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Abstract—In this study, we explore an innovative approach
to enhance cooperative driving in vehicle platooning systems
through the use of vehicle-to-everything (V2X) communication
technologies. As Connected and Autonomous Vehicles (CAVs)
integrate into increasingly dense traffic networks, the challenge of
efficiently managing communication resources becomes crucial.
Our focus is on optimizing communication strategies to support
the growing network of interconnected vehicles without com-
promising traffic safety and efficiency. We introduce a novel
control-aware communication framework designed to reduce
communication overhead while maintaining essential perfor-
mance standards in vehicle platoons. This method pivots from
traditional periodic communication to more adaptable aperiodic
or event-triggered schemes. Additionally, we integrate Model-
Based Communication (MBC) to enhance vehicle perception un-
der suboptimal communication conditions. By merging control-
aware communication with MBC, our approach effectively con-
trols vehicle platoons, striking a balance between communication
resource conservation and control performance. The results show
a marked decrease in communication frequency by 47%, with
minimal impact on control accuracy, such as less than 1%
variation in speed. Extensive simulations validate the effectiveness
of our combined approach in managing communication and
control in vehicle platoons, offering a promising solution for
future cooperative driving systems.

Index Terms—Cooperative Driving, Distributed Event-
triggered Communication, Model-based Communication,
Multi-Agent Systems, Platooning

I. INTRODUCTION

Cooperative Adaptive Cruise Control (CACC), utilizing
Vehicle-to-Vehicle (V2V) communication, is key to improving
traffic dynamics by promoting string stability and enabling
reduced spacing between vehicles [1], [2]. At the heart of
distributed Multi-Agent Systems (MASs) is the critical role
of information sharing, which is essential for achieving a
comprehensive understanding of the situation. However, exces-
sive use of communication channels can lead to congestion,
characterized by longer latency periods, increased instances
of packet loss, and decreased throughput. These issues can
significantly affect the stability, efficiency, and dependability
of the system [3]. Therefore, when designing distributed
control systems for MASs, it is imperative to balance achieving
the targeted control outcomes with the judicious use of limited
communication and computational resources. This approach
ensures that system performance is optimized without over-
whelming the available infrastructure.

This abstract is centered on the concept of Model-Based
Communication (MBC), a novel strategy aimed at scaling
communication more effectively, with a particular emphasis on
alleviating channel congestion [4]. MBC differentiates itself
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Fig. 1: An explanation of the communication structure used
by vehicles is presented, where dashed lines represent the
exchange of information between them. The term d; is used to
describe the gap between the n'” vehicle and the one directly
in front of it.

by employing a content structure optimized for conveying
information pertinent to the integrated dynamics of both
vehicle and driver behavior. This approach deviates from
the traditional content structure of Basic Safety Messages
(BSM) as specified in the J2735 standard [5]. Such a strategy
becomes increasingly pertinent in the context of diverse vehi-
cle dynamic modeling methods. Among these methods, non-
parametric Bayesian inference techniques, such as Gaussian
Processes (GP), are recognized for their considerable potential
and effectiveness.

Unlike the commonly used Time-Triggered Communication
(TTC) in current vehicle platoon control studies, which re-
lies on consistent data exchange intervals without adapting
to measurement changes, MBC introduces a more flexible
and responsive approach. Traditional TTC operates on preset
communication intervals, often overlooking real-time vehicle
conditions, resulting in suboptimal use of communication
resources, a critical issue in CACC systems. In contrast, MBC
advocates for a communication method that is more attuned
to the control requirements. This approach schedules transmis-
sion times based on the actual output data, aiming to achieve
a harmonious balance between communication efficiency and
control accuracy. Focusing on the specific demands of the
control system, MBC has the potential to facilitate more
effective and performance-driven communication strategies in
the context of vehicle platooning.

The design of an effective Event-Triggered Communication
(ETC) system for vehicle platoons is essential due to the
inherent balance required between the control performance
of the platoon and the usage of communication resources.
This paper details the development of such a system and
offers a fresh viewpoint on modeling the interactions among
various elements of a vehicle platoon to enhance its overall
performance. Key contributions of this paper include:



o Our paper presents a novel communication solution that
integrates ETC with MBC for the collaborative control
of vehicle platoons.

o We outline a comprehensive ETC framework designed for
distributed application in vehicle platoons. This approach
notably decreases the average rate of communication
while only minimally impacting the effectiveness of con-
trol performance.

