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ABSTRACT

The Gaussian process (GP) regression model is a widely employed supervised learning approach. In
this paper, we estimate the GP model through variational inference, particularly employing the recently
introduced energetic variational inference method. Under the GP model assumptions, we derive posterior
distributions for its parameters. The energetic variational inference approach bridges the Bayesian sampling
and optimization and enables approximation of the posterior distributions and identification of the posterior
mode. By incorporating a Gaussian prior on the mean component of the GP model, we also apply shrinkage
estimation to the parameters, facilitating variable selection of the mean function. The proposed GP method
outperforms some existing software packages on three benchmark examples.

1 INTRODUCTION

Uncertainty Quantification (Ghanem et al. 2017) is a highly interdisciplinary research domain involving
mathematics, statistics, optimization, advanced computing technology, and various science and engineering
disciplines. It provides a computational framework for quantifying input and response uncertainties and
making model-based predictions and their inferences for complex science or engineering systems/processes.
One key topic in uncertainty quantification is to analyze computer experimental data and build a surrogate
model for the computer simulation model. Gaussian process (GP) regression model, sometimes known as
“kriging”, has been widely used for this purpose since the seminal paper by Sacks et al. (1989).

This paper examines GP models within a Bayesian framework, adopting the model assumptions specified
by Santner et al. (2003), which include a meaningful mean function and an anisotropic covariance function
for enhanced prediction flexibility. Unlike traditional Bayesian GP models that rely on Markov Chain
Monte Carlo (MCMC) sampling, we introduce a variational inference method, specifically a particle-based
energetic variational inference approach (EVI) from Wang, Chen, Liu, and Kang (2021), termed EVI-
GP. This method, which can compute maximum a posteriori (MAP) estimates or approximate posterior
distributions, offers an efficient alternative for parameter estimation and inference. Additionally, employing
an [p-regularization due to the conjugate prior of the regression coefficients facilitates sparsity in the GP
mean function, optimizing model interpretation and accuracy.

The rest of the paper is organized as follows. In Section 2, we review the Gaussian process model,
including its assumption and prior distributions, and derive the posterior and posterior predictive distributions.
In Section 3, the preliminary background on variational inference and the particle energetic variational
inference methods are briefly reviewed. The EVI-GP method is also summarized at the end of this section.
Section 4 shows two main simulation examples in which different versions of EVI-GP are compared with
other existing methods. The paper concludes in Section 5.
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2 GAUSSIAN PROCESS REGRESSION: BAYESIAN APPROACH
2.1 Gaussian Process Assumption

Denote {x;,y;}", as the n pairs of input and output data from a certain computer experiment, and x; € Q C R4
are the ith experimental input values and y; € R is the corresponding output. In this paper, we only consider
the case of univariate response, but the proposed EVI-GP can be applied to the multi-response GP model
which involves the cross-covariance between responses (Cressie 2015).

Gaussian process regression is built on the following model assumption of the response,

yi:g(xi)Tﬁ+Z(xi)+£i7 i:17...,n, (l)

where g(x) is a p-dim vector of user-specified basis functions and B is the p-dim vector of linear coefficients
corresponding the basis functions. Usually, g(x) contains the polynomial basis functions of x up to a certain
order. The random noise &’s are independently and identically distributed following N(0,6?). They are
also independent of the other stochastic components of (1). We assume the GP prior on the stochastic
function Z(x), which is denoted as Z(-) ~ GP(0,7%K), i.e., E[Z(x)] = 0 and the covariance function
cov[Z(x1),Z(x2)] = T2K(x1,%2;®). We use the common stationary assumption of Z(x), and thus the
variance 72 is a constant. The function K(-,-;®) : Q x Q R, is the correlation of the stochastic process
with hyperparameters @. For it to be valid, K (-, -; @) must be a symmetric positive definite kernel function. A
commonly used kernel function is the Gaussian kernel defined as K (x},x;; ®) = exp [— 27:1 ®j(x1j —x2 j)z] ,
with @ € R? and @ is a non-negative vector. The EVI-GP method can be applied in the same way for
other kernel functions and non-stationary GP assumptions. The response Y (x) follows a Gaussian Process
with mean function E[Y (x)] = g(x)" B for any x € Q and covariance function

