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Abstract—In the era of Artificial intelligence (AI), inter-
net data centers (IDCs) play a crucial role in supporting
the global information infrastructure. However, large language
model (LLM) training consumes a lot of energy, which poses
unique challenges to IDC, especially in power emergencies. In
order to prevent power outages from causing huge economic
losses to IDC, a good energy management system is essential. In
this study, we propose a new mixed-integer linear programming
(MILP) model of an IDC during an electricity emergency
to maximize the profit while minimize operation cost. On
power side, we considered renewable energy, traditional thermal
power generators, uninterruptible power supply (UPS), heating,
ventilation, and air conditioning (HVAC) system. On IT job
scheduling side, we allow jobs to be done, held, discarded and
transferred to other IDC. Finally, we analyze and visualize the
computational results and verify the correctness of the proposed
model.

Index Terms—Data Center, Mixed Integer Linear Program-
ming, Optimization, Energy Management, Emergency Response

I. INTRODUCTION

With the rise of AI-generated content (AIGX) and large

language models (LLMs), internet data centers (IDCs) have

become a popular topic due to their ability to meet the

enormous demand for computational resources. However,

costs and energy management are key factors in the operation

of IDCs. It has been reported that IDC outages are not

uncommon globally. According to [1], between January 2016

and June 2018, the Uptime Institute reported five “extremely

severe” outages involving power or cooling systems, resulting

in considerable income loss and brand damage, potentially

posing an existential threat to IDC operators or their clients.

To prevent similar incidents, we need to study the emergency

response protocols of IDCs to avoid or reduce financial losses.

On the power side, IDCs are rapidly emerging as significant

electricity consumers. It is predicted that by 2030, IDCs will

account for 9.1% of annual U.S. electricity consumption, up

from an estimated 4% today [2]. A recent study found that

individual IDCs, such as Digital Realty’s Lakeside Technol-

ogy Center in Chicago, Illinois, frequently demand around

85 megawatts of power [3]. According to the statistics in [1],

there is a 15% chance that the loss from an outage event

will exceed $1 million, underscoring the need for an effective

emergency energy management system.

Moreover, IT job scheduling has also attracted attention

in the network development of IDCs. Numerous papers have

explored this area. The authors in [4] leveraged uninterruptible

power supply (UPS) batteries to temporarily augment the

utility supply during emergencies. Additionally, [5] consid-

ered renewable energy generators to reduce carbon footprints

and increase stability. Furthermore, [6] proposed a post-

emergency event restoration method for IDCs, treating them

as critical loads. Recently, [7] proposed a mixed-integer linear

programming (MILP) approach for IDC energy management,

which considers most of the previously mentioned devices

and energy sources. Although these papers provide in-depth

research on daily energy management, emergency, and post-

emergency event handling, they do not address the need for

detailed scheduling of all major equipment during critical

moments. In particular, research on the scheduling of new

energy sources, power sources, and various power-consuming

equipment during critical moments is lacking. This will be the

first challenge we encounter.

IDCs require an operating system that can fairly allocate

physical resources to user-submitted tasks. Since every com-

puter has a limited amount of resources, schedulers are of

paramount importance for maintaining system performance,

stability, and reliability, which will eventually lead to better

monetary outcomes. This field has also been well explored.

The authors in [8] used enhanced particle swarm optimization

to improve the job scheduling approach. Meanwhile, an

incentive-based job scheduling approach is proposed in [9],

addressing the flaws of conventional IDC job scheduling

approaches that do not compensate resource users for jobs that

miss deadlines. Moreover, [10] proposed a virtual network

functions scheduling approach for the 5G network, solved

by quantum computers. Although there has been significant

research on IDC job scheduling, there is limited research

on job scheduling under emergency conditions. Solving this

problem can help IDCs reduce losses and gain considerable

benefits when energy is limited.

Therefore, inspired by [7], [10], this article focuses on

addressing the aforementioned challenges and proposes a

general model. For the job scheduling problem, we designed

jobs with different states and considered the computing per-

formance of various computing nodes to simulate real job

scheduling in IDCs as accurately as possible. For the energy

management problem, we incorporated real-time energy de-

mand, the cooling demand of each job, and the new challenge

of generator scheduling for the entire IDC during crises, based

on [11]. Finally, we proposed the entire problem as a mixed-

integer linear programming problem.



