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Abstract— In this study, we introduce an innovative risk-
aware behavior planning framework designed for autonomous
driving, with the aim of fostering socially compliant vehicle
behavior in diverse mixed-traffic highway scenarios. Our objec-
tive is to empower autonomous vehicles to exhibit behavior that
aligns with societal norms, thus enhancing their acceptability
among human drivers. We expand the scope of Control Barrier
Function-inspired risk assessment to encompass a heteroge-
neous spectrum of road participants, allowing us to explicitly
model varying degrees of social influences between different
classes of vehicles. We also present a mathematical condition for
accountability tracing, enabling the identification of responsible
entities in situations where risks surge. Drawing inspiration
from Isaac Asimov’s ”Three Laws of Robotics,” we establish
social compliance conditions grounded in our unique risk
concept, which seamlessly integrates with a wide range of
existing safety-critical controllers, regardless of their type or
design. By incorporating these conditions, which encode societal
expectations, into existing safe controllers, we demonstrate that
autonomous vehicles can exhibit context-aware behavior with-
out compromising the safety guarantees provided by existing
controllers. This approach effectively excludes behaviors that
may be safe but do not align with human intuition while
guaranteeing the least interference with the existing controller.

I. INTRODUCTION

There have been remarkable advancements in autonomous

driving technology, leading to the deployment of self-driving

cars on real-world streets. These autonomous vehicles now

share the road with human drivers, marking a significant

milestone in the progression of this technology. It is increas-

ingly clear that the coexistence of autonomous vehicles and

human drivers is not merely a concept but a practical reality,

and it is anticipated that large-scale mixed-traffic scenarios

will become increasingly common in the near future.

To foster a harmonious coexistence between self-driving

cars and human-driven vehicles, prioritizing safety is

paramount. Various techniques and tools [1], [2], [3], [4]

have been explored to enhance the vehicle’s ability to avoid

possible collisions. However, safety considerations should

not be confined solely to physical state configurations, such

as avoiding collisions with human drivers. They should also

extend to encompass the psychological aspect of human per-

ception and trust [5], [6], [7], [8]. Ensuring that interactions

with self-driving cars instill a sense of safety and confidence
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Fig. 1. An example scenario of highway driving with mixed classes of
traffic participants driving from left to right. The box with diagonal strips
represents the ego vehicle under our control. Other surrounding vehicles
are marked in different colors based on their types, pink for motorcycles,
yellow for passenger cars, and green for trucks. The dash arrows represent
the risk each surrounding vehicle poses on the ego vehicle in the pairwise
relationship.

is crucial. Therefore, it is equally imperative to explore

innovative approaches that empower autonomous vehicles

to exhibit socially compliant behavior. By doing so, these

vehicles can align their actions with human expectations,

enhancing their overall acceptability among human drivers.

Numerous studies have explored the concept of human-

like vehicle control [9], [10], [11], often relying on cost

functions that are either manually crafted or learned from

data, along with metrics like Root Mean Square Error and

Average Displacement Error. These approaches have proven

effective in replicating human trajectories from datasets, bol-

stering repeatability. However, the challenge of adaptability

persists, as real-world scenarios can vary widely making it

challenging to be adequately captured and represented in

training data. Consequently, there is a pressing need for a

unified framework capable of generating vehicle behavior

that is acceptable to humans across a wide range of sce-

narios. There have been efforts to integrate traffic rules into

control frameworks to enable scenario-aware behavior for

self-driving cars [12], [13]. Many of these approaches rely

on rule-based methods, where different rules are integrated

into the autonomous driving control problem. However, a

challenge arises in that distinct rules must be specified

for various driving scenarios. Furthermore, it’s important to

highlight that these objective rules may not entirely capture

the subjective nuances that differentiate, for example, the

behavior of an autonomous vehicle suddenly merging in

front of a heavily loaded truck on the highway, ensuring no

collisions occur and all rules respected, from behavior that

aligns with typical human expectations.