cov[Y(x1),Y(x2)] = ‘L'ZK(xl,xz;a)) + 625(x1,x2) =17° [K(x1,%2,®)+1nd(x1,x2)], Vx1,x € Q,

where 8(x1,x,) = 1 if x; = x, and 0 otherwise, and 1 = 62/7%. So 7 is interpreted as the noise-to-signal
ratio if 6 > 0 or a nugget effect if 62 = 0 to avoid ill-conditioning of the covariance matrix (Peng and
Wu 2014). The unknown parameter values of the GP model are 8 = (B, @,7%,1). We are going to show
how to obtain the estimation and inference of the parameters using the Bayesian framework.

2.2 GP under Bayesian Framework

We assume the following prior distributions for the parameters 8 = (B, @,7%,1),

B NMVN,,(O,VzR), ; i Gamma(ag,by), fori=1,...,d

2 2 @
7% ~ Inverse-x“(dfp), n ~ Gamma(ay,by).

These distribution families are commonly used in the literature such as Gramacy and Lian (2012) and Hu,
Gramacy, and Lian (2013). However, the choice of parameters of the prior distributions should require
fine-tuning using testing data or cross-validation procedures. In some literature, parameters @, 72, and 7
are considered to be hyperparameters. The conditional posterior distribution of B given data and (@, 7%, 1)
is a multivariate normal distribution, which is shown later.

Next, we derive the posterior distributions and some conditional posterior distributions. Based on the
data, the sampling distribution is

¥,|0 ~ MVN, (GB,7*(K,+1l,)),

where y, is the vector of y;’s and G is a matrix of row vectors g(x;)"’s. The matrix K, is the n x n kernel
matrix with entries K,[i, j] = K(x;,x;) and is a symmetric and positive definite matrix, and I,, is an n x n
identity matrix. The density function of y,|0 is

P(y,/8) = (v)"F det(K, +n1,) " 2exp <—;Tz<yn ~GB)T (Ku+ L)~ (3, — Gﬁ)) -
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Following Bayes’ Theorem, the joint posterior distribution of all parameters is

p(8ly,) < p(0)p(y,|0) =< p(B (Hp w,) )p(M)p(y,|0).

The conditional posterior distribution of B can be easily obtained through conjugacy. It is also
straightforward to obtain the posterior distribution p(®, 72,1]y,,). The results are summarized in Proposition
1. The posterior distribution of 7> can be significantly simplified if a non-informative prior is used for
B. as described in Proposition 2. Due to limited space, all proofs can be found in the appendix of Kang,
Cheng, Wang, and Liu (2024).

Proposition 1 Using the prior distribution of 8 = (B, ®,12,1) in (2), the conditional posterior distribution
of B is Bly,,®,7>,n ~ MVN, (ﬁn,i‘.mn), where

1 11 s _
zm,,_[ G'(K,+nl,)” 1c;JrWR 1} , B,=1%p,|G" (K, +nl,) l]y,,
The marginal posterior distribution of (@,7%,1) is

(@21l <det(g,) exp | 1B Zy B 3oy (Ko n) )
< ()2 del(K, + 1) 2 p(2)p(@)p(n) )

Proposition 2 If using a non-informative prior distribution for B, i.e., p(B) o< 1, and the same prior
distributions for (@,72,7) in (2), the conditional posterior distribution of B is still MVN, (Bn,zmn), but
the covariance and mean are