The contributions of this paper are summarized as follows:

• We propose a new MILP-based model for the IDC

scheduling problem during emergencies. We considered

factors such as energy consumed by the job scheduling

itself, renewable energy, batteries, indoor temperature,

HVAC, and traditional heat generators.

• We verify the correctness of the proposed model formu-

lation by setting up a test case. The visualization of the

job scheduling and all other factors proves the soundness

of our problem formulation.

The rest of this paper is organized as follows. Section II

introduces the problem definition and formulations. Section

III validates our algorithm using experiments. Finally, Section

IV concludes the paper.

II. PROBLEM DEFINITION AND FORMULATIONS

In this section, we propose a new MILP-based mathe-

matical programming formulation for IDC energy system

operations, considering IT services based on the previous

works mentioned in [7], [10], [11].

A. Data Center Energy System Modeling Overview

The IDC electricity emergency response management prob-

lem aims to maximize a IDC’s net income given time periods

t ∈ T , where T = {1, 2, . . . , T}. The length of the time

interval is denoted by ∆t, and T∆t represents the total time

of interest. On the one hand, the IDC must complete as many

jobs as possible while bearing the financial cost of discarded

jobs. On the other hand, it is critical for IDCs to reduce the

operational cost of their energy consumption. Furthermore,

t = 0 is a special case that is not in T and it is simply a

notation for the device’s or ambient initial status and does

not factor into the cost objective calculation. For the symbol

notation, all lowercase letters such as c and y represent

vectors of variables, and most uppercase letters represent

known parameters, with a few exceptions. The details of

parameters and variables will be clarified when explaining

the constraints. Among those variables, {x,u,v} ∈ {0,1},

which are binary variables.

(P)max cprofit − closs − ctransfer −
T
∑

t=1

c
Op
t , (1)

s.t. cprofit =
∑J

j=1
C

profit
j

(

xDone
j + xTF

j

)

, (2)

closs =
∑J

j=1
C loss

j xAbort
j , (3)

ctransfer =
∑J

j=1
C transfer

j xTF
j . (4)

The objective function (1) aims to maximize the net income

of the IDC within the time period T . In constraint (2),

cprofit represents the total profit generated from jobs that

are successfully completed or transferred. In constraint (3),

closs accounts for any losses incurred, such as penalties from

aborted or failed jobs. In constraint (4), ctransfer includes costs

associated with transferring jobs to other IDCs. Returning to

Equation (1),
∑T

t=1 c
Op
t sums up the operational costs over

all time periods, including costs related to power generation

and other operational expenses.

B. Job States and Scheduling

In this section, constraints related to job status and schedul-

ing are introduced in sequence. First, we introduce the con-

straints on job states, followed by the general scheduling

constraints, and finally the specific constraints for each type

of job.

1) Job States:

xDone
j + xAbort

j + xTF
j + xHold

j = 1, ∀j ∈ J , (5)






xTF
j = 0, if j ∈ J w,

xHold
j = 0, if j ∈ J w ∪ J TS,

xAbort
j = 0, if j ∈ J NTS.

(6)

Equation (5) ensures that for each job j in the set of

all jobs J , exactly one of the four states (Done, Abort,

Transferred (TF), Hold) is true. The set of constraints (6)

defines specific conditions under which certain states cannot

be true for different subsets of jobs. If a job is ongoing (J w),

it cannot be transferred or held. If a job is time-sensitive

(J TS), it cannot be held. If a job is a normal job (J NTS),

it cannot be aborted. This set of conditions is flexible and

can be redefined by users.

2) General Scheduling Constraints:

∑N

n=1
x

job
j,n = xDone

j , ∀j ∈ J , (7)

u
job
j,n,t ≤ x

job
j,n, ∀j ∈ J , t ∈ T , n ∈ N , (8)

u
job
j,n,t−1 − u

job
j,n,t − vsd

j,n,t + vsu
j,n,t = 0, j ∈ J , ∀t ∈ T , n ∈ N ,

(9)

vsd
j,n,t + vsu

j,n,t ≤ 1, ∀j ∈ J , t ∈ T , n ∈ N . (10)

Equation (7) ensures that the sum of the job states over

all N nodes is equal to the binary variable state xDone
j for

each working job j ∈ J , meaning there is at most one node

processing job j. The variable x
job
j,n indicates whether job j is

assigned to node n. Equation (8) guarantees that a job will not

be assigned to any node at any time before x
job
j,n is confirmed.

