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Abstract—Cooperative driving, enabled by communication be-
tween automated vehicle systems, promises significant benefits
to fuel efficiency, road capacity, and safety over single-vehicle
driver assistance systems such as adaptive cruise control (ACC).
However, the responsible development and implementation of
these algorithms pose substantial challenges due to the need for
extensive real-world testing. We address this issue by introducing
OpenConvoy, an open and extensible framework designed for the
implementation and assessment of cooperative driving policies
on physical connected and autonomous vehicles (CAVs). We
demonstrate the capabilities of OpenConvoy through a series
of experiments on a convoy of multi-scale vehicles controlled by
Platooning, showcasing the stability of our system across different
vehicle configurations and its ability to effectively measure convoy
cohesion across driving scenarios, including varying degrees of
communication loss.

Index Terms—cooperative driving systems, connected au-
tonomous vehicles, real-world testing platform, platooning.

I. INTRODUCTION

Rapid advancements in autonomous vehicle technology and
vehicle-to-vehicle communication (V2V) have opened up new
avenues for enhancing transportation efficiency, safety, and
sustainability. One promising application within this domain
is cooperative driving, where cars communicate intentions to
ensure cohesive movement. This coordination enables shorter
safe inter-vehicle distances, reducing emissions by reducing
drag on the cars in the convoy and increasing highway
throughput [?].

Despite these potential benefits, developing safe coopera-
tive driving policies remains a complex challenge. Thorough
testing must be undertaken to assess the resilience of such
algorithms to issues such as rough terrain, communication loss,
and noisy sensor readings. The complexity of real-world driv-
ing environments further motivates the development of joint
perception and decision making frameworks to improve the
awareness and coordination of connected and autonomous ve-
hicles (CAVs) to beyond the human level. Current frameworks
limit the testing of solutions to these problems to simulated
environments or very specific hardware implementations (see
II), limiting the general applicability of results. Thus, there
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is an urgent need for a unified platform for assessing the
performance of arbitrary cooperative driving implementations
on various autonomous vehicles in a consistent manner. In this
paper, we address this problem and introduce OpenConvoy to
fill that gap. The OpenConvoy platform is publicly available
in [1] for use by researchers and developers of cooperative
driving systems and other humanitarian systems.

A. Background

Cooperative driving systems use Vehicle-to-Vehicle (V2V)
and Vehicle-to-Everything (V2X) communication to enhance
situational awareness among cars in close proximity by sharing
information such as speed, acceleration, and braking in real
time. These systems have been demonstrated to provide a
number of benefits, particularly improved highway throughput
and fuel efficiency [2]. This is achieved by enabling vehicles
to safely travel in closer proximity than they normally would
without this heightened awareness. Implementations of this
concept can typically be deconstructed along the lines of
spacing policy, communication policy, and controller.

In cooperative driving, the spacing policy defines the phys-
ical structure of the platoon, typically categorized as either
platooning or Cooperative Adaptive Cruise Control (CACC),
with the former using fixed following distances and the
latter using fixed following times. The communication policy
defines the structure of V2V communications, including the
policy for sending messages (either time- or event-triggered
[3]) and the network topology that determines who receives
them. Network topologies are commonly either bidirectional
or predecessor following with varying degrees of lookahead
[4]. These policies are visualized in comparison to individual
driving (Adaptive Cruise Control (ACC)) in Fig. 1. Based
on the information received from the other vehicles and the
objective of the spacing policy, the controller determines the
motion to be executed at the vehicle level; these controllers
can vary widely from simple linear controllers to advanced
Model Predictive Control (MPC) implementations [5].

B. Motivation and Problem Domain

High reliability in diverse conditions is a critical challenge
for cooperative driving systems. Testing these systems on ve-
hicles in various conditions is usually costly and complex. As
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Fig. 1. Comparison of ACC, CACC, and Platooning, each using an all-
predecessor IFT. The distances from each vehicle (V) to the vehicle behind
it in each system are represented as DACC DCACC and DPIat. The relation
DACC > DCACC 5 DPlat implies that k > m > n.

shown in Table. I, various cooperative driving implementations
differ in spacing policies, communication strategies, and con-
trollers. Despite these differences, the fundamental logic for
message broadcasting and hardware communication remains
consistent. This highlights an opportunity to create a unified
platform to reduce the challenges and costs of testing and
implementing cooperative driving algorithms across diverse
vehicle types and configurations.

