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1 Introduction

1.1 Motivation

In [30] Khovanov categorified the Jones polynomial: to a link diagram L, he associated a bigraded chain

complex, whose graded Euler characteristic is (a certain normalization of) the Jones polynomial of L,

and whose (graded) chain homotopy type is an invariant of the underlying link. Several generalizations

were soon constructed; for example, Khovanov [31] and Bar-Natan [8] developed theories for tangles.

Ozsváth, Rasmussen, and Szabó [47] constructed a version, odd Khovanov homology, also categorifying

the Jones polynomial, and agreeing with Khovanov homology over the field of two elements. A further

generalization, annular Khovanov homology, an invariant of links in the thickened annulus, was introduced

by Asaeda, Przytycki, and Sikora [5]; this was further generalized to odd annular Khovanov homology by

Grigsby and Wehrli in [24]. Other generalizations for other polynomials were given by Khovanov and

Rozansky [32; 33] and others, and have since been extensively developed.

Our purpose here is to investigate the structure of Khovanov homology in the presence of symmetry; that

is, we study the Khovanov homology of periodic links. We say that a link QL� S3 is p–periodic if there

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons
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1502 Matthew Stoffregen and Melissa Zhang

is a Zp D Z=pZ–action on .S3; QL/ which preserves QL and whose fixed-point set is an unknot zU disjoint

from QL. A particular application of our techniques is the following:

Theorem 1.1 Let QL be a pn–periodic link , for a prime p, with quotient link L. Let Kh. QLI Fp/ denote

the Khovanov homology of QL, with coefficients in Fp, the field of p elements. Let AKh.LI Fp/ denote

the annular Khovanov homology of L, viewed in the complement of U D zU=Zp. Let Kho. QLI Fp/ and

AKho.LI Fp/ denote the odd Khovanov homology and annular Khovanov homology, respectively. Then

dim Kh. QLI Fp/� dim AKh.LI Fp/ and dim Kho. QLI Fp/� dim AKho.LI Fp/:

The motivation for this study comes from both the application of classical Smith theory to Floer theories,

and the general perspective of studying Floer and Khovanov invariants via the (often only conjectural)

spectra underlying these theories.

Let G be a group of order pn with p prime, acting on a finite-dimensional topological space M , with

fixed-point set MG . A version of the classical Smith inequality states (see Bredon [14] and Smith [54])

.1.2/ dimH�.M I Fp/� dimH�.MG I Fp/:

In low-dimensional topology and symplectic geometry, many results have been developed in analogy with

the Smith inequality, relating the Floer homology of some object to symmetries with the Floer homology

of its “quotient”, when the latter notion makes sense. In particular, Seidel and Smith [53] proved an

analogue of the Smith inequality for p D 2 in Lagrangian Floer theory. In fact, one of the motivations

for [53] was its application to symplectic Khovanov homology: Seidel and Smith [52] prove a localization

result for the symplectic Khovanov homology of 2–periodic links. Seidel and Smith further remark in [53]

that the combinatorial analogue to their symplectic Khovanov rank inequality was not known to hold

at the time; Corollary 6.20 (a consequence of Theorem 1.1) asserts that this analogue does indeed hold.

(Note that Khovanov homology and symplectic Khovanov homology are known to agree in characteristic

0 by work of Abouzaid and Smith [1], but Smith-type inequalities from Zp–localization only hold in

finite characteristic.)

The Seidel–Smith inequality led to many further developments in low-dimensional topology. For instance,

Hendricks [25] showed that the knot Floer homology of a knot K � S3 has rank at most as large as that

of the knot Floer homology of the preimage yK in the branched double cover †.K/, and also obtained

relationships between knot Floer homology of 2–periodic knots and that of their quotients [26]; see also

Hendricks, Lipshitz, and Sarkar [27], Boyle [13], and Large [35].

From our perspective, the Seidel–Smith inequality reflects the extent to which Floer theories contain more

information than just the resulting chain complex (indeed, the Smith inequality is a fact about spaces,

not about chain complexes). A particularly striking formulation of this principle is found in Lidman

and Manolescu [42], where they showed that, roughly, for a pn–sheeted regular cover � W zY ! Y there

Geometry & Topology, Volume 28 (2024)
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is an action of a group G of order pn on the Seiberg–Witten Floer space SWF. zY I��s/ such that the

fixed-point set is SWF.Y; s/, the Seiberg–Witten Floer space of the quotient. They thus obtain a rank

inequality by applying the classical Smith inequality:
X

i

dim zHi .SWF. zY ; ��s/I Fp/�
X

i

dim zHi .SWF.Y; s/I Fp/:

Recall that Lidman and Manolescu [41] identified the reduced homology of SWF.Y; s/ with the tilde flavor

of monopole Floer homology eHM �.Y; s/. Further, Colin, Ghiggini and Honda [16] and Kutluhan, Lee,

and Taubes [34] proved eHM �.Y; s/D bHF �.Y; s/. Then the result of [42] gives an inequality of ranks

of Heegaard Floer homology, and in particular, strong constraints on L–spaces arising as regular covers.

1.2 Results

We relate Khovanov space-level invariants of a periodic link QL with those of the quotient link L. This

space-level relationship leads to a relationship on the level of homology that does not seem to follow

in a simple way from the chain complex description of Khovanov homology. A priori, it is difficult to

relate any given Khovanov chain complex of a periodic link with any given Khovanov chain complex of

the quotient, since without further information these are just chain complexes without further structure.

However, Zhang [59] showed, without using space-level invariants, that there is a spectral sequence

relating the annular Khovanov homology of a 2–periodic link with that of its quotient. This took advantage

of a bonus grading in annular Khovanov homology, which is a richer invariant than Khovanov homology

itself (see Grigsby, Licata, and Wehrli [23]); the extra structure was essential to that result.

To set up notation, recall that for a link L� S3, Lipshitz and Sarkar [43] constructed a CW spectrum

Xe.L/ whose stable homotopy type is an invariant of the underlying link L, and whose reduced cellular

chain complex is precisely the Khovanov chain complex Kc.L/. Their construction readily generalizes to

produce an annular Khovanov spectrum of a link L in the thickened annulus. Further, Sarkar, Scaduto,

and Stoffregen [50] constructed a family Xn.L/ of CW spectra for n 2 Z�0, such that X0.L/D Xe.L/,

and the reduced cellular chain complex zCcell.Xn.L// is the even Khovanov chain complex Kc.L/ for n

even and the odd Khovanov chain complex Kco.L/ for n odd. It is again straightforward to construct

an annular Khovanov spectrum AKHn.L/ for any n 2 Z�0, whose reduced cellular chain complex

zCcell.AKHn.L// is the even annular Khovanov chain complex AKc.L/ if n is even and the odd annular

Khovanov chain complex AKco.L/ if n is odd. The Khovanov spaces and spectra split as a wedge sum

according to quantum gradings, and in the annular case, .k/–gradings as well, as Xn.L/D
W

j X
j
n .L/

and AKHn.L/ D
W

j;k AKH
j;k
n .L/, respectively. Furthermore, for n � 1, Xn.L/ and AKHn.L/ are

Z2–equivariant spectra with geometric fixed points †�1Xn�1.L/ and †�1AKHn�1.L/, respectively.

See also [3], where Akhmechet, Krushkal, and Willis [9] construct a stable homotopy refinement of

Beliakova, Putyra, and Wehrli’s [4] quantum annular Khovanov homology.

Our main result is the following:

Geometry & Topology, Volume 28 (2024)
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Theorem 1.3 Fix p>1 and let QL be a p–periodic link with quotient link L. For each quantum grading j ,

there is a well-defined structure of a Zp–equivariant spectrum on X
j
0 .

QL/ and AKH
j;k
0 . QL/, whose Zp–

equivariant stable homotopy type is an invariant of the p–periodic link QL (that is , the equivariant stable

homotopy type is preserved by equivariant isotopies and equivariant Reidemeister moves of a diagram zD

of QL). Further , the geometric fixed points are given by

.1.4/

X
j
0 .

QL/Zp D
_

fa;bjpa�.p�1/bDj g

AKH
a;b
0 .L/;

AKH
pj�.p�1/k;k
0 . QL/Zp D AKH

j;k
0 .L/:

Moreover , if n � 1 and p is odd , X
j
n . QL/ and AKH

j
n. QL/ are naturally .Z2�Zp/–equivariant spectra ,

whose .Z2�Zp/–equivariant stable homotopy type is an invariant of the p–periodic link QL. Then , as

Z2–equivariant spectra ,

.1.5/

X
j
n .

QL/Zp D
_

fa;bjpa�.p�1/bDj g

AKH
a;b
n .L/;

AKH
pj�.p�1/k;k
n . QL/Zp D AKH

j;k
n .L/:

In fact , if p is odd and V is any finite-dimensional orthogonal .Z2�Zp/–representation , there are

.Z2�Zp/–equivariant spectra X
j
V .