Constraint (9) shows the logical relationship between the state

of processing (ujob), start (vsu), and shutdown (vsd). Here,

(·)j,n,t = 1 implies that job j is in the corresponding state

on node n at time t. Constraint (10) ensures that a node n

cannot both start and finish a job j at the same time.

3) Current Working Jobs:

x
job
j,Nw

j
= xDone

j , ∀j ∈ J w, (11)

u
job
j,Nw

j
,t = xDone

j , ∀j ∈ J w, t ∈ [1, Tw
j ]. (12)

Equation (11) states that for each working job j ∈ J w,

on its specified node Nw
j ∈ N , the job state is equal to the

Done state of the job, linking the specific working instance

directly to job completion. Moreover, Equation (12) ensures

that for each working job j, and for all time steps t within the

working time period
[

1, Tw
j

]

, the processing status (ujob) of

job j on node Nw
j aligns with the Done state of the job. This



enforces that the job’s processing status is consistent with its

completion state throughout its entire working period.
4) Non-time-sensitive Jobs:

u
job
j,n =

∑T

t=1
vsd
j,n,t, ∀j ∈ J NTS, n ∈ N , (13)

∑T

t=1
u

job
j,n,t = T

job
j,n · xjob

j,n, ∀j ∈ J NTS, n ∈ N , (14)

T
job
j,n
∑

τ=1

vsd
j,n,(t−τ+1) ≤ u

job
j,n,t, ∀j ∈ J NTS, n ∈ N , t ∈ T , (15)

∑

n∈N

∑

t∈T
vsd
j,n,t = xDone

j , ∀j ∈ J NTS, (16)
∑

n∈N

∑

t∈T
vsu
j,n,t = xDone

j , ∀j ∈ J NTS. (17)

Non-time-sensitive jobs (J NTS) do not have stringent dead-

lines or immediate urgency for completion and can be re-

garded as normal jobs. Equation (13) states that the total

utilization ujob of job j on node n is equal to the sum of

job shutdown variables vsd over the time period T for normal

jobs (j ∈ J NTS). This links the cumulative shutdown events

to the processing status. Constraint (14) ensures that the total

processing state over the time period T for job j on every

node equals the product of the job duration T
job
j,n, which is a

parameter, and the job assignment variable x
job
j,n. This implies

that the job’s processing state is consistent with its duration

and assignment. Constraint (15) guarantees that once the node

starts processing job j, the node must process it for the

required time T
job
j,n. Constraints (16) and (17) ensure that every

job in J NTS is started or shut down at most once.
5) Time-sensitive Jobs:

u
job
j,n =

∑T TS
j

t=1
vsd
j,n,t, ∀j ∈ J TS, n ∈ N , (18)

∑T TS
j

t=1
u

job
j,n,t = T

job
j,n · xjob

j,n, ∀j ∈ J TS, n ∈ N , (19)

∑T
job
j,n

τ=1
vsd
j,n,(t−τ+1) ≤ u

job
j,n,t, ∀j ∈ J TS, n ∈ N , t ∈ [1, T TS

j ],

(20)
∑

n∈N

∑

t∈[1,T TS
j

]
vsd
j,n,t = xDone

j , ∀j ∈ J TS, (21)

∑

n∈N

∑

t∈[1,T TS
j

]
vsu
j,n,t = xDone

j , ∀j ∈ J TS. (22)

Time-sensitive jobs must be completed within a specific

time frame to meet the deadline. Accordingly, the constraints

for this part are similar to those for non-time-sensitive jobs,

with the only difference being the due time. Therefore, (18)-

(22) achieve something similar to (13)-(17). However, the

time frame is replaced by a new due time T TS
j , which is also

a known set of parameters.
6) Transferred Jobs:

Dj · x
TF
j =

∑Trange

t=1
ybw
j,t, ∀j ∈ J NTS, t ∈ T , (23)

Dj · x
TF
j =

∑Trange

t=1
ybw
j,t, ∀j ∈ J TS, t ∈ [1, T TS

j ], (24)
∑

j∈J
ybw
j,t ≤ DCBW, ∀t ∈ T , (25)

ybw
j,t ≤ BWj · x

TF
j , ∀j ∈ J , t ∈ T . (26)

Node Type Power (KW) Performance (petaFLOPS)

10 DGX1 350 17.3
10 DGX2 100 20
4 DGXA100 26 20
10 DGXA100s 15 13
1 DGXA200 14.3 72
1 DGXH100 10.2 32

TABLE I: Power and Performance Specifications of Nodes

Equations (23) and (24) ensure that for each non-time-

sensitive and time-sensitive job, once it needs to be transferred

out of the IDC, the job’s pre-trained dataset Dj , a known

parameter set, will be transferred out of the IDC within the

corresponding time range. The amount of data transferred for

each task j at time t is denoted by the continuous variable ybw
j,t.

