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Abstract—The high confidentiality level of power system’s
data has motivated the ongoing research on the generation of
synthetic power grids that mimic actual systems. The existing
synthetic models rely on specific geographical and parametric
assumptions, which leads to non-generalizable models that overfit
the observed data. To fill up this research gap, this paper
proposes the use of graphon, a non-parametric graph processing
method, to generate graph samples of different sizes with similar
topological and electrical characteristics as actual power systems.
We first estimate the graphon based on realistic parameters of
the observed actual power system. Then as an example of a use
case, we sample multiple graphs from the graphon in order to
provide a general assessment of the power system vulnerabilities.

Index Terms—Graphon, generative model, power systems, risk
analysis, and vulnerability.

I. INTRODUCTION AND MOTIVATION

The reliable and efficient operations of smart cities highly
depend on improved monitoring and management of energy
usage, increased efficiency, and enhanced power grid re-
silience. When smart cities’ critical infrastructures are opti-
mized for safety and security, they can improve the quality
of life for its citizens through enhanced public services and
access to a sustainable environment. However, a fundamental
limitation in research on power systems is the restricted access
to the confidential data associated with actual power grids.
For instance, in the U.S., power system’s data related to
the production, generation, transmission, and distribution of
energy fall under the Critical Energy/Electricity Infrastructure
Information (CEII), and therefore are not made available even
for research purposes [1]. When partial power system data
is made accessible, it often does so under a strong non-
disclosure agreement. Therefore, any study done on actual
power systems cannot be made public. Along this direction,
some efforts were made to create synthetic power systems
that mimic the characteristic features of actual power grids
such as [2]-[4]. However, these developed models rely on
several assumptions such as the geographical area, the region
structure, the topological and electrical statistics, etc., with a
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limited number of test cases provided. Moreover, it is hard
to assess how these synthetic models scale to massive power
systems. Another limitation is that research is conducted on
specific synthetic test cases, and therefore, the final results
become dependent on the systems used in the study. To fill
this research gap, this paper introduces graphons [5], a non-
parametric graph processing method, to model and predict how
power systems massively expand by taking the graphs to the
limit, i.e., to an infinite number of vertices and edges. This
graph theory concept allows to generate random power graphs
that are consistent with the observed actual power graph.
Since graphons treat power systems as graph objects, we will
present a method to statistically equip graphs with electrical
parameters. Therefore, statistically consistent power graphs of
different sizes with topological and electrical information can
be generated to assess power systems vulnerabilities.

Graphons, which are short for “graph functions”, are lim-
iting objects of a sequence of graphs with a large number of
nodes, in which members of the same family share similar
structures even if their corresponding number of nodes is
different [6]. They are considered to be non-parametric models
since the number of parameters that describe the network
structure and characteristics does not need to be fixed or even
finite, which in turn avoids overfitting the model representa-
tion [7]. The main motivation behind graphons is that instead
of analyzing an individual graph, we can analyze and work
on the mathematical equation that governs the graph. This
means that instead of studying an individual power system, one
can study the power graph function that characterises all the
properties of such a system and analyze its multiple aspects.
Thus, we can work on all graph samples generated from the
same graphon as if they were the same object. Graphons can
also be used to model power systems that continuously evolve
in space and time due to topological modifications, seasonal
reconfigurations, integration of renewable energy sources, new
buses and electrical lines addition, etc.

In this paper, we use parameters of actual power systems
to estimate their graphons. Then, we provide a general assess-
ment of power vulnerabilities using the graphons. This reveals
the most critical components that maximize the damage. This
analysis is visualized by constructing a risk graph that averages
over all the graphs sampled from the same graphon.



