
RA-BNN: Constructing a Robust & Accurate
Binary Neural Network Using a Novel Network

Growth Mechanism to Defend Against BFA
Adnan Siraj Rakin

Binghamton University
arakin@binghamton.edu

Li Yang
University of North Carolina

lyang50@uncc.edu

Jingtao Li
SONY AI

jingtao.li@sony.com

Fan Yao
University of Central Florida

fan.yao@ucf.edu

Chaitali Chakrabarti
Arizona State University

chaitali@asu.edu

Yu Cao
University of Minnesota

Twin Cities
yucao@umn.edu

Jae-sun Seo
Cornell Tech

js3528@cornell.edu

Deliang Fan
Arizona State University

dfan@asu.edu

Abstract—Adversarial bit-flip attack (BFA), a type of
powerful adversarial weight attack demonstrated in real
computer systems has shown enormous success in compro-
mising Deep Neural Network (DNN) performance with a
minimal amount of model parameter perturbation through
rowhammer-based computer main memory bit-flip. For
the first time in this work, we demonstrate to defeat
adversarial bit-flip attacks by developing a Robust and
Accurate Binary Neural Network (RA-BNN) that adopts
a complete BNN (i.e., weights and activations are both
in binary). Prior works have demonstrated that binary
or clustered weights could intrinsically improve a net-
work’s robustness against BFA, while in this work, we
further reveal that binary activation could improve such
robustness even better. However, with both aggressive
binary weight and activation representations, the complete
BNN suffers from poor clean (i.e., no attack) inference
accuracy. To counter this, we propose an efficient two-stage
complete BNN growing method for constructing simulta-
neously robust and accurate BNN, named RA-Growth. It
selectively grows the channel size of each BNN layer based
on trainable channel-wise binary mask learning with a
Gumbel-Sigmoid function. The wider binary network (i.e.,
RA-BNN) has dual benefits: it can recover clean inference
accuracy and significantly higher resistance against BFA.
Our evaluation of the CIFAR-10 dataset shows that the
proposed RA-BNN can improve the resistance to BFA
by up to 100 →. On ImageNet, with a sufficiently large
(e.g., 5,000) number of bit-flips, the baseline BNN accuracy

Corresponding author email: arakin@binghamton.edu. Code Avail-
able at: https://github.com/adnansirajrakin/IEEECCWC2025.

979-8-3315-0769-5/25/$31.00©2025 IEEE

drops to 4.3 % from 51.9 %, while our RA-BNN accuracy
only drops to 37.1 % from 60.9 %, making it the best
defense performance.

I. INTRODUCTION

Nowadays, Deep Neural Networks (DNNs) have been
deployed in many safety-critical applications [1]. The se-
curity of DNN can be compromised using adversarial in-
put examples [2], where the adversary maliciously crafts
and adds input noise to fool a DNN model. Recently,
the vulnerability of model parameter (e.g., weight) [3],
[4] perturbation has raised another dimension of security
concern on the robustness of DNN model.

The adversarial weight attack is defined as an at-
tacker perturbing the target DNN model parameters to
achieve malicious goals. Such perturbation of model
parameters is practically feasible nowadays because of
the development of advanced computer hardware fault
injection techniques, such as rowhammer attack [5]
and under-voltage attack [6]. Moreover, the develop-
ment of side-channel attacks [7]–[9] could easily leak
the complete DNN model information during inference
(e.g., model architecture, weights, and gradients). Such
a threat allows an attacker to exploit a DNN inference
machine (e.g., GPU, FPGA, mobile device) under an
almost white-box (i.e., the attacker knows everything
about a target DNN model) threat model. Inspired by
the potential threats of fault injection and side-channel
attacks, several adversarial DNN model parameter attack
algorithms [3], [4], [10], [11] have been developed

00219

2
0

2
5

 I
E

E
E

 1
5

t
h

 A
n

n
u

a
l

C
o

m
p

u
t
in

g
 a

n
d

 C
o

m
m

u
n

ic
a

t
io

n
 W

o
r
k

s
h

o
p

 a
n

d
 C

o
n

fe
r
e

n
c
e

 (
C

C
W

C
)

|
 9

7
9

-8
-3

3
1

5
-0

7
6

9
-5

/
2

5
/
$

3
1

.0
0

 ©
2

0
2

5
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
C

C
W

C
6

2
9

0
4

.2
0

2
5

.1
0

9
0

3
9

7
7

Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

88

92 2500

82 1-bit 2-bit 4-bit 6-bit 8-bit
82.3

1000

0

85.574 100

90.3

25 18

91.7

20

92.1

Test Accuracy (%)
of Bit-Flips

Our 1-bit
Objective

Te
st

 A
cc

ur
ac

y
(%

)

of

 B
it-

Fl
ip

s

Bit-Width of Weights and Activation

1080

Fig. 1: The orange curve shows the accuracy trend with
Bit-Width of weights and activations of Resnet-20 on
Cifar10. The blue curve shows the trend for # of bit-
flips required to complete malfunction. On the left, the
red label depicts the objective of this work which is to
simultaneously improve robustness and clean accuracy.

to study the model behavior under malicious weight
perturbation.