In this work, we introduce a novel behavior planning

framework that relies on risk assessment as its foundational

concept. Risk evaluation has been a well-explored topic in

the realm of robot control, with some approaches incorporat-

ing it into the objective function to minimize the risks faced
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by agents in their environments [14], [15]. However, these

approaches often lead to unintended overly conservative

behavior, hindering expected task performance. Moreover,

existing risk evaluation methods tend to assess the influence

of limited factors, such as the positions and motion of robots.

In our previous work [16], [17], we proposed an innovative

model-based risk evaluation tool capable of considering

additional dimensions, including a robot’s safety radius and

behavioral aggressiveness. Nevertheless, this risk evaluation

tool was primarily designed for homogeneous mobile robots

operating in open spaces, rather than the complex scenarios

encountered in autonomous driving, where various types

of vehicles coexist. We argue that risk assessment should

inherently incorporate the heterogeneity of different traffic

participants. For instance, the risk posed by a fully loaded

truck should not be equated with that of a small passenger

vehicle, even if they share the same physical states. Ac-

knowledging and addressing these distinctions is paramount

for improving risk evaluation, particularly when tailoring it

specifically for autonomous driving systems.

Our main contributions are: 1) We extend the CBF-based

risk evaluation to encompass heterogeneous traffic partici-

pants, allowing for explicitly modeling the varying degrees of

social influence exerted by different vehicle types, a critical

consideration in real-world driving scenarios. Based on this

extended risk assessment, we formulate the accountability

tracing problem in a mathematically quantifiable manner,

providing a valuable tool for future policy studies concerning

incidents involving self-driving cars. 2) Drawing inspiration

from Isaac Asimov’s ”Three Laws of Robotics,” we derive

conditions related to the notion of risk that characterize

robot behavior aligning with human instinct and common ex-

pectations. These conditions offer broad applicability across

various driving scenarios and even in different domains be-

yond autonomous driving. 3) By integrating these conditions,

which encode social norms, into existing vehicle control

problems, we enable autonomous vehicles to exhibit behavior

that aligns with typical human expectations while preserving

safety. This approach effectively excludes behaviors that may

be technically safe but do not align with human intuition

while guaranteeing the least interference with the nominal

controller.

II. PRELIMINARIES

A. Control Barrier Function

Control Barrier Functions (CBF) [18] are used to define an

admissible control space for safety assurance of dynamical

systems. One of CBF’s important properties is its forward-

invariance guarantee of a desired safety set. Consider a

nonlinear system in control affine form: ẋ = f(x) + g(x)u,

where x ∈ X ⊂ R
n and u ∈ U ⊂ R

m are the system

state and control input with f and g assumed to be locally

Lipschitz continuous. A desired safety set H can be denoted

by a safety function h(x): H = {x ∈ R
n : h(x) ≥ 0}. Thus

the control barrier function for the system to remain in the

safety set can be defined as follows [18]:

Definition 1: (Control Barrier Function) Given the afore-

mentioned dynamical system and the set H with a continu-

ously differentiable function h : Rn → R, then h is a control

barrier function (CBF) if there exists a class K function for

all x ∈ X such that supu∈U {ḣ(x, u)} ≥ −κ
(
h(x)

)
.

We selected the same class K function κ(h(x)) = γh(x) as

in [19], [20], where γ ∈ R
≥0 is a CBF design parameter

controlling system behaviors near the boundary of h(x) =
0. Hence, the admissible control space can be redefined as

B(x) = {u ∈ U : ḣ(x, u)+γh(x) ≥ 0 }. It is proved in [18]

that any controller u ∈ B(x) will render the safe state set H
forward-invariant, i.e., if the system starts inside the set H
with x(t = 0) ∈ H, then it implies x(t) ∈ H for all t > 0
under controller u ∈ B(x).

