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Abstract—In this study, we explore an innovative approach
to enhance cooperative driving in vehicle platooning systems
through the use of vehicle-to-everything (V2X) communication
technologies. As Connected and Autonomous Vehicles (CAVs)
integrate into increasingly dense traffic networks, the challenge of
efficiently managing communication resources becomes crucial.
Our focus is on optimizing communication strategies to support
the growing network of interconnected vehicles without com-
promising traffic safety and efficiency. We introduce a novel
control-aware communication framework designed to reduce
communication overhead while maintaining essential perfor-
mance standards in vehicle platoons. This method pivots from
traditional periodic communication to more adaptable aperiodic
or event-triggered schemes. Additionally, we integrate Model-
Based Communication (MBC) to enhance vehicle perception un-
der suboptimal communication conditions. By merging control-
aware communication with MBC, our approach effectively con-
trols vehicle platoons, striking a balance between communication
resource conservation and control performance. The results show
a marked decrease in communication frequency by 47%, with
minimal impact on control accuracy, such as less than 1%
variation in speed. Extensive simulations validate the effectiveness
of our combined approach in managing communication and
control in vehicle platoons, offering a promising solution for
future cooperative driving systems.

Index Terms—Cooperative Driving, Distributed Event-
triggered Communication, Model-based Communication,
Multi-Agent Systems, Platooning

I. INTRODUCTION

Cooperative Adaptive Cruise Control (CACC), utilizing

Vehicle-to-Vehicle (V2V) communication, is key to improving

traffic dynamics by promoting string stability and enabling

reduced spacing between vehicles [1], [2]. At the heart of

distributed Multi-Agent Systems (MASs) is the critical role

of information sharing, which is essential for achieving a

comprehensive understanding of the situation. However, exces-

sive use of communication channels can lead to congestion,

characterized by longer latency periods, increased instances

of packet loss, and decreased throughput. These issues can

significantly affect the stability, efficiency, and dependability

of the system [3]. Therefore, when designing distributed

control systems for MASs, it is imperative to balance achieving

the targeted control outcomes with the judicious use of limited

communication and computational resources. This approach

ensures that system performance is optimized without over-

whelming the available infrastructure.

This abstract is centered on the concept of Model-Based

Communication (MBC), a novel strategy aimed at scaling

communication more effectively, with a particular emphasis on

alleviating channel congestion [4]. MBC differentiates itself

Fig. 1: An explanation of the communication structure used

by vehicles is presented, where dashed lines represent the

exchange of information between them. The term di is used to

describe the gap between the nth vehicle and the one directly

in front of it.

by employing a content structure optimized for conveying

information pertinent to the integrated dynamics of both

vehicle and driver behavior. This approach deviates from

the traditional content structure of Basic Safety Messages

(BSM) as specified in the J2735 standard [5]. Such a strategy

becomes increasingly pertinent in the context of diverse vehi-

cle dynamic modeling methods. Among these methods, non-

parametric Bayesian inference techniques, such as Gaussian

Processes (GP), are recognized for their considerable potential

and effectiveness.

Unlike the commonly used Time-Triggered Communication

(TTC) in current vehicle platoon control studies, which re-

lies on consistent data exchange intervals without adapting

to measurement changes, MBC introduces a more flexible

and responsive approach. Traditional TTC operates on preset

communication intervals, often overlooking real-time vehicle

conditions, resulting in suboptimal use of communication

resources, a critical issue in CACC systems. In contrast, MBC

advocates for a communication method that is more attuned

to the control requirements. This approach schedules transmis-

sion times based on the actual output data, aiming to achieve

a harmonious balance between communication efficiency and

control accuracy. Focusing on the specific demands of the

control system, MBC has the potential to facilitate more

effective and performance-driven communication strategies in

the context of vehicle platooning.

The design of an effective Event-Triggered Communication

(ETC) system for vehicle platoons is essential due to the

inherent balance required between the control performance

of the platoon and the usage of communication resources.