Prior study [3] has shown that DNN with weight
parameters stored in floating point IEEE format in com-
puter main memory could be easily hijacked through
single bit flip in the exponential bit, while the quantized
weights are very robust against such bit-flip noise. How-
ever, our later works [4], [10], [12] have demonstrated
a methodology, called adversarial bit-flip attack (BFA)
as one kind of adversarial weight attacks, to be highly
successful in identifying a small portion of vulnerable
weight bits for noise-resilient quantized weight DNN
stored in computer main memory (e.g., DRAM), through
gradient ranking based searching algorithm. After lo-
cating this tiny amount (e.g., tens out of millions) of
memory bits in a large DNN model, the attacker can
precisely flip them through a well-studied memory fault
injection technique, i.e., rowhammer [4], to hijack DNN
functionality (e.g., degrading accuracy to a random guess
level). In our prior work [4], we have demonstrated in
the real computer system that the bit-flip attack could
successfully identify vulnerable weight bits and destroy
the functionality of a running DNN model in minutes
through precise flipping techniques .

A series of defense works [13], [14] have attempted to
mitigate the potent threat of BFA. Among them, the bi-
nary weight neural network from our prior work [13] has
proven to be the most successful one. However, [13] has
not explored the impact of binary activation. For a binary
weight neural network, with a sufficiently large number
of attack iterations (e.g., hundreds of bit-flips, rather
than tens), the attacker can still successfully degrade its
accuracy to a random guess level for specific models.
Moreover, due to aggressively compressing the floating-
point weights (i.e., 32 bits or more) into binary (1 bit),

Binary Neural Network (BNN) inevitably sacrifices its
clean model accuracy by 10-30 %, which is widely
discussed in many prior works [15]–[17].

As a motivation of this work, we tested the ac-
curacy and robustness trade-off of a ResNet-20 [18]
network with different bit-width of quantized weights
and activation using CIFAR-10 dataset [19], following
the same bit-flip attack methods in prior works [4],
[10]. As displayed in Fig. 1, a lower bit-width network
increases network robustness against BFA, especially
for BNN (1 bit) – a trend similar to prior work [13].
Besides, BNN has additional computation and memory
benefits, which makes it a great candidate to reduce
neural network computation complexity [20]. As a result,
prior works [16] investigate different ways of training
a complete BNN (i.e., both weight and activation are
binary). However, a general conclusion is that complete
BNN suffers from heavy inference accuracy loss. In
Fig. 1, we observe a similar trend where decreasing
the bit-width of a model affects the inference accuracy
negatively. Such observations present a challenging op-
timization problem where a lower bit-width network has
improved robustness but at the cost of lower accuracy.

To mitigate this, recent works have proposed different
methods to improve the accuracy of a BNN [15], [21]–
[24]. Among them, increasing the network width [24]
is a proven strategy to improve BNN accuracy, with
increasing model size. On the other side, larger width
is demonstrated to improve the resilience against ad-
versarial weight [10] and input [25] noise. Hence, in
this work, we propose to leverage this dual property of
a wider neural network: first, to recover the accuracy
of a binary neural network and, second, to defend
against BFA. However, increasing the width of a model
formally known as model growing is a multidimensional
optimization problem and requires a more sophisticated
design, especially for a complete BNN.

Our goal here is to develop a complete binary neural
network (BNN) to improve its robustness (i.e., resistance
to bit-flip attack (BFA)), while not sacrificing the clean
accuracy (see Fig. 1). To achieve this, we propose
Robust & Accurate Binary Neural Network (RA-BNN), a
novel defense scheme against BFA, comprising two key
components. First, inspired by our prior work [13], we
take advantage of BNN’s capability to provide improved
resistance against BFA by completely binarizing both
activations and weights of every DNN layer. Second,
to further boost robustness and address the clean model
accuracy loss, we develop an efficient network growing
method designed for BNN, RA-Growth, which grows the

00220
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

output channels of every BNN layer based on trained
channel masks. We summarize our contributions as:

• First, our prior conference work [13] is the first to
investigate and analyze the effect of binary weights
in defending against BFA. In this work, after fur-
ther analyzing the impact of binary activation, our
proposed RA-BNN, utilizes binary neural network’s
(BNN) intrinsic robustness improvement against
BFA to binarize both weight and activation of a
DNN model as an effective defense method. Note
that, unlike most prior BNN related works, RA-
BNN binarizes the weights of every layer, including
the first and last layer. We refer this as complete
BNN. All activations are binarized except the input
into the first (i.e., input image) and last layer (i.e.,
final classification layer).

• Second, to compensate clean model accuracy loss
of a complete BNN model, we propose a novel bi-
nary model growing scheme, RA-Growth, intending
to construct a simultaneously robust and accurate
binary neural network. Our proposed RA-Growth
adopts a trainable mask-based growing method to
gradually and selectively grow the output channels
of BNN layers. Since the network growing in-
evitably requires immense computing complexity, to
improve training efficiency, our RA-Growth follows
a two-stage training mechanism with an early stop
mechanism during network growth. The first stage
is to jointly train binary weights and channel-
wise masks through Gumbel-Sigmoid function at
the early iterations of training. As the growth of
binary channels converges, it goes to the second
stage, where the channel growing is stopped, and
only the binary weights will be trained based on
the network structure trained in stage-1 to minimize
accuracy loss further.

• Third, relying on our proposed binary model grow-
ing scheme, the RA-BNN achieves the best de-
fense performance ever reported in the literature,
with significantly improved robustness against BFA.
Meanwhile, it recovers the clean accuracy of a
binary model close to the 8-bit counterpart with a
smaller model size.

• We perform extensive experiments on CIFAR-10,
CIFAR-100 and ImageNet datasets on popular DNN
architectures (e.g., ResNet, VGG), where our RA-
BNN all achieves the best defense performance to
date. The evaluation on CIFAR-10 shows that the
RA-BNN can improve the resistance to BFA by

more than 29-104 →. On ImageNet, for the first
time, RA-BNN can completely defeat BFA (i.e.,
5,000 bit-flips only degrade the accuracy to around
37%). In comparison, the accuracy of baseline BNN
without growing degrades to 4.3 % with 5,000 bit-
flips.