QL/ and AKH
j
V .

QL/, whose .Z2�Zp/–equivariant stable homotopy type

is an invariant of the p–periodic link QL. Let V Zp be the Zp–fixed subspace of V . Moreover , X
j
V .

QL/ and

AKH
j
V .

QL/ are Z2–stable homotopy equivalent to †V�V Zp
X
j

dimV Zp
. QL/ and †V�V Zp

AKH
j

dimV Zp
. QL/.

Then , as Z2–equivariant spectra ,

.1.6/

X
j
V .

QL/Zp D
_

fa;bjpa�.p�1/bDj g

AKH
a;b

dimV Zp
.L/;

AKH
pj�.p�1/k;k
V . QL/Zp D AKH

j;k

dimV Zp
.L/:

Proof of Theorem 1.1 We begin by noting that, in Theorem 1.3, all the involved objects are suspension

spectra of compact spaces, and the statements in Theorem 1.3 continue to hold at the level of the underlying

topological spaces (see Lemma 5.13 and Theorem 6.7). Then Xe. QL/, here a compact topological space,

admits a Zpn–action with fixed-point set AKH0.L/. The homology satisfies zH.Xe. QL//D Kh. QL/, while

zH.AKH0.L//D AKh.L/. Applying (1.2) to M D Xe. QL/, Theorem 1.1 follows for the even case. The

odd case is similar.

Further, we expect that the Tate spectral sequence arising from the proof of Theorem 1.3 should be com-

patible with spectral sequences from Khovanov to Floer theories, perhaps being related to Hendricks’ [26],

Roberts’ [49], or Xie’s [58] spectral sequences.

We mention a few further possible connections of Theorem 1.3 to other work. First, recall from Beliakova,

Putyra, and Wehrli [9] that annular Khovanov homology of a link L can be realized as the Hochschild

homology of an appropriate bimodule over the platform algebra; see Chen and Khovanov [15] and

Stroppel [55]. Recall moreover that Lawson, Lipshitz, and Sarkar [40] have given a spectrum-level

Geometry & Topology, Volume 28 (2024)
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version of Khovanov’s invariant for tangles [31]. From these developments, it seems natural to conjecture

that the annular Khovanov spectrum of a link is realized as the topological Hochschild homology of an

appropriate spectral bimodule; this conjecture has been proved by Lawson, Lipshitz, and Sarkar in [39]

after the appearance of the present paper. Given the result of [39], it is interesting to ask whether and

how the actions we construct pass over to give actions on the topological Hochschild homology. See also

Lipshitz and Treumann [44].

Independently, Borodzik, Politarczyk, and Silvero [11] used equivariant flow categories to also show

that X0. QL/D Xe. QL/ admits a Zp–action; their main theorem [11, Theorem 1.2] is the first sentence of

Theorem 1.3, although it is not clear that the action constructed in [11] and that constructed here (in the

case nD 0) agree. In [11], they further relate the Borel equivariant cohomology of Xe. QL/ to Politarczyk’s

equivariant Khovanov homology [48]. Jeff Musyt has also constructed a Zp–equivariant Khovanov stable

homotopy type using methods similar to ours [46].

One final potentially surprising point is that, in the odd case, there are several .Z2�Zp/–equivariant

Khovanov spectra underlying any of the Z2–equivariant spectra X
j
n . QL/, with potentially different

.Z2�Zp/–equivariant stable homotopy types. Indeed, as in Theorem 1.3, any of the X
j
V .

QL/, for a

.Z2�Zp/–representation V with dimV Zp D n, is Z2–equivariantly stable homotopy equivalent to

†V�V Zp
X
j
n . QL/. It is not known to us if the .Z2�Zp/–equivariant stable homotopy type of X

j
V .

QL/ is

independent of V .

1.3 Techniques and organization

We use the machinery of Burnside functors (roughly speaking, these are functors to the Burnside category,

defined below), introduced by Hu, D Kriz, and I Kriz [28] and Lawson, Lipshitz, and Sarkar [38], to

study the Khovanov spectrum. This machinery first appeared in [38] to handle the product formula for

Khovanov spectra, by giving a construction of the Khovanov spectrum as a certain homotopy colimit,

which is more convenient for many applications. We will use a slight generalization of Burnside functors

of Sarkar, Scaduto, and Stoffregen [50], “decorated” Burnside functors, introduced to generalize the

construction of [38] to produce an odd Khovanov space. We first review the construction of [38], in order

to explain what is done here.

In [38], the dual of the Khovanov chain complex of a link diagram with n ordered crossings is viewed as

a diagram of abelian groups

Fe W .2n/op ! Z–Mod;

and similarly, in [50], the odd Khovanov chain complex is viewed as a diagram

Fo W .2n/op ! Z–Mod:

Let us recall, for K a finite group, the K–decorated Burnside category BK (written B if K D f1g),

whose objects are finite sets, whose 1–morphisms are finite correspondences decorated by elements of K,

Geometry & Topology, Volume 28 (2024)
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and whose 2–morphisms are bijections respecting decorations. The 2–category B naturally comes with

a forgetful functor to abelian groups B ! Z–Mod by sending a set S to the free abelian group ZhSi

generated by S . The Khovanov stable homotopy type arises from a lift, according to [38]:

2n Z–Mod

B

F
op
e

KH

On the other hand, given a homomorphism � WK ! Z2, there is a forgetful functor BK ! Z–Mod, again

by sending a set S to the free abelian group ZhSi generated by S , and with Z–Mod–morphisms twisted

by �. The odd Khovanov stable homotopy type arises from a lift:

2n

Z–Mod

BZ2

Z–Mod
F

op
e

�D0 �DId
KHO

F
op
o

The even Burnside functor KH is obtained by forgetting the Z2–decorations on KHO.

Given a Burnside functor F , [38] gives a recipe, called realization (see Section 4), for how to construct a

space kFe.L/k as a homotopy colimit of a certain homotopy-coherent diagram constructed from F . This

is generalized in [50] for the case of nontrivial K, and allows for the construction of an odd Khovanov

space kFo.L/k in a similar way.

Our goal here is to investigate extra structure on the realizations kF k, for F D KH. QL/ or KHO. QL/ for QL

p–periodic. A natural expectation is that kF k should admit a Zp–action. Our first technical work consists

of developing the correct notion of “actions ”on Burnside functors F W C ! BK , for C a small category,

and on homotopy-coherent diagrams C ! Top�, where Top� is the category of pointed topological spaces.

First, we briefly explain the notion of “action” on Burnside functors. A first guess is that a Burnside

functor F with action should be a diagram BG�C ! BK , where BG is the category with one object, and

morphisms G, in analogy with viewing a pointed G–space as a diagram BG ! Top�. The main technical

difficulty is that, for the Khovanov–Burnside functor, G D Zp acts on the category C itself. In Section 3,

we define a notion of external action of a group G on a Burnside functor F as a kind of twist of the

above definition.

We must next see how the realization process of [38] behaves on a Burnside functor F with action. As

before, the problem is that we obtain a homotopy-coherent diagram where the index category itself admits

a G–action (we call such a diagram a diagram with external action by G). Note that a homotopy-coherent

diagram with a G–action (so that G acts trivially on the index category) is simply a homotopy-coherent

diagram in the category of G–spaces, which would be readily handled along the lines of [50].

Geometry & Topology, Volume 28 (2024)
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In Section 5, we develop some machinery for homotopy colimits for homotopy-coherent diagrams with an

external action. We do not pursue the greatest level of generality here; indeed, a more satisfactory treatment

would be to essentially generalize the bulk of Vogt [56] to this situation; see also work of Dotto and

Moi [20]. The main results are Proposition 5.4 and Lemma 5.6, while the main application to realizations

of Burnside functors is Proposition 5.23. In fact, including Proposition 5.23 substantially increases the

preliminaries we need, but is not needed in order to show that the Khovanov spaces of p–periodic links

admit a Zp–action. Instead, Proposition 5.23 is only needed to show that the resulting Zp–action is well

defined. In Section 6, we show that KH and KHO have external actions under suitable circumstances, and

find the fixed-point functors. This involves a reasonably detailed study of the relationship of resolution

configurations in a periodic link with those in its quotient. It is somewhat interesting that the case of odd

Khovanov homology here is substantially more involved than the even case.

We conclude the introduction with a few remarks. First, in sections dealing with homotopy-coherent

diagrams, we work with diagrams in K–spaces for a group K, although for all of our applications K will

always be Z2 or trivial. We include the more general case because it is no more complicated, and also on

account of a conjecture of [50].