Ty =[G Katnl) G|, B, =67 Kyl 6] [T (Kt ]y,

The conditional posterior distribution for 72 is

?|®,n,y, ~ Scaled Inverse-y*(df. +n— p,1?),

where 2 = (1+s2)/(dfp+n—p), s> = T_ZBZEE|Ian +y, (K,+nlI,)"'y,. The marginal posterior of
(@,7) is
p(@,ny,) e (£2) 2241 det(GT (K, +n1,) ' G) /2 det(K,, +nL,)~ Pp(@)p(n). &)
If we use non-informative prior distributions for all the parameters, i.e., p(B) o 1 and p(w;) HRg-
Uniform[ag, be) for i = 1,...,d, p(t?) «< 772, and p(n) =< Uniform[ay,by], the Bayesian framework is
equivalent to the empirical Bayesian or maximum likelihood estimation method. The GP regression model
estimated via this frequentist approach is common in both methodology research and application (Santner
et al. 2003; Fang et al. 2005; Gramacy 2020). In this paper, we consider the empirical Bayesian estimation
as a special case of the Bayesian GP model. The choice between the two different types of prior distributions
for B, informative or non-informative, is subject to the dimension of the input variables, the assumption
on basis functions g(x), the goal of GP modeling (accurate prediction v.s. interpretation), and sometimes
the application of the computer experiment. Both types have their unique advantages and shortcomings.
The non-informative prior distribution for B reduces the computation involved in the posterior sampling
for 72, but we would lose the I, regularization effect on B brought by the informative prior B.

3544

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on June 13,2025 at 19:39:38 UTC from IEEE Xplore. Restrictions apply.



Kang, Cheng, Wang, and Liu

One issue with the informative prior distribution is to choose its parameters, i.e., the constant variance
v? and the correlation matrix R. Here we recommend using a cross-validation procedure to select v2.
If the mean function g(x)' B is a polynomial function of the input variables, we specify the matrix R
to be a diagonal matrix R = diag{1,r,...,r7%,...,r%,...}, where r € (0,1) is a user-specified parameter.
The power index of r is the same as the order of the corresponding polynomial term. For example, if
g(x)" B with x € R? is a full quadratic model and contains the terms g(x) = [1,x1,%2,x3,x3,x1x2] |, the
corresponding prior correlation matrix should be specified as R = diag{1,r,r,7>,7?,7*}. In this way, the
prior variance of the effect decreases exponentially as the order of effect increases, following the effect
hierarchy principle (Hamada and Wu 1992; Wu and Hamada 2021). It states that lower-order effects are
more important than higher-order effects, and the effects of the same order are equally important. The
hierarchy ordering principle can reduce the size of the model and avoid including higher-order and less
significant model terms. Such prior distribution was firstly proposed by Joseph (2006), and later used in
Kang and Joseph (2009), Ai et al. (2009), Kang et al. (2018), Kang and Huang (2019),Kang et al. (2021),
and Kang et al. (2023).

Proposition 3 Given the parameters (@, 72,1), the posterior predictive distribution of y(x) at any query
point x is the following normal distribution.

y(x)|ynaw7727n NN([:L(X),GnZ(X)),

where
a(x)=gx) "B, +K(x 2,) (K. +nL) " (v, — GB,),

c2(x) = r2{1 —K(x, 2;)(K,+nL,) 'K(Z,x)+c(x)" GT(Kn+nI,,)_1G} _lc(x)} ,

where ¢(x) = g(x) —G' (K, +nl,) 'K(Z,x). K(x, 2;) =K(Z,,x)" = [K(x,x1),...,K(x,x,)]. For non-
informative prior, the posterior predictive distribution y(x)|y,, ®, 7 is the same except that 72 is replaced
by 2.