II. BACKGROUND AND RELATED WORK

A. Adversarial Weight Attack
Adversarial input example attack [25], [26] has been

the primary focus of DNN security analysis. However,
the recent advancement of adversarial weight attack [3],
[4], [10], [12] has also exposed serious vulnerability
issues, where the adversary maliciously perturbs the
weight parameters to compromise the performance of
DNN. Among them, our prior proposed adversarial Bit-
Flip Attack (BFA) [4], [10], is one of the most pow-
erful attacks, which is demonstrated in real computer
system to inject malicious fault into a DNN model
thorough rowhammer to flip an extremely small amount
of memory bits of the weight parameters stored in main
memory (i.e., DRAM). Such rowhammer based BFA on
the computer main memory was proven to be successful
even with the traditional error correction and detection
method, like ECC, etc. [4], [27]. Following the accuracy
degradation attack through BFA, a more recent variant
of our BFA can perform a targeted attack or Trojan
attack [11], [12], where the adversary can fool the DNN
to predict inputs to a specific target class. To dive deep
into the adversarial bit-flip attack, next, we introduce the
threat model, attack methodology, and existing defense
measures. To counter the efficacy of BFA, we have
explored weight binarization [13], piece-wise weight
clustering [13], weight reconstruction [14], and model
size increasing [11] in our prior works. Among them,
the binarization of the weight parameters [13] shows
significant improvement in limiting the efficacy of BFA,
but sacrificing clean accuracy a lot.

B. Threat Model
Prior works [3], [4], [10] of malicious weight attacks

have concluded that attacking a model with quantized
weights (e.g., 8-bit or lower) is more difficult than
attacking a full-precision weight model, since single bit-
flip in the exponential bit of IEEE format of floating
point representation could destroy the system [3]. While,
the weight quantization could restrict the range of weight
values that an attacker might manipulate. Besides, DNN
weight quantization is one of the most popular tech-
niques to compress large-scale network size. Thus, in

00221
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

this work, we will follow the same BFA threat model [4],
[10], where BFA is applied to a more robust quantized
DNN model. Meanwhile, the attacker can access model
parameters, architecture, and gradient information. Such
a white-box threat model is practical because of the
advancement of side-channel model information leakage
attacks [7]–[9]. The attacker has access to a sample
test batch input (x) with the correct label(t). However,
the attacker has no access to training information (e.g.,
training data, learning rate, algorithm).

Finally, in a different line of work, training channel-
specific masks to explore the architecture space have
been investigated previously in both model pruning
[28], [29], and model growing [30] domain. Recently,
such pruning schemes have become popular in related
Network Architecture Search (NAS) methods [31] as
well. However, prior model growing methods ignore the
challenges of training a complete binary neural network.
Our work is the first to optimize such a growing scheme
in a complete BNN and attempts to defend against
adversarial attacks with assistance from model growing.

III. DEFENSE RATIONALE

The defense rationale of RA-BNN is inspired by three
critical observations outlined here.

First, the experiment in Table I shows that complete
BNN models are intrinsically more resilient to BFA.
Unlike prior works [13], a complete binary model (with
both binary weights and activations) requires ↑12 →
more number of bit-flips than binary weight only model
to achieve similar accuracy degradation after attack.

Observation 1. A complete binary neural network (i.e.,
both binary weights and activations) significantly im-
proves the robustness against bit-flip attack (see Table I).

TABLE I: Effect of Binarization. ResNet-20 perfor-
mance on CIFAR-10 dataset. We report the # of bit-flips
required to degrade the DNN accuracy to 10.0 % as the
measure of robustness [10].

Model
Type

Clean
Acc. (%)

Acc. After
Attack (%)

of
Bit-Flips

8-bit weigh [10] 92.7 10.0 28
Binary weight [13] 89.01 10.99 89

Binary weight + activation (ours) 82.33 10.0 1080 (12 →)

Second, apart from binarization, our prior works [4],
[13] have also concluded that increasing the network
width (i.e., input and output channel multiplier) of a
DNN helps improve its resistance against BFA. For
example, in Table II, we observe an 8-Bit model with

larger channel width (e.g., 2/4) requires an increasing
amount of bit-flips to deteriorate its functionality.

Observation 2. A DNN model’s resistance to BFA can
be enhanced by increasing the input and output channel
width.

TABLE II: Effect of Network Width. To model the effect
of channel multiplier against BFA, we increase the chan-
nel multiplier by 1/2/4 → of an 8-Bit ResNet-20 model
and report the # of bit-flips required to compromise the
inference accuracy to ↑10 %.

Channel Multiplier →1 →2 →4

bit-flip # 28 30 36

Finally, as summarized in Table I, while the complete
BNN may provide superior robustness, it comes at the
cost of reducing the clean accuracy by 10.0 % (from
92.7 % to 82.33 %) even on a small dataset with ten
classes. To counter this, [24] has discussed a potential
method of recovering the accuracy of a binary model by
increasing the input and output channel width (i.e., chan-
nel multiplier) of each layer. To summarize the effect of
channel multiplier in Fig. 2, we vary the BNN channel
multiplier as 1/2/3 and report the clean accuracy. As the
channel multiplier increases from 1 to 3, it is possible
to recover the accuracy of a complete BNN model close
to an 8-Bit model. However, naively applying a uniform
channel multiplier to all layers causes quadratic model
size and computing complexity increment.