A. Related Work

Since the availability of power system’s data is restricted
due to confidentiality, several papers proposed to generate
synthetic power systems that mimic actual ones in terms of
topological structures and electrical features. In [2], the authors
generated synthetic power systems using publicly available
information, the locations of generation substations, and the
structural statistics of real power systems. The generated
test cases were augmented to build larger systems. In [4],
the authors developed a stochastic spatio-temporal evolving
model using parameters extracted from the Western U.S. and
ERCOT power grids. In [3], the authors proposed a generative
spatio-temporal expanding stochastic power grid model that
is mapped to a circular geographical region, where power
elements were distributed using iterated Poisson tessellations.
In [8], the authors suggested a bus type entropy-based ap-
proach for assigning generating, load, and connection buses
as well as for producing electrical characteristics for synthetic
power systems. Other works such as [9], [10] generated
synthetic power systems based on real-world data.

The main limitations of the related works are that they rely
on certain assumptions that are specific to the region to which
the power system is mapped to. In addition, the aforemen-
tioned works do not describe how power systems largely scale
and massively grow in terms of electrical elements and power
lines. Since they are constructed based on multiple structural
and electrical parameters of actual power grids, they tend to
overfit the learned model. This paper bridges these gaps by
using a non-parametric graphon, from which a sequence of
sample graphs of any size can be statistically and consistently
generated. The proposed synthetic power graphs are generated
by estimating the graphon model from the graph of an actual
power system with no additional parameters assumptions.
Hence, no assumptions of topological or electrical parameters
are considered as in the case of the aforementioned related
works. Once the graph is sampled from the graphon, it can
be mapped to a geographical region with physical boundaries.
Moreover, instead of working with individual test cases, we
only need to deal with a measurable function that describes
such systems. To the best of our knowledge, we were able
to identify a single paper [11] that used graphons mainly
for modeling power dynamics to analyze the stability of
synchronized nodes to a common frequency. Instead of using
a generalized graphon model for all power systems based on
small-world networks characteristics as in [11], we specifically
estimate the graphon from an actual power system.

B. Contributions and Organization

The main contributions are summarized next. We start by
predicting the graphon model from the graph of an actual
power grid using different graphon estimators proposed in
literature. We compare these estimators with the small-world
graphon model, and we select the estimator with the lowest
mean squared error (MSE). The obtained estimated graphon
is then used to sample power graphs to which we statistically
assign electrical parameters. Then, as one application of the

graphon model, we conduct a general risk assessment study
to reveal the main vulnerable components. In this regard, we
first compute a weighted feature score for each node in terms
of topological and electrical features using the analytical hi-
erarchical process (AHP). Then, we conduct the vulnerability
analysis on the graphs to identify the target nodes with the
greatest damage impact. The damage values of the target nodes
and their feature scores are finally used to build the risk graph.

The remainder of this paper is organized as follows. Sec-
tion II describes the process of generating synthetic power
systems based on graphons. Section III presents an application
use case for risk assessment in power systems. Section IV
discusses the obtained results. Section V concludes the paper.

II. GRAPHON-BASED SYNTHETIC POWER SYSTEM
MODELS

In this section, we describe how to generate synthetic power
systems based on non-parametric graphon models.

A graphon can be represented as a symmetric measurable
function mapping the unit square to the unit interval, W :
[0,1]> — [0,1]. It may be compared to the weight matrix
W of an infinitely large graph, whose node variables are
(z,y) € [0,1], and the weights of the edges are represented
by W(z,y) = W(y,z) [6]. In specific, For a specific power
system, we can estimate its graphon model using one of these
consistent estimators proposed in literature:

e Stochastic blockmodel approximation (SBA) [12], where
nodes are first clustered into blocks based on the distance
estimate between graphon slices. Then, an empirical histogram
is applied to estimate the graphon.

e Universal Singular Value Thresholding (USVT) [13] uses
singular value decomposition of observations between pairs of
nodes followed by thresholding over these values.

e Sort and Smooth (SAS) [14], where the graph empirical
degree is first sorted and then the observed data is smoothed
using total variation minimization.

e Largest Gap [15], where network blocks are estimated
using the largest gap criterion on consecutive normalized
degrees, followed by a histogram on the estimated blocks.

e Matrix completion [16] applies a completion scheme on
the observed adjacency graph by treating the non-existing
edges as missing entries.