This paper details the development of such a system and

offers a fresh viewpoint on modeling the interactions among

various elements of a vehicle platoon to enhance its overall

performance. Key contributions of this paper include:

a
rX

iv
:2

3
0
3
.0

8
0
7
6
v
2
  
[c

s.
M

A
] 

 1
7
 J

a
n
 2

0
2
4



• Our paper presents a novel communication solution that

integrates ETC with MBC for the collaborative control

of vehicle platoons.

• We outline a comprehensive ETC framework designed for

distributed application in vehicle platoons. This approach

notably decreases the average rate of communication

while only minimally impacting the effectiveness of con-

trol performance.

II. RELATED WORK

This section delves into the management of the collective be-

havior of multiple CAVs, which hinges on the vehicles’ shared

understanding of their respective states, such as the distance

between vehicles and their speeds. This mutual awareness is

achieved through a combination of inter-vehicle sensing and

communication. Specifically, we will explore one of the key

applications of cooperative driving, CACC, along with V2V

communication.

A. Cooperative Adaptive Cruise Control (CACC)

For CACC systems to be effective, they need to be robust

against unique scenarios like vehicles abruptly joining the

platoon or sudden braking by lead vehicles [6]. The advanced

and accurate data provided by V2V communication enables

CACC vehicles to closely follow the vehicle ahead, even at

significantly reduced distances. This not only improves user

acceptance but can also markedly enhance lane capacity and

traffic flow dynamics. Studies have shown that vehicle platoon-

ing can significantly contribute to solving various transporta-

tion challenges [7], [8]. A key aspect of a successful CACC

system is maintaining minimal spacing error, the deviation

from the desired gap between vehicles. Keeping this error

small is crucial for minimizing collision risks and reaping the

benefits of platooning, such as reduced fuel consumption and

increased traffic throughput [9].

Imperfections in communication can greatly impact the

efficacy of CACC systems. Issues such as prolonged com-

munication delays or insufficient transmission rates can dis-

rupt string stability and various other performance aspects,

especially concerning the maintenance of a specific time gap.

Consequently, it is crucial to have a sufficiently high number of

transmissions over time and minimal communication delays to

ensure the desired behavior in vehicle platooning is achieved

[10].

B. Vehicle-to-Vehicle (V2V) Communication

The exchange of information is crucial for the effective de-

ployment of vehicle platoons, facilitating the implementation

of control actions based on current road and traffic situations.

Numerous studies have investigated the influence of commu-

nication networks on the performance of platoons [11], [12].

A significant limitation of TTC is its rigidity and limited

scalability. This section introduces ETC and MBC as solutions

that offer flexibility and scalability. Within the framework

of the Cellular Vehicle-to-Everything (C-V2X) standard, a

specific lower threshold is set for the Minimum Inter-Event

Time (MIET), defining the minimum duration that must elapse

between two successive transmissions [13]. The MIET ranges

from a lower limit of 100ms to an upper limit of 600ms. This

positive lower bound is essential to prevent Zeno behavior,

which is characterized by an infinite number of events in a

finite time, and to ensure the practicality of implementing an

ETC system.

1) Optimizing MAS Communication with Event-Triggered

Strategies: Strategies based on event triggers are widely

recognized for their effectiveness in optimizing the use of

communication resources within MASs [14], [15]. These ap-

proaches, which stand in contrast to the conventional TTC,

focus on transmitting data only when it is required to ful-

fill specific control system criteria. Studies have shown that

systems triggered by events demonstrate superior real-time

performance compared to those operating on time triggers. For

instance, research suggests a method to reduce the communi-

cation load by employing a versatile event-triggering strategy,

which involves adjustable parameters tailored for each member

of a vehicle platoon [16].

In this approach, agents transmit their current status to

adjacent agents only if the difference between their present

state and the last communicated state exceeds a dynamically

changing threshold, or when it hits the peak of the inter-event

time span. To make event-triggered methods more practical,

the concept of setting a minimum time gap between consec-

utive events has been investigated [17]. The event-triggered

mechanism for each vehicle in the system can be characterized

in the following manner:

tk+1 = tk +min (τk, τ) , (1)

where τ represents a positive constant that signifies the max-

imum limit of the interval between events. The value of τk is

determined using the equation given below:

τk = inf
t>tk

{

t− tk | C
(

S(t) , S̃ (t)
)

> 0
}

, for t g 0.