To explain this conjecture, recall that there is an infinite family of Khovanov spaces Xn.L/ of a link L for

n 2 Z�0, where the nth space has cellular chain complex equal to the even (resp. odd) Khovanov chain

complex if n is even (resp. odd). The conjecture of [50] is that there should be stable homotopy equivalences

.1.7/ Xn.L/' XnC2.L/:

An attractive method of proving this conjecture would be the construction of a further Burnside functor

KHZ W .2n/op ! BZ recovering KHO.L/ by taking Z ! Z2. If such a functor could be constructed, our

techniques would apply immediately to its realizations. Note that even if (1.7) holds, Theorem 1.3 is not

entirely boring for n� 2. Indeed, the statement (1.7) requires a choice of homotopy equivalence, and we

expect that the natural family of homotopies realizing this equivalence (constructed from the putative

KHZ) is not contractible. That is, there may be no preferred homotopy equivalence Xn ! XnC2.
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2 Khovanov homologies and periodic links

In this section, we briefly review the definition and basic properties of several Khovanov homology

theories. For an oriented link L � S3, we review the even Khovanov homology Kh.L/ D Khe.L/,

defined by Khovanov [30], and the odd Khovanov homology Kho.L/ defined by Ozsváth, Rasmussen,

and Szabó [47]. For an oriented link L in the thickened annulus .S1 � Œ0; 1�/� Œ0; 1�, we review the

annular Khovanov homology AKh.L/ defined by Asaeda, Przytycki, and Sikora in [5], as well as the

odd annular Khovanov homology AKho.L/, defined in [24] by Grigsby and Wehrli. For a more detailed

introduction to Khovanov homology, see [30]. Our exposition follows [38] closely.

2.1 The cube category

Call 2D f0; 1g the 1–dimensional cube, viewed as a partially ordered set by setting 1 > 0, or as a category

with a single nonidentity morphism from 1 to 0.

Call 2n D f0; 1gn the n–dimensional cube, with the partial order given by

uD .u1; : : : ; un/� v D .v1; : : : ; vn/ if and only if ui � vi for all i:

It has the categorical structure induced by the partial order, where Hom2n.u; v/ has a single element if

u� v and is empty otherwise. Write �u;v for the unique morphism u! v if it exists. The cube carries

a grading given by jvj D
P

i vi . Write u >k v if u � v and juj � jvj D k. When u >1 v, we call the

corresponding morphism �u;v an edge, and call v an immediate successor of u.

We will study chain complexes refining the cube category whose homological gradings correspond to the

gradings of the vertices. When we work with homotopy colimits, it is most useful for us to work with

commutative cubes, ie cubes where the 2–dimensional faces commute. However, in order for @2 D 0 to

hold in the chain complex, we must assign signs to the edges of the cube to force each face to instead

anticommute, leading to the following definition:

Definition 2.1 The standard sign assignment s is the following function from edges of 2n to F2. For

u>1 v, let k be the unique element in f1; : : : ; ng with uk > vk . Then

su;v WD
k�1
X

iD1

ui mod 2:

Note that s may be viewed as a 1–cochain in C �
cell.Œ0; 1�

nI F2/. In general, sCc is called a sign assignment

for any 1–cocycle c in C �
cell.Œ0; 1�

nI F2/.

2.2 Even Khovanov homology Kh

Khovanov homology, introduced in [30], is a combinatorial link invariant computed from a planar

diagram of an oriented link by considering the cube of resolutions. The result is a bigraded homology

Geometry & Topology, Volume 28 (2024)
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theory associated to an oriented link. We sometimes refer to this theory as even Khovanov homology to

distinguish it from odd Khovanov homology. For a more complete introduction to this theory, see [8].

Let D be a link diagram with n ordered crossings. Each crossing can be resolved as the 0–resolution

or the 1–resolution .

We will view Khovanov homology as coming from a functor

Fe W .2n/op ! Z–Mod;

which we define below. The theory is defined similarly over more general rings. In the context of Smith

inequalities (Section 6.5), we will use field coefficients.

Generators For each v 2 2n, let Dv be the complete resolution of D formed by taking the 0–resolution

at the i th crossing if vi D 0, or the 1–resolution otherwise. The diagram Dv is a planar diagram of

embedded circles. We write Z.Dv/ for the set of embedded circles (which we just call circles) in Dv.

A Kauffman state at v will be an element of the powerset of Z.Dv/. Let Fe.v/ be the free Z–module

generated by Kauffman states at v. We can think of Kauffman states as the monomials in the symmetric

algebra generated by the circles Z.Dv/, modulo x2i D 0 for each circle xi 2Z.Dv/, that is, as an element

of Sym.Z.Dv//=.x
2/x2Z.Dv/.

Arrows Let v; u 2 Ob.2n/ where u>1 v. Since Du and Dv differ only at the resolution of one crossing,

either two circles in Dv merge to become one circle in Du, or, dually, one circle in Dv splits to become

two circles in Du. Let �
op
v;u W v ! u be the arrow opposite �u;v.

First, say that two circles a1; a2 2 Z.Dv/ merge to a circle a 2 Z.Du/. Note that the complements

Z.Dv/nfa1; a2g and Z.Du/nfag are naturally identified. Define Fe.�
op
v;u/ as the Z–algebra map

Sym.Z.Dv//=.x
2/x2Z.Dv/ ! Sym.Z.Du//=.x

2/x2Z.Du/

determined by sending a1 and a2 to a, and sending other circles by the identity.

Next, say that one circle a 2Z.Dv/ splits to circles a1; a2 2Z.Du/. Define

Fe.�
op
v;u/.x/D .a1C a2/x;

where we have used the natural identification of Z.Dv/nfag with Z.Du/nfa1; a2g. One readily checks

that, with these definitions, Fe defines a functor .2n/op ! Z–Mod. We call Fe the Khovanov functor ofD.

Gradings There are two gradings associated to the Khovanov complex: first, there is the homological

grading (or “h–grading”) grh, and an additional quantum grading (or “q–grading”) grq that allows for

decategorification to the Jones polynomial.

Let D be a diagram for an oriented link L, n the number of crossings in D, and nC and n� the number

of positive and negative crossings (where a negative crossing is locally ) in D, respectively. Let

x D a1 � � � al 2 Fe.Du/ (where ai 2Z.Du/); then the gradings of x are given by

grh.x/D jvj �n� and grq.x/D jZ.Dv/j � 2l C jvj CnC � 2n�:

Geometry & Topology, Volume 28 (2024)
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Note that the morphisms Fe.�
op
v;u/ increase homological grading by 1 and preserve quantum grading. In

particular, we can regard

FeW .2
n/op ! Z–gMod;

where Z–gMod is the category of graded Z–modules. We write F
j
e for the functor taking .2n/op to the

j–graded component of Fe.

2.3 Homology from functors

Khovanov homology is defined from Fe as follows. Let

Kc.L/D
M

v22n

Fe.v/ and @Kh D
X

v>1w

.�1/sv;wFe.�
op
w;v/:

Here s is the standard sign assignment from Definition 2.1. The chain homotopy type of the resulting

complex is an invariant of the oriented link L [30, Theorem 1]. Note that Kc.L/ decomposes, over

quantum grading as a chain complex Kc.L/D Kcj .L/. The resulting homology Khi;j .L/DH i .Kcj .L//

is the Khovanov homology of L.

2.4 Odd Khovanov homology Kho

Odd Khovanov homology, introduced in [47], is structurally very similar to even Khovanov homology,

but instead uses exterior algebra operations to define the differential, introducing signs to the differential

within edges. We will view odd Khovanov homology as coming from a functor

Fo W .2n/op ! Z–Mod:

In order to define odd Khovanov homology from a link diagram D with n ordered crossings, we further

equip D with an orientation of crossings, which is a choice of an arrow at each crossing. Note that an

orientation of the link can be used to acquire an orientation of crossings. The resolution of a diagram D

with an orientation of crossings assigns to v 2 2n a collections of embedded circles, along with embedded

oriented arcs joining the circles. That is, locally the 0–resolutions of and are and and the

1–resolutions are and , respectively.

For objects v 2 2n, set Fo.v/ D ƒ.Z.Dv//, the exterior algebra, over Z, on the set of circles Z.Dv/.

This can be identified with Fe.v/, but the identification is not canonical. To define Fo on morphisms, we

start with an auxiliary assignment F0
o (with the same objects) defined on edges u>1 v; the functor Fo is

obtained by changing suitable signs of F0
o. We will call F0

o the projective odd Khovanov functor.

For u>1 v such that circles a1; a2 2Z.Dv/merge to a circle a2Z.Du/, set F0
o.�

op
v;u/ to be the Z–algebra

map ƒ.Z.Dv//!ƒ.Z.Du// determined by a1; a2 7! a and by identifying the other generators.