Power grids exhibit small-world characteristics [17], [18].
The authors in [4] approximated power distribution systems
accurately by having their nodal degree distribution follow the
shifted sum of exponential distribution, f(d), where d denotes
the node degree such that

d—k;

fld) = 32 e, (1)

where i is the average number of edges formed by node 1,
7; are the probabilities of node 7 taking different degree values
k;, and 1(.) is the indicator function. The parameters k; and
7n; are obtained by matching with real power grids [4]. Then,
based on the r-nearest-neighbour graphs and the rewiring of



the short-range connections among nodes, we use the small-
world network characteristics as a general model for all power
systems to model the graphon as [11]

Lyr(w,y) =pGrpa(r —y) + (1 -2p)Gr(z —y), ()

where (x,y) € [0, 1] are the node variables that are mapped
to latent node labels, p is the probability sampled from f(d)
representing the edge probability between a pair of nodes, r
is a parameter between 0 and 0.5, and

Gr(z—y) ={

where dist(x — y) = min(|z — y|, 1 — |« — y|). Therefore, the
small-world graphon can be considered as a general model for
all power systems, while the estimated graphons from actual
systems are considered specific to the actual observed systems.

Once we infer the graphon model, we can sample multiple
graphs from it by drawing n samples uniformly from [0, 1]
representing node variables and mapping them to latent node
labels. Then, edges between each pair of nodes are randomly
added according to the edge probability W (x,y) obtained
from the estimated graphon. In order to assign electrical
parameters to power nodes and edges, we generate a random
set of active/reactive power values using the exponential
distribution [19]. At this point, we obtain the normalized nodal
degree and normalized active/reactive power values of each
node for both the actual and synthetic systems. The probability
values are matched between both systems, and the load values
are re-ordered to the appropriate nodes by comparing the prob-
ability mass function (PMF) of the two normalized variables
in the synthetic power system with the PMF of the normalized
variables in the real power system. Then, buses are assigned
the real unnormalized active/reactive power values depending
on their degrees [19]. Additionally, we use empirical data
from IEEE bus systems and the NYISO system in [20, Table
V], which models line impedance using various distributions
depending on the system, to give line impedance values. The
obtained values are then probabilistically matched with the
real values of the actual power system. Finally, we verify if
the system load exceeds the steady-state loading capacity by
running a continuation power flow that gradually increases the
loading/generation. To get a convergent power flow solution,
we scale down all load values when the load exceeds the
steady-state loading limit.

1 ifdist(x —y) <r
0 else,

III. APPLICATION IN SYSTEM RISK ANALYSIS

In this section, we describe how to use the graphon-based
synthetic power system models in Section II to provide a gen-
eral system risk assessment that reveals the power components
that maximize the system damage.

We start by assigning each node in the graph a weighted
feature score based on topological and electrical metrics. These
scores are used to build the average risk power graph.

We use the following topological metrics: i) the average
distance between any two nodes is measured by the average
path length; ii) the clustering coefficients show how much a

node tends to form a cluster; iii) the betweenness centrality
measures how many times a particular node appears in the
shortest path between two nodes; iv) the closeness centrality
shows how close a node is to all other nodes; v) the degree
centrality, which is the number of nodes and edges that directly
influence the node status; vi) the efficiency, which indicates
the effectiveness of sending data between any two nodes; vii)
the eccentricity centrality, where a low eccentricity of a given
node indicates that all other nodes are nearby; and viii) the
centroid centrality, which denotes the node’s central position
in a region of high node density.

Regarding the electrical metrics, we define: i) the electrical
degree centrality, which shows how many power flows directly
affect a node’s status; ii) the electrical betweenness centrality,
which shows how far a node is from other pairs of nodes when
power is assumed to travel via the shortest pathways between
them; and iii) the effective graph resistance, which measures
the expense of transferring a power flow between two nodes.