II. RELATED WORK

This section delves into the management of the collective be-
havior of multiple CAVs, which hinges on the vehicles’ shared
understanding of their respective states, such as the distance
between vehicles and their speeds. This mutual awareness is
achieved through a combination of inter-vehicle sensing and
communication. Specifically, we will explore one of the key
applications of cooperative driving, CACC, along with V2V
communication.

A. Cooperative Adaptive Cruise Control (CACC)

For CACC systems to be effective, they need to be robust
against unique scenarios like vehicles abruptly joining the
platoon or sudden braking by lead vehicles [6]. The advanced
and accurate data provided by V2V communication enables
CACC vehicles to closely follow the vehicle ahead, even at
significantly reduced distances. This not only improves user
acceptance but can also markedly enhance lane capacity and
traffic flow dynamics. Studies have shown that vehicle platoon-
ing can significantly contribute to solving various transporta-
tion challenges [7], [8]. A key aspect of a successful CACC
system is maintaining minimal spacing error, the deviation
from the desired gap between vehicles. Keeping this error
small is crucial for minimizing collision risks and reaping the
benefits of platooning, such as reduced fuel consumption and
increased traffic throughput [9].

Imperfections in communication can greatly impact the
efficacy of CACC systems. Issues such as prolonged com-
munication delays or insufficient transmission rates can dis-
rupt string stability and various other performance aspects,
especially concerning the maintenance of a specific time gap.
Consequently, it is crucial to have a sufficiently high number of
transmissions over time and minimal communication delays to
ensure the desired behavior in vehicle platooning is achieved
[10].

B. Vehicle-to-Vehicle (V2V) Communication

The exchange of information is crucial for the effective de-
ployment of vehicle platoons, facilitating the implementation
of control actions based on current road and traffic situations.
Numerous studies have investigated the influence of commu-
nication networks on the performance of platoons [11], [12].
A significant limitation of TTC is its rigidity and limited
scalability. This section introduces ETC and MBC as solutions
that offer flexibility and scalability. Within the framework
of the Cellular Vehicle-to-Everything (C-V2X) standard, a
specific lower threshold is set for the Minimum Inter-Event

Time (MIET), defining the minimum duration that must elapse
between two successive transmissions [13]. The MIET ranges
from a lower limit of 100ms to an upper limit of 600ms. This
positive lower bound is essential to prevent Zeno behavior,
which is characterized by an infinite number of events in a
finite time, and to ensure the practicality of implementing an
ETC system.

1) Optimizing MAS Communication with Event-Triggered
Strategies: Strategies based on event triggers are widely
recognized for their effectiveness in optimizing the use of
communication resources within MASs [14], [15]. These ap-
proaches, which stand in contrast to the conventional TTC,
focus on transmitting data only when it is required to ful-
fill specific control system criteria. Studies have shown that
systems triggered by events demonstrate superior real-time
performance compared to those operating on time triggers. For
instance, research suggests a method to reduce the communi-
cation load by employing a versatile event-triggering strategy,
which involves adjustable parameters tailored for each member
of a vehicle platoon [16].

In this approach, agents transmit their current status to
adjacent agents only if the difference between their present
state and the last communicated state exceeds a dynamically
changing threshold, or when it hits the peak of the inter-event
time span. To make event-triggered methods more practical,
the concept of setting a minimum time gap between consec-
utive events has been investigated [17]. The event-triggered
mechanism for each vehicle in the system can be characterized
in the following manner:

tk+1:tk+min(7'k,7'), (1)

where T represents a positive constant that signifies the max-
imum limit of the interval between events. The value of 7, is
determined using the equation given below:

7 = inf {t—tk | C(S(t) ,S(t)) > 0}, for ¢ > 0.