For u>1 v such that a circle a 2Z.Dv/ splits into circles a1; a2 2Z.Du/, and such that the arc in Du

points from a1 to a2, set

F0
o.�

op
v;u/.x/D .a1� a2/x;
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where we view ƒ.Z.Dv// as a subalgebra of ƒ.Z.Du// by sending a to either a1 or a2 and identifying

the other generators; one can quickly check that F0
o does not depend on whether a is sent to a1 or a2. It

will be convenient later to have the following terminology from [43]:

Definition 2.2 [43, Definition 2.1] A resolution configuration C is a pair .Z.C /; A.C // where Z.C/

is a collection of pairwise-disjoint embedded circles in S2, and A.C/ is a totally ordered collection of

arcs embedded in S2 with A.C/\Z.C/ D @A.C /. The number of arcs will be called the index of a

resolution configuration.

An odd resolution configuration will be a resolution configuration as above, but where the arcs are oriented.

For a link diagram D and u >i w 2 2n, we write Du;w for the resolution configuration obtained by

performing the w–resolution and then drawing the i arcs corresponding to the difference between u and w.

The assignment F0
o on the edges of .2n/op commutes up to a sign along 2–dimensional faces. We can

adjust F0
o to give a genuine functor from the cube category, as follows. The 2–dimensional odd resolution

configurations can be divided into four categories (with unoriented arcs being orientable in either direction):

.2.3/

A ; ; ; :

C ; ; ; ; :

X :

Y :

Note that F0
o commutes on faces of type C, and anticommutes on faces of type A. Meanwhile, F0

o both

commutes and anticommutes on faces of type X and type Y (that is, F0
o.�

op
v;u/F

0
o.�

op
w;v/D 0 on faces of

type X and type Y). For later reference, we call type X and type Y odd resolution configurations (as well

as their underlying resolution configurations) ladybug configurations.

We can define obstruction cocycles �.D/ 2 C 2cell.Œ0; 1�
nI Z2/ as follows (Z2 D f1;�1g will be written

multiplicatively). Define the type X (resp. type Y) obstruction cocycle �.D/X 2 C 2cell.Œ0; 1�
nI Z2/ (resp.

�.D/Y ) by setting �.D/Xu;w D �1 on faces of type A and type X (resp. type A and type Y), and

�.D/Xu;w D 1 on faces of type C and type Y (resp. type C and type X). In the sequel we will usually

omit the superscript from �.D/X , and we will choose to work with the type X obstruction cocycle.

The obstruction cocycle cannot a priori be determined from the projective functor F0
o W .2n/op ! Z–Mod

itself; the value �.D/u;w on faces u >2 w 2 2n such that F0
o.�

op
v;u/F

0
o.�

op
w;v/¤ 0 is determined by F0

o,

but for faces with F0
o.�

op
v;u/F

0
o.�

op
w;v/D 0, we need the type of Du;w to specify �.D/u;w .

It is shown in [47] that �.D/ (for either type X or Y) is a cocycle, and thus also a coboundary, since

H 2.Ccell.Œ0; 1�
nI Z2//D 0. That is, there exists some element � 2C 1cell.Œ0; 1�

nI Z2/ such that ı�D�.D/,

where ı denotes the coboundary of Ccell.Œ0; 1�
nI Z2/. An element � 2 C 1cell.Œ0; 1�

nI Z2/ satisfying ı� D

�.D/ will be called an edge assignment. Moreover, for edge assignments �1 and �2, the product �1�2
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is a cocycle in C 1cell.Œ0; 1�
nI Z2/. Since H 1.Ccell.Œ0; 1�

nI Z2//D 0, any two edge assignments differ by

multiplication by a coboundary in C 1cell.Œ0; 1�
nI Z2/.

We define

Fo.�
op
v;u/D �u;vF

0
o.�

op
v;u/;

which gives a functor Fo from the opposite cube category .2n/op ! Z–gMod. Although the identification

of Fo.Du/ and Fe.Du/ is noncanonical, all choices result in the same grading on Fo.Du/. Moreover, it

is clear that the arrows Fo.�/ preserve q–grading and increase h–grading by 1.

Odd Khovanov homology is constructed from this functor via

Kco.L/D
M

v22n

Fo.v/ and @Kho
D

X

v>1w

.�1/sv;wFo.�
op
w;v/:

The homologyH i .Kc
j
o ; @Kho

/DKh
i;j
o .L/ is called the odd Khovanov homology ofL, and its isomorphism

class is an invariant of the isotopy class of the oriented link L [47]. We will write Kh
j
o.L/ for the sum

L

i Kh
i;j
o .L/, and similarly write Khj .L/ for the sum

L

i Khi;j .L/ for even Khovanov homology.

We will also need to fix bases for the various Z–modules considered above. For the even case, a natural

set of generators is given by elements a1˝� � �˝ak 2 Sym.Z.Dv//=.x
2/x2Z.Dv/ where the ai 2Z.Dv/

are distinct. We refer to the elements a1˝ � � � ˝ ak as even Khovanov generators. For the odd case, in

order to choose a basis, we fix at every vertex v 2 2n a total ordering > on the set Z.Dv/. The set

Kg.v/D fa1˝ � � � ˝ ak j ai 2Z.Dv/ and a1 < � � �< akg

is called the set of odd Khovanov generators at v. We will usually suppress “even” and “odd” from the

notation for Khovanov generators when the appropriate adjective is clear from context.

Remark 2.4 We summarize our conventions with the following minimal example. Consider a knot

diagram D with one crossing. The cohomological functors Kh and Kho from link diagrams to Z–Mod

arise from functors Fe and Fo whose source category is .2/op, which is 0
�

op

0;1���! 1, where 1>1 0.

We have chosen these conventions to match existing literature on our most pertinent tools. “Khovanov

homology” was defined with the differentials increasing homological grading [30]. Lipshitz and Sarkar

constructed their stable homotopy type X using framed flow categories [43]; in this context, the category

2D 1! 0 is more natural, for the same reason Morse homology is defined homologically. The (singular)

cohomology of X is then “Khovanov homology”.

2.5 Annular filtrations

We call a link L� .R2�f0g/� Œ0; 1� an annular link; in this section we recall the definition of the annular

and odd annular Khovanov homologies of annular links. The former is first defined by [5], and the latter

is a generalization of their construction, first appearing in [24].

It is convenient to think of annular links as drawn on S2 D R
2[ f1g with two basepoints, with X at the

origin and O at 1. The presence of these basepoints filters both the even and odd Khovanov complexes by
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a filtration grading grk discussed below, and the associated graded objects are the annular Khovanov and

the odd annular Khovanov complexes. We will denote their homologies by AKh and AKho, respectively.

Fix an annular link diagram D. To obtain the annular grading (also called the “.k/–grading”) grk , we

choose an oriented arc 
 from X to O that misses all crossings of D; the resulting grading will be

independent of the choice of 
 . For each Kauffman state of a resolution Du, viewed as a monomial

xa1
� � � xat

in the circles Z.Du/, we obtain an orientation of the circles Z.Du/, where the circles xai

for i D 1; : : : ; t are oriented clockwise and the other circles are oriented counterclockwise. View the

collection of oriented circles (associated to a Kauffman state) Z.Du/ as an embedded 1–manifold z. The

.k/–grading of x D xa1
� � � xat

, written grk.x/, is defined by grk.x/D I.
; z/, the algebraic intersection

number of 
 and z.

One can check that the maps Fe.�
op
v;u/ and Fo.�

op
v;u/— and thus also the differentials @Kh and @Kho

— can

only preserve or decrease the .k/–grading. We set F
j;k
Ann.v/ to be the summand of F

j
e .v/ concentrated

in annular grading k; equivalently, this is the span of generators of F
j
e .v/ with annular grading equal

to k. Let �k W Fj;kAnn.v/ ! F
j
e .v/ be the inclusion, and let �k W Fje .v/ ! F

j;k
Ann.v/ be the projection. We

define the morphisms F
j;k
Ann.�

op
v;u/ to be the .k/–grading preserving part of F

j
e .�

op
v;u/; that is, F

j;k
Ann.�

op
v;u/D

�kF
j
e .�

op
v;u/�k . Let FAnn D

L

j;k F
j;k
Ann. Then FAnn is a functor

FAnn W .2n/op ! Z–Mod;

which we call the even annular Khovanov functor.

The definitions for F
j;k
Anno

.v/ and the odd annular Khovanov functor FAnno
are entirely analogous. It will

also be convenient to define F0
Anno

, the (odd) annular Khovanov projective functor, as the associated

graded object of F0
o (with respect to the .k/–grading).

The even annular Khovanov homology of L at .grq; grk/–bigrading .j; k/, denoted by AKhi;j;k.L/D

H i .AKcj;k.L//, is defined as the homology of the complex

AKcj;k.L/D
M

v22n

F
j;k
Ann.v/ and @D

X

v>1w

.�1/sv;wFAnn.�
op
w;v/:

The even annular Khovanov homology AKh.L/ of L is the homology of AKc.L/, the direct sum of the

above complexes over all bigradings .j; k/. Similarly, the odd annular Khovanov homology AKho.L/

is the homology of the analogous complex AKco.L/, where FAnno
.�

op
w;v/ replaces FAnn.�

op
w;v/ in the

differential @. The isomorphism classes of AKh.L/ and AKho.L/ are invariants of the annular isotopy

class of L.