Observation 3. Utilizing the channel multiplier with
a large factor (e.g., 3) can largely compensate BNN
accuracy degradation.

Fig. 2: Accuracy of three binary models with channel
multiplier 1/2/3 which will yield a quadratic model size
of 1/4/9 → and an 8-bit model (x1).

Design objective. In summary, inspired by
observation-1, we aim to construct an intrinsically
robust BNN model with both binary weight and
activation. Second, inspired by observation-2 and -3„
we propose to leverage the two beneficial properties of
a wide neural network: i) it supplements the intrinsic
robustness improvement of a complete BNN model,

00222
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

and ii) it recovers a major portion of the clean accuracy
loss from binarization. Therefore, our objective is to
construct a simultaneously robust and accurate BNN
through channel-wise trainable network widening (i.e.,
growing), instead of naively applying a uniform channel
multiplier across all layers. The technical challenge

is how to minimize the model size increment through
optimizing fine-grained channel multipliers for each
BNN layer.

IV. PROPOSED RA-BNN

In this section, we will introduce our proposed RA-
BNN. To summarize, RA-BNN improves robustness
and accuracy simultaneously through the following two
methods. First, we binarize the weights of all DNN
layers, including the first and last layers. Further, to
improve the robustness, we also binarize the inputs going
into each layer (i.e., activation), except the first and last
one. Second, to recover the clean accuracy and further
boost the robustness, we develop RA-Growth, a fast
mask-based method of growing a complete BNN with
a trainable channel width of each layer.

As shown in Fig. 3, RA-Growth is a two-stage training
scheme. In stage-1 (growing stage), the model grows
gradually and selectively from the initial baseline model
to a larger model in a channel-wise manner. It is achieved
by learning the binary mask associated with each weight
channel (growing when switching from ’0’ to‘1’ at the
first time) to enable training-time growth (i.e., network
growing simultaneously with weight parameter training)
for training cost reduction. As the network growth be-
comes stable after a few initial iterations, the expansion
will stop and enter stage-2. In stage-2, the new model
obtained from stage-1 will be re-trained to minimize the
cross-entropy loss. After completing both the growing
and re-training stages, we expect to get a wide complete
BNN with simultaneously improved robustness and clean
accuracy.

Finally, another essential optimization in our growing
method dedicated to binary neural networks is leverag-
ing a differentiable Gumbel-Sigmoid approach to learn
binary masks. Typically model growing methods (e.g.,
[30]) generate the binary mask by learning full preci-
sion mask following non-differential Bernoulli sampling
leading to multiplication between binary weights and full
precision masks in the forward path of a BNN model. In
contrast, our method only uses binary multiplication with
both operands (i.e., weight and mask) in binary format,
reducing computing complexity. Such optimization could
lead to efficient binary multiplication between binary

weight and mask in the forward path. Next, we will
describe each component of constructing RA-BNN.

A. Binarization

The first step is to construct a complete BNN with
binary weights and activations. Training a neural network
with binary weights and activations presents the chal-
lenge of approximating the gradient of a non-linear sign
function [17]. To compute the gradient efficiently and
improve the binarization performance, in this work, we
use training aware binary approximation function [15]
instead of the direct sign function:

f(z) =

{
k · (↓sign(z) t

2
sz

2

2 +
↔
2z), if |z| <

→
2

ts
.

k · sign(z), otherwise.
(1)

ts = 10↑2+ 3i
T ; k = max(

1

ts
, 1), (2)

where i is the current training iteration and T is the total
iterations. At the early training stage, i

T is low, and the
above function is continuous. As the training progresses,
the function gradually becomes a sign function whose
gradient can be computed as:

f ↓(z) =
ωf(z)

ωz
= max(k ·

↔
2ts ↓ |t2sz|, 0) (3)

For weight binarization, z represents full-precision
weights (z = wfp), and for activation binarization, z
represents full-precision activation input going into the
next convolution layer (z = afp). In our RA-BNN, we
binarize the weights of every layer including the first
and last layer. However, for activation, we binarize every
input going into the convolution layer, except the first
layer input.

B. RA-Growth

As shown in Fig. 3, our RA-Growth consists of two
training stages: Stage-1: Growing; Stage-2: Re-Training.
The objective of the growing stage is to learn to grow
the output channel size of each layer during the initial
iterations of training. As the network architecture be-
comes stable, the growing stage will stop and generate a
new model architecture for stage-2 to re-train the weight
parameters.

00223
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

1 0 0 0 1 1 1 0

Growing epochs
T=1 T=2

Filters

Fmaps

Bin mask

Re-training epochs

T=1,2,..

∙ ∙

Layer
Growing Re-training Real-valued mask

∙

1.2

Sigmoid
0.4

0.8

0.3

1

0

0

0

≥ 0.5
Forward

Real-valued mask

Binary mask

Gumbel noise

Backward

Fig. 3: Left: Overview of the two-stage RA-Growth. i) Growing Stage & ii) Re-training Stage.