A detailed proof can be found in Santner et al. (2003) and Rasmussen and Williams (2006). Thanks to
the Gaussian process assumption and the conditional conjugate prior distributions for B and 72, Proposition
1, 2, and 3 give the explicit and easy to generate conditional posterior distribution of B (and 72) and posterior
predictive distribution. Therefore, how to generate samples from p(®,72,1ly,) in (3) or p(®,7nly,) in
(4) is the bottleneck of the computation for GP models. Since p(@,7%,1ly,) and p(®,nl|y,) are not
from any known distribution families, Metropolis-Hastings (MH) algorithm (Robert et al. 1999; Gelman
et al. 2014), Hamiltonian Monte Carlo (HMC) (Neal 1996), or Metropolis-adjusted Langevin algorithm
(MALA) can be used for sampling (Roberts and Rosenthal 1998). In this paper, we introduce readers to
an alternative computational tool, namely, a variational inference approach to approximate the posterior
distribution p(®@, 72, 1y,) or p(®,n]y,). More specifically, we plan to use energetic variational inference,
a particle method, to generate posterior samples.

3 ENERGETIC VARIATIONAL INFERENCE GAUSSIAN PROCESS

Variational inference-based GP models have been explored in prior works such as Tran et al. (2016), Cheng
and Boots (2017), and Wynne and Wild (2022). Despite sharing the variational inference idea, the proposed
Energetic Variational Inference (EVI) GP differs significantly from these existing methods regarding the
specific variational techniques employed. Tran et al. (2016) utilized auto-encoding, while Cheng and Boots
(2017) and Wynne and Wild (2022) employed the mean-field variational inference (Blei et al. 2017).
The EVI approach presented in this paper is a newly introduced particle-based method. It offers
simplicity in implementation across diverse applications without the need for training any neural networks.
Notably, EVI establishes a connection between the MAP procedure and posterior sampling through a
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user-specified number of particles. In contrast to the complexity of auto-encoding variational methods, the
particle-based approach is much simpler, devoid of any neural network intricacies. Moreover, in comparison
to mean-field methods, both particle-based and MAP-based approaches (auto-encoding falls into the MAP-
based category) can exhibit enhanced accuracy, as they do not impose any parametric assumptions on a
feasible family of distributions in the optimization to solve the variational problem.

3.1 Energetic Variational Inference

Due to limited space, we can only briefly review the EVI framework and explain it intuitively. Readers
can refer to Wang et al. (2021) and Kang et al. (2024) for a more comprehensive review of the energetic
variational approach. What is more, Wang et al. (2021) also suggested many different variants of algorithms
under the EVI framework.

We first introduce the EVI using the continuous formulation. Let @, be the dynamic flow map
¢, : R? — RY at time ¢ that continuously transforms the d-dimensional distribution from an initial distribution
toward the target one and we require the map @, to be smooth and one-to-one. The functional .7 (¢,)
is a user-specified divergence or other machine learning objective functional. Taking the analogy of a
thermodynamics system, .% (@,) is the Helmholtz free energy. Following the First and Second Law of
thermodynamics and set the kinetic energy to zero, we have

d

$9(¢1) - _A(¢tv¢t>> )

where A((p,,(i),) is a user-specified functional representing the rate of energy dissipation, and (]), is the
derivative of ¢, with time ¢. So (])t can be interpreted as the “velocity” of the transformation. Each variational
formulation gives a natural path of decreasing the objective functional .7 (@,) toward an equilibrium. The
dissipation functional should satisfy A(@,,9,) >0 so that .7 (¢,) decreases with time. A simple yet
effective specification of A(¢,,¢,) is a quadratic functional in terms of ¢,

30 (9,,9,)
59,

where pjg | denotes the pdf of the current distribution which is the initial distribution transformed by ¢,

(4’;: / Po, ]H(]),Hde and it has the variation (functional derivative) = Zp[,M(]),

Q, is the current support, ||a|j; = a'a for Ya € R?, and § is the variation operator.

With the specified energy-dissipation law (5), the energy variational approach derives the dynamics
of the systems through two variational procedures, the Least Action Principle (LAP) and the Maximum
Dissipation Principle (MDP), which leads to

S%A S0F . 0.7
— =———, and =——,
59, 59, p[¢f]¢t 50,

using the quadratic A(9,,9,).