Constraint (25) ensures that the total bandwidth utilization for

all jobs j at any time t does not exceed the maximum IDC

bandwidth (DCBW). This prevents overloading the IDC’s

capacity. Constraint (26) specifies that at any time t, if job

j needs to be transferred, the bandwidth utilization of the

job must not exceed the maximum data transfer rate of

the corresponding job (BWj). This ensures that when tasks

are transferred, the bandwidth utilization of any job remains

within its specified limit.

7) Energy Consumption:

eO,Node
n,t = eO,N,idle

n,t + eO,N,w
n,t , ∀n ∈ N , t ∈ T , (27)

eO,N,idle
n,t = EO,N,idle

n u
power
n,t , ∀n ∈ N , t ∈ T , (28)

eO,N,w
n,t =

∑

j∈J

EO,N,w
j,n · βTDP

j · ujob
j,n,t, ∀n ∈ N , t ∈ T , (29)

u
power
n,0 = 1, ∀n ∈ N ∗, (30)

u
job
j,n,t ≤ u

power
n,t , ∀j ∈ J , ∀t ∈ T , n ∈ N , (31)

u
power
n,t−1 − u

power
n,t − v

power,sd
n,t + v

power,su
n,t = 0, ∀t ∈ T , n ∈ N .

(32)

Constraint (27) calculates the total operational energy

(eO,Node) for node n at time t as the sum of the idle energy

(eO,N,idle) and the working energy (eO,N,w) for that node.

Equation (28) defines the idle energy (eO,N,idle) for node n

at time t as the product of the parameter idle energy rate

(EO,N,idle) and the power state (u
power
n,t ) of the node. Equation

(29) defines the working energy (eO,N,w) for node n at time t

as the sum of the products of the working power consumption

rate (EO,N,w
j,n ), the thermal design power factor (βTDP

j ), and the

job processing state (u
job
j,n,t) over all jobs j. Equation (30) sets

the initial power state of node n. N ∗ is a user-defined node

set. Equation (31) ensures that a node is always turned on

when there is a job running on it. Similar to Constraint (9),

Constraint (32) shows the logical relationship between the

state of being powered on (upower), turned on (vpower,su), and

shut down (vpower,sd) of a node.

C. Heating, Ventilation, and Air Conditioning System

We enhance the model proposed by [7] to fit our problem.

Due to space limitations, only the modified constraints will

be presented here.

eG
t = eHVAC

t + eDC
t +∆eB

t − eS
t + emisc

t , ∀t ∈ T . (33)



In Constraint (33), we reformulate the power balance con-

straint and define a new variable eG to denote the power

received from the thermal generators.

T Zone
i,t = T Zone

i,t−1 +
∑

i′∈N (i)

(

T Zone
i′,t−1 − T Zone

i,t−1

Cheat
i RZone

i′i

)

+
θi,t

Cheat
i

+
ṁZone

i,t ca,s
(

TAC
i,t − T Zone

i,t−1

)

Cheat
i

, ∀i ∈ I, ∀t ∈ T ,

where Cheat
i = ca,s · ρair · SZone

i · hi,

ṁZone
i,t = kAC

i · vAC
t ,

θi,t =
∑

n∈INode
i

eO,Node
n,t .

(34)

We assume that the power used by the nodes is dissipated

as heat within the IDC zone. Therefore, we have Equation

(34). In Constraint (34), we let the variable internal heat

generation (θ) be equal to the power used by the nodes within

the corresponding zone.

xZone
i ≥ u

power
n,t , ∀i ∈ I, ∀t ∈ T , (35)

T Zone
i,t ≤ T

Zone,+
i,t + (1− xZone

i )THI,+
i,t , ∀i ∈ I, ∀t ∈ T . (36)

The role of these two new constraints (35) and (36) is that if

all nodes in a zone are in the shutdown state, the maximum

allowable zone temperature can be appropriately increased

by T
HI,+
i,t , which is a parameter. For completeness and a

comprehensive understanding of the underlying constraints

and their derivations, readers are referred to [7], where the

rest of the constraints are detailed.