C. Contributions

We present OpenConvoy, an open and modular platform
that streamlines the implementation and testing of cooperative
driving algorithms on diverse autonomous vehicles. This plat-
form directly supports both Robot Operating System (ROS1
and ROS2) and uses the Micro Air Vehicle Link (MAVLink)
protocol, enabling its application to a wide variety of vehi-
cle types and control stacks with minimal modification. We
demonstrate the stability of our system by employing it in
testing platooning with time-triggered communication and an
all-predecessor-following Information Flow Topology (IFT) on
a convoy of multi-scale vehicles.

II. RELATED WORK

Interest in autonomous driving has spurred the development
of a wide variety of platforms to streamline the implementation
and testing of autonomous vehicles. A summary of the types
of systems in comparison to OpenConvoy is given in Table II.

The prohibitive cost associated with field testing has made
simulation an integral part of autonomous vehicle develop-
ment. At an abstract level, platforms such as SUMO [11]
and Veins [12] simulate multi-agent traffic dynamics, but do
not provide vehicle-level data. At a more concrete level, au-
tonomous vehicle (AV) sims such as Carla [13], LGSVL [14],
and CarSim [15] provide vehicle-level data for single-agent
systems while cooperative autonomous vehicle (CAV) simu-
lators such as OpenCDA [16], AutoCastSim [17], V2Xverse

TABLE I
COOPERATIVE DRIVING IMPLEMENTATIONS BY SPACING POLICY,
COMMUNICATION POLICY, AND CONTROLLER
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= ~ NTT =5 Q Q
g | g §8¢ | F¢ §%
3 & 8 =3 @ 3 I
S & ] = S g S
R =5 | §8
= s 2 g
~ S S
S g
[6] M-CACC All BD Time Yes
[3] CACC All PD Event Yes
[4] CACC N-lookahead PD Time Yes
[7] M-CACC 1-lookahead PD Time No
[5] Platooning All PD Time Yes
[8] Platooning All PD Event Yes
[9] Platooning | Leader Following | Event Yes
[10] CACC 1-lookahead PD Event Yes

BD: Bidirectional, PD: Predecessor, M-CACC: modified CACC

[18], and [19] do the same for multi-agent systems. Besides
supporting multi-agent simulation, CAV simulators include
functionality to simulate V2V communication and support
custom cooperative driving algorithms.

Despite advances in simulation techniques, real world test-
ing remains essential to capture the full breadth of possibilities
which may occur in actual driving scenarios [20]. AV testing
frameworks have been developed to assess the track driving
capabilities of autonomous vehicles by generating information-
rich scenarios to overlay on top of live sensor data [21] [22],
however they do not include high-level control functionality
for autonomous vehicles themselves and do not assess multi-
agent scenarios involving V2V communication. Approaches
supporting high-level vehicle control include commercial self-
driving systems such as those from Nvidia [23] and Hexagon
[24] and self-driving frameworks like Autoware [25], though
these focus on single-agent scenarios. For high-level control of
multiple agents options are more limited; despite the existence
of CARMA [26] as a general purpose cooperative driving
framework, it is not open hardware, working with a specific
set of sensors exclusive to full-size vehicles which makes it
inviable for most research use. The 1Tenth version of the
project was cancelled before release [27], and as a result most
CAV work is conducted either in-sim or on small, purpose
built research platforms like MicrolV [28] which are not
open hardware and don’t support custom cooperative driving
(CD) algorithm implementations. This leaves the gap which
OpenConvoy addresses, the need for an extensible cooperative
driving platform compatible with open hardware support.