In general, this continuous formulation (5) is difficult to solve since the manifold of @, is of infinite
dimension. Naturally, there are different approaches to approximate an infinite-dimensional manifold by
a finite-dimensional manifold. One such approach, as used in Wang et al. (2021), is to use particles (or
samples) to approximate the pjy | in (5) with kernel regularization, before any variational steps. It leads to
a discrete version of the energy-dissipation law, i.e.,

*Jh({xz( DL = = An({x(0) Fly, (0 HL). (©)

Here {x(¢)}Y, is the locations of N particles at time ¢ and X;(¢) is the derivative of x; with 7, and thus
is the velocity of the ith particle as it moves toward the target distribution. The subscript & of .# and A
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denotes the bandwidth parameter of the kernel function used in the kernelization operation. Applying the
variational steps to (6), we obtain the dynamics of decreasing .% at the particle level,
0 %Ah _ 0.7,
5.7'6,' (t ) 5x,- ’

fori=1,...,N. (7

This leads to an ODE system of {x;(#)}_, and can be solved by different numerical schemes, such as first
order explicit and implicit Euler approaches shown in Wang et al. (2021). The solution is the particles
approximating the target distribution.

In this paper, we use the KL-divergence as the energy functional as demonstrated in Wang et al. (2021),

Dxr(pllp") /P 10g< ))>dx

where p*(x) is the density function of the target distribution with support region  and p (x) is to approximate
p*(x). For EVI-GP, p* is the posterior distribution of p(®,7%,1]y,) or p(@,n|y,).
Using the KL-divergence, the divergence functional at time ¢ is

F(0) = [ (pig)®)10gpig, (¥) + pig )V (x))

where V(x) = logp*(x), which is known up to a scaling constant. The discrete version of the energy

becomes
({x, ) ]1,2 <ln [;] Z Kh(xi,xj)

i=1 j=1

+ V(xi)> s
and the discrete dissipation is
=27, ({x}) = —— Z ()

Applying variational step to (6), we obtain (7) which is equivalent to the following nonlinear ODE system:

' B Z]JVZI V. Kn (xi,xj) N Vx,Kh(xkaxi)
(1) = —

—+Vx.V i), 8
Z]]yleh(xivxj) k= 12 1 K (%, x ) Vi )> ®

fori=1,...,N. The iterative update of N particles {xi}?’: | involves solving the nonlinear ODE system (8)
via optimization problem (9) at the m-th iteration step

{x§n+1}€\;l — argmin{xi}f’:IJM({xi}ﬁv:I)v )
where

({xl}z ) 72”’@_)""” /N+J;1({x,}, 1)

Here we use x/" and x’”“ to denote the i-th particle value in the m-th and m + 1-th iteration, respectively.

Wang et al. (2021) emphasized the advantages of using the Implicit-Euler solver for enhanced numerical
stability in this process. We summarize the algorithm of using the implicit Euler scheme to solve the ODE
system (8) into Algorithm 1. Here MaxlIter is the maximum number of iterations of the outer loop. The
minimization of J,, in the inner loop is solved by L-BFGS in our implementation.
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Algorithm 1 EVI with Implicit Euler Scheme (EVI-Im)

Input: The target distribution p*(x) and a set of initial particles {x’}Y , drawn from a prior po(x).
Output: A set of particles {x}}Y , approximating p*.
for m =0 to MaxIter do

Solve {x"1IV | = argming v Ju({xi ).
Update {x"}}L, by {x/" "'},
end for
3.2 EVI-GP

We propose two adaptations of the EVI-Im algorithm for GP model estimation and prediction. The first
approach, named EVI-post for short, involves generating N particles using Algorithm 1 to approximate
the posterior p(®,72,n|y,) when an informative normal prior distribution is adopted for B, or p(@, t*|y,)
when a non-informative prior distribution is used for B. These N particles serve as posterior samples.
Conditional on their values, we can generate samples for B based on its conditional posterior distribution
(Proposition 1) or generate samples for both B and 7> according to their conditional posterior distribution
(Proposition 2). Following Proposition 3, we can generally predict y(x) and confidence intervals conditional
on the posterior samples.

