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Abstract—Cooperative driving, enabled by communication be-
tween automated vehicle systems, promises significant benefits
to fuel efficiency, road capacity, and safety over single-vehicle
driver assistance systems such as adaptive cruise control (ACC).
However, the responsible development and implementation of
these algorithms pose substantial challenges due to the need for
extensive real-world testing. We address this issue by introducing
OpenConvoy, an open and extensible framework designed for the
implementation and assessment of cooperative driving policies
on physical connected and autonomous vehicles (CAVs). We
demonstrate the capabilities of OpenConvoy through a series
of experiments on a convoy of multi-scale vehicles controlled by
Platooning, showcasing the stability of our system across different
vehicle configurations and its ability to effectively measure convoy
cohesion across driving scenarios, including varying degrees of
communication loss.

Index Terms—cooperative driving systems, connected au-
tonomous vehicles, real-world testing platform, platooning.

I. INTRODUCTION

Rapid advancements in autonomous vehicle technology and

vehicle-to-vehicle communication (V2V) have opened up new

avenues for enhancing transportation efficiency, safety, and

sustainability. One promising application within this domain

is cooperative driving, where cars communicate intentions to

ensure cohesive movement. This coordination enables shorter

safe inter-vehicle distances, reducing emissions by reducing

drag on the cars in the convoy and increasing highway

throughput [?].

Despite these potential benefits, developing safe coopera-

tive driving policies remains a complex challenge. Thorough

testing must be undertaken to assess the resilience of such

algorithms to issues such as rough terrain, communication loss,

and noisy sensor readings. The complexity of real-world driv-

ing environments further motivates the development of joint

perception and decision making frameworks to improve the

awareness and coordination of connected and autonomous ve-

hicles (CAVs) to beyond the human level. Current frameworks

limit the testing of solutions to these problems to simulated

environments or very specific hardware implementations (see

II), limiting the general applicability of results. Thus, there
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is an urgent need for a unified platform for assessing the

performance of arbitrary cooperative driving implementations

on various autonomous vehicles in a consistent manner. In this

paper, we address this problem and introduce OpenConvoy to

fill that gap. The OpenConvoy platform is publicly available

in [1] for use by researchers and developers of cooperative

driving systems and other humanitarian systems.

A. Background

Cooperative driving systems use Vehicle-to-Vehicle (V2V)

and Vehicle-to-Everything (V2X) communication to enhance

situational awareness among cars in close proximity by sharing

information such as speed, acceleration, and braking in real

time. These systems have been demonstrated to provide a

number of benefits, particularly improved highway throughput

and fuel efficiency [2]. This is achieved by enabling vehicles

to safely travel in closer proximity than they normally would

without this heightened awareness. Implementations of this

concept can typically be deconstructed along the lines of

spacing policy, communication policy, and controller.

In cooperative driving, the spacing policy defines the phys-

ical structure of the platoon, typically categorized as either

platooning or Cooperative Adaptive Cruise Control (CACC),

with the former using fixed following distances and the

latter using fixed following times. The communication policy

defines the structure of V2V communications, including the

policy for sending messages (either time- or event-triggered

[3]) and the network topology that determines who receives

them. Network topologies are commonly either bidirectional

or predecessor following with varying degrees of lookahead

[4]. These policies are visualized in comparison to individual

driving (Adaptive Cruise Control (ACC)) in Fig. 1. Based

on the information received from the other vehicles and the

objective of the spacing policy, the controller determines the

motion to be executed at the vehicle level; these controllers

can vary widely from simple linear controllers to advanced

Model Predictive Control (MPC) implementations [5].