B. CBF-inspired Risk Evaluation for Pairwise Vehicles

Consider a driving scenario with a total number of vehicles

N ∈ N , in which every vehicle has access to observations

of all vehicles’ current positions and velocities, but no direct

communication is available among vehicles. Similar to [3],

[21], [22], we consider the particular choice of pairwise

safety function hij(x) and safety set Hij(x) = {x ∈ X :
hij(x) = ||xi − xj ||2 −D2

safe ≥ 0, ∀i �= j}, and admissible

control space Bij(x) = {u ∈ U : ḣij(x, u) ≥ −γ(hij(x))}
for each vehicle pair, where xi, xj ∈ R

2 for i, j ∈ {1, ..., N}
are the positions of any pairwise vehicles i and j. We

consider single-integrator dynamics ẋ = u as in [22] for

simplicity, but higher-order dynamics like unicycle dynamics

can be achieved using a nonlinear inverse method for velocity

mapping [23], [24], [17]. u = {ui, uj} ∈ R
2 is the joint

control input of this particular vehicle pair, and Dsafe is the

pre-defined safety margin.

Next, to quantify the risk between each pair of vehicles

from potential collision, we draw inspirations from CBF and

propose the following pairwise safety loss function Lij(x, u):

Lij(x, u) = −ḣij(x, u)− γhij(x)− c

= −2(xi − xj)
T (ui − uj)− γ(||xi − xj ||2 −D2

safe)− c
(1)

where c as a constant offset is a large positive value to

ensure Lij(x, u) is always negative to prevent unintended

cancelling-out when being accumulated later. ui, uj ∈ R
2

are the agent’s current velocities. γ is the CBF design factor

representing how aggressive the pairwise vehicles are [18].

The safety loss function Lij(x, u)
1 represents how close the

system is to the boundary of the safe set, or how easily a

safety violation could occur, under the assumption that both

vehicles will move with piecewise-constant velocity.

1Note that this risk evaluation tool does not necessarily require the
vehicles to use Control Barrier Function-based controllers. We understand
that in the real world vehicles may use different kinds of controllers, yet
this does not prevent them from understanding the risk generated from inter-
robot interaction via this tool, with the mild but reasonable assumption that
information about safety margin and vehicle states is known or observable.
Even for vehicles not using CBF-based controllers, it is still possible to
learn the parameter γ from observations using machine learning techniques
like linear ridge regression [21].
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III. METHOD

A. Risk Assessment for Heterogeneous Traffic

To provide the vehicle with a sense of situational aware-

ness of the dynamic environment it is in, we are interested

in assessing the accumulated risk a vehicle receives from the

environment. Now with Lij(x, u) as a handy tool describing

the risk vehicle i faces when interacting with vehicle j, for

a scenario involving multiple vehicles, we define the aggre-

gated risk Ri ∈ R vehicle i faces posed by all surrounding

vehicles. Since we aim to tailor the previously proposed

CBF-inspired risk evaluation for mixed-traffic scenarios in

autonomous driving as shown in Fig. 1, to explicitly model

this difference in social influence from heterogeneous vehicle

types, we propose the following social influence weight

w =
[
w1 w2 ... wN

] ∈ R
N for all vehicles in the scene

with wi = M(mi), where mi ∈ R is the mass of each

vehicle, and M is a mapping function that maps the vehicle

mass to a weight with
∑N

i=1 wi = 1. The larger the vehicle

mass is, the smaller wi will be. According to the Vehicle

Classification Definition of Federal Highway Administration

by the U.S. Department of Transportation [25], all vehicles

are classified into 13 categories based on the number of

axies. For simplicity, we provide the following table of

a few common vehicle types for reference, with the data

of the approximated weight provided by the Pennsylvania

Department of Transportation [26].

TABLE I

VEHICLE WEIGHT APPROXIMATION BY PENNDOT.

