijmt is equal to the square of

yijmt. This characteristic of binary variables facilitates the

direct transformation of constraint (51). If the values of xijm
and yijmt don’t obey constraint (51), these terms in (34) will

lead the solution away from the minimum. We transform (52)

to the equation shown as

P2ijm

(

Tmax
∑

t=1

yijmt − Tijmxijm

)2

,

∀i, j; m ∈ Vkij. (35)

Eq. (35) will add a large value to the objective function

with the assistance of a penalty if constraint (52) is not

satisfied, which means the right-hand side terms have

different values from the left-hand side terms. Thus, the

optimizer will try to set values of xijm and yijmt to obey the

constraint (52). We transform (53) to the equation shown as

P2ijmt

(

zijmt · pijmt

)

, ∀i, j,m, t. (36)

If both zijmt and pijmt are equal to 1, terms in (36) will add

a large constant to the objective function, so the optimizer

will avoid this case. That is what constraint (53) tries to

do. Thus, we can transform (53) into the terms in (36). We

transform (54), (55) and (56) to the equations shown as

P3ijmt

(

yijm(t−1) − yijmt + zijmt − pijmt

)2

,

∀i, j, t; m ∈ Vkij. (37)

P4ijmt

⎛

¿

Tijm
∑

³=1

zijm(t−³+1) − yijmt + r1ijmt

À

⎠

2

,

∀i, j, t; m ∈ Vkij. (38)

P1ijm′t

⎛

⎜

¿
zi(j+1)m′t −

∑

m∈Vkij

Tmax
∑

´=1

pijm(t−´+1)+rijm′t

À

⎟

⎠

2

,

∀i, j, t; m′ ∈ Vk
′

i(j+1). (39)

Eq. (37) can force the solution to follow the con-

straint (54). Eq. (38) is transformed from (55) by adding a

binary slack variable r1ijmt. Eq. (39) is equivalent to (56)

and slack variables are also needed in this transformation.

We only add one binary slack variable to (39) because the

maximum difference between the right-hand side and the

left-hand side of constraint (56) is 1. We transform (57)

and (58) to the equations shown as

P3ijm · x2

ijm + P5ijmt · y
2

ijmt + P6ijmt · z
2

ijmt

+ P7ijmt · p
2

ijmt, ∀i, j, t; m /∈ Vkij, (40)

P2ij

⎛

⎜

¿

∑

m∈Vkij

Tmax
∑

t=1

zijmt − 1

À

⎟

⎠

2

+ P3ij

⎛

⎜

¿

∑

m∈Vkij

Tmax
∑

t=1

pijmt − 1

À

⎟

⎠

2

, ∀i, j. (41)

To form the QUBO formulation of sub-problem 1, all

terms in equations (31)-(41) need to be integrated into the

right-hand side of (23). The new model of sub-problem

1 denotes as Z∗
IP1

. All constraints of the second sub-

problem are also transformed into penalty terms. Here are

the transformation results. We transform (8) to the equation

shown as

P1ijn

(

N
∑

m=1

uij(m,n) −

N
∑

m′=1

ui(j+1)(n,m′)

)2

,

∀i, j; n ∈ Vk
′

i(j+1). (42)

Eq. (42) has the same effect as (8) because if there is a

case that does not satisfy (8), the penalty term in (42) will

affect the objective function. Thus, to minimize the objective

function, the solver is inclined to steer clear of any case

that would trigger this penalty, thereby enforcing compliance

with the conditions outlined in (8). We transform (9) and (10)

to the equations shown as

P2ij

⎛

⎜

¿

∑

m∈Vkij

∑

n∈Vk
′

i(j+1)

uij(m,n) − 1

À

⎟

⎠

2

, ∀i, j, (43)

P1ijmnt

(

v2

ij(m,n)t − uij(m,n)vij(m,n)t

)

,

∀i, j,m, n, t. (44)