a) Stage-1: Growing: In order to gradually grow
the network by increasing the output channel size,
we use the channel-wise binary mask as an indicator
(i.e., on/off). Considering a convolution layer with input
channel size cin, output channel size cout, filter size
k → k and output filter wj ↗ R{k↔k↔cout}; then the
jth (j ↗ {1, 2, ..cout}) output feature from a convolution
operation becomes:

hjout = Conv(hin,wj
b ↘mj

b) (4)

where wj
b ↗ [↓1, 1] is a binary weight (wj

b = f(wj
fp)),

and mj
b ↗ [0, 1] is a binary mask. When the binary mask

is set to 0, the entire jth output filter is detached from
the model. As both weight and mask are in binary for-
mat, such element-wise multiplication can be efficiently
computed using a binary multiplication operation (i.e.
XNOR), instead of floating-point multiplication. This is
the reason we need to guarantee both the weight and
mask are in binary format in the forward path. The
growing stage starts with a baseline model (i.e., →1
channel width) and each channel is associated with a
trainable mask. During training, it will create a new
output channel (i.e., growing) when the mask switches
from 0 to 1 for the first time. We illustrate an example of
this growing procedure in fig. 3. We can mathematically
formalize the growing stage optimization objective as:

min
wb,mb

LE(g(wb ↘mb;xt),yt) (5)

where g(·) is the complete BNN inference function.
However, the discrete states (i.e. non-differential) of the
binary masks mb make their optimization using gradient
descent a challenging problem.

b) Training Binary Mask.: To generate the binary
trainable mask, we avoid training a learnable real-valued
mask (mfp) followed by a hard threshold function (i.e.,
sign function). Because such a hard threshold function is
not differentiable, the general solution is to approximate
the gradients by skipping the threshold function during

back-propagation and update the real-value masks di-
rectly. Our approach is different in that we eliminate the
gradient estimation step and make whole mask learning
procedure differentiable, and thus compatible with the
existing gradient-based back-propagation training pro-
cess.

First, we relax the hard threshold function to a con-
tinuous logistic function:

ε(mfp) =
1

1 + exp(↓ϑmfp)
, (6)

where ϑ is a constant scaling factor. Note that the
logistic function becomes closer to the hard thresholding
function for higher ϑ values.

Then, to learn the binary mask, we leverage
the Gumbel-Sigmoid trick, inspired by Gumbel-
Softmax [28], [29], [32] that performs a differential
sampling to approximate a categorical random variable.
Since we can view sigmoid as a special two-class case
of Softmax, we define p(·) using the Gumbel-Sigmoid
trick as:

p(mfp) =
exp((logϖ0 + g0)/T)

exp((logϖ0 + g0)/T) + exp((g1)/T)
, (7)

where ϖ0 represents ε(mfp). g0 and g1 are samples
from Gumbel distribution. The temperature T is a hyper-
parameter to adjust the range of input values, where
choosing a larger value could avoid gradient vanishing
during back-propagation. Note that the output of p(mfp)
becomes closer to a Bernoulli sample as T is closer to
0. We can further simplify Eq. (7) as:

p(mfp) =
1

1 + exp(↓(logϖ0 + g0 ↓ g1)/T)
(8)

Benefiting from the differentiable property of Eq. (6)
and Eq. (8), the real-value mask mfp can be embedded
with existing gradient based back-propagation training
without gradient approximation. During training, most
values in the distribution of p(mfp) will move towards

00224
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

either 0 or 1. To represent p(mfp) as binary format,
we use a hard threshold (i.e., 0.5) during forward-
propagation of training, which has no influence on the
real-value mask to be updated for back-propagation as
shown in Fig. 3. Finally, the optimization aim in Eq. (5)
can be reformulated as:

min
wfp,mfp

LE(g(f(wfp)↘ p(mfp);xt),yt) (9)

c) Stage-2: Re-training: After stage-1, a new
grown BNN structure (with channel-wise mask mb for
each layer) is achieved. Then, in stage-2, we construct
the new BNN model w↗

fp using the weight channels
with mask values as 1 in mb and discard the rest. In
stage-2 training, the newly constructed BNN’s weight
parameters will be trained involving no masks. The re-
training optimization objective can be formulated as:

min
w→

fp

LE(g(f(w
↗
fp));xt),yt) (10)

After completing the re-training stage, we expect to
obtain a complete BNN with simultaneously improved
robustness and clean model accuracy.

TABLE III: Evaluation of VGG-Small model. Each
model activation and weights are binarized except for
the Binary (W) (i.e., binary weights only). We report
the gain compared to the binary (W) model. RA-BNN
improves the post-attack accuracy (PA) by 74-100 →.

Model
Bit

Width (W+A)

Model
Size
(Mb)

Clean
acc.
(%)

Post-Attack
acc.
(%)

of
Bit

Flips

Un-Targeted Attack

8-bit 37.38 93.47 10.8 34
4-bit 18.64 90.76 10.93 26

Binary(W) 4.66 92.30 10.86 48
Binary(W+A) (ours) 4.66 88.75(↑ 3.55) 10.99 1969 (→ 41)

RA-BNN (ours) 26.16 91.75 80.39 5000 (→ 104)

Targeted Attack

8-bit 37.38 93.47 10.75 28
4-bit 18.64 90.76 10.53 13

Binary (W) 4.66 92.30 10.90 67
Binary(W+A) (ours) 4.66 88.75 10.99 3956 (→ 59)

RA-BNN (ours) 26.16 91.75 70.47 5000 (→ 74)

V. EXPERIMENTAL DETAILS

A. Dataset and Architecture
We evaluate RA-BNN on three popular vision

datasets: CIFAR-10 [19], CIFAR-100 [19] and Ima-
geNet [35]. We follow the same DNN architecture, train-
ing configuration, and hyper-parameters as rotated binary
neural network (RBNN) [15]. We also follow the same

TABLE IV: Evaluation of ResNet-18 model. RA-BNN
improves the post attack accuracy (PA) by 28.93 %
against un-targeted BFA in comparison to Binary(W).