Approximated Weight of Traffic Participants (in tons)
Class I Motorcycle 0.2

Class II
Sedan 1.5
SUV 2

Class III or
above

Empty Truck 10
Bus 20
Heavy Loaded Truck 40

As shown in Table I, Class I refers to motorcycles and

Class II consists of small passenger vehicles like Sedan and

SUV. For Class III or above, they are mostly commercial

vehicles like trucks, buses, and tractors. As an example, if

vehicle i is an SUV, and vehicle j is a heavily loaded truck,

then wi : wj = 20 : 1. Next, the accumulated risk Ri

the vehicle i receives from the interactive environment with

multiple surrounding vehicles is defined as:

Ri =
N∑

j=1

wjLij(x, u), ∀j �= i (2)

As the equation suggests, Ri provides a quantitative

measure of the amount of risk the vehicle i receives from

all surrounding vehicles considering their different vehicle

types. Recall that since Lij(x, u) is negative, then the

greater mass the vehicle j has, the smaller weight wj is,

therefore the larger value Ri has. The greater Ri is, the

more likely a safety violation is to occur. The proposed risk

evaluation framework is simple yet effective: 1) Ri grows

with the increased number of vehicles in the system, as

the environment becomes more complex and challenging;

2) Ri varies depending on the changes of states, including

positions and motion of other vehicles as we expected, as

it is important to tell how much risk agent i is exposed to

even when a collision has not happened yet; 3) With the

special mass-related weight design of w, this accumulated

risk assessment is augmented by various degrees of social

influence of different vehicle types. The underlying idea here

is that considering a fully loaded truck and a small passenger

vehicle, even if they have the same relative positions and

motions compared to the ego vehicle, it is obvious that the

heavy truck is considered a higher potential threat. This

can be explained by the truck’s higher momentum owing to

its greater weight, making it considerably more challenging

to brake or accelerate compared to the smaller passenger

vehicle. This concludes our introduction to the notion of

risk that provides the ego vehicle with a means to assess the

situation, and we will elaborate on how this understanding

can be applied to shape the core design of the socially

compliant behavior planning framework.

Given that our objective is to create a socially compliant

behavior-planning framework that only minimally alters the

existing controller to filter out behaviors incongruent with

societal expectations, we must address two pivotal questions:

1) Intervention Condition Definition: When should our

proposed framework intervene and modify the actions of

the existing controller? 2) Social Norm Characterization:
How should we define socially compliant behavior that aligns

with human expectations? Conversely, how can we identify

behaviors that deviate from typical human expectations and

are therefore undesirable? These two questions address the

”when” and ”how” aspects of intervention for the ego robot,

forming the cornerstone of our approach toward achieving

socially acceptable autonomous vehicle behavior.

B. Reasoning of Accountability

To answer the first question, we argue that intervention is

only needed when the existing controller may lead the ego

vehicle into a highly risky situation even though a collision

has not happened yet. We start by introducing the binary

logical operator l:

l = I(ΔRe ≥ Rthreshold) (3)

where we use subscript e to denote the ego vehicle. ΔRe

is the difference in the accumulated risk (Eq. 2) the ego

vehicle receives from the surrounding environment between

two consecutive time steps, and Rthreshold is the user-defined

threshold value, that defines situations that should engage

the ego vehicle’s special attention. With l returning true

or false, Eq. 3 indicates if there is a significant increase

in the accumulated risk the ego vehicle receives from the

environment so that it should take a closer look. Such a

substantial increase could result from various factors, e.g.,

a potential sudden acceleration by the following vehicle or

unexpected lane changes by vehicles in adjacent lanes.

Once a risky occasion is detected, the ego vehicle should

reason about who should be responsible for the surge in

3829



risk during the interaction. To trace accountability, the ego

vehicle identifies the one pairwise counterpart j∗ that causes

the primary surge by examining the change of all pairwise

risk assessments between two consecutive time steps:

j∗ = argmax
k

ΔLek(x, u) ∀k ∈ {1, ..., N} \ e (4)

Then by computing the accountability φ for itself and the

neighboring vehicle j∗, we trace back to see whose motion

ẋ is making a higher contribution to the identified risk surge.