In the second approach, we employ EVI-Im solely as an optimization tool for Maximum A Posteriori
(MAP), entailing the minimization of V(x) = —logp*(x). So we call it EVI-MAP for short. This can be
done by simply setting the free energy as .% (x) = V(x) and N = 1. As a result, the optimization problem
(9) at the ith iteration becomes

1
+1 __ o _m2
x" —argn&lnerx X" —logV(x),

which is the celebrated proximal point algorithm (Rockafellar 1976). Therefore, EVI is a method that
connects the posterior sampling and MAP under the same general framework. Based on the MAP, we
can obtain the posterior mode for B (or B and 7?) and the mode of the prediction and the corresponding
inference based on the posterior mode.

4 NUMERICAL EXAMPLES

In this section, we demonstrate the performances of EVI-GP and compare it with three commonly used
GP packages in R, which are gpfit (MacDonald et al. 2015), m1egp (Dancik and Dorman 2008), 1aGP
(Gramacy and Apley 2015; Gramacy 2016). Due to limited space, we only show the comparison via
two examples. The first one is a 1-dim toy example and the second one is the Borehole example chosen
from the online library built by Surjanovic and Bingham (). Readers can refer Kang et al. (2024) for
another example of the OTL-circuit simulation. The codes for EVI-GP and all the examples are available
on GitHub with the link https://github.com/XavierOwen/EVIGP. The EVI-GP is implemented in Pyt hon.
The proximal point optimization in Algorithm 1 is solved by the LBFGS function of Pytorch library
(Paszke et al. 2019). Some arguments of the EVI-GP codes are set the same for all examples, which are
explained in Kang et al. (2024). These parameter settings are done through many trials and they lead to
satisfactory performance in most examples we have studied.

In each example, we use the same pair of training and testing datasets for all the methods under
comparison. The designs for both datasets are generated via maximinLHS procedure from the lhs
package in R (Carnell 2022). We run 100 simulations. In each simulation, we compute the standardized
Root Mean Square Prediction Error (RMSPE) on the test data set, which is defined as follows

1
standardized RMSPE = ( \/ Z(ﬁi - y,~)2> / standard deviation of test(y),

Neest ™5
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where J; is the predicted value at the test point x; and y; is the corresponding true value. Box plots of the
100 standardized RMSPEs of all methods are shown for comparison.
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(a) GP with constant mean, EVI-MAP. (b) GP with constant mean, EVI-post.
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(c) GP with linear mean, EVI-MAP. (d) GP with linear mean, EVI-post.

Figure 1: One-Dim Toy Example: in Figure la-1d the contours are plotted according to p(®,nly,)
evaluated on mesh points without the normalizing constant, the largest red points are the modes of the
posterior distribution of (®,n) returned by EVI-MAP approach, and the black dots in Figure 1b and 1d
are the particles returned by EVI-post approach.

4.1 One-Dim Toy Example

In the one-dim example, the data are generated from the test function y(x) = xsin(x) + € for x € [0,10] and
02 =0.5%. The size of the training and test data sets are n = 11 and m = 100, respectively.

The parameters of the prior distributions of the EVI-GP are ap =an =1, by = by =0.5, and df> =0
which is equivalent to p(7?) o< 1/72. We consider two possible mean functions for the GP model, the constant
mean U(x) = By and the linear mean p(x) = o+ Bix. There is no need for parameter regularization for these
simple mean functions, and thus we use non-informative prior for B. We use the EVI-post to approximate
p(o,nly,) and set the number of particles N = 100, kernel bandwidth & = 0.02 and stepsize T =1 in
the EVI procedure. The initial particles are sampled from the uniform distribution in [0,0.1] x [0.1,0.4].
Figure 1 and 2 show the posterior modes and particles returned by EVI-MAP and EVI-post, as well as the
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(c) GP Model with linear mean fitted by EVI-MAP. (d) GP Model with linear mean fitted by EVI-post.