2)
Upon receiving fresh information, every agent updates its con-
trol input and employs the newly acquired model for predictive
purposes. It is important to highlight that the timing of these
triggers is not coordinated across agents. In these methods,
each vehicle independently operates a parallel version of
the dynamics of its neighboring vehicles. In the suggested
setup, vehicles rely on their self-transmitted model to decide
the timing of data transmission. If the prediction from the
kinematic model remains accurate since the last transmission,
the vehicle will not transmit a new message.

2) Model-Based Communication (MBC): In the develop-
ment of CACC systems, it’s crucial to consider the inherent
uncertainties related to the state and behavior of vehicles,
as well as in their communication channels [18]. Given that
information from neighboring vehicles isn’t always accessible,
it becomes necessary for each agent to operate an estimation
system. Within this framework, agents utilize a predictive
model to estimate the measurements from other agents in



scenarios where data packets are not received, either due
to loss of packets or because an event did not prompt a
transmission.

In our study, the velocity of each cooperative vehicle over
time, denoted as v, (t), is modeled as a GP. This process is
characterized by a mean function, m,(t), and a covariance
kernel function, k,(¢,t'), as follows:

Uﬂ(t) ~GP (mn(t)’ Kn (tv t/)) : 3)

Our focus is on integrating insights derived from observed
velocity data regarding the underlying function, v, (t), and
its future projections. We assume that for each cooperative
vehicle, the process mean is zero, m,(t) = 0. We use a
Radial Basis Function (RBF) as the covariance kernel and
consider the measurement noises to be independent and iden-
tically distributed (¢.i.d.) following a Gaussian distribution,
N(0, 'yfb)noise). Under these assumptions, the covariance ma-
trix for the observed velocity of the n'" cooperative vehicle
can be expressed as follows:

Kn (ta t/) = Kn (ta t/) + ’7721,77,07256[ (4)

In this context, I represents the identity matrix, whose dimen-
sion matches that of the training (measured) data. The calcu-
lation of ., (t,t') can be performed based on the definition of
the RBE, as follows:

|t — /]|
2y2

Under the previously mentioned assumptions, we can represent
Vobs and the future values, V}, in the following way:

o] ). o

n
Vn'"
In this formulation, ¢ and t* represent the time stamps
associated with the sets of observation and future values,
respectively. The function K, (.,.) is derived as per the kernel
matrix described in (4).

kn(t, 1) = exp(— ). 5)

K, (t,t)
K, (t*,t)

K, (t,t%)
K, (t*,t%)

III. PRELIMINARIES AND PROBLEM FORMULATION

Reducing V2V communication significantly, without impact-
ing the operational efficiency of vehicular platoons, poses a
considerable challenge. The main task is to devise control
strategies that ensure the effective performance of MASs while
markedly cutting down on the overuse of communication and
computational resources. Our control strategy leverages local
information, specifically spacing error and velocity error, in
a relative manner. This involves evaluating these parameters
in relation to the state of each agent to adjust the control
input of every following vehicle. The objective is to align
with the lead vehicle’s speed while ensuring a steady time
gap between consecutive vehicles. To mitigate the impact of
communication disruptions in V2V exchanges, our approach
in CACC systems involves using a GP to estimate the speeds
of the vehicles ahead, effectively compensating for any loss
of communication.

A. Vehicle Model and Predictive Control Design

In our research, we examine a platoon consisting of N,
vehicles. Within this platoon, n represents the index of a
vehicle, where n € {0,1,..., N,,—1}, and the vehicle indexed
as n = 0 is designated as the leader of the platoon, as
illustrated in Figure 1. The term d,, refers to the distance
separating the n'* vehicle from the (n — 1)** vehicle and
is defined as follows:

dn =Tp-1— Tn 7[2, (7)

where x, represents the longitudinal position of the rear
bumper of the n*”* vehicle, and [? is the length of that vehicle.
The policy for the preferred spacing is established as follows:

& (t) = dpv,(t) + d. ®)

In the equation (8), v,, denotes the velocity of the nt" vehicle,
dp, is the time gap, and d;, indicates the standstill distance. The
difference between the actual gap and its ideal value is denoted
by Ad,(t) = d,(t) — d}(t), and the velocity difference
between the n'* vehicle and the one ahead is represented by
Awvy,(t) = vp—1(t) —vn(t). Consequently, Ad,, is transformed
into Ad,,(t) = Av,(t) — 0, ayn(t) and AV, = ap_1 — ap,
where a,, is the acceleration of the n'”" vehicle. Considering
the driveline dynamics f,,, the acceleration rate of vehicle 7 is
given by @, (t) = — fnan(t) + faun(t), with u,(t) serving as
the vehicle’s control input. Defining S,, = [Ad,, Av, a,]’
as the state vector for the nt" vehicle, we can represent the
state-space for each vehicle as follows:

$(t) = Ap Sp(t) + Bt (t) + D an_1(t)

01 =4, 0 0
=10 0 —1[S,(t)+ |0 |un(®)+ |1]| an—1(t). (9)
00 _fn fn 0
For the case of n = 0 (the leader), the term a,_1(f) is

substituted with zero. The discrete-time state-space model,
using a first-order forward time approximation, is expressed
by the following equation:

Sn(k+1) =

(I +ty Ap) Su(k) + ts B un(k) + ts Dan_1(k), (10)

where ts represents the interval of sampling time.

The system considers specific constraints on states and
inputs, including limits on acceleration and input values,
compliance with road speed limits, and ensuring a safe vehicle
distance (noting that negative distance implies a collision,
which is to be avoided). The system must consistently adhere
to the following inequalities (hard constraints):

ap™ < an(k) < ap'e, (11a)
up™ < (k) < up?, (11b)
vp (k) < 0™ (11c)

dn (k) > 0. (11d)



Furthermore, to ensure passenger comfort, changes in the
system input are constrained within certain limits as follows:
teu™™ <y (k4 1) — up (k) < tou™®. (12)

The design problem for the Model Predictive Control (MPC)
of each vehicle is formulated as follows:

N-1
k=0

(Sn(k) - Rn)T Qn (Sn(k) - Rn)

oS () ) - S8 1)’
= j=it1

et (k) - vn<k>)2}] ,

subject to: System Constrains, (13)
In this context, u,, refers to the inputs of the system ranging
from k = 0 to k = N — 1. The variables c{ and ¢} are positive
coefficients, and r signifies the count of preceding vehicles that
are exchanging information with the n'" vehicle.

B. The Role of Event-Triggered Conditions

In ETC systems, the moments of transmission are dynamically
determined by an intelligent triggering condition. This condi-
tion is reliant on factors such as system output measurements,
ensuring that transmissions occur only when needed to main-
tain certain performance characteristics. The event-triggered
condition should be regularly assessed and applied at every
specified communication interval.

Within the event-triggered condition framework, it func-
tions as a “fully distributed” system, operating autonomously
without reliance on any central communication structure. In
such systems, when each agent autonomously determines the
timing of its state information broadcast, there is a dual benefit:
both the control effort and the network load are significantly
decreased.

1) Control-aware Triggering: Adopting a strategy where
decisions are made in response to the present states of the
control system leads to what is known as a control-aware
approach. In this approach, control systems operate moderately
when in favorable states but switch to more active modes,
prioritizing data transmission, in less favorable conditions. The
thresholds for transmission are calibrated to ensure that each
vehicle can achieve stability objectives and make transmission
choices aimed at meeting performance criteria, all while
lowering the overall rate of transmission. Consequently, the
value of 7 in 2 for control-aware triggering is shaped as
follows:
for t > 0.

e = jof {t =t | |ICill = B}, (14)

where C; is the cost function in 13.

IV. EXPERIMENTAL RESULTS

In our experimental setup, we treated the Packet Error Rate
(PER) as an independent and identically distributed .:.d.
random variable with values of 0 (representing ideal com-
munication) and 0.6 (indicating a 60% packet loss scenario)
to evaluate the impact of communication loss on CACC
performance. The simulations were conducted with a step size
of 100ms, matching with the periodicity of communication.
To assess the effectiveness and practical applicability of the
proposed strategy, we conducted simulations on a platoon
comprising N, = 10 vehicles. For the implementation of
the optimization problem, we utilized the CVXPY package
in Python [19], and the Gurobi optimization package served
as the solver [20].