(2)

Upon receiving fresh information, every agent updates its con-

trol input and employs the newly acquired model for predictive

purposes. It is important to highlight that the timing of these

triggers is not coordinated across agents. In these methods,

each vehicle independently operates a parallel version of

the dynamics of its neighboring vehicles. In the suggested

setup, vehicles rely on their self-transmitted model to decide

the timing of data transmission. If the prediction from the

kinematic model remains accurate since the last transmission,

the vehicle will not transmit a new message.

2) Model-Based Communication (MBC): In the develop-

ment of CACC systems, it’s crucial to consider the inherent

uncertainties related to the state and behavior of vehicles,

as well as in their communication channels [18]. Given that

information from neighboring vehicles isn’t always accessible,

it becomes necessary for each agent to operate an estimation

system. Within this framework, agents utilize a predictive

model to estimate the measurements from other agents in



scenarios where data packets are not received, either due

to loss of packets or because an event did not prompt a

transmission.

In our study, the velocity of each cooperative vehicle over

time, denoted as vn(t), is modeled as a GP. This process is

characterized by a mean function, mn(t), and a covariance

kernel function, κn(t, t
′), as follows:

vn(t) ∼ GP (mn(t), κn (t, t
′)) . (3)

Our focus is on integrating insights derived from observed

velocity data regarding the underlying function, vn(t), and

its future projections. We assume that for each cooperative

vehicle, the process mean is zero, mn(t) = 0. We use a

Radial Basis Function (RBF) as the covariance kernel and

consider the measurement noises to be independent and iden-

tically distributed (i.i.d.) following a Gaussian distribution,

N (0, γ2
n,noise). Under these assumptions, the covariance ma-

trix for the observed velocity of the nth cooperative vehicle

can be expressed as follows:

Kn(t, t
′) = κn(t, t

′) + γ2
n,noiseI (4)

In this context, I represents the identity matrix, whose dimen-

sion matches that of the training (measured) data. The calcu-

lation of κn(t, t
′) can be performed based on the definition of

the RBF, as follows:

κn(t, t
′) = exp(−

||t− t′||2

2γ2
n

). (5)

Under the previously mentioned assumptions, we can represent

Vobs
n , and the future values, V∗

n, in the following way:
[

Vobs

n

Vn
∗

]

∼ N

(

0,

[

Kn(t, t) Kn (t, t
∗)

Kn (t
∗, t) Kn (t

∗, t∗)

])

, (6)

In this formulation, t and t
∗ represent the time stamps

associated with the sets of observation and future values,

respectively. The function Kn(., .) is derived as per the kernel

matrix described in (4).

III. PRELIMINARIES AND PROBLEM FORMULATION

Reducing V2V communication significantly, without impact-

ing the operational efficiency of vehicular platoons, poses a

considerable challenge. The main task is to devise control

strategies that ensure the effective performance of MASs while

markedly cutting down on the overuse of communication and

computational resources. Our control strategy leverages local

information, specifically spacing error and velocity error, in

a relative manner. This involves evaluating these parameters

in relation to the state of each agent to adjust the control

input of every following vehicle. The objective is to align

with the lead vehicle’s speed while ensuring a steady time

gap between consecutive vehicles. To mitigate the impact of

communication disruptions in V2V exchanges, our approach

in CACC systems involves using a GP to estimate the speeds

of the vehicles ahead, effectively compensating for any loss

of communication.

A. Vehicle Model and Predictive Control Design

In our research, we examine a platoon consisting of Nv

vehicles. Within this platoon, n represents the index of a

vehicle, where n ∈ {0, 1, . . . , Nv−1}, and the vehicle indexed

as n = 0 is designated as the leader of the platoon, as

illustrated in Figure 1. The term dn refers to the distance

separating the nth vehicle from the (n − 1)th vehicle and

is defined as follows:

dn = xn−1 − xn − lvn, (7)

where xn represents the longitudinal position of the rear

bumper of the nth vehicle, and lvn is the length of that vehicle.