B. Motivation and Problem Domain

High reliability in diverse conditions is a critical challenge

for cooperative driving systems. Testing these systems on ve-

hicles in various conditions is usually costly and complex. As



Fig. 1. Comparison of ACC, CACC, and Platooning, each using an all-
predecessor IFT. The distances from each vehicle (V) to the vehicle behind
it in each system are represented as DACC, DCACC, and DPlat. The relation
DACC > DCACC > DPlat implies that k > m > n.

shown in Table. I, various cooperative driving implementations

differ in spacing policies, communication strategies, and con-

trollers. Despite these differences, the fundamental logic for

message broadcasting and hardware communication remains

consistent. This highlights an opportunity to create a unified

platform to reduce the challenges and costs of testing and

implementing cooperative driving algorithms across diverse

vehicle types and configurations.

C. Contributions

We present OpenConvoy, an open and modular platform

that streamlines the implementation and testing of cooperative

driving algorithms on diverse autonomous vehicles. This plat-

form directly supports both Robot Operating System (ROS1

and ROS2) and uses the Micro Air Vehicle Link (MAVLink)

protocol, enabling its application to a wide variety of vehi-

cle types and control stacks with minimal modification. We

demonstrate the stability of our system by employing it in

testing platooning with time-triggered communication and an

all-predecessor-following Information Flow Topology (IFT) on

a convoy of multi-scale vehicles.

II. RELATED WORK

Interest in autonomous driving has spurred the development

of a wide variety of platforms to streamline the implementation

and testing of autonomous vehicles. A summary of the types

of systems in comparison to OpenConvoy is given in Table II.

The prohibitive cost associated with field testing has made

simulation an integral part of autonomous vehicle develop-

ment. At an abstract level, platforms such as SUMO [11]

and Veins [12] simulate multi-agent traffic dynamics, but do

not provide vehicle-level data. At a more concrete level, au-

tonomous vehicle (AV) sims such as Carla [13], LGSVL [14],

and CarSim [15] provide vehicle-level data for single-agent

systems while cooperative autonomous vehicle (CAV) simu-

lators such as OpenCDA [16], AutoCastSim [17], V2Xverse

TABLE I
COOPERATIVE DRIVING IMPLEMENTATIONS BY SPACING POLICY,

COMMUNICATION POLICY, AND CONTROLLER

Cooperative Driving Implementations
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[6] M-CACC All BD Time Yes

[3] CACC All PD Event Yes

[4] CACC N-lookahead PD Time Yes

[7] M-CACC 1-lookahead PD Time No

[5] Platooning All PD Time Yes

[8] Platooning All PD Event Yes

[9] Platooning Leader Following Event Yes

[10] CACC 1-lookahead PD Event Yes

BD: Bidirectional, PD: Predecessor, M-CACC: modified CACC

[18], and [19] do the same for multi-agent systems. Besides

supporting multi-agent simulation, CAV simulators include

functionality to simulate V2V communication and support

custom cooperative driving algorithms.

Despite advances in simulation techniques, real world test-

ing remains essential to capture the full breadth of possibilities

which may occur in actual driving scenarios [20]. AV testing

frameworks have been developed to assess the track driving

capabilities of autonomous vehicles by generating information-

rich scenarios to overlay on top of live sensor data [21] [22],

however they do not include high-level control functionality

for autonomous vehicles themselves and do not assess multi-

agent scenarios involving V2V communication. Approaches

supporting high-level vehicle control include commercial self-

driving systems such as those from Nvidia [23] and Hexagon

[24] and self-driving frameworks like Autoware [25], though

these focus on single-agent scenarios. For high-level control of

multiple agents options are more limited; despite the existence

of CARMA [26] as a general purpose cooperative driving

framework, it is not open hardware, working with a specific

set of sensors exclusive to full-size vehicles which makes it

inviable for most research use. The 1Tenth version of the

project was cancelled before release [27], and as a result most

CAV work is conducted either in-sim or on small, purpose

built research platforms like MicroIV [28] which are not

open hardware and don’t support custom cooperative driving

(CD) algorithm implementations. This leaves the gap which

OpenConvoy addresses, the need for an extensible cooperative

driving platform compatible with open hardware support.