D. Generators

As a backup energy resource, thermal generators must

be taken into account. Inspired by [11], we model thermal

generators in the IDC using a simplified unit commitment

(UC) problem as follows:

eG
t =

∑

i∈G
pi,t, ∀t ∈ T , (37)

c
Op
t =

∑

i∈G

(SUi,t · vi,t + βi · pi,t + γi · ui,t) , ∀t ∈ T , (38)

ui,t − ui,t−1 ≤ vi,t, ∀i ∈ G, t ∈ T , (39)

t
∑

k=t−UTi+1

vi,k ≤ ui,t, ∀i ∈ G, t ∈ [UTi, T ] , (40)

t
∑

k=t−DTi+1

vi,k ≤ 1− ui,t−DTi
, ∀i ∈ G, t ∈ [DTi, T ] ,

(41)

P i · ui,t ≤ pi,t ≤ P i · ui,t, ∀i ∈ G, ∀t ∈ T , (42)

pi,t − pi,t−1 ≤ RUi · ui,t−1 +RU i · (1− ui,t−1),

∀i ∈ G, t ∈ T , (43)

pi,t−1 − pi,t ≤ RDi · ui,t +RDi · (1− ui,t),

∀i ∈ G, t ∈ T . (44)

Constraint (37) aggregates the individual power contributions

of each generator to determine the overall energy production

Fig. 1: Job Schedule of the IDC

Fig. 2: Node Power Schedule of the IDC

at each time step. Constraint (38) represents the expected

future dispatch operation cost, including UC costs for flexible

generation resources. We approximate quadratic cost func-

tions for regular and flexible generation resources using linear

expressions and appropriate factors like β and γ, respectively.

Lower bounds for start-up variables are modeled in (39).

Constraints (40) and (41) specify the minimum online and

offline time requirements. Constraints (42) set limits for

output power. Constraints (43) and (44) represent ramp-up

and ramp-down constraints for regular generation resources.

For completeness and a comprehensive understanding of the

underlying constraints, readers are referred to [11], where the

rest of the constraints are detailed.

III. NUMERICAL VALIDATION

We validate our proposed model on a hardware platform

using the commercial solver Gurobi.

A. Experiments Setup

In our experimental setup, we consider an IDC comprising

10 computational nodes and a total of 33 jobs (3 jobs in

J w, 9 jobs in J TS, and 21 additional jobs in J NTS). The

experiment spans a time range of 20 discrete time intervals,

with each interval representing one hour. The nodes in the

system are characterized by their specific power and compu-

tational capabilities. The power specifications for the nodes

are defined in Table I and are provided in [12]. The nodes

are categorized into different types, each corresponding to a



Done Hold TF Abort

J NTS
12

J NTS
13

J w
2

J NTS
1

J NTS
10

J NTS
11

J TS
29

J NTS
16

J NTS
17

J TS
30

J NTS
15

J NTS
18

J NTS
5

J w
1

J NTS
19

J NTS
20

J TS
7

J NTS
18

J NTS
25

J TS
22

J w
3

J NTS
21

J NTS
24

J TS
26

J NTS
28

J NTS
3

J NTS
6

J TS
14

J TS
27

J NTS
4

J NTS
8

J TS
2

J TS
23

J NTS
9

TABLE II: Final Job Statuses

Zone Node

1 DGXA100s, DGXH100
2 DGXA1, DGXH100, DGXH100s
3 DGXH100, DGXA200, DGX2, DGXA200
4 DGXA100

TABLE III: Mapping of Nodes to Zones

key in the power and compute specifications dictionaries. An

idle rate of 20% is assumed based on the findings in [13],

indicating that each node consumes roughly 20% of its rated

power when idle. This setup allows us to rigorously evaluate

the performance and efficiency of our proposed job scheduling

and resource allocation strategies within a controlled and

detailed experimental environment. The rest of the setup

parameters are stored in [14].

B. Simulation Result

We will analyze the results by examining several key

aspects of the model. The analysis will include sections on

job scheduling, node power management, zone temperature,

battery reserves, and generators, culminating in a final analy-

sis that integrates these components to provide comprehensive

insights into our model’s performance.