The policy for the preferred spacing is established as follows:

d∗n(t) = δn vn(t) + dsn. (8)

In the equation (8), vn denotes the velocity of the nth vehicle,

δn is the time gap, and dsn indicates the standstill distance. The

difference between the actual gap and its ideal value is denoted

by ∆dn(t) = dn(t) − d∗n(t), and the velocity difference

between the nth vehicle and the one ahead is represented by

∆vn(t) = vn−1(t)−vn(t). Consequently, ∆ḋn is transformed

into ∆ḋn(t) = ∆vn(t) − δn an(t) and ∆v̇n = an−1 − an,

where an is the acceleration of the nth vehicle. Considering

the driveline dynamics fn, the acceleration rate of vehicle n is

given by ȧn(t) = −fnan(t) + fnun(t), with un(t) serving as

the vehicle’s control input. Defining Sn = [∆dn ∆vn an]
T

as the state vector for the nth vehicle, we can represent the

state-space for each vehicle as follows:

Ṡn(t) = An Sn(t) +Bn un(t) +Dan−1(t)

=





0 1 −δn
0 0 −1
0 0 −fn



Sn(t) +





0
0
fn



un(t) +





0
1
0



 an−1(t). (9)

For the case of n = 0 (the leader), the term an−1(t) is

substituted with zero. The discrete-time state-space model,

using a first-order forward time approximation, is expressed

by the following equation:

Sn(k + 1) =

(I + ts An)Sn(k) + ts Bn un(k) + ts Dan−1(k), (10)

where ts represents the interval of sampling time.

The system considers specific constraints on states and

inputs, including limits on acceleration and input values,

compliance with road speed limits, and ensuring a safe vehicle

distance (noting that negative distance implies a collision,

which is to be avoided). The system must consistently adhere

to the following inequalities (hard constraints):

amin
n f an(k) f amax

n , (11a)

umin
n f un(k) f umax

n , (11b)

vn(k) f vmax, (11c)

dn(k) > 0. (11d)



Furthermore, to ensure passenger comfort, changes in the

system input are constrained within certain limits as follows:

ts u
min
n f un(k + 1)− un(k) f ts u

max
n . (12)

The design problem for the Model Predictive Control (MPC)

of each vehicle is formulated as follows:

N−1
∑

k=0

[

(Sn(k)−Rn)
T Qn (Sn(k)−Rn)

+

n−1
∑

i=n−r

[

cdi

(

xi(k)− xn(k)−
n
∑

j=i+1

(d∗j (k) + lvj )
)2

+ cvi

(

vi(k)− vn(k)
)2]

]

,

subject to: System Constrains, (13)

In this context, un refers to the inputs of the system ranging

from k = 0 to k = N−1. The variables cdi and cvi are positive

coefficients, and r signifies the count of preceding vehicles that

are exchanging information with the nth vehicle.

B. The Role of Event-Triggered Conditions

In ETC systems, the moments of transmission are dynamically

determined by an intelligent triggering condition. This condi-

tion is reliant on factors such as system output measurements,

ensuring that transmissions occur only when needed to main-

tain certain performance characteristics. The event-triggered

condition should be regularly assessed and applied at every

specified communication interval.

Within the event-triggered condition framework, it func-

tions as a ”fully distributed” system, operating autonomously

without reliance on any central communication structure. In

such systems, when each agent autonomously determines the

timing of its state information broadcast, there is a dual benefit:

both the control effort and the network load are significantly

decreased.

1) Control-aware Triggering: Adopting a strategy where

decisions are made in response to the present states of the

control system leads to what is known as a control-aware

approach. In this approach, control systems operate moderately

when in favorable states but switch to more active modes,

prioritizing data transmission, in less favorable conditions. The

thresholds for transmission are calibrated to ensure that each

vehicle can achieve stability objectives and make transmission

choices aimed at meeting performance criteria, all while

lowering the overall rate of transmission. Consequently, the

value of τk in 2 for control-aware triggering is shaped as

follows:

τk = inf
t>tk

{t− tk | ∥Ci∥ g β} , for t g 0. (14)

where Ci is the cost function in 13.