To implement the event-triggering condition, each vehicle
is required to keep a record of the state at its latest event-
triggered moment and to constantly observe its current state.
In our approach, we employed an All-Predecessor-Leader-
Following (APLF) topology. Our strategy involves establishing
a link between the communication patterns and the perfor-
mance of the platoon. This relationship depends heavily on
the amount of vehicle information transmitted accurately and
the number of nodes that successfully receive this information.
We analyzed the platoon’s behavior as the threshold values
for the proposed triggering condition were adjusted within a
specific range, focusing on the aspects of vehicle efficiency
and safety.

A. Implementation Aspects

The specifics of the parameters employed in our simulations
are detailed in Table I. In each scenario, which lasts for 60s,
the platoon’s goal is to keep a constant gap time of 0.6s
with the vehicle ahead. During each instance of transmis-
sion, every cooperative vehicle utilizes its five latest velocity
readings, recorded at regular 100ms intervals, to develop a
GP model and derive the parameter set ©,, = {7V, Yn.noise |-
After establishing the GP parameters, the transmitting vehicle
communicates these model parameters, its five latest velocity
measurements, current position, and acceleration, all accom-
panied by their respective time stamps.

Moreover, the transmission packet also carries the vehicle’s
MPC forecast of the next 10 velocity values (as per parameter
N in Table I). Every 100ms, cooperative vehicles refresh their
data about the preceding vehicles, using either recent direct
communications or GP model predictions. This information
feeds into the MPC, adjusting control decisions. The control
module calculates the ego vehicle’s optimal predicted states
and, upon a triggering event, sends the current state and
predicted velocity trajectory to the networking module for
broadcasting.

B. Analysis and Results

In our study, we utilize the outcomes from a TTC scheme,
which sets transmission times at a constant rate of 10H z,
as a baseline to evaluate the efficacy and communication
resource management of our proposed ETC approach. The
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Fig. 2: Functioning of CACC system using TTC with a PER
of 0, and a constant communication rate at 10 Hz.

average transmission rate, indicative of network resource con-
sumption, is compared to assess the effectiveness of control-
aware triggering. The distance error is calculated as the
absolute difference, in meters, between the actual and ideal
inter-vehicle spacing. Moreover, the differences in maximum
and minimum speeds and accelerations among all platoon
members at each time step are valuable metrics for assessing
traffic flow dynamics and the effectiveness of the CACC
system. These disparities are referred to as speed difference
and acceleration difference. In an ideal 10H z TTC scenario,
the smallest errors recorded for mean absolute spacing error,
speed difference, and acceleration difference are 0.302m,
4.693m /s, and 1.257m/s? respectively (refer to Figure 2).
These figures represent the minimum errors achieved through
our methodology.

Figures 2, 3, 4, and 5 each consist of four subplots. The
first row of subplots displays the distance of each vehicle from
the one ahead (d,,(t)), the second row shows each vehicle’s

""" o a T & & &a & & - &
o Y
0 10 20 30 40 50 60
time (s)

Fig. 3: Functioning of the CACC system using control-aware
triggered ETC, with a PER of 0, a threshold at level 6, and
an average communication frequency set at 5.28 Hz.

velocity (vy,(t)), the third row presents acceleration data for
each vehicle, and the final row marks each moment (&, (t)) a
vehicle transmits information to the vehicles following it. It’s
important to note that for the leader of the platoon, dy(¢) is not
defined as it has no preceding vehicle, so this data is omitted
from the first subplots of these figures. Despite a marked
decrease in communication frequency with the ETC scheme,
its response patterns are similar to those observed with the
TTC scheme. This illustrates that communication frequency
can be substantially reduced without compromising control
performance.

Figure 3 illustrates the optimal scenario simulation with

TABLE II: Statistics for Control-aware Triggering with vary-
ing threshold levels

TABLE I: Parameters for modeling and optimization employed

in the simulations.