We can also describe the maps FAnn.�
op
v;u/ in local pictures. It will be useful later to define (odd) annular

resolution configurations as in the definition of resolution configurations, except that we require that the

embedded circles lie in S2� fX;Og rather than S2. Note that an (odd) annular resolution configuration

has a well-defined underlying (odd) resolution configuration. We sometimes abuse notation and refer to

any of these types of resolution configurations as configurations.
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merge map annular interaction split map

.1 7! 1/

v1; v2 7! w
X




V ˝ V

X




W

1 7! v1C v2

.w 7! v1v2/

1 7! 1

v1 7! v

.w1 7! v/

XX




V ˝ W

X




V

1 7! w1.Cv1/

v 7! v1w1

1 7! 1

w1; w2 7! w
X




W ˝ W

X




W

1 7! w1Cw2

w 7! w1w2

Table 1: The six types of saddle interactions between circles in the annulus. Components of the

(even) Khovanov differential are listed in the side columns, with components that fail to preserve

the annular .k/–grading in parentheses; these decrease grk by exactly �2. For the odd case the

signs may differ, depending on context.

There are two types of circles in an annular resolution: we call a circle nontrivial if it separates O and X,

and otherwise call it trivial. When the annular grading is relevant, we associate nontrivial and trivial

circles with the labels V and W , respectively. (Similar to the notation in [23; 6], V (resp. W ) represents

a 2–dimensional vector space with generators in .grq; grk/–bigradings .1; 1/ and .�1;�1/ (resp. .0; 0/

for both).) A saddle (merge or split) cobordism in the annulus corresponds to one of six situations, which

are captured by the isotopy classes of index-1 annular resolution configurations; see Table 1 for explicit

descriptions of the corresponding differentials. For an elementary cobordism S WDv !Du, we call a

circle x in Z.Dv/ or Z.Du/ active if the component of S containing x is not homeomorphic to a cylinder;

otherwise, we call x a passive circle. The maps FAnn.�
op
v;u/ and FAnno

.�
op
v;u/ are obtained from the maps

in Table 1 by tensoring with the identity map on generators corresponding to passive circles.

There is another grading grj1
special to the annular case that we are tempted to call the annular quantum

grading, as it appears to be more relevant in annular Khovanov homology than the quantum grading; it

was first introduced in [23] as the “filtration-adjusted quantum grading” and is defined by grj1
D grq�grk .

This grading will play an important role when we study the Khovanov complexes for periodic links.
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Given an annular link diagram, the Khovanov generators Kg.v/ inherit a well-defined .k/–grading, and

we write Kgj;k.v/ for the Khovanov generators at v 2 2n with grq D j and grk D k.

2.6 Periodic links

Let p be an integer greater than 1. A p–periodic link . QL; / is a link QL� S3 together with an orientation-

preserving Zp–action  on the pair .S3; QL/ such that the fixed-point set of  on S3 is an unknot zU

disjoint from QL. (Often, we will confound notation, and write  for a generator of this action.) We will

usually write QL for such a periodic link, with the action  suppressed from the notation.

For a p–periodic link QL, the image of QL under the quotient map S3 ! S3= is called the quotient

link, and is denoted by L. Observe that if we remove the fixed-point set, an equivariant isotopy from

p–periodic link . QL0;  0/ to another p–periodic link . QL1;  1/ can be viewed as an equivariant ambient

isotopy in the solid torus. Quotienting by the action of  , we see that an equivariant isotopy between QL0
and QL1 is a lift of an annular isotopy from L0 to L1.

We will need a particularly convenient form of link diagrams for periodic links. A p–periodic link

diagram will be an annular link diagram zD in R
2 such that the action of Zp by counterclockwise rotation

on R
2 preserves zD (setwise). Such a diagram describes a p–periodic link QL in S3, and every p–periodic

link admits such a diagram. Then D D zD= is a diagram for the quotient link L. We will assume that

all of our diagrams for p–periodic links are p–periodic diagrams.

Note also that given an annular diagram D, we can form a p–periodic link diagram zD, called the p–cover

of D, by taking p copies fDigiD1;:::;p of D cut along an arc 
 as in Table 1, and gluing (reversing

orientation on the boundary) Di to DiC1 along one boundary component of the cut diagram (with

subscripts interpreted cyclically).

Two p–periodic diagrams zD1 and zD2 represent the same periodic link if and only if they are related

by equivariant isotopies and equivariant Reidemeister moves, which are the lifts of Reidemeister moves

on the quotient diagrams D1 and D2; see [48]. See Figure 7 for an example. In particular, equivariant

Reidemeister moves do not interact with the basepoint X in the diagram.

Notation 2.5 For bookkeeping purposes, we introduce the notation that Q� generally means “lift of”, as

well as the following rules. Given an ordering of crossings of a diagram D, we obtain an ordering of

crossings on zD as follows. Recall that in the definition of annular Khovanov homology we used an arc 
 .

As the quotient of a periodic diagram zD, the diagram D is naturally an annular diagram, and we fix some

arc 
 from X to O, as in the definition of annular Khovanov homology in the previous section. Let Q
 be

a lift of 
 to zD. We divide the plane containing zD into sectors, that is, the connected components of

R
2 � Zp Q
 , where Zp Q
 denotes the orbit of Q
 under the rotation action of Zp. The sectors are labeled

S1; : : : ; Sp , where Si is the sector between  i�1 Q
 and  i Q
 . The crossings of zD are ordered by requiring

that the first n crossings are those contained in S1, ordered according to their ordering in the quotient,
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the next n are the crossings of S2, and so on. From now on, unless otherwise stated, given an annular

diagram D with ordered crossings, we will assume its p–cover zD has this ordering of crossings.

2.7 Periodic links and Khovanov homologies

Fix an integer p > 1 and a p–periodic diagram zD. The rotation action on resolution diagrams induces

an action  on the Khovanov generators, which we describe below. We first observe that for g 2 Zp,

and a circle x of a resolution v, there is a circle gx in the resolution gv, obtained by rotating x through

.g=p/2� (counterclockwise). The group Zp acts on
L

v Fe.v/ by sending a Kauffman state x1 � � � xt
to y1 � � �yt , where yi D gxi . For the above ordering of the crossings of zD and D, this action lies over

the action of Zp on .2n/p by cyclic permutation. To be specific, the action of Zp on .2n/p is defined by

the property that the generator 1 2 Zp sends .x1; x2; : : : ; xp�1; xp/ 2 .2n/p to .xp; x1; : : : ; xp�2; xp�1/.

We call a Khovanov generator an invariant generator if it is invariant under the action of Zp . Meanwhile,

Zp acts by bijections on the set Kg. zD/, but one can say somewhat more. That is, Zp may send odd

Khovanov generators to ˙–multiples of odd Khovanov generators. Let a signed bijection X W S1 ! S2

between two finite sets S1 and S2 be a bijection along with a “sign” map � W S1 ! Z2. (Really, we should

view X as a correspondence between S1 and S2 along with a “sign” map � W X ! Z2; see Section 3

for more details.) Then the generator  of Zp acts by signed bijections, Kg.u/! Kg. u/, where the

sign of x 2 Kg.u/ records the sign of the generator  .x/ as a Khovanov generator of Fo. u/. We write

Kg. zD/Zp for the set of invariant Khovanov generators (where invariant just means invariant under the

Zp–action, and does not involve the sign map of the Zp–action).

We conclude this section by discussing the relationship between generators in Kc.D/ and their lifts in

Kc. zD/. In particular, the relationship between gradings of generators in Kc.D/ and Kc. zD/ explains the

role annular filtrations play in the present localization of Khovanov homology.

Proposition 2.6 [59, Proposition 29] There is a bijection between the (even) generators of Kc.D/ and

the (even) invariant generators of Kc. zD/, given by x 7! Qx, such that

grk. Qx/D grk.x/; grh. Qx/D p grh.x/ and grq. Qx/D p grq.x/� .p� 1/ grk.x/:

In particular , this implies grj1
. Qx/D p grj1

.x/.