Eq. (9) is transformed into (43) following the same idea

as the transformation of constraint (48). Eq. (44) obviously

has the same effect as constraint (10). It specifically avoids

the scenarios that there exits yijmt equals 1 while no xijm is
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equal to 1. Constraint (11) is transformed to the equation

shown as

Pmnt

⎛

¿

∑

(i 	=i∗)∨(j 	=j∗)

vij(m,n)t · vi∗j∗(m,n)t

+
∑

(i′ 	=i∗)∨(j′ 	=j∗)

vi′j′(n,m)t · vi∗j∗(n,m)t

+
∑

(i 	=i′)∨(j 	=j′)

vij(m,n)t · vi′j′(n,m)t

À

⎠

2

, ∀m, n, t. (45)

We transform constraint (11) to (45) following the same

principle used in the transformation of constraint (50). Any

vij(m,n)t or vij(n,m)t is set as 1, and then others cannot be

equal to 1. Otherwise, these penalty terms in (45) will lead

the objective function away from the optimal solution. We

transform (12) to the equations shown as

P1ijmn

(

Tmax
∑

t=1

vij(m,n)t − Tij(m,n) · uij(m,n)

)2

,

∀i, j, t; m /∈ Vkij or n /∈ Vk
′

i(j+1). (46)

Eq. (46) is equivalent to constraint (12). If the values of

vij(m,n)t and uij(m,n) cannot satisfy the constraint (12), (46)

will add a big value to the objective function so the final

solution cannot be minimum. Thus, (46) has the same effects

as the constraint (12). Constraint (15) is transformed to the

equation shown as

P2ijmn · u2

ij(m,n) + P3ijmnt · v
2

ij(m,n)t,

∀i, j, t; m /∈ Vkij, n /∈ Vk
′

i(j+1). (47)

If and only if the vij(m,n)t and uij(m,n) where m ∈ Vkij and

n ∈ Vk
′

i(j+1)
, equal to 1, (47) will lead the objective function to

the optimal solution. Thus, (47) has the same function as the

constraint (15). All terms in equations (42)-(47) need to be

added to the right-hand side of (24) to formulate the QUBO

model of sub-problem 2. These penalty terms maintain the

integrity of the original constraints within the transformed

model. This new model of sub-problem 2 denotes as Z∗
IP2

and the whole QUBO model denotes as Z∗
IP.

D. ALGORITHM

The framework of the proposed Lagrangian relaxation

based parallelized quantum annealing algorithm is shown in

Algorithm 1, which is used to solve the VNFs scheduling

problem in this paper. To solve this optimization problem,

we first build the ILP model and then decompose it by

Lagrangian relaxations to form two sub-problems, which are

explained at great length in Section III. We transfer these

models to QUBO forms and then use quantum annealing

to solve these subproblems separately. Quantum computers

will return their optimal solutions to the classical computer.

The variables’ values in optimal solutions are used to update

Lagrange multipliers λijmn, λijmt, and λijnt. If the solutions

Algorithm 1 Lagrangian Relaxation Based Parallelized

Quantum Annealing Algorithm

1: Require: parameters, I, J, M; the functions in service

chain i, f kij ; the set of VMs which can process f kij , V
k
ij;

the NFV network; the value of penalty coefficients;

2: Initialize: λijmn, λijmt, λijnt, µ1, µ2, µ3;

3: find a feasible Tmax;

4: ZIP∗ ← −∞;

5: while | (Z∗
IP − Z

(p)∗
IP )/Z∗

IP |≥ ε do

6: solve the QUBO model of subproblem 1 and the

QUBO model of subproblem 2 individually by hybrid

solvers;

7: get Z∗
IP1

, Z∗
IP2

, Z∗
IP, xijm, yijmt, zijmt, pijmt, uijmn, and

vijmnt;

8: update λijnt, λijmt, and λijmn by (25), (26), (27), (28),

(29), (30);

9: end while

10: output ZIP, xijm, yijmt, zijmt, pijmt, uijmn, vijmnt;