III. SYSTEM ARCHITECTURE

The problem OpenConvoy addresses is facilitating the im-
plementation of arbitrary cooperative driving policies on arbi-
trary vehicle hardware without requiring vehicle-specific code.



TABLE II
COMPARISON BETWEEN OPENCONVOY AND EXISTING AUTONOMOUS DRIVING PLATFORMS

. . Real High-Level v2v Open Custom CD o
Refs Type Vehicle-Level | Multi-Agent Availability
World | Vehicle Control | Comm | Hardware | Algo Support
[11], [12] Traffic SIMs No Yes No N/A N/A N/A N/A 0S
[13], [14], [15] AV SIMs Yes No No Yes No N/A N/A oS
[T6], 177, T19]
[18], [29], [30] CAV SIMs Yes Yes No Yes Yes N/A Yes oS
[21], [22] AV Testing Yes No Yes No No Yes No 0S
[25] Autoware Yes No Yes Yes No Yes No oS
[23], [24], [31] Pre-built AVs Yes No Yes Yes No No No
[28] Research Systems Yes Yes Yes Yes Yes No No 0S
[26] CARMA Yes Yes Yes Yes Yes No Yes oS
[27] CARMA-1tenth Yes Yes Yes Yes Yes Yes Yes NO
[1] OpenConvoy Yes Yes Yes Yes Yes Yes Yes oS

OS: Open Source, COM: Commercial, NO: Not released, AV: Autonomous Vehicle, CAV: Connected and Autonomous Vehicle, CD: Cooperative driving

It addresses this by treating the spacing policy, communication
policy, and controllers as standalone components and handling
the rest of the vehicle control and communication internally
in a hardware agnostic manner. In the rest of the section
we formulate this problem concretely and outline the core
components of the OpenConvoy architecture.

A. Problem formulation

Let ¢ € 0,1,...n denote the vehicles of a convoy where
vehicle 0 is the leader. For each vehicle i, let R* be a data
structure containing the most recent states of the vehicles in
the convoy it receives messages from according to the IFT,
including itself and its own current state. Concretely,

i n—k n—k+1 n
R]' —{Sj ySj yeeey Sj }

(D

When vehicle ¢ receives a message from vehicle j, the IFT of
the system determines whether the message from j should be
saved; this Rx gate is formulated as:

p:(i,5) = {0,1} )

Similarly, every B seconds vehicle ¢ determines whether it
should broadcast its current state based on R*; this Tx gate is
formulated as:

7: (RY) — {0,1} 3)

At each time step ¢, vehicle ¢ calculates its target speed v; and
heading 6, based on the spacing policy o as follows:

4)

Finally, the controllers ), and xp each transform the target
speed and heading into the applied speed and heading, which
is then actuated on the vehicle.

Vg = Xv(vtaRi)7vt = XQ(etaRi) (5)

This definition allows arbitrary definition of 7, p, o, x,, and
Xo to cover the breadth of cooperative driving implementations

v, 0; = argmin, 5[0 (v, 6, R")]
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Fig. 2. Block diagram of OpenConvoy platform

without any ROS- or hardware-specific logic. The remaining
components are explained below, with Fig. 2 being a block
diagram of the overall system.

B. Mission Controller

The core of the OpenConvoy architecture is the Mission
Controller, a ROS node implemented for ROS 1 and 2 that
controls the vehicle motors, routes information between the
cooperative driving policy components, handles V2V commu-
nication, handles conversions between coordinate frames of



different vehicles in the convoy, and logs position information.
An overview of how the Mission Controller operates when re-
ceiving and transmitting messages and when executing vehicle
motion is given in Fig. 3. The Mission Controller also ensures
that if any vehicle encounters an issue, all vehicles in the
convoy stop to prevent crashes at short following distances,
and logs time-synced position data for all vehicles to allow
easy analysis post-testing.

C. Hardware Interface

To support the widest breadth of vehicle configurations,
OpenConvoy uses MAVLink ROS (MavRos) [32] to commu-
nicate with a flight controller running either PX4 Autopilot
[33] or ArduPilot Autopilot [34], which in turn controls
the vehicle’s motors. Because either firmware can run on
a multitude of different flight controllers, and most flight
controllers, Electronic Speed Controllers (ESCs), and Global
Positioning System (GPS) receivers are interoperable, Open-
Convoy maintains near-universal compatibility with lab-scale
autonomous vehicles.