φe =
∂Lej∗

∂xe
ẋe = (−2(ue − uj∗)− 2γ(xe − xj∗))

Tue (5)

Finally, we determine the vehicle that should be accountable

for the risk surge as:

k = argmax
k∈{e,j∗}

φk = argmax
k∈{e,j∗}

∂Lej∗

∂xk
ẋk (6)

In this work, we assume that the existing controller ũe in

Eq. 7 of the ego vehicle already satisfies the collision-free

safety requirement2, and our goal is to design an interpretable

behavior layer to filter out those behaviors that are non-

socially compliant. It is important to reason over in what

kind of situations the proposed behavior layer should come

into play and supersede the existing controllers.

ũe = argmin
ue∈U

||ue − ūe||2

s.t. ||xe − xj ||2 ≥ D2
safe ∀j ∈ {1, ..., N} \ e

(7)

where ūe is the task-related nominal control command pro-

vided by a high-level planner, e.g., a motion planner. Consid-

ering that ũe already represents the best response for the ego

vehicle to accomplish the designated task while maintaining

safety, no intervention will be applied to maximize task

performance without unnecessary restrictions. This allows

the ego vehicle to execute necessary actions freely. One

such example is when the ego vehicle is in the left lane

of a highway approaching an exit, and it decides to change

lanes in front of a neighboring vehicle already in the right

lane. In such a scenario, the ego vehicle is accountable for

the significant increase in risk due to this maneuver, but no

intervention is required because lane changing is a necessary

action. Conversely, if a risk surge is primarily caused by

changes in the external environment, such as the behavior

of neighboring vehicles, intervention becomes necessary to

ensure that the ego vehicle’s reactive behavior remains both

safe and reasonable.
Therefore, the proposed behavior planning framework is

designed only to intervene when k = j∗ in Eq. 6, suggesting

that it is the pairwise counterpart j∗ that causes the risk surge

instead of the ego itself. Then the second logical operator is

defined as:

δ = I(φe < φj∗) (8)

In summary, the essential and sufficient condition for the

intervention to happen is: l ∧ δ = 1, namely risk surge is

identified and the ego vehicle is not accountable for it.

2This is a reasonable assumption considering all the great tools available,
including but not limited to Control Barrier Functions [27] and Reachability
Analysis [28].

C. Risk-Informed Social Norm Characterization
Now to answer the second question, we draw inspiration

from Asimov’s ”Three Laws of Robotics” [29] which express

human expectations governing the behavior of robots. We

now use them to guide our design of social norms char-

acterization during the intervention of our framework. For

easier representation, we denote the joint control state for

each vehicle pair e (ego) and j (neighboring vehicle) without

intervention as ũ, consisting of ũe and uj , and the joint

control state after intervention as u∗, consisting u∗
e and uj .

Asimov’s First Law states, “A robot may not injure a

human being or, through inaction, allow a human being to

come to harm.” Since in this work we assume the existing

controller ũ can already guarantee no collision happens, with

our notion of risk, we interpret the first law as the expectation

of robots’ ability to reason over potential risk even when

no immediate collision is going to happen: the accumulated

risk the ego vehicle poses to surrounding vehicles should

decrease after intervention u∗, compared to that with the ũ
that the existing controller supplies.

∑

j∈N\e
weLej(x, u

∗) <
∑

j∈N\e
weLej(x, ũ) (9)

An example involves the ego vehicle being a heavily

loaded truck occupying the left lane, with a smaller passenger

vehicle following closely. Suddenly, the following vehicle

accelerates, significantly reducing the gap between them. In

the absence of intervention, the original controller ũ instructs

the ego truck to accelerate in response to maintain safety.