Parameter Value Parameter Value
N 10 ts 0.1s
Iy 5m ds, 2m
apre® 3m/s? amin —4m/s?
upt 3m/s? umin —4m/s?
fn 1051

Mean Mean
Mean ca Accel-
. Mean com- . Speed .
Thresholding Lo Spacing . eration
munication differ- .
level error differ-
rate [Hz] ence
[m] [m/s] ence
[m/s%]
200 7.52 0.304 4.697 1.252
300 6.82 0.306 4.698 1.252
400 6.72 0.306 4.698 1.253
500 6.04 0.308 4.699 1.251
600 5.99 0.308 4.700 1.251
700 5.28 0.309 4.700 1.250
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Fig. 4: Functioning of the CACC system with TTC, with a
PER of 0.6, and a constant communication rate at 10 Hz.

a level 6 threshold. Here, we only consider the impact
of the ETC scheme under ideal communication conditions
(PER = 0). In contrast, Figure 5 represents the simula-
tion’s most challenging scenario, combining the effects of
both the ETC scheme and the highest Packet Error Rate
(PER), under the most strictest threshold settings. Unlike the
smooth acceleration profile in Figures 2 and 3, acceleration
in other figures shows variability due to the occasional lack
of precise information, either from packet loss or untriggered
transmissions. Nevertheless, vehicles following the proposed
communication strategy can maintain safe following distances.
The control-aware triggering thresholds are set in six evenly
spaced stages ranging from 200 to 700, as detailed in Table
1L

Figure 3 depicts a scenario where communication is initiated
based on the present state of the control system. Notably, the
vehicles at the end of the platoon tend to experience more
challenging control conditions, as they need to adjust for the
errors of the vehicles ahead to maintain string stability in the
platoon. Consequently, these following vehicles, particularly
the later members, engage in more frequent transmissions. For
example, the communication events for £s(t) and &o(t) are
consistently active.

Table II illustrates the balance that can be achieved between
control performance and data transmission rate by adjusting
the trigger level. To provide a more accurate representation
of performance, each value in the table is the average of 70

Fig. 5: Functioning of the CACC system using control-aware
triggered ETC, with a PER of 0.6, a threshold at level 6, and
an average communication frequency set at 5.28 Hz.

simulation runs. The table presents the average values for
spacing error (m), speed difference (m/s), and acceleration
difference (m/s?). The implementation of the ETC policy
creates a compromise between the effectiveness of control and
the frequency of communication. It is evident that reducing
the trigger level results in lower errors but necessitates a
higher rate of data transmission. Extended durations between
events lead to notable errors in performance. Consequently,
increasing the threshold level tends to adversely affect control
performance.

V. CONCLUSION

The scalability of distributed time-triggered communication
methods diminishes as the number of devices on a shared
network surpasses previous capacities. This limitation calls for
a move from regular, periodic communication methods to more
adaptive, opportunistic approaches, such as the one proposed
in this paper. Overutilization of communication resources can
adversely affect their dependability. Therefore, this article
introduces a resource-efficient CACC communication strat-
egy, aimed at reducing the use of communication resources
compared to traditional TTC techniques, while still preserving
the system’s performance. Alternatively, this approach can
enhance system performance at a constant communication rate.
Additionally, to prevent Zeno behavior, the design ensures that
the minimum times between events always have a positive
lower limit.



Furthermore, our approach integrates MBC with ETC to
develop a communication strategy for distributed multi-agent
coordination. In this system, each agent’s decision to transmit
new measurements across the network is primarily based on
the deviation between its current state or model and the state
or model at the time of its last transmission. It is necessary
only to periodically verify and implement the event-triggered
condition at each designated time for communication. The
simulation results demonstrate the feasibility of an ETC
system that not only effectively reduces network load by
47% compared to TTC but also minimally impacts control
performance, such as less than 1% in speed deviation.

REFERENCES

[1] Jennie Lioris, Ramtin Pedarsani, Fatma Yildiz Tascikaraoglu, and Pravin
Varaiya. Platoons of connected vehicles can double throughput in urban
roads. Transportation Research Part C: Emerging Technologies, 77:292—
305, 2017.

[2] Mahdi Razzaghpour, Sahand Mosharafian, Arash Raftari, Javad Moham-
madpour Velni, and Yaser P. Fallah. Impact of information flow topology
on safety of tightly-coupled connected and automated vehicle platoons
utilizing stochastic control. In 2022 European Control Conference
(ECC), pages 27-33, 2022.

[3] Yaser P. Fallah, Ching-Ling Huang, Raja Sengupta, and Hariharan
Krishnan. Analysis of information dissemination in vehicular ad-hoc
networks with application to cooperative vehicle safety systems. [EEE
Transactions on Vehicular Technology, 60(1):233-247, 2011.