With the different metrics presented above, we use AHP
to identify the weight impact of each one of them on the
overall system vulnerability in order to accurately calculate
the node feature scores [21]. The AHP weights are obtained
by constructing the table of pairwise comparisons of the
normalized metrics, where diagonal entries are equal to 1s,
since each metric is as important as itself. The remaining
entries of the table are filled by comparing the normalized
score of each metric to the normalized score of another metric.
Then, the obtained comparison table is normalized by dividing
each column entry by its column sum. Then, each row is
summed and its average is obtained, which corresponds to
the obtained weight. Finally, using the obtained AHP weights,
we calculate the weighted feature score for each node.

Next, we describe how we perform vulnerability analysis on
a graph. We use a method similar to the one outlined in [22] to
obtain the best combination of target nodes with the greatest
system damage. The damage impact is evaluated as a weighted
measure of the following metrics: i) the percentage of drop in
net-ability, which gauges how effectively the power system can
deliver power [22], ii) the connectivity impact, which shows
how many nodes are still linked following a node loss [23],
and iii) the topological damage which, according to [24], is
calculated as the normalized efficiency loss following a failure.

The vulnerability strategy for obtaining the combination
of nodes that maximize the system damage is described
next. We begin with a collection of nodes whose elements
are m = 1 target node and work our way up to sets of
m-node combinations. There are (ivn") different single node
combinations available. We want to select the nodes that are
the most vulnerable. In order to do this, we retrieve the first
set of nodes with the highest damage values, where V' can be
adjusted to a tiny value between 4 and 8 in order to condense
the search space [22]. If V' = 8, the top 8 nodes with the
highest damage values would make up the first set, where
each node in set 1 is a single target node.

The initial step in creating all the m = 2-node combinations
is to combine each node from the set of nodes with the top V'



largest feature score values with the nodes from the preceding
set, or set 1. Then, we look through all of these potential
combinations to find the ones that damage the system the
most. To create all the possible m-node combinations, we
combine the node combinations from the previous (m — 1)®
set with each node from the set of nodes with the top V'
largest feature score values. This generalizes on generating
the subsequent m™ set of m-node combinations. The top
(m + 1)V/2 combinations with the highest system damage
values constitute the m™ set.

Then, for each sampled graph, we calculate the feature
scores for all the nodes, and we obtain the combination
sets of nodes with the greatest damage impact along with
their corresponding damage values as previously described.
To construct the risk graph, we average the feature scores
and the damage values for all the combination sets obtained
over all the sampled graphs. Then, we calculate the vertex
occurrence frequency (VOF), which specifies the number of
times a certain node appears in all of the target combination
sets. Similarly, we calculate the edge occurrence frequency
(EOF), which specifies the number of times a pair of nodes
appear in all of the target combination sets [25]. The VOF
and EOF weights are then input to a graph visualisation tool
to obtain the risk graph. Such a risk graph can be considered
as a generalized risk assessment for all power graphs sampled
from the graphon, rather than being specific to certain systems.

IV. RESULTS

We conduct simulations using MATLAB on the 39-bus New
England system, which is a power system in the New England
area of the United States. Fig. 1 shows a comparison of the
different graphon estimators presented in Section II for the
observed power system. Using Eq. (2) and parameters k; =
[1,2,3,4,5] and n; = [0.2308, 0.3077,0.3590, 0.0769, 0.0256]
obtained from the 39-bus New England system, we plot in
the upper left figure the small-world graphon, which is a
general model for power systems. The horizontal axis of Fig. 1
represents a random variable x and the vertical axis represents
a random variable y, both of which are uniformly distributed
between 0 and 1. A latent mapping maps the specific values
of x and y with the node labels. The color in the graphon
represents the intensity of the edge weight, W (x, y), indicated
by the vertical color bar. A more yellowish color indicates that
a pair of nodes are strongly connected. Fig. 1 shows a strong
connection between nodes along the upper edge of the graphon
with weakly connected nodes across. Such a characteristic is
of the small-world graphs, where most nodes are not neighbors
of each other and the neighbors of a specific node are likely
to be neighbors of each other, indicating a highly clustered
graph. Nodes are reachable from each other with a small
number of hops, indicating a low average characteristic path
length. These small-world characteristics make power systems
more stable and robust to cascading outages. In specific,
the graphon estimators show that they retain the small-world
features with MSE (4 standard deviation) averaged over
100 independent trials of 0.137 £ 0.0018, 0.128 £ 0.0021,