11: find the neighborhood of the current solution;

12: search the possible optimal solution and update the tabu

list;

13: reach the optimal solution;

14: return ZIP, xijm, yijmt, zijmt, pijmt, uijmn, vijmnt.

cannot meet the stop criterion, these updated multipliers

will be used to solve sub-problem models again. Finally,

the solutions after several iterations satisfy the stop criterion

and the loop ends to output an approximal optimal solution

to the original model. There are steps of tabu search that

can generate the neighborhood of the current solution and

then search for the optimal solution to the original problem

model.

IV. EXPERIMENT

In this section, we verify the feasibility of the proposed

Lagrangian relaxation based parallelized quantum annealing

algorithm and analyze its advantages in solving VNFs

scheduling problems under many cases.

A. QUANTUM COMPUTING IMPLEMENTATION

The whole proposed algorithm and Lagrangian relaxation

based classical algorithm run in the Python 3.8 environment.

The quantum annealing part of our proposed algorithm

was operated on the D-Wave quantum annealers by hybrid

solvers named hybrid_binary_quadratic_model_version2.

These hybrid solvers preprocessed the uploaded QUBO

models and leveraged quantum annealers to solve them.

The hybrid solver can tackle the model with up to

1, 000, 000 variables and employ over 5, 000 qubits. The

quantum process units (QPU) have the topology with the

Pegasus graph. The QUBO models were embedded on QPU

through corresponding packages in D-Wave ocean software

to automatically use minor embedding and it can simplify

the operations of using quantum annealing. The two sub-

problems, formed by the Lagrangian relaxation method
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FIGURE 4. The solver running time of solving sub-problem 1 (a) and sub-problem 2 (b) of case a. (c) is the solver running time per iteration. The solver running time of solving

sub-problem 1 (d) and sub-problem 2 (e) of case b. (f ) is the solver running time per iteration.

shown in Section III, were solved by two independent

hybrid solvers simultaneously to shorten the simulation time

further. Compared with the proposed hybrid algorithm, the

Lagrangian relaxation based classical algorithm replaced the

hybrid solvers with the Cplex solvers.

B. SIMULATION SETUP

To show the performance of the proposed Lagrangian

relaxation based parallelized quantum annealing algorithm,

we randomly set different parameters I, J, and M, and

different service chains to generate different cases. These

parameters are used to provide an expected Tmax by a greedy

algorithm. Lagrange multipliers λijnt, λijmt and λijmn are set

to 1 initialy. In practice, the transmitting rate of data is

relatively small so the time delay of transmitting is set as

one time slot in all cases. The assumption helps reduce the

complexity of QUBO models. We randomly set the value of

the workload of all functions in service chains to objectively

evaluate the general performance of the proposed algorithm.

The penalty coefficients of QUBO models are set to 1, 000

times larger than the solutions. Different penalty terms have

different penalty coefficients depending on the situations of

corresponding constraints. The hybrid solver may solve the

sub-problem models several times to achieve the optimal

solution in some iterations. Furthermore, to prevent over-

convergence while running these two algorithms, the stop

criterion starts working after 30 iterations.

C. SIMULATION RESULT

In this subsection, we investigate the simulation results of

the VNFs scheduling problem in many cases. The data

presented in Fig. 4 compares the running time of hybrid

solvers, which incorporate quantum annealing, against that

of Cplex solvers in two distinct cases. For sub-problem 1, it

is obviously shown that hybrid solvers obtain the solutions

in a much shorter time per iteration compared with classical

solvers. These results verify that quantum annealing has

superiority while solving complex QUBO models. Based on

our observations, the QUBO models in cases a and b are

complex for Cplex solvers so Cplex solvers may perform

several restarting to reach the optimal solution in iterations. It

results in significantly varying classical solver running times

per iteration. For sub-problem 2, the classical solvers can

get the solution faster than hybrid solvers, which is because

the preprocessing procedure consumes a certain amount of

time while using hybrid solvers. In case b, the hybrid solver

may not reach the optimal solution of sub-problem 2 models,

so the solver is employed several times in some iterations.