[4] Yaser P. Fallah. A model-based communication approach for distributed
and connected vehicle safety systems. In 2016 Annual IEEE Systems
Conference (SysCon), pages 1-6, 2016.

[5] SAE International. V2x communications message set dictionary. Stan-
dard Doc J2735, Society of Automotive Engineers, 07 2020.

[6] Hadi Kazemi, Hossein Nourkhiz Mahjoub, Amin Tahmasbi-Sarvestani,
and Yaser P. Fallah. A learning-based stochastic mpc design for
cooperative adaptive cruise control to handle interfering vehicles. IEEE
Transactions on Intelligent Vehicles, 3(3):266-275, 2018.

[7]1 Steven E. Shladover, Dongyan Su, and Xiao-Yun Lu. Impacts of coop-
erative adaptive cruise control on freeway traffic flow. Transportation
Research Record, 2324(1):63-70, 2012.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

Wouter J. Schakel, Bart van Arem, and Bart D. Netten. Effects of
cooperative adaptive cruise control on traffic flow stability. In /3th
International IEEE Conference on Intelligent Transportation Systems,
pages 759-764, 2010.

Nikita Lyamin, Qichen Deng, and Alexey Vinel. Study of the platooning
fuel efficiency under etsi its-g5 communications. In 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC),
pages 551-556, 2016.

Victor S. Dolk, Jeroen Ploeg, and W. P. Maurice H. Heemels. Event-
triggered control for string-stable vehicle platooning. IEEE Transactions
on Intelligent Transportation Systems, 18(12):3486-3500, 2017.
Steffen Linsenmayer, Dimos V. Dimarogonas, and Frank Allgower.
Event-based vehicle coordination using nonlinear unidirectional con-
trollers. IEEE Transactions on Control of Network Systems, 5(4):1575—
1584, 2018.

Vladimir Vukadinovic, Krzysztof Bakowski, Patrick Marsch, Ian Dexter
Garcia, Hua Xu, MichbB Sybis, PawfB Sroka, Krzysztof WespBowski,
David Lister, and Ilaria Thibault. 3gpp c-v2x and ieee 802.11p for
vehicle-to-vehicle communications in highway platooning scenarios. Ad
Hoc Networks, 74:17-29, 2018.

SAE International. Lte vehicle-to-everything (Ite-v2x) deployment
profiles and radio parameters for single radio channel multi-service
coexistence. Standard Doc J3161, Society of Automotive Engineers,
04 2022.

Michael Lemmon. Event-Triggered Feedback in Control, Estimation,
and Optimization, pages 293-358. Springer London, London, 2010.
Georg S. Seyboth, Dimos V. Dimarogonas, and Karl H. Johansson.
Event-based broadcasting for multi-agent average consensus. Automat-
ica, 49(1):245-252, 2013.

Shixi Wen, Ge Guo, Bo Chen, and Xiue Gao. Event-triggered co-
operative control of vehicle platoons in vehicular ad hoc networks.
Information Sciences, 459:341-353, 2018.

Cameron Nowzari, Eloy Garcia, and Jorge Cortés. Event-triggered com-
munication and control of networked systems for multi-agent consensus.
Automatica, 105:1-27, 2019.

Sahand Mosharafian, Mahdi Razzaghpour, Yaser P. Fallah, and
Javad Mohammadpour Velni. Gaussian process based stochastic model
predictive control for cooperative adaptive cruise control. In 2021 IEEE
Vehicular Networking Conference (VNC), pages 17-23, 2021.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of Machine
Learning Research, 17(83):1-5, 2016.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.



	Introduction
	Related Work
	Cooperative Adaptive Cruise Control (CACC)
	Vehicle-to-Vehicle (V2V) Communication
	Optimizing MAS Communication with Event-Triggered Strategies
	Model-Based Communication (MBC)


	Preliminaries and Problem Formulation
	Vehicle Model and Predictive Control Design
	The Role of Event-Triggered Conditions
	Control-aware Triggering


	Experimental Results
	Implementation Aspects
	Analysis and Results

	Conclusion
	References