Proof (see Notation 2.5) Note that QnC D pnC, Qn� D pn�, and j Quj D pjuj. Let x 2 Kc.D/ be a

generator lying at vertex u 2 2n. Suppose x has

� ˛ nontrivial counterclockwise circles,

� ˇ nontrivial clockwise circles,

� 
 trivial counterclockwise circles, and

� ı trivial clockwise circles.
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Let S be a circle in Du. If S is nontrivial, then its lift in D Qu consists of a single equivariant nontrivial

circle. On the other hand, if S is trivial, then its lift consists of p copies of a nontrivial circle. We may

then compute the gradings for Qx:

grk. Qx/D ˛�ˇ D grk.x/

grh. Qx/D j Quj� Qn� D pjuj�pn� D p grh.x/

grq. Qx/D j QujC˛�ˇCp
�pıC Qn� �2 QnC D pjujCp.˛�ˇC
�ı/�.p�1/.˛�ˇ/Cp.n� �2nC/

D p grq.x/�.p�1/ grk.x/:

The grj1
relationship follows directly.

Proposition 2.6 extends to a bijection Kg.D/! Kg. zD/Zp when the order of circles upstairs is chosen to

satisfy the following. If circles a1; a2 2Z.Du/ satisfy a1 < a2, then any circles over them, say Qa1 and

Qa2, satisfy Qa1 < Qa2. For a 2Z.Du/ let Qa1 be the circle upstairs closest to Q
 , proceeding counterclockwise

from Q
 , for those a which do not intersect 
 . (For nontrivial circles, which necessarily intersect Q
 , there

is no ambiguity.) For trivial a that intersects 
 , let Qa denote the circle above a that intersects Q
 furthest

from X. Define Qai D i�1 Qa for 1� i � p. We require Qa1 < � � �< Qap . The bijection Kg.D/! Kg. zD/Zp

is determined by taking nontrivial circles to nontrivial circles, and takes a trivial circle a to Qa1 � � � Qap.

If p is odd, the bijection Kg.D/! Kg. zD/Zp can be described more simply. Each invariant generator

in Kg. zDu/ is a product of terms coming from nontrivial circles in zDu and products xi1 � � � xip of trivial

circles related by rotation. Say y1 � � �yk is an element of Kg.D/, with y1 < � � �< yk . If yi is a nontrivial

circle, let Qyi be the unique circle over yi . Otherwise let Qyi be the product Qyi;1 � � � Qyi;p of trivial circles

over yi , where Qyi;1 is any trivial circle over yi , and Qyi;j D  j�1 Qyi;1. Because p is odd, the product

Qyi;1 � � � Qyi;p is independent of the choice of Qyi;1. Then the bijection Kg.D/! Kg. zD/Zp is given by

y1 � � �yk 7! Qy1 � � � Qyk :

3 Burnside categories and functors

In this section we recall the machinery of Burnside functors from [38; 37]. We will also record a slight

generalization of the signed Burnside functors of [50]. Sections 3.1–3.3 are essentially a review of material

from [38; 50]. In Section 3.4, we introduce external actions on Burnside functors and prove basic properties.

The rest of the section consists of generalizing notions of [38] to Burnside functors with external action.

3.1 The Burnside category

Given finite sets X and Y , a correspondence from X to Y is a triple .A; s; t/ consisting of a finite set

A and set maps s W A ! X and t W A ! Y . The maps s and t are called the source and target maps,

respectively. The correspondence .A; s; t/ is depicted:

X Y

As t
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For correspondences .A; sA; tA/ from X to Y and .B; sB ; tB/ from Y to Z, define the composition

.B; sB ; tB/ ı .A; sA; tA/ to be the correspondence .C; s; t/ from X to Z given by the fiber product

C D B �Y A D f.b; a/ 2 B � A j t .a/ D s.b/g with source and target maps s.b; a/ D sA.a/ and

t .b; a/D tB.b/. There is also the identity correspondence from a set X to itself, .X; IdX ; IdX / from X

to X , where IdX WX !X is the identity map. Given correspondences .A; sA; tA/ and .B; sB ; tB/ from X

to Y , a morphism of correspondences from .A; sA; tA/ to .B; sB ; tB/ is a bijection f WA!B commuting

with the source and target maps.

Composition (of set maps) gives the set of correspondences from X to Y the structure of a category.

Informally, the Burnside category B is the weak 2–category whose objects are finite sets, morphisms are

finite correspondences, and 2–morphisms are maps of correspondences.

Recall that in a weak 2–category, composition need only be associative up to an equivalence, and similarly

the identity axiom need only hold after composing with a 2–morphism. To be explicit, for finite sets X and

Y and .A; s; t/ a correspondence from X to Y , neither .Y; IdY ; IdY /ı.A; s; t/ nor .A; s; t/ı.X; IdX ; IdX /

needs to equal .A; s; t/. Rather, there are natural 2–morphisms, called left and right unitors,

� W Y �Y A! A and � W A�X X ! A;

such that �.y; a/D a and �.a; x/D a. Further, the composition C ı .B ıA/, for A from W to X , B from

X to Y , and C from Y to Z, is not necessarily identical to .C ıB/ ıA. Rather, there is an associator

˛ W .C �Y B/�X A! C �Y .B �X A/

given by ˛..c; b/; a/D .c; .b; a//.

We will work with a variant, as in [40, Section 2.11], in which composition is strictly associative. Here,

the objects of B are finite sets, and for objects X and Y , the morphism set Hom.X; Y / is the set of pairs

consisting of an integer n and a .Y�X/–matrix .Ay;x/x2X;y2Y of finite subsets Ay;x of R
n satisfying

Ay;x \Ay0;x D ¿ if y ¤ y0 and Ay;x \Ay;x0 D ¿ if x ¤ x0:

Note that for A� R
n and B � R

m, A�B is a subset of R
nCm. Composition is then given by

.Az;y/y2Y;z2Z ı .Ay;x/x2X;y2Y D

�

[

y2Y

Az;y �Ay;x

�

x2X;z2Z

:

Meanwhile, 2–morphisms are bijections of correspondences (for which the embedding information is not

needed). For more details, see [40, Section 2.11].

Throughout, when we refer to the “Burnside category”, we will mean this strict version of the category.

However, for everything that appears in this paper, the embedding data can be chosen arbitrarily, and so

we will not specify it.

In a 2–category, there are two kinds of composition for 2–morphisms. For objects x, y, and z, and

1–morphisms f; g W x! y and f 0; g0 W y ! z, as well as 2–morphisms ˇ W f ! g and 
 W f 0 ! g0, there is
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the horizontal composite 
 ı1 ˇ W f 0 ıf ! g0 ıg. Meanwhile, for objects x and y, the set of morphisms

Hom.x; y/ is a category, in which we have composition. That is, for fixed morphisms f; g; h W x ! y, if

ˇ W f ! g and 
 W g ! h are 2–morphisms, then there is a well-defined vertical composite 
 ı2 ˇ. When

it is clear which of the two compositions (ı1 or ı2) we are referring to, we will omit the subscript. For

more details on 2–categories, we refer the reader to [10].

3.2 Decorated Burnside categories

Fix a group K; for our purposes, K is usually the cyclic group Z2 D f1;�1g, written multiplicatively.

Given finite sets X and Y , a decorated correspondence is a correspondence .A; sA; tA/ equipped with a

map �A W A!K, regarded as a tuple .A; sA; tA; �A/; we call �A the “decoration” of the correspondence

(or the “sign” if K D Z2):

X Y

A

K

sA tA

�A

We often write “correspondence” for “decorated correspondence”, where it will not cause any confusion.

Let .A; sA; tA; �A/ be a correspondence from X to Y and .B; sB ; tB ; �B/ a correspondence from Y to Z;

we define a composition .B; sB ; tB ; �B/ ı .A; sA; tA; �A/ of decorated correspondences by .C; s; t; �/,

where .C; s; t/ is the composition .B; sB ; tB/ ı .A; sA; tA/ and �.b; a/D �B.b/�A.a/. Also, we define

the identity correspondence by .X; IdX ; IdX ; 1/— ie the identity correspondence takes the decoration 1

on all elements of X .

We define maps of decorated correspondences f W .A; sA; tA; �A/! .B; sB ; tB ; �B/ to be morphisms of

correspondences f W .A; sA; tA/! .B; sB ; tB/ such that �B ıf D �A. We may then define theK–Burnside

category BK to be the 2–category with objects finite sets, morphisms given by decorated correspondences

along with an embedding as in the definition of the ordinary Burnside category from Section 3.1, and

2–morphisms given by maps of decorated correspondences. Note that the structure maps �, �, and

˛ of Section 3.1 are easily seen to respect the decoration, confirming that BK , with the embedding

information forgotten, is indeed a weak 2–category. There is a forgetful 2–functor F W BK ! B which

forgets decorations. As with the ordinary Burnside category, we will work with the strict version of the

K–Burnside category, but we will not specify the embedding data when it may be chosen arbitrarily.