0.127 £ 0.0017, 0.126 £ 0.0017, and 0.172 =+ 0.002 for the
SAS, SBA, Matrix Completion, Largest Gap, and USVT
estimators, respectively. The USVT estimator returned the
least resemblance to the small-world graphon, mainly due
to the high rank of the small-world adjacency matrix. The
largest gap estimator had the closest resemblance to the small-
world graphon, since this method seeks low-rank structures
of the adjacency matrix [14]. To compare the topological
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Fig. 1.

Graphon estimators for the 39-bus New England.
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Fig. 2. Average risk graph representation based on 100 graphs sampled from
the induced graphon using Gephi tool.

similarities with the 39-bus New England system, we sample



100 graph samples from the 'Largest Gap’ graphon estimator
and we compute the cumulative distribution function (CDF)
of the eigenvalues spread, the graph diameter, the betweenness
centrality, the closeness centrality, the nodal degree, and the
clustering coefficients. Then, we use the similarity index
Srg=A{f9)/ ((f-f)+{g-9) —(f-g)), where (f-g) is the
inner product of the functions f and g corresponding to the
CDF of the topological characteristics of 39-bus New England
system and the graph sample, respectively. Finally, we average
the similarity scores over 100 graph samples. We found an
average similarity of 87.94% with the 39-bus system.

Next, we construct the average representation of the power
risk graph using the Largest Gap estimator. For this purpose,
for each sampled graph, we obtain the combination sets of
nodes and their corresponding damage values using V' = 8 and
m = {1,---,6}. We also compute the feature scores of each
node, and we average them in addition to the obtained damage
values over all the 100 graph samples. Fig. 2 shows the main
vulnerable components based on the feature scores. The bigger
and darker the vertices and the links are, the more critical they
are in terms of contributing to the overall damage. In specific,
those nodes with scores ranging from 0.49 to 0.56 are the most
critical in terms of maximizing the damage. Finally, we show
the risk graph of a sampled graph (Fig. 3) from the graphon
in Fig. 4. We can see that nodes {8, 13,17, 20, 28, 32, 33, 38}
are the most critical ones. These nodes are consistent with the
nodes in Table 1, which have feature scores in the range of
0.57 and 0.48. Table 2 shows the combination sets of target
nodes with the greatest damage impact obtained by comparing
the nodes feature scores of the sampled graph with the average
feature scores of the 100 sampled graphs. The damage values
correspond to the average damage values obtained from the
100 sampled graphs based on the nodes feature scores.
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Fig. 3. A graph example sampled from the estimated graphon.

Fig. 4. Average risk graph representation of a graph sampled from the induced
graphon using Gephi tool.

V. CONCLUSIONS

In this paper, we have estimated the graphon model from an
actual power system graph to generate synthetic power systems
without relying on additional geographical, topological and/or
electrical assumptions. Given any graph sampled from the
graphon, we presented a method that allows system operators
to protect the most vulnerable power components based on
the power nodes feature scores solely, without the need to
run extensive cascading failure simulations. These results find
usefulness in the energy sector of smart cities that collect and
analyze massive volumes of energy data from a variety of
sources, including sensors, meters, and voltage detectors. This
information is utilized to make sound decisions and improve
city operations by providing reliable public services in an
efficient and secure manner.
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