III. SYSTEM ARCHITECTURE

The problem OpenConvoy addresses is facilitating the im-

plementation of arbitrary cooperative driving policies on arbi-

trary vehicle hardware without requiring vehicle-specific code.



TABLE II
COMPARISON BETWEEN OPENCONVOY AND EXISTING AUTONOMOUS DRIVING PLATFORMS

Refs Type Vehicle-Level Multi-Agent
Real High-Level V2V Open Custom CD

Availability
World Vehicle Control Comm Hardware Algo Support

[11], [12] Traffic SIMs No Yes No N/A N/A N/A N/A OS

[13], [14], [15] AV SIMs Yes No No Yes No N/A N/A OS

[16], [17], [19]
[18], [29], [30] CAV SIMs Yes Yes No Yes Yes N/A Yes OS

[21], [22] AV Testing Yes No Yes No No Yes No OS

[25] Autoware Yes No Yes Yes No Yes No OS

[23], [24], [31] Pre-built AVs Yes No Yes Yes No No No COM

[28] Research Systems Yes Yes Yes Yes Yes No No OS

[26] CARMA Yes Yes Yes Yes Yes No Yes OS

[27] CARMA-1tenth Yes Yes Yes Yes Yes Yes Yes NO

[1] OpenConvoy Yes Yes Yes Yes Yes Yes Yes OS

OS: Open Source, COM: Commercial, NO: Not released, AV: Autonomous Vehicle, CAV: Connected and Autonomous Vehicle, CD: Cooperative driving

It addresses this by treating the spacing policy, communication

policy, and controllers as standalone components and handling

the rest of the vehicle control and communication internally

in a hardware agnostic manner. In the rest of the section

we formulate this problem concretely and outline the core

components of the OpenConvoy architecture.

A. Problem formulation

Let i ∈ 0, 1, ...n denote the vehicles of a convoy where

vehicle 0 is the leader. For each vehicle i, let Ri be a data

structure containing the most recent states of the vehicles in

the convoy it receives messages from according to the IFT,

including itself and its own current state. Concretely,

Rj
i = {sj

n−k, sj
n−k+1, ..., sj

n} (1)

When vehicle i receives a message from vehicle j, the IFT of

the system determines whether the message from j should be

saved; this Rx gate is formulated as:

ρ : (i, j) → {0, 1} (2)

Similarly, every B seconds vehicle i determines whether it

should broadcast its current state based on Ri; this Tx gate is

formulated as:

τ : (Ri) → {0, 1} (3)

At each time step t, vehicle i calculates its target speed vt and

heading θt based on the spacing policy σ as follows:

vt, θt = argminv,θ[σ(v, θ,R
i)] (4)

Finally, the controllers χv and χθ each transform the target

speed and heading into the applied speed and heading, which

is then actuated on the vehicle.

va = χv(vt,R
i), vt = χθ(θt,R

i) (5)

This definition allows arbitrary definition of τ , ρ, σ, χv , and

χθ to cover the breadth of cooperative driving implementations
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Fig. 2. Block diagram of OpenConvoy platform

without any ROS- or hardware-specific logic. The remaining

components are explained below, with Fig. 2 being a block

diagram of the overall system.

B. Mission Controller

The core of the OpenConvoy architecture is the Mission

Controller, a ROS node implemented for ROS 1 and 2 that

controls the vehicle motors, routes information between the

cooperative driving policy components, handles V2V commu-

nication, handles conversions between coordinate frames of



different vehicles in the convoy, and logs position information.

An overview of how the Mission Controller operates when re-

ceiving and transmitting messages and when executing vehicle

motion is given in Fig. 3. The Mission Controller also ensures

that if any vehicle encounters an issue, all vehicles in the

convoy stop to prevent crashes at short following distances,

and logs time-synced position data for all vehicles to allow

easy analysis post-testing.