For a homomorphism d W K ! Z2, we define a functor Ad W BK ! Z–Mod by sending an object X

of BK to the free abelian group generated by X , denoted by Ad.X/. For a decorated correspondence

� D .A; s; t; �/ from X to Y , we define Ad.�/ W Ad.X/! Ad.Y / by

.3.1/ Ad.�/.x/D
X

fa2Ajs.a/Dxg

d.�.a//t.a/

for elements x 2X , extended linearly over Z. When d is the trivial morphism, we write A for Ad.
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We also define a functor AK W BK ! ZŒK�–Mod by sending an object X of BK to the free ZŒK�–module

generated by X , denoted by AK.X/. For a decorated correspondence � D .A; s; t; �/ from X to Y , we

define Ad.�/ W Ad.X/! AK.Y / by

.3.2/ AK.�/.x/D
X

fa2Ajs.a/Dxg

�.a/t.a/

for elements x 2 X , extended linearly over ZŒK�. Note that a homomorphism dWK ! Z2 defines a

homomorphism of group rings ZŒK�! Z by sending k 2K to d.k/ 2 f˙1g and extending linearly. The

functor Ad is obtained by applying extension of scalars, along ZŒK�! Z, to AK .

3.3 Functors to Burnside categories

We now consider functors from the cube category 2n to the Burnside categories introduced thus far. The

functors F W 2n ! BK we consider will be strictly unitary lax 2–functors, defined below.

Definition 3.3 Let C be a 1–category and D a weak 2–category. A strictly unitary lax 2–functor

F W C ! D consists of the following data:

(1) For each object x of C , there is an object F.x/ of D .

(2) For any morphism � W x ! y in C , there is a 1–morphism F.�/ in D from F.x/ to F.y/. For x an

object of a 1–category or 2–category, let Idx denote the identity morphism at x. We require that, for all

objects x of C , F.Idx/ is the identity morphism IdF.x/.

(3) Finally, for any objects x, y, and z of C and morphisms ˇ W x ! y and 
 W y ! z, there is a

2–morphism Fˇ;
 in BK from F.
/ ıF.ˇ/ to F.
 ıˇ/ that agrees with � (resp. �) when 
 D Idy (resp.

ˇ D Idx) such that the diagram

.F.ı/ ıF.
// ıF.ˇ/ F.ı/ ı .F.
/ ıF.ˇ//

F.ı ı 
/ ıF.ˇ/ F.ı/ ıF.
 ıˇ/

F.ı ı 
 ıˇ/

˛

Idı1Fˇ;


F
ıˇ;ı

F
;ıı1Id

Fˇ;ıı


commutes. Here, w, x, y and z are objects of C with morphisms ˇ W w ! x, 
 W x ! y, and ı W y ! z.

The more general definition of strictly unitary lax 2–functors between weak 2–categories C and D can be

found in Definitions 4.2 and 4.3 of [38]. We call strictly unitary lax 2–functors simply “2–functors” or

“functors” when it will not cause confusion. If the target of such a functor is the Burnside category or a

variant thereof, we may also refer to such functors as “Burnside functors”.

When C D 2n and u� v�w are objects of C , we write Fu;v;w for the 2–morphism F.�v;w/ıF.�u;v/!

F.�u;w/.

Geometry & Topology, Volume 28 (2024)



Localization in Khovanov homology 1521

Lemma 3.4 [50, Lemma 3.2] Consider objects F.v/ for v 2 2n, a collection of 1–morphisms F.�v;w/

in BK for edges v>1w, and 2–morphisms Fu;v;v0;w WF.�v;w/ıF.�u;v/!F.�v0;w/ıF.�u;v0/ for each

2–dimensional face described by u>1 v; v
0
>1 w, such that the following compatibility conditions hold :

(1) For any 2–dimensional face given by u, v, v0 and w as above , Fu;v;v0;w D F�1
u;v0;v;w .

(2) For any 3–dimensional face in 2n on the left , the hexagon on the right commutes:

u v0

v00 w

v w00

w0 z

ı

ı

ıı

ı

ı
Id�Fu;v;v00;w0

Fv00;w0;w;z�IdId�Fu;v00;v0;w
Fv0;w;w00;z�Id

Id�Fu;v0;v;w00

Fv;w00;w0;z�Id

This collection of data can be extended to a strictly unitary functor F W 2n ! BK , uniquely up to natural

isomorphism , so that Fu;v;v0;w D F�1
u;v0;w ı2 Fu;v;w .

Definition 3.5 Given a functor F W 2n ! BK and d WK ! Z2, we construct a chain complex, denoted

by Totd.F /, called the totalization of the functor F . We usually suppress d from notation when it is clear.

The underlying chain group of Totd.F / is

Totd.F /D
M

v22n

Ad.F.v//:

We set the homological grading of the summand Ad.F.v// to be jvj. The differential is given by defining

the components @u;v from Ad.F.u// to Ad.F.v// by

@u;v D

�

.�1/su;vAd.F.�u;v// if u>1 v;

0 otherwise:

We just write Tot for Totd when d is the map that sends all elements of K to the identity of Z2. Similarly,

we construct a chain complex TotK.F /, called the K–totalization of F . The underlying chain group of

TotK.F / is

TotK.F /D
M

v22n

AK.F.v//;

and the homological grading of the summand AK.F.v// is jvj. The differential is given by defining the

components @u;v from AK.F.u// to AK.F.v// by

@u;v D

�

.�1/su;vAK.F.�u;v// if u>1 v;

0 otherwise:

3.4 External actions on Burnside functors

We will be especially interested in functors to the Burnside category that admit “extra symmetries” as

follows. For a groupG, let BG denote the category with one object, and morphism setG. The composition

in BG is given by g ı hD hg. Let Cat denote the category of small categories.

Geometry & Topology, Volume 28 (2024)



1522 Matthew Stoffregen and Melissa Zhang

Definition 3.6 Let G be a group and C a small category. A group action of G on C is a functor

 W BG ! Cat such that the object of BG is sent to C . Alternatively, a group action of G on C consists of

a group action  of G on Ob.C /, along with an isomorphism of sets  g W Hom.x; y/! Hom. gx; gy/

for each g 2G, compatible with composition of morphisms in C and such that  h g D hg . We further

require that the group action preserves identity morphisms.

Definition 3.7 Fix a Burnside functor F W C ! BK , for C a small category. Say there exists an action

of G by  on C . An external action on F compatible with  consists of the following data. In the

following, to ease the notation, for an object v of C and an element g 2 G, we will write gv for the

object of C obtained by acting by g on v, and similarly for morphisms of C .

(1) For all g 2G and v objects of C , there is a collection of 1–isomorphisms

 g;v W F.v/! F.gv/

in BK . We also require, for each g; h 2 G and v an object of C , that there exists a 2–morphism

 g;h;v W  gh;v !  g;hv ı h;v (note that if such a 2–morphism exists, it is unique).

(2) For each morphism A W x ! y in C and each g 2G, there is a 2–morphism, which is part of the data

of an external action,

 g;A W  g;y ıF.A/! F.gA/ ı g;x :

The data are subject to the following conditions:

(E-1) Let A W u! v be a 1–morphism in C , for objects u and v of C . The 2–morphism  gh;A is given

by the composite

 gh;v ıF.A/
 g;h;vı1Id
�������!  g;hv h;v ıF.A/

Idı1 h;A������!  g;hv ıF.hA/ ı h;u
 g;hAı1Id
�������! F.ghA/ ı g;hu h;u

Idı1 g;h;u�������! F.ghA/ ı gh;u:

It is convenient to record relations such as this schematically. Depicting 2–morphisms by double arrows

and 1–morphisms by single arrows, the above equation can be represented as

F.u/ F.hu/ F.ghu/

F.v/ F.hv/ F.ghv/

D

F.u/ F.ghu/

F.v/ F.ghv/

The figure on the left-hand side represents a 2–morphism from  gh;v ı F.A/ to F.ghA/ ı gh;u, as

follows. The horizontal and curved 1–morphisms are of the form  k;x for k 2G and x an object of C ,

while the vertical 1–morphisms are A W u ! v, hA W hu ! hv, and ghA W ghu ! ghv. Associated to

each path, by traversing single arrows from F.u/ to F.ghv/, there is a 1–morphism F.u/! F.ghv/.

For instance,  gh;v ıF.A/ is obtained from the arrow F.u/! F.v/, composed with the curved arrow
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v ! ghv. Each square in the rectangle records a 2–morphism as in (2). The semicircular regions have

2–morphisms as in (1). The 2–morphism represented by the figure is the composite of the 2–morphisms in

the squares and top and bottom regions. The square on the other side of the schematic equality represents

the 2–morphism  gh;A. For more on this notation, we refer to [36, Section 2].