However, our intervention u∗ directs the ego vehicle to

execute a lane change to the right, allowing the following

vehicle to pass first. This action is not within the scope of

the original controller, which does not consider the increased

risk to the human passenger vehicle when closely trailing a

heavily loaded truck traveling at a high speed which could

put the following vehicle in danger.
The Second Law states, ”A robot must obey orders given

to it by human beings, except where such orders would

conflict with the first law.” With the intervention mechanism

and the controller designed by a human, the autonomous

vehicle adheres to this principle. In light of the recent debate

on this second law regarding the responsiveness of robots,

Murphy and Woods [30] proposed an alternative second

law ”A robot must respond to humans as appropriate for

their roles”, to emphasize that the capability for robots to

respond appropriately is more important in human-robot

interaction compared to the capability of the autonomy. In

the context of shared autonomy in mixed traffic scenarios, the

intervention of robot behavior should not be limited solely

to situations leading to immediate injury, such as collisions

with human-driven cars—precisely the motivation behind

this work, which aims to eliminate vehicle behaviors that

do not align with social norms when necessary.
The Third Law states, “A robot must protect its own

existence as long as such protection does not conflict with

the first or second law.” Leveraging our notion of risk, we

interpret this law as requiring that the accumulated risk the
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ego vehicle receives from the surrounding vehicles should

decrease after intervention u∗, compared to that with ũ.

Re(u
∗) < Re(ũ) ↔

∑

j∈N\e
wjLej(x, u

∗) <
∑

j∈N\e
wjLej(x, ũ)

(10)

This interpretation forces the ego vehicle to act as a self-

preserving entity, prioritizing its own safety. For instance,

human drivers do not expect the ego vehicle to execute an

abrupt and aggressive lane change in the midst of a closely-

following fleet of vehicles, solely to create space for a human

driver behind it to pass ahead.

D. Socially-Compliant Control Problem Formulation

Finally, we introduce our proposed Socially-Compliant

control problem formulation, which integrates the behavior

planning approach with social norm intervention into the

original controller design (Eq. 7).

u∗
e = argmin

ue∈U
||ue − ūe||2

+(l ∧ δ)(μ1

∑

j∈N\e
weLej(x, u) + μ2Re(x, u))

s.t. ||xe − xj ||2 ≥ D2
safe ∀j ∈ {1, ..., N} \ e

l = I(ΔRe ≥ Rthreshold)

δ = I(φe < φj∗)
(11)

where μ1 > μ2 
 0 are two large positive coefficients for

the accumulated risk the ego vehicle poses to surrounding

vehicles and the accumulated risk it receives from them,

prioritizing the first law ”no harm to humans”. This optimiza-

tion problem can be solved using a Mixed Integer Quadratic

Programming Solver directly or any regular optimization

solver by reformulating the problem using the Big-M method

[31] for improved computational efficiency.

IV. SIMULATION & DISCUSSION

We provide three illustrative examples to show the validity

and effectiveness of our proposed approach. The existing

controller is set to be the same as Eq. 7, namely maintaining a

nominated travel speed whenever possible without collisions.

Example 1: We first showcase the performance of our

proposed approach in comparison to the existing controller

in a two-vehicle scenario, as depicted in Figure 2. We have

a scenario plot on the left showing the ego truck on the fast

lane with a small passenger vehicle following it. The dashed

line represents the decision space of the ego truck in our

proposed approach on whether to change its lane and how

fast it would like to travel. Distinct ego behavior is observed

in three different setups (left, middle, right) on the right.