Model
Bit

Width

Model
Size
(Mb)

Clean
acc.
(%)

Post-Attack
acc.
(%)

of
Bit

Flips

Un-Targeted Attack

8-bit 89.44 93.74 10.01 17
4-bit 44.72 93.13 10.87 30

Binary (W) 11.18 93.70 10.97 157
Binary(W+A) (ours) 11.18 91.10 10.98 666

RA-BNN (ours) 31.85 (→ 2.84) 92.92 39.90 (↓28.93) 5000

Targeted Attack

8-bit 89.44 93.74 10.71 20
4-bit 44.72 93.13 10.21 21

Binary (W) 11.18 93.70 10.99 145
Binary(W+A) (ours) 11.18 91.10 10.95 493

RA-BNN (ours) 31.85 (→ 2.84) 92.92 10.99 4230(→29)

TABLE V: Evaluation on CIFAR-100 and ImageNet

dataset. We show RA-BNN post attack accuracy improves
by 39 % on CIFAR-100 and 33 % on ImageNet compared
to a complete binary (W+A) model.

Model
Bit

Width

Model
Size
(Mb)

Clean
acc.
(%)

Post-Attack
acc.
(%)

of
Bit

Flips

ImageNet

Baseline (8-bit) 93.60 69.10 0.11 13
Binary(W+A) (ours) 11.70 51.90 4.33 5000

RA-BNN (ours) 73.09(→6) 60.90(↓9) 37.10 (↓ 32.77) 5000

CIFAR-100

Baseline (8-bit) 90.55 75.19 1.0 23
Binary(W+A) (ours) 11.32 66.14 15.47 5000

RA-BNN (ours) 39.53(→3.5) 72.29(↓6) 54.22(↓38.75) 5000

weight binarization method as RBNN including applying
the rotation on the weight tensors before binarization.

B. Attack and Defense Hyper-Parameters.
In general, Un-targeted BFA [10] degrades the DNN

accuracy close to a random guess level (1/no. of
class)→100 (e.g., 10 % for CIFAR-10, 1 % for CIFAR-
100 and 0.1 % for ImageNet). We also perform N-to-
1 targeted [11] attack where the attacker classifies all
the inputs into a specific target class, which again will
degrade the overall test accuracy to a random guess level.
We run the attack three rounds and report the best round
in terms of the number of bit-flips required to achieve
the desired goal.

Defense success definition. We assume the maximum
of bits the attacker can flip is 5,000, based on practical
prior experiments. [36] shows, to get around strong bit-
flip protection schemes (e.g., SGX [37]), requires around
95 hours to flip 91 bits using double-sided row-hammer
attack. At this rate, to flip 5,000 bits would cost around

00225
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Comparison to state-of-the-art binary ResNet-18 models on Image-Net. It shows RA-BNN achieves
33 % higher post-attack accuracy (PA) in comparison to existing binary neural networks. The accuracy range
represents two corner cases of with and without binarizing the first and last layer weights.

Categories Methods Model Size (Mb) Clean Acc. (%) Post-Attack Acc. (Bit-Flips)
8-bit Baseline 93.6 69.1 0.1 (13)

Prior BNN works [16], [33], [34] 11.7 42.7-57.1 ↔ 4.3 (5000)State-of-the-art BNNs [15], [23] 51.9-59.9
RA-BNN Ours 73.09 60.9-62.9 ↔ 37.1 (5000)

TABLE VII: Comparison to other competing defense methods on CIFAR-10 dataset evaluated attacking a ResNet-
20 model.

Models (Model Size Comparison →) Clean Acc.(%) Post-Attack acc.(%) Bit-Flips #

Baseline ResNet-20 [10] (8→) 91.71 10.90 20
Piece-wise Clustering [13] (8→) 90.02 10.09 42

Binary weight [13] (1→) 89.01 10.99 89
Model Capacity → 16 [11], [13] (16→) 93.7 10.00 49

Weight Reconstruction [14] (8→) 88.79 10.00 79
RA-BNN (proposed (7→)) 90.18 10.00 1150

seven months, which is practically impossible. Thus, if
RA-BNN could tolerate 5,000 bit flips, we can safely
claim to defeat BFA.

VI. RESULTS

A. Defense evaluation on CIFAR-10

We evaluate our defense on CIFAR-10 dataset using
a small VGG (in Table III) & a ResNet-18 (in Table IV)
architecture. In both tables, RA-BNN achieves ↑ 20-70
% gain in accuracy after attack compared to a binary
(W) (i.e., only binary weights) network.

First, in Table III, a baseline 8-bit model requires just
34 bit-flips to degrade the accuracy from 93.47 % to 10.8
%. Next, we apply complete binary weights to increase
the number of bit-flip requirements to 48. This gain
in resisting BFA could be exponentially increased (i.e.,
41 →) by applying both binary weights and activations.
However, a complete binary (W+A) network suffers
from 3.55 % clean accuracy degradation. The proposed
RA-BNN thus comes with two benefits: i) it recovers
clean accuracy & ii) it improves resistance to BFA. For
example, RA-BNN recovers the clean accuracy back to
91.75 %. In addition, we observe that 104 → additional
bit-flips could not decrease the accuracy of the target
model to a random guess level. We achieve a significant
gain in accuracy and resistance to BFA (both targeted/un-
targeted) at the expense of 5.61 → model size compared
to a binary network. In conclusion, using a similar model
size as a 6-bit model, we can completely defend a bit-flip
attack using our binary model, whereas a 6-bit model is
extremely vulnerable to BFA.