1) Job Scheduling and Node Power Management: The

final result is presented in Table II, which categorizes the final

statuses of various jobs into four distinct columns: “Done,”

“Hold,” “Transferred,” and “Abort.” The data center ultimately

achieves a net income of $2,677,697.15 during this emergency

without violating any constraints.

For the jobs marked as done, a detailed graph is provided in

Figure 1. The Gantt chart in Figure 1 illustrates the scheduling

and execution of various jobs across different computational

nodes of the IDC over a specified time range. Each job,

identified by a unique color and labeled with an ID and name,

is allocated to specific nodes, demonstrating efficient resource

utilization. The x-axis represents time, while the y-axis lists

the nodes. In addition, jp stands for J NTS, tjp stands for J TS,

and wj stands for J w. The concurrent execution of jobs on

different nodes maximizes resource usage and prevents con-

flicts during the emergency, ensuring no overlapping tasks on

the same node. Overall, the Gantt chart provides a clear and

concise visualization of the job scheduling strategy, proving

that our model can achieve balanced resource allocation and

effective performance in handling varied computational tasks

during the emergency period.

Fig. 3: The Trend of Zone Temperature and Battery Reserves

The Gantt chart in Figure 2 displays the power status of

different nodes over time, highlighting the periods during

which each node is active. The x-axis represents time, while

the y-axis lists the nodes, identified by their specific types.

The chart demonstrates the effective resource management of

this model, where nodes are actively used without significant

idle periods during their scheduled times.

2) Temperature and Battery Reserves: Figure 3 illustrates

the variations in room temperature across four different zones

and the battery energy reserves over the time period. The x-

axis represents time, while the left y-axis (in blue) shows

the room temperature in degrees Celsius, and the right y-

axis (in red) indicates the battery energy reserves in kilowatt-

hours (kWh). The battery energy reserves are represented

by the red dashed line, while the temperature of each zone

is shown by the solid lines. Overall, the management is

exceptional. For example, since nodes 5 and 8 are both

turned off during t ∈ [1, 2], the model raises the upper

bound of zone 1’s temperature to save energy. Therefore, the

model demonstrates a robust energy and thermal management

strategy, crucial for maintaining optimal conditions across

different zones while efficiently utilizing energy resources.

3) Generators: Figure 4 illustrates the ON/OFF status of

three generators (G1, G2, and G3) over T . Each sub-graph

corresponds to one generator, with the y-axis indicating the

ON/OFF state (with ON at the top and OFF at the bottom)

and the x-axis representing time. Next, Figure 5 shows the

power output of the same three generators over the same

period. Each sub-graph corresponds to one generator, with

the y-axis indicating the power output in kW. Since each time

interval is one hour, the energy production is in kWh with the

same value. The x-axis represents time. Together, these graphs

provide a clear overview of the operational patterns and

contributions of the three generators. G1 and G2 are the main

contributors to the power supply, with G1 operating for most

of the time and G2 running continuously. G3 remains inactive,

likely reserved for contingencies or specific conditions not

encountered during this period. This balanced approach to

generator utilization ensures reliability and efficiency in power



Fig. 4: The ON/OFF State of Generators

supply management.

4) Analysis: The model demonstrates an effective and bal-

anced approach to resource management after an emergency,

combining efficient job scheduling, optimal node utilization,

exceptional HVAC management, and strategic power genera-

tion. Moreover, it helps IDCs achieve maximum net income

while facing multiple constraints. The job scheduling across

nodes shows a well-distributed workload, minimizing idle

times and maximizing computational efficiency. Overall, the

model we proposed successfully integrates power manage-

ment and job scheduling to achieve high performance and

operational stability during the emergency period.

IV. CONCLUSION

In this paper, we first propose a model for IDCs to handle

job scheduling during emergency periods. We then use a

test case to verify the correctness of our model. From the

perspective of solution quality, the model exemplifies an

effective and balanced approach to resource management

during an emergency, including efficient task scheduling,

optimal node utilization, superior HVAC control, and strategic

power generation. Furthermore, it enables IDCs to maximize

net revenue while addressing a variety of constraints. Ad-

ditionally, our approach translates the results into a clear

and concise visualization of job scheduling, making it easy

for users to track job progress, node utilization, and other

key functions over time. Therefore, our proposed model

efficiently incorporates power management and computational

work allocation to provide an optimal energy and IT service

schedule for an IDC during an emergency period.
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