The solver running time per iteration depends on the longer

solver running time between solving sub-problem 1 and

sub-problem 2 so that the running time of hybrid solvers

is shorter than classical solvers per iteration. The classical

solver running time per iteration is contributed by the time of

solving sub-problem 1. The accumulated solver running time

of solving cases a and b is shown in Fig. 5. It is significantly

4270 VOLUME 5, 2024



FIGURE 5. The accumulated solver running time of solving cases a and b.

TABLE 2. Time Consuming

presented that the total classical solver running time is much

higher than the hybrid solver running time.

In Table 2, the solver running time of two algorithms

in 6 cases are shown in detail. The first column shows

the parameter setting of (I, J,M,Tmax). The second column

and the third column present the solver running times in

the whole iteral procedure by hybrid solvers and classical

solvers. The last column shows the gain of hybrid solvers

over classical solvers. In all listed cases, hybrid solvers

present significant advantages in solving time. For case c,

the hybrid solver running time of the whole process is

116.83s but the classical solver running time is up to 664.4s,

which shows that our proposed algorithm has significant

advantages. For other cases, which are with larger QUBO

sizes and more complex formulations, the hybrid solver can

achieve much more superiority. Under cases f , g, and h, for

every iteration, the classical solver cannot find the optimal

solution to subproblem 1 in a reasonable time. It is because

the model in these cases is too complex for the classical

solver and it gets stuck in the search process. However, these

cases are much easier for hybrid solvers to achieve optimal

solutions in a short time. These results present our proposed

algorithm can solve large-scale VNFs scheduling problems

much faster than the Lagrangian relaxation based classical

algorithm.

Fig. 6 showcases the performance of our proposed algo-

rithm versus a classical algorithm based on Lagrangian

relaxation through the analysis of simulation results across

25 attempts for each algorithm. In case a, the hybrid solver

running times for all iterations fall within the range of 90s

to 150s. The distribution of hybrid solver running time for

FIGURE 6. Histograms of the total running time for hybrid solvers and classical

solvers in case a and b.

FIGURE 7. Histograms of the solver running time per iteration in case a and b.

all iterations concentrates in the range of 521s to 551s, but

some results are around 617s, which is much higher than

others. This noted deviation suggests classical solvers may

meet occasional challenges in reaching the optimal solution.

In case b, most simulation results using hybrid solvers obtain

the solver running time between 96s and 132s. However, the

classical solver results are dispersed and distributed between

11, 400s and 15, 600s. It signifies that hybrid solvers are

much more stable in solving the VNFs scheduling problems

in this scenario. The analysis of 200 iterations results from

the hybrid solver and the classical solver are shown in

Fig. 7. It is found that the running times of hybrid solvers

present more concentrated distributions in these two cases.

For some iterations, hybrid solvers are employed more than
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one time because hybrid solvers fail to achieve the optimal

solutions sometimes. From Figs. 6 and 7, it can be seen that

our proposed hybrid algorithm shows better performance in

robustness.

V. CONCLUSION

In this paper, we proposed a Lagrangian relaxation based

parallelized quantum annealing algorithm, designed to tackle

complex optimization problems by effectively breaking them

down into smaller and more manageable sub-problems. The

success of our proposed hybrid algorithm in addressing the

VNFs scheduling problem illustrates its applicability and

effectiveness in solving large-scale optimization problems.

From the results of the case study, we can find that the

time performance of the proposed algorithm is better in

all cases compared with the Lagrangian relaxation based

classical algorithm. For cases with relatively fewer variables,

hybrid solvers spend 116.83s to solve the models but

classical solvers spend 5.69 times more than hybrid solvers.