The results in Table IV show that the attack cannot
break our defense on ResNet-18 architecture as well. For
un-targeted attack, we show that even after 5,000 flips
the test accuracy still holds at 39.90 %, while it requires
only 17-30 flips to cause malfunction in the baseline
models (e.g., 4-bit/8-bit). Thanks to RA-BNN, on top of
the robustness gain, our BNN model also achieves a 2.8
→ compression rate compared to the 8-bit model. Similar
to un-targeted attack, we observe a robustness gain (i.e.,
→ 29) for targeted attack as well.
B. Defense evaluation on CIFAR-100 and ImageNet.

Our proposed RA-BNN improves the resistance to BFA
on large-scale datasets (e.g., CIFAR-100 and ImageNet)
as well. As presented in Table V, the baseline 8-bit
models require less than 23 bit-flips to degrade the
inference accuracy close to a random guess level (i.e.,
0.1 %). While binary model improves the resistance to
BFA, it is still possible to significantly reduce (e.g., 4.3
%) the inference accuracy with a sufficiently large (e.g.,
5,000) number of bit-flips. In addition, a complete binary
model (i.e., weights+activation of every layer) suffers
from 19 % accuracy loss on ImageNet. But our proposed
RA-BNN outperforms both 8-bit and binary baseline, as
even after 5000 bit flips, the accuracy only degrades to
37.1 % while maintaining a 60.9 % clean accuracy on
ImageNet. Similarly, on CIFAR-100, RA-BNN improves
the clean accuracy by 6 % & post attack accuracy by
39 % compared to a binary model with a similar model
size as a 4-bit model.
C. Comparison to state-of-the-art (SOTA).

We summarize our RA-BNN defense performance
compared to other SOTA BNN in Table VI. We divide the

00226
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

existing BNN works into two classes based on accuracy
range: i) prior BNN works & ii) most recent SOTA
BNN training methods. Our method achieves on-par
accuracy with the other state-of-the-art BNN methods.
For example, we achieve an impressive 60.9 % Top-
1 clean accuracy on ImageNet dataset. To evaluate the
existing BNN models against BFA, we do not find any
complete binary neural network open-sourced from prior
works. Hence, we took a representative (i.e., [15]) one
and trained a complete binary version from scratch. After
attacking this model, we observed our defense achieves
33 % higher post-attack accuracy than a complete SOTA
binary model. In addition, our RA-Growth is compatible
with any existing techniques (e.g., [15], [23]) to improve
BNN accuracy and robustness. It is also compatible with
recently proposed DNN architectures [22], [38] designed
for binary neural networks. Hence, RA-Growth is not
necessarily a competing method for these existing BNN
techniques. As a trade-off, RA-BNN would cost higher
memory (e.g., 4-6 →) than a binary neural network,
while still generating a smaller model size than an 8-bit.
Such a trade-off between privacy/robustness and mem-
ory/computation is present across all the defenses [25],
[26] in the adversarial domain.

Apart from existing BNN methods, we also present
a comparative study with state-of-the-art BFA defenses
in Table VII. Again RA-BNN outperforms all existing
defenses with improved accuracy and robustness. Com-
pared to the best defenses against BFA in the literature,
RA-BNN enhances the robustness (i.e., number of bit-
flips) by ↑15-28 →. At the same time, the model size
overhead is less than all the existing defenses except
the binary weight-only case. However, our binary ac-
tivation and weight would make the computation at
the inference much more efficient through hardware
optimizations [39]. In addition, RA-BNN hardly adds
any computational cost. Since prior works [40] have
shown that 1-bit weight and activation can reduce the
computation significantly (↑ 0.1x), compensating for the
increased network width. In summary, proposed RA-
BNN presents a novel way of adopting binary neural
network as a defense against BFA at the same time
improving accuracy with little/no computation overhead.

VII. CONCLUSION

In this work, for the first time, we demonstrate our
proposed RA-BNN could completely defeat BFA. We use
BNN’s intrinsic robustness to bit-flips and propose RA-
Growth method to increase the channel size of a BNN to
simultaneously recover clean data accuracy and further

enhance the defense efficiency. We demonstrate through
extensive experiments that low bit-width DNN models
constructed by RA-BNN satisfy the conflicting require-
ments of high robustness and high clean accuracy. We
successfully construct a complete BNN to defend against
BFA with a significantly improved clean accuracy and
memory budget.

VIII. ACKNOWLEDGEMENT

This work is supported in part by the Na-
tional Science Foundation under Grant No.2314591,
No.2505326, No.2452573, No.2452657, No.2503906
and No.2505209.

REFERENCES

[1] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi,
“A survey of deep neural network architectures and their
applications,” Neurocomputing, vol. 234, pp. 11–26, 2017.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” ICLR, 2015.

[3] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumi-
traş, “Terminal brain damage: Exposing the graceless degra-
dation in deep neural networks under hardware fault attacks,”
arXiv:1906.01017, 2019.

[4] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the
intelligence of deep neural networks through targeted chain of
bit flips,” in 29th {USENIX} Security Symposium ({USENIX}
Security 20), 2020, pp. 1463–1480.

[5] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilk-
erson, K. Lai, and O. Mutlu, “Flipping bits in memory without
accessing them: An experimental study of dram disturbance
errors,” in ACM SIGARCH Computer Architecture News. IEEE
Press, 2014, pp. 361–372.

[6] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based
fault attacks on fpgas using valid bitstreams,” in 2017 27th
International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2017, pp. 1–7.