D. V2V Communication

To ensure that our platform can seamlessly interact with
other cooperative driving systems adhering to the same stan-
dard, and that the vehicle states stored in R* are in a widely
accepted format, OpenConvoy’s messages follow the SAE
J2735 Basic Safety Messages (BSM) [35] standard. BSMs en-
capsulate essential vehicle state information such as position,
velocity, and acceleration, enabling real-time data exchange
crucial for cooperative maneuvers. Internet Protocol version
6 (IPv6) multicast communication is used to transmit BSMs
between vehicles, ensuring simultaneous delivery and avoiding
network configuration associated with IPv4 broadcasts.

E. Usage Details

Cooperative driving policies can be implemented by creat-
ing a subclass of the Mission Controller and overriding the
methods corresponding to the communication policy, spacing
policy, and controller to implement their desired policy. All
vehicles running Mission Controllers will move according
to their cooperative driving policy automatically. Specific
instructions can be found in the project GitHub [1].

IV. EXPERIMENTS

We conducted multiple experiments on a string of three
small-scale vehicles, using OpenConvoy to implement pla-
tooning with an all-predecessor following IFT and time-
triggered communication with a non-model based controller.
We tested the performance of the convoy with varying degrees
of communication loss in order to simulate the environment
of a crowded network or imperfect transmission equipment.

A. Hardware Setup

For our experiments, we assembled three small-scale ve-
hicles: two at a 1/10™ scale and one at a 1/6! scale, each
with different motors, servos, and speed controllers. Fig. 4
illustrates the hardware components of two of these vehicles,

=

Ego Vehicle
I

MAVRos ‘ | Mission Controller I Spacing Policy Communication policy Controllers

T T T T

Stored BSMs
[ oWk Rae gl

Desired speed and heading
o s
|
Desired and current speed and heading

|

Change in speed and heading

v

Motor command

Sensor reading
——

N
convert to BSM

Good to broadcast?

Yes

AN

|

=

Receive BSM

|

?

Good to stor

@

Yes

Store BSM ")

I |
| |
| |
| |
| |
I |
| |
| |
I |
| |
| |
| |
| |
| |
I I
| |
| I
I I
I |
| |
I |
| |
I |
| |
I |
| |
| |
| |
| |
I |
| |
| |
I |
| |
I |

I‘

Fig. 3. Sequence diagram of OpenConvoy platform.

highlighting their design and setup. For each of the vehicles,
we used a PixHawk 6C flight controller and M9N GPS
receiver, with the PixHawk directly connecting to the ESC
and steering servo in each vehicle. We used PX4 in all cases,
though ArduPilot could be used interchangably due to its
support for Mavros. One of the 1/10™ scale vehicles used
ROS 1 and Python 2 on an Nvidia Jetson TX2 while both
other vehicles used an Nvidia Jetson AGX Xavier with ROS
2 and Python 3.

B. Implementation Details

Using all-predecessor following, we let 7 always return
1 and p return 1 if the broadcaster is a predecessor in the
platoon. We define o to be the sum of costs of the distance
(in the plane arrived at by performing a local East-North-
Up (ENU) transformation on all relevent GPS coordinates)
between the point representing the correct following distance
and the projected point one time step forwards for the ego
vehicle for each predecessor of the ego vehicle in the platoon.
For x, and xy we use a Proportional-Derivative (PD) and
Stanley controller respectively.

The experiments were conducted with these three vehicles
under a controlled setting. The leader vehicle’s trajectory was
designed to mimic a realistic highway driving scenario, with
a time-varying speed starting at 1 m/s and jumping to 2 m/s
before returning to 1 m/s. This setup ensured that the following
vehicles had to adapt to sudden speed changes, providing
valuable data on the efficacy of our control algorithms in
maintaining desired inter-vehicle distances and overall pla-
tooning stability. Higher speeds were ruled out due to the
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Fig. 5. Vehicle Trajectories

low top speed of our lowest powered following vehicle, which
struggled to cope with the additional weight of the power bank
and companion computer.