C. Hardware Interface

To support the widest breadth of vehicle configurations,

OpenConvoy uses MAVLink ROS (MavRos) [32] to commu-

nicate with a flight controller running either PX4 Autopilot

[33] or ArduPilot Autopilot [34], which in turn controls

the vehicle’s motors. Because either firmware can run on

a multitude of different flight controllers, and most flight

controllers, Electronic Speed Controllers (ESCs), and Global

Positioning System (GPS) receivers are interoperable, Open-

Convoy maintains near-universal compatibility with lab-scale

autonomous vehicles.

D. V2V Communication

To ensure that our platform can seamlessly interact with

other cooperative driving systems adhering to the same stan-

dard, and that the vehicle states stored in Ri are in a widely

accepted format, OpenConvoy’s messages follow the SAE

J2735 Basic Safety Messages (BSM) [35] standard. BSMs en-

capsulate essential vehicle state information such as position,

velocity, and acceleration, enabling real-time data exchange

crucial for cooperative maneuvers. Internet Protocol version

6 (IPv6) multicast communication is used to transmit BSMs

between vehicles, ensuring simultaneous delivery and avoiding

network configuration associated with IPv4 broadcasts.

E. Usage Details

Cooperative driving policies can be implemented by creat-

ing a subclass of the Mission Controller and overriding the

methods corresponding to the communication policy, spacing

policy, and controller to implement their desired policy. All

vehicles running Mission Controllers will move according

to their cooperative driving policy automatically. Specific

instructions can be found in the project GitHub [1].

IV. EXPERIMENTS

We conducted multiple experiments on a string of three

small-scale vehicles, using OpenConvoy to implement pla-

tooning with an all-predecessor following IFT and time-

triggered communication with a non-model based controller.

We tested the performance of the convoy with varying degrees

of communication loss in order to simulate the environment

of a crowded network or imperfect transmission equipment.

A. Hardware Setup

For our experiments, we assembled three small-scale ve-

hicles: two at a 1/10th scale and one at a 1/6th scale, each

with different motors, servos, and speed controllers. Fig. 4

illustrates the hardware components of two of these vehicles,

Fig. 3. Sequence diagram of OpenConvoy platform.

highlighting their design and setup. For each of the vehicles,

we used a PixHawk 6C flight controller and M9N GPS

receiver, with the PixHawk directly connecting to the ESC

and steering servo in each vehicle. We used PX4 in all cases,

though ArduPilot could be used interchangably due to its

support for Mavros. One of the 1/10th scale vehicles used

ROS 1 and Python 2 on an Nvidia Jetson TX2 while both

other vehicles used an Nvidia Jetson AGX Xavier with ROS

2 and Python 3.

B. Implementation Details

Using all-predecessor following, we let τ always return

1 and ρ return 1 if the broadcaster is a predecessor in the

platoon. We define σ to be the sum of costs of the distance

(in the plane arrived at by performing a local East-North-

Up (ENU) transformation on all relevent GPS coordinates)

between the point representing the correct following distance

and the projected point one time step forwards for the ego

vehicle for each predecessor of the ego vehicle in the platoon.

For χv and χθ we use a Proportional-Derivative (PD) and

Stanley controller respectively.

The experiments were conducted with these three vehicles

under a controlled setting. The leader vehicle’s trajectory was

designed to mimic a realistic highway driving scenario, with

a time-varying speed starting at 1 m/s and jumping to 2 m/s

before returning to 1 m/s. This setup ensured that the following

vehicles had to adapt to sudden speed changes, providing

valuable data on the efficacy of our control algorithms in

maintaining desired inter-vehicle distances and overall pla-

tooning stability. Higher speeds were ruled out due to the



Fig. 4. Hardware Components for 1/10th (left) and 1/6th (right) Vehicles

Fig. 5. Vehicle Trajectories

low top speed of our lowest powered following vehicle, which

struggled to cope with the additional weight of the power bank

and companion computer.