Figure 2: The Gaussian process prediction by four different approaches. Black dots are training data, the
red dashed curve is the true test function without noise y(x) = xsin(x), the blue curve is the predicted
curve, and the light blue area shows the 95% predictive confidence interval.

prediction and predictive confidence interval returned by both methods. From Figure 1, we can see that
the particles generated from EVI-post well approximate the target distribution p(®,n|y,) represented by
the contours. The posterior modes are accurately identified by EVI-MAP.

We compare the EVI-GP with three R packages. For the gpfit package, we set the nugget threshold
to be [0,25], corresponding to 7 in our method, and the correlation is the Gaussian kernel function. For
the m1egp package, we set the argument constMean to be 0 for the constant mean model and 1 for the
linear mean model. The settings of the optimization-related arguments in mlegp are carefully chosen for
the best performance possible. They are elaborated in Kang et al. (2024). Figure 3 compares the box plots
of the RMSPEs from 100 simulations. The prediction accuracy of both versions of the EVI-GP performs
almost equally well and significantly outperforms the three R packages.

Figure 3: Box plots of the standardized RMSPEs of the toy example with different mean models (constant
or linear) and different methods (EVI-MAP, EVI-post, gpfit, laGP, mlegp). The labels of the two EVI-GP
methods are underlined.

4.2 Borehole Function

In this subsection, we test the EVI-GP with the famous Borehole function. The definition of the Borehole
function and detailed variable definition is included in Kang et al. (2024).
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Figure 5: Box plots of standardized RMSPE’s of the Borehole Example with different mean models
(constant, linear, quadratic, and reduced model) and different methods (EVI-MAP, mlegp). The labels of
the EVI-GP methods are underlined.

We use a training dataset of size 200 and 100 testing datasets of size 100. The noise variance is
02 = 0.022. For both EVI-post and EVI-MAP, we set 7 = 0.001 and 7 = 0.1. For the EVI-post approach,
we use N = 100 particles, and the initial particles of (@,n) are sampled uniformly in [0,0.1]7. The two
versions of EVI-GP perform very similarly, so we only return the result of EVI-MAP. The initial mean
model of the GP is assumed as a quadratic function of the input variables, including the 2-way interactions.
Regarding the variance of the prior distribution of B, v = 4.55 was the result of 5-fold cross-validation
when the biggest mean model was used. After variable selection, the 5-fold cross-validation is conducted
again to find the optimal v to fit the finalized GP model. Coincidentally, the optimal v is also 4.55. The
initial mean model of the GP is assumed as a quadratic function of the input variables, including the 2-way
interactions. Based on the 95% posterior confidence interval in Figure 4 of the B, we select intercept,
X1,%4, and x1x4 as the significant terms to be kept for the final model. Similarly, we compare the EVI-GP
with the mlegp package, and the standardized RMSPEs of the 100 simulations are shown in Figure 5.
Again, EVI-GP significantly outperforms the R package. More importantly, variable selection proves to
be essential for the Borehole example, as the final GP model with the reduced mean model (labeled by
“quadratic, after selection) returns the smallest standardized RMSPE.

5 CONCLUSION

In this paper, we review the conventional Gaussian process regression model under the Bayesian framework.
More importantly, we propose a new variational inference approach, called Energetic Variational Inference,
as an alternative to traditional MCMC approaches to estimate and make inferences for the GP regression
model. Through comparing with some commonly used R packages, the new EVI-GP performs better
in terms of prediction accuracy. Although not completely revealed in this paper, the true potential of
variational inference lies in transforming the MCMC sampling problem into an optimization problem. As
a result, it can be used to solve a more complicated Bayesian framework. For instance, we can adapt the
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GP regression and classification by adding fairness constraints on the parameters such that it can meet the
ethical requirements in many social and economic contexts. In this case, variational inference can easily
solve the constrained optimization whereas it is very challenging to do MCMC sampling with fairness
constraints. We are pursuing in this direction in the future work.
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