C. Evaluation Metrics

In evaluating the performance of our platooning experi-
ments, we utilized two key metrics: Platooning Error [36]
and Speed Difference [37]. These metrics provided a compre-
hensive assessment of our control algorithms’ effectiveness
in maintaining desired distances and ensuring traffic flow
stability.

1) Platooning Error: As introduced in [36], Platooning
Error is defined as the absolute value of the difference between
the actual distance gap and the desired distance gap (15

meters) in meters. To capture a statistical sense of worst-
case behavior and account for the characteristics of wireless
networks, we chose the 95" percentile of the error’s absolute
value. This metric allows us to evaluate how well the vehicles
maintain the desired inter-vehicle spacing, even under varying
conditions.

2) Speed Difference: The variation between the highest
and lowest speeds among all vehicles in the string at each
time step serves as an effective indicator of traffic flow. As
outlined in [37], this metric, referred to as Speed Difference,
is utilized to assess the performance of the platooning system.
By evaluating the speed difference, we can determine how
consistently the vehicles in the string are moving in relation
to each other, which is crucial for maintaining smooth and
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efficient traffic flow.

These metrics together provide a detailed evaluation of
the platooning system’s performance, highlighting both the
accuracy in maintaining desired distances and the stability of
vehicle speeds within the platoon.

D. Results

Fig. 5 shows the vehicle trajectory for the lead vehicle and
follower vehicles in scenarios with variable Packet Error Rates
(PER) ranging from 0% to 60%. As shown in this figure, with
a drop rate between 0% and 20%, follower vehicles 1 and
2 follow the lead vehicle with good accuracy. In the drop

Drop Rate (%)

16 |

= I =
o N B

95th Percentile Error (m)

®

0 10 20 30 40 50 60
Fig. 9. 95™M percentile platooning error over drop rates

rate range of 30% to 50%, although the first follower vehicle
responds well and follows the lead vehicle with minor errors,
the second follower vehicle experiences an increased error rate
at times. At a drop rate of 60%, the first follower vehicle loses
the path of the lead vehicle, which leads to a path error for
the second follower vehicle as well.

Fig. 6 shows the difference between the maximum speed
value and the minimum speed value at different time intervals
for variable PER scenarios. It can be seen that this difference
increases with the rise in drop rate in most time intervals.

Fig. 7 illustrates the platooning error over time intervals for
various PER scenarios. Although, in most time intervals, the
error for drop rate values between 0% and 30% is generally
compact and close to each other, the error rate in some
time intervals for drop rate values of 40%, 50%, and 60%
is significantly higher than the error values for drop rates
between 0% and 30%.

For a better comparison of the maximum and minimum
speed differences in platooning, the average speed difference
over variable PER is shown in Fig. 8. This figure clearly shows
an increasing trend in the difference as the drop rate increases.

Additionally, the 95" percentile error over different values
of PER is shown in Fig. 9, highlighting the impact of increased
PER on platooning performance. These results are directly
consistent with the experiments carried out in simulator in
[5], demonstrating the ability of OpenConvoy to provide an
effective platform to bridge the sim2real gap for cooperative
driving.

V. CONCLUSION

We present OpenConvoy to address the lack of a platform
for easily implementing cooperative driving algorithms on pla-
toons of real vehicles, reducing the work required to perform
the kind of rigorous real-world testing which is required for the
safe development and deployment of cooperative driving sys-
tems. We demonstrate the compatibility of OpenConvoy across
multi-scale autonomous vehicles and its ability to rigorously
assess the performance of cooperative driving implementations
across varying communication landscapes, successfully repli-
cating the results of previous simulator-based works. Future
lines of work will include expanding testing to larger numbers



of vehicles and implementing the methods of more papers, in
particular creating an easily extensible basis for implementing
MPC.
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