C. Evaluation Metrics

In evaluating the performance of our platooning experi-

ments, we utilized two key metrics: Platooning Error [36]

and Speed Difference [37]. These metrics provided a compre-

hensive assessment of our control algorithms’ effectiveness

in maintaining desired distances and ensuring traffic flow

stability.

1) Platooning Error: As introduced in [36], Platooning

Error is defined as the absolute value of the difference between

the actual distance gap and the desired distance gap (15

meters) in meters. To capture a statistical sense of worst-

case behavior and account for the characteristics of wireless

networks, we chose the 95th percentile of the error’s absolute

value. This metric allows us to evaluate how well the vehicles

maintain the desired inter-vehicle spacing, even under varying

conditions.

2) Speed Difference: The variation between the highest

and lowest speeds among all vehicles in the string at each

time step serves as an effective indicator of traffic flow. As

outlined in [37], this metric, referred to as Speed Difference,

is utilized to assess the performance of the platooning system.

By evaluating the speed difference, we can determine how

consistently the vehicles in the string are moving in relation

to each other, which is crucial for maintaining smooth and



Fig. 6. Max inter-vehicle velocity difference over time

Fig. 7. Max inter-vehicle platooning error over time

Fig. 8. Mean velocity error over drop rates

efficient traffic flow.

These metrics together provide a detailed evaluation of

the platooning system’s performance, highlighting both the

accuracy in maintaining desired distances and the stability of

vehicle speeds within the platoon.

D. Results

Fig. 5 shows the vehicle trajectory for the lead vehicle and

follower vehicles in scenarios with variable Packet Error Rates

(PER) ranging from 0% to 60%. As shown in this figure, with

a drop rate between 0% and 20%, follower vehicles 1 and

2 follow the lead vehicle with good accuracy. In the drop

Fig. 9. 95th percentile platooning error over drop rates

rate range of 30% to 50%, although the first follower vehicle

responds well and follows the lead vehicle with minor errors,

the second follower vehicle experiences an increased error rate

at times. At a drop rate of 60%, the first follower vehicle loses

the path of the lead vehicle, which leads to a path error for

the second follower vehicle as well.

Fig. 6 shows the difference between the maximum speed

value and the minimum speed value at different time intervals

for variable PER scenarios. It can be seen that this difference

increases with the rise in drop rate in most time intervals.

Fig. 7 illustrates the platooning error over time intervals for

various PER scenarios. Although, in most time intervals, the

error for drop rate values between 0% and 30% is generally

compact and close to each other, the error rate in some

time intervals for drop rate values of 40%, 50%, and 60%

is significantly higher than the error values for drop rates

between 0% and 30%.

For a better comparison of the maximum and minimum

speed differences in platooning, the average speed difference

over variable PER is shown in Fig. 8. This figure clearly shows

an increasing trend in the difference as the drop rate increases.

Additionally, the 95th percentile error over different values

of PER is shown in Fig. 9, highlighting the impact of increased

PER on platooning performance. These results are directly

consistent with the experiments carried out in simulator in

[5], demonstrating the ability of OpenConvoy to provide an

effective platform to bridge the sim2real gap for cooperative

driving.

V. CONCLUSION

We present OpenConvoy to address the lack of a platform

for easily implementing cooperative driving algorithms on pla-

toons of real vehicles, reducing the work required to perform

the kind of rigorous real-world testing which is required for the

safe development and deployment of cooperative driving sys-

tems. We demonstrate the compatibility of OpenConvoy across

multi-scale autonomous vehicles and its ability to rigorously

assess the performance of cooperative driving implementations

across varying communication landscapes, successfully repli-

cating the results of previous simulator-based works. Future

lines of work will include expanding testing to larger numbers



of vehicles and implementing the methods of more papers, in

particular creating an easily extensible basis for implementing

MPC.
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