IV. EXPERIMENTAL RESULTS

In our experimental setup, we treated the Packet Error Rate

(PER) as an independent and identically distributed i.i.d.
random variable with values of 0 (representing ideal com-

munication) and 0.6 (indicating a 60% packet loss scenario)

to evaluate the impact of communication loss on CACC

performance. The simulations were conducted with a step size

of 100ms, matching with the periodicity of communication.

To assess the effectiveness and practical applicability of the

proposed strategy, we conducted simulations on a platoon

comprising Nv = 10 vehicles. For the implementation of

the optimization problem, we utilized the CVXPY package

in Python [19], and the Gurobi optimization package served

as the solver [20].

To implement the event-triggering condition, each vehicle

is required to keep a record of the state at its latest event-

triggered moment and to constantly observe its current state.

In our approach, we employed an All-Predecessor-Leader-

Following (APLF) topology. Our strategy involves establishing

a link between the communication patterns and the perfor-

mance of the platoon. This relationship depends heavily on

the amount of vehicle information transmitted accurately and

the number of nodes that successfully receive this information.

We analyzed the platoon’s behavior as the threshold values

for the proposed triggering condition were adjusted within a

specific range, focusing on the aspects of vehicle efficiency

and safety.

A. Implementation Aspects

The specifics of the parameters employed in our simulations

are detailed in Table I. In each scenario, which lasts for 60s,

the platoon’s goal is to keep a constant gap time of 0.6s
with the vehicle ahead. During each instance of transmis-

sion, every cooperative vehicle utilizes its five latest velocity

readings, recorded at regular 100ms intervals, to develop a

GP model and derive the parameter set Θn = {γn, γn,noise}.

After establishing the GP parameters, the transmitting vehicle

communicates these model parameters, its five latest velocity

measurements, current position, and acceleration, all accom-

panied by their respective time stamps.

Moreover, the transmission packet also carries the vehicle’s

MPC forecast of the next 10 velocity values (as per parameter

N in Table I). Every 100ms, cooperative vehicles refresh their

data about the preceding vehicles, using either recent direct

communications or GP model predictions. This information

feeds into the MPC, adjusting control decisions. The control

module calculates the ego vehicle’s optimal predicted states

and, upon a triggering event, sends the current state and

predicted velocity trajectory to the networking module for

broadcasting.

B. Analysis and Results

In our study, we utilize the outcomes from a TTC scheme,

which sets transmission times at a constant rate of 10Hz,

as a baseline to evaluate the efficacy and communication

resource management of our proposed ETC approach. The



Fig. 2: Functioning of CACC system using TTC with a PER

of 0, and a constant communication rate at 10 Hz.

average transmission rate, indicative of network resource con-

sumption, is compared to assess the effectiveness of control-

aware triggering. The distance error is calculated as the

absolute difference, in meters, between the actual and ideal

inter-vehicle spacing. Moreover, the differences in maximum

and minimum speeds and accelerations among all platoon

members at each time step are valuable metrics for assessing

traffic flow dynamics and the effectiveness of the CACC

system. These disparities are referred to as speed difference

and acceleration difference. In an ideal 10Hz TTC scenario,

the smallest errors recorded for mean absolute spacing error,

speed difference, and acceleration difference are 0.302m,

4.693m/s, and 1.257m/s2 respectively (refer to Figure 2).

These figures represent the minimum errors achieved through

our methodology.

Figures 2, 3, 4, and 5 each consist of four subplots. The

first row of subplots displays the distance of each vehicle from

the one ahead (dn(t)), the second row shows each vehicle’s

TABLE I: Parameters for modeling and optimization employed

in the simulations.

Parameter Value Parameter Value

N 10 ts 0.1 s
lvn 5m dsn 2m
amax
n 3m/s2 amin

n −4m/s2

umax
n 3m/s2 umin

n −4m/s2

fn 10 s−1

Fig. 3: Functioning of the CACC system using control-aware

triggered ETC, with a PER of 0, a threshold at level 6, and

an average communication frequency set at 5.28 Hz.

velocity (vn(t)), the third row presents acceleration data for

each vehicle, and the final row marks each moment (ξn(t)) a

vehicle transmits information to the vehicles following it. It’s

important to note that for the leader of the platoon, d0(t) is not

defined as it has no preceding vehicle, so this data is omitted

from the first subplots of these figures. Despite a marked

decrease in communication frequency with the ETC scheme,

its response patterns are similar to those observed with the

TTC scheme. This illustrates that communication frequency

can be substantially reduced without compromising control

performance.