Hybrid solvers can reach the solutions to some relatively

large-scale cases in 374.41s but these cases are unsolvable

for classical solvers in a certain time. Furthermore, our

proposed algorithm shows excellent advantages in the aspect

of robustness. Based on these experimental results, this

paper demonstrates that the Lagrangian relaxation based

parallelized quantum annealing algorithm can effectively

solve complex ILP models that cannot be solved by the

algorithm proposed in [3]. This advantage stems from the

fact that the parallelized quantum annealing algorithm avoids

the limitations imposed by a restricted number of qubits.

APPENDIX A

The settings of VMs will influence the arrangement of

scheduling virtual functions to process users’ data, so the

following constraints are used to represent the characteristics

of VMs and to prevent unreasonable arrangements. xijm,

yijmt, zijmt and pijmt are binary decision variables in these

constraints. One of these constraints is shown as

∑

m∈Vkij

xijm = 1, ∀i, j. (48)

Vkij denotes the set of VMs that can allow function f kij runs

on it. If xijm is equal to 1, it means that the function f kij is

arranged on VM m to operate. Constraint (48) shows that

only one VM that belongs to Vkij can be used to process

function f kij . One other constraint is shown as

xijm =

Tmax
∑

t=1

zijmt, ∀i, j; m ∈ Vkij. (49)

zijmt denotes when the function f kij starts to be processed on

VM m. Constraint (49) limits that if and only if VM m is

employed to process the function f kij , there will be a starting

time of process function f kij on VM m. One other constraint

is shown as

I
∑

i=1

J
∑

j=1

yijmt ≤ 1, ∀m, t. (50)

yijmt denotes that, at the time slot t, VM m is processing

the function f kij . Constraint (50) represents that VM m can

process only one function at the same time. One other

constraint is shown as

(

1 − xijm
)

· yijmt = 0, ∀i, j,m, t. (51)

Constraint (51) shows that if and only if VM m is arranged

to process the function f kij , VM m can process it in time slot

t. One other constraint is shown as

Tmax
∑

t=1

yijmt = Tijm · xijm, ∀i, j; m ∈ Vkij. (52)

Constraint (52) describes that if VM m is chosen to serve

the function f kij , it must work for f kij in the required time Tijm.

One other constraint is shown as

zijmt · pijmt = 0, ∀i, j,m, t. (53)

pijmt denotes that VM m finishes processing the function

f kij before the beginning of the time slot t. Constraint (53)

represents the mutually exclusive relationship of zijmt and

pijmt in the same time slot. One other constraint is shown as

yijm(t−1) − yijmt + zijmt − pijmt = 0,

∀i, j, t; m ∈ Vkij. (54)

Constraint (54) forces time-dependent decision variables,

zijmt, yijmt, and pijmt, must follow the logical order. One other

constraint is shown as

Tijm
∑

³=1

zijm(t−³+1) ≤ yijmt, ∀i, j, t; m ∈ Vkij. (55)

Constraint (55) uses zijmt and yijmt to makes sure that VM

m process the function f kij for enough long time. One other

constraint is shown as

∑

m∈Vkij

Tmax
∑

´=1

pijm(t−´+1) ≥ zi(j+1)m′t,

∀i, j, t; m′ ∈ Vk
′

i(j+1). (56)

Constraint (56) presents that after finishing processing the

function f kij , f
k
i(j+1)

will be processed in some time slots.

Other constraints are shown as

xijm = yijmt = zijmt = pijmt = 0,

∀i, j, t; m /∈ Vkij, (57)

∑

m∈Vkij

Tmax
∑

t=1

zijmt =
∑

m∈Vkij

Tmax
∑

t=1

pijmt = 1, ∀i, j. (58)
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Constraint (57) guarantees that all decision variables

related to VM m which cannot provide corresponding virtual

functions, cannot equal to 1. Constraint (58) shows that VMs

can only start processing the function f kij for one time and

also only finish processing it for one time. The detailed

explanations of constraint (48)-(58) are shown in [3].
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