Next, we demonstrate how heterogeneous road participants

can affect the decision of our proposed method in two multi-

vehicle scenarios. In both cases, we have one fully loaded

truck and two passenger vehicles sharing the same initial

states and conditions, with the only difference as the switched

vehicle type of the two non-ego vehicles. Example 2: In

Fig. 3, the small passenger vehicle behind is programmed

Fig. 2. The scenario illustration and simulation plots for Example 1.
The green vehicle is the ego truck and the yellow vehicle is a small
passenger vehicle. The three subplots (left, middle, right) on the right
introduce different scenario setups with waypoints plotted out for easier
understanding. Left: The small passenger car maintains a steady speed and
doesn’t create any pressure or risk for the ego truck. Since no risk surge
is detected, our behavior planning framework doesn’t need to intervene.
Consequently, the ego truck continues to follow its existing controller, and
we have u∗

i = ũi. Middle: The ego truck is solely relying on its existing
controller ũi without our behavior planning framework. At a certain point,
the small passenger vehicle begins to accelerate, rapidly closing the gap
between the two vehicles. Without considering the potential risks to both
itself and the human passenger vehicle, ũi is left with no alternative but to
instruct the ego truck to also accelerate in order to maintain a safe inter-
vehicle distance. Right: Here the small passenger vehicle takes the same
action as in the middle subplot by accelerating. However, the difference
is that the ego truck is equipped with our proposed algorithm. As the gap
between the two vehicles rapidly shrinks, the increased risk to the ego truck
triggers the accountability trace, leading the ego truck to hold the small
passenger vehicle accountable. Subsequently, the intervention mechanism
is activated. In evaluating various choices available to the ego truck and
considering their alignment with typical human expectations, it decides to
temporarily deviate from its nominal controller. It does so by executing a
lane change to the right lane, allowing the small passenger vehicle to pass
first. This decision is a wiser one compared to the scenario in the middle
subplot, as the ego truck chooses not to jeopardize the safety of both itself
and the small passenger vehicle. At the same time, it strives to adhere to
the task-related nominal controller to the greatest extent possible.

Fig. 3. The ego vehicle is the yellow passenger vehicle with black strips in
the scenario illustration, corresponding to the red vehicle in the simulation
illustration for clearer visualization. There is one small passenger vehicle
following the ego vehicle, and a large truck in the adjacent lane.

to aggressively accelerate in a very short time frame. Once

again, our proposed framework activates the intervention

mechanism, prompting the ego passenger vehicle to consider

its available options. In contrast to the previous example, it

recognizes that executing a lane change is not the most fa-

vorable solution here. This is because changing lanes would

introduce a higher accumulated risk the ego vehicle poses to

surrounding vehicles, especially to the truck in the adjacent

lane, surpassing the accumulated risk it generates when

staying in the current lane and accelerating to maintain a

safe distance from the following passenger vehicle. Example
3: However, the situation takes a different turn when the

vehicle types of the two non-ego vehicles are swapped as

shown in Fig. 4. Now, with a fully loaded truck following the
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Fig. 4. Example 3: There is one large truck following the ego vehicle and a
small passenger vehicle in the adjacent lane. This recommendation is based
on the fact that the cumulative risk the ego vehicle incurs, amplified by the
weight-related mass, greatly exceeds the risk associated with changing lanes
in front of the small passenger vehicle in the adjacent lane. This decision,
even if it involves a temporary deviation from its existing controller, is
deemed more prudent.

ego vehicle and exhibiting aggressive acceleration, despite all

three vehicles sharing identical state configurations, includ-

ing positions and motions, our proposed method advises the

ego passenger vehicle to execute a lane change.

Conclusion We extend our CBF-based accumulated risk

evaluation to realistic highway driving scenarios that con-

sider the heterogeneity in vehicle types to embed their

potentially different levels of social influence into the notion

of risk. We achieve this by incorporating accountability

tracing and social norm characterization into mathematical

expressions linked to the concept of risk. This framework

is designed to facilitate autonomous vehicles in exhibiting

behaviors that align with common human intuitions, all while

guaranteeing a minimum level of performance compared to

their existing controllers. Our approach draws inspiration

from Isaac Asimov’s ”Three Laws of Robotics,” offering

fundamental interpretations of our proposed notion of risk

that can be broadly applied to other robotics applications,

promoting socially compliant robot behavior generation.
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