[7] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie,
Y. Ding, C. Liu, T. Sherwood et al., “Deepsniffer: A dnn model
extraction framework based on learning architectural hints,”
in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 385–399.

[8] L. Batina, S. Bhasin, D. Jap, and S. Picek, “Csi nn: Reverse
engineering of neural network architectures through electromag-
netic side channel,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 515–532.

[9] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan,
“Deepsteal: Advanced model extractions leveraging efficient
weight stealing in memories,” in 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 2022, pp. 1157–1174.

[10] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing
neural network with progressive bit search,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV),
2019, pp. 1211–1220.

[11] A. S. Rakin, Z. He, J. Li, F. Yao, C. Chakrabarti, and D. Fan, “T-
bfa: Targeted bit-flip adversarial weight attack,” arXiv preprint
arXiv:2007.12336, 2020.

00227
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

[12] A. S. Rakin, Z. He, and D. Fan, “Tbt: Targeted neural network
attack with bit trojan,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020, pp.
13 198–13 207.

[13] Z. He, A. S. Rakin, J. Li, C. Chakrabarti, and D. Fan, “Defend-
ing and harnessing the bit-flip based adversarial weight attack,”
in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[14] J. Li, A. S. Rakin, Y. Xiong, L. Chang, Z. He, D. Fan, and
C. Chakrabarti, “Defending bit-flip attack through dnn weight
reconstruction,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[15] M. Lin, R. Ji, Z. Xu, B. Zhang, Y. Wang, Y. Wu, F. Huang,
and C.-W. Lin, “Rotated binary neural network,” Advances in
Neural Information Processing Systems 33 (NeurIPS), 2020.

[16] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T. Cheng,
“Bi-real net: Enhancing the performance of 1-bit cnns with
improved representational capability and advanced training
algorithm,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 722–737.

[17] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks
with weights and activations constrained to+ 1 or-1,” arXiv
preprint arXiv:1602.02830, 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–778.

[19] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (cana-
dian institute for advanced research),” http://www. cs. toronto.
edu/kriz/cifar. html, 2010.

[20] F. Conti, P. D. Schiavone, and L. Benini, “Xnor neural engine:
A hardware accelerator ip for 21.6-fj/op binary neural network
inference,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 11, pp. 2940–2951,
2018.

[21] J. Bethge, C. Bartz, H. Yang, Y. Chen, and C. Meinel,
“Meliusnet: An improved network architecture for binary neural
networks,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2021, pp. 1439–1448.

[22] Z. Liu, Z. Shen, M. Savvides, and K.-T. Cheng, “Reactnet:
Towards precise binary neural network with generalized activa-
tion functions,” in European Conference on Computer Vision.
Springer, 2020, pp. 143–.

[23] H. Qin, R. Gong, X. Liu, M. Shen, Z. Wei, F. Yu, and J. Song,
“Forward and backward information retention for accurate
binary neural networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020,
pp. 2250–2259.

[24] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “Wrpn: Wide
reduced-precision networks,” arXiv preprint arXiv:1709.01134,
2017.

[25] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to
adversarial attacks,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.
net/forum?id=rJzIBfZAb

[26] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients
give a false sense of security: Circumventing defenses to
adversarial examples,” arXiv preprint arXiv:1802.00420, 2018.

[27] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting
correcting codes: On the effectiveness of ecc memory against
rowhammer attacks,” in 2019 IEEE Symposium on Security and
Privacy (SP), 2019, pp. 55–.

[28] M. Kang and B. Han, “Operation-aware soft channel pruning
using differentiable masks,” in International Conference on
Machine Learning. PMLR, 2020, pp. 5122–5131.

[29] Y. Wang, X. Zhang, X. Hu, B. Zhang, and H. Su, “Dynamic net-
work pruning with interpretable layerwise channel selection,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 6299–6306.

[30] X. Yuan, P. Savarese, and M. Maire, “Growing efficient
deep networks by structured continuous sparsification,” arXiv
preprint arXiv:2007.15353, 2020.

[31] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu,
M. Yu, T. Xu, K. Chen, P. Vajda, and J. E. Gonzalez, “Fbnetv2:
Differentiable neural architecture search for spatial and channel
dimensions,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[32] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization
with gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[33] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary con-
volutional neural network,” arXiv preprint arXiv:1711.11294,
2017.

[34] A. Bulat and G. Tzimiropoulos, “Xnor-net++: Improved binary
neural networks,” arXiv preprint arXiv:1909.13863, 2019.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances
in neural information processing systems, 2012, pp. 1097–1105.

[36] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom, “Another flip in
the wall of rowhammer defenses,” in 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018, pp. 245–261.

[37] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, “Intel® software guard exten-
sions (intel® sgx) support for dynamic memory management
inside an enclave,” in Proceedings of the Hardware and Ar-
chitectural Support for Security and Privacy 2016, 2016, pp.
1–9.

[38] J. Bethge, C. Bartz, H. Yang, Y. Chen, and C. Meinel,
“Meliusnet: Can binary neural networks achieve mobilenet-level
accuracy?” arXiv preprint arXiv:2001.05936, 2020.

[39] M. Rastegari, V. Ordonez, J. Redmon, and Ali, “Xnor-net: Ima-
genet classification using binary convolutional neural networks,”
in European Conference on Computer Vision. Springer, 2016,
pp. 525–542.

[40] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN:
Wide reduced-precision networks,” in International Conference
on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=B1ZvaaeAZ

00228
Authorized licensed use limited to: Arizona State University. Downloaded on June 13,2025 at 19:23:59 UTC from IEEE Xplore. Restrictions apply.