Figure 3 illustrates the optimal scenario simulation with

TABLE II: Statistics for Control-aware Triggering with vary-

ing threshold levels

Thresholding
level

Mean com-
munication
rate [Hz]

Mean
Spacing
error
[m]

Mean
Speed
differ-
ence
[m/s]

Mean
Accel-
eration
differ-
ence
[m/s2]

200 7.52 0.304 4.697 1.252
300 6.82 0.306 4.698 1.252
400 6.72 0.306 4.698 1.253
500 6.04 0.308 4.699 1.251
600 5.99 0.308 4.700 1.251
700 5.28 0.309 4.700 1.250



Fig. 4: Functioning of the CACC system with TTC, with a

PER of 0.6, and a constant communication rate at 10 Hz.

a level 6 threshold. Here, we only consider the impact

of the ETC scheme under ideal communication conditions

(PER = 0). In contrast, Figure 5 represents the simula-

tion’s most challenging scenario, combining the effects of

both the ETC scheme and the highest Packet Error Rate

(PER), under the most strictest threshold settings. Unlike the

smooth acceleration profile in Figures 2 and 3, acceleration

in other figures shows variability due to the occasional lack

of precise information, either from packet loss or untriggered

transmissions. Nevertheless, vehicles following the proposed

communication strategy can maintain safe following distances.

The control-aware triggering thresholds are set in six evenly

spaced stages ranging from 200 to 700, as detailed in Table

II.

Figure 3 depicts a scenario where communication is initiated

based on the present state of the control system. Notably, the

vehicles at the end of the platoon tend to experience more

challenging control conditions, as they need to adjust for the

errors of the vehicles ahead to maintain string stability in the

platoon. Consequently, these following vehicles, particularly

the later members, engage in more frequent transmissions. For

example, the communication events for ξ8(t) and ξ9(t) are

consistently active.

Table II illustrates the balance that can be achieved between

control performance and data transmission rate by adjusting

the trigger level. To provide a more accurate representation

of performance, each value in the table is the average of 70

Fig. 5: Functioning of the CACC system using control-aware

triggered ETC, with a PER of 0.6, a threshold at level 6, and

an average communication frequency set at 5.28 Hz.

simulation runs. The table presents the average values for

spacing error (m), speed difference (m/s), and acceleration

difference (m/s2). The implementation of the ETC policy

creates a compromise between the effectiveness of control and

the frequency of communication. It is evident that reducing

the trigger level results in lower errors but necessitates a

higher rate of data transmission. Extended durations between

events lead to notable errors in performance. Consequently,

increasing the threshold level tends to adversely affect control

performance.

V. CONCLUSION

The scalability of distributed time-triggered communication

methods diminishes as the number of devices on a shared

network surpasses previous capacities. This limitation calls for

a move from regular, periodic communication methods to more

adaptive, opportunistic approaches, such as the one proposed

in this paper. Overutilization of communication resources can

adversely affect their dependability. Therefore, this article

introduces a resource-efficient CACC communication strat-

egy, aimed at reducing the use of communication resources

compared to traditional TTC techniques, while still preserving

the system’s performance. Alternatively, this approach can

enhance system performance at a constant communication rate.

Additionally, to prevent Zeno behavior, the design ensures that

the minimum times between events always have a positive

lower limit.



Furthermore, our approach integrates MBC with ETC to

develop a communication strategy for distributed multi-agent

coordination. In this system, each agent’s decision to transmit

new measurements across the network is primarily based on

the deviation between its current state or model and the state

or model at the time of its last transmission. It is necessary

only to periodically verify and implement the event-triggered

condition at each designated time for communication. The

simulation results demonstrate the feasibility of an ETC

system that not only effectively reduces network load by

47% compared to TTC but also minimally impacts control

performance, such as less than 1% in speed deviation.
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