(E-2) Let u, v and w be objects of C and let A W u! v and B W v!w be 1–morphisms in C . We require

that the following pentagon commutes (where three additional associators have been suppressed):

 g;w ıF.B/ ıF.A/

F.gB/ ı g;v ıF.A/

F.gB/ ıF.gA/ ı g;u

F.gB ıgA/ ı g;u g;w ıF.B ıA/

 g;Bı1Id Idı1 g;A

FgA;gBı1IdIdı1FA;B

 g;BıA

Schematically,

F.u/ F.v/ F.w/

F.gu/ F.gv/ F.gw/

D

F.u/ F.w/

F.gu/ F.gw/

Remark 3.8 One can view Definition 3.7(E-1) as stating that the “action” by G on F is compatible with

multiplication in G, while (E-2) says that the “action” of G on F is compatible with composition in C .

Note that 2np D .2n/p, and let Zp act by cyclic permutation of the factors 2n of 2np, as in Section 2.7.

Let F W 2np ! BK be a Burnside functor with compatible external action. The complex TotK.F /, for

F W 2np ! BK admitting an external Zp–action compatible with permutation of the coordinates, admits its

own Zp–action as follows. For u2 Ob.2np/, let �.u/D .�1/.#fi�n.p�1/jui D1g/.#fi>n.p�1/jui D1g/ 2 f˙1g.

Define g� W TotK.F /! TotK.F / for g2 Zp as follows. For gD1p the generator of Zp (written additively)

and x 2 F.v/, set g�.x/D �.v/�.g; x/g.x/ and extend linearly, where g.x/ and �.g; x/ are defined as

follows. Let  g;v be the correspondence from F.v/ to F.gv/ as in Definition 3.7 with source map s,

target map t , and decoration � W  g;v ! K, and set �.g; x/ D �.s�1.x// and g.x/ D t .s�1.x//. The

action of general g D l.1p/ 2 Zp is defined by .1p/
l
�.

It is a direct but tedious check to see that g� is a chain map for all g 2 Zp, and a similar check gives

.1p/
p
� D Id, so we obtain:

Lemma 3.9 Let Zp act on 2np as above. For F W2np!BK a functor with compatible external action , the

complex TotZp
.F / is naturally a chain complex over ZŒZp �K�. It follows that , for each homomorphism

d WK ! Z2, the complex Totd.F / is a chain complex over ZŒZp�.
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For a small category C with an action by a groupG, along with functors F1; F2 W C ! BK with compatible

external actions  1 and  2, respectively, we say that F1 and F2 are G–equivariantly naturally isomorphic

if there is a functor J W C �2! BK with external action (where the action on 2 is trivial) such that J jC �0

is F1 and J jC �1 is F2, and J.Idv ��1;0/ is an isomorphism for all objects v of C .

Lemma 3.10 Let Zp act on .2n/p by cyclic permutation of the factors of 2n. Consider the data F as in

Lemma 3.4 along with the following data:

(1) For each object v of .2n/p and g2Zp, there is a 1–isomorphism (in BK) g;v WF.v/!F.gv/. We

also require , for all g; h 2G and v an object of .2n/p, a 2–morphism ˛g;h;v W gh;v ! g;hv h;v

(note that if such a 2–morphism exists , it is unique).

(2) For g 2 Zp and u>1 v 2 2np, there is a 2–morphism  g;u;v W g;v ıF.�u;v/! F.�gu;gv/ı g;u.

Assume that the data satisfies the following conditions:

(E-10) For any u>1 v 2 2np and for all g; h 2G, we have

 gh;u;v D ˛�1
g;h;u ı2 . g;hu;hv ı Id/ ı2 .Id ı h;u;v/ ı2 ˛g;h;v:

That is , the data . g;v;  g;u;v; ˛g;h;v/ satisfy (E-1) for length-1 morphisms.

(E-20) For any objects u and v of .2n/p, write F.�u;v/ D Au;v to ease the notation. For objects

u>1 v; v
0
>1 w of .2n/p and g 2G, the following hexagon commutes:

Agv;gw ıAgu;gv ı g;u

Agv0;gw ıAgu;gv0 ı g;u

Agv0;gw ı g;v0 ıAu;v0 g;w ıAv0;w ıAu;v0

 g;w ıAv;w ıAu;v

Agv;gw ı g;v ıAu;v
 g;v;wıId

Idı g;u;v

Fgu;gv;gv0;gwı2Id

IdıFu;v;v0;w
 g;v0;wıId

Idı g;u;v0

Then this collection of data extends to a strictly unitary functor F W .2n/p ! BK admitting an external

Zp–action , which is unique up to Zp–equivariant natural isomorphism.

Proof We briefly describe the argument for Lemma 3.4, which is identical to that of [37, Proposition 4.3].

The functor F constructed in Lemma 3.4 is defined by, for each �u;v, choosing a sequence u>1 u1 >1

� � � >1 ui�1 >1 ui D v and then setting F.�u;v/DF.�ui�1;v/ı � � �ıF.�u;u1
/. For each u>i v>j w, we

need a 2–morphism Fu;v;w WF.�v;w/ıF.�u;v/!F.�u;w/. Suppose that the sequence defining F.�u;v/

is u >1 u1 >1 � � � >1 ui D v, that defining F.�v;w/ is v >1 v1 >1 � � � >1 vj D w, and that defining

F.�u;w/ is u>1 u
0
1 >1 � � � >1 u

0
iCj D w. We then need a bijection of decorated sets

.F.�vj �1;w/ ı � � � ıF.�v;v1
// ı .F.�ui�1;v/ ı � � � ıF.�u;u1

//! F.�u0
iCj �1

;w/ ı � � � ıF.�u;u0
1
/:
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Such a bijection is obtained by taking a composition of bijections of the form Id ıFx;y;y0;z ı Id as in the

statement of Lemma 3.4. Lemma 3.4(2) guarantees that the bijection of decorated sets thus constructed is

independent of the choices of the Fx;y;y0;z .

To simplify the notation for the proof, for any objects u � v of .2n/p, write Au;v D F.�u;v/. We

need to define 2–isomorphisms in BK ,  g;u;v W  g;v ı Au;v ! Agu;gv ı  g;u for all u � v so that

(E-1) and (E-2) hold. Recall that in the construction of F , for each u >i v we selected a sequence

u>1 u1 >1 � � � >1 ui D v, and set Au;v DAui�1;v ı � � � ıAu;u1
. We then have a diagram, where the solid

arrows represent 2–morphisms, and the dashed arrow has not yet been defined:

 g;v ıAui�1;v ı � � �ıAu;u1
Agui�1;gv ı g;ui�1

ı � � �ıAu;u1
: : : Agui�1;gv ı � � �ıAgu;gu1

ı g;u

 g;v ıAu;v Agu;gv ı g;u

The vertical 2–morphisms are given by the construction of F : the left one is part of the definition, and the

right one arises from a sequence of bijections of the form Id ıFx;y;y0;z ı Id, as in the proof of Lemma 3.4.

Although the decomposition of the right vertical 2–morphism into the Fx;y;y0;z is not well defined, the

resulting composite is well defined. The horizontal 2–morphisms in the top row are instances of the maps

 g;x;y , as in (2), for objects x >1 y of .2n/p . We define the 2–morphism  g;u;v (taking the place of the

dashed arrow) to make the diagram commutative.

For checking that (E-1) holds, we draw the following schematic figures, interpreted as in Definition 3.7,

which the determined reader can translate into equations. Let us set up some notation. Fix g; h 2 Zp.

Say that in the definition of F , we have selected the sequences u>1 u1 >1 � � � >1 ui D v, hu>1 u
0
1 >1

� � � >1 u
0
i D hv and ghu>1 u

00
1 >1 � � � >1 u

00
i D ghv to define Au;v, Ahu;hv and Aghu;ghv, respectively.

Consider the 2–morphism

E
0
1 W  g;hv ı h;v ıAui�1;v ı � � � ıAu;u1

! Au00
i�1

;ghv ı � � � ıAu;u1
ı g;hu ı h;u

defined as the composite

.3.11/ E
0
1D

F.u/

F.u1/

:::

F .ui�1/

F.ui /DF.v/

F.hu/

F.hu1/

:::

F .hui�1/

F.hui /DF.hv/

F.hu/

F.u0
1/

:::

F .u0
i�1/

F.u0
i /DF.hv/

F.ghu/

F.gu0
1/

:::

F .gu0
i�1/

F.ghui /DF.ghv/

F.ghu/

F.u00
1/

:::

F .u00
i�1/

F.u00
i /DF.ghv/
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Each of the diagonal 2–morphisms is of the form  k;x;y for some k 2G and x>1 y objects of .2n/p . The

horizontal 2–morphisms are composites of 2–morphisms of the form Idı1Fx;y;y0;zı1Id for x>1 y; y
0
>1 z.

Define E1 D ˛�1
g;h;u

ı1 E
0
1 ı1 ˛g;h;v. To verify (E-1), we need to show that E1 is the same as the

2–morphism E2 defined by

.3.12/ E2 D

F.u/

F.u1/

:::

F .ui�1/

F.ui /D F.v/

F.ghu/

F.ghu1/

:::

F .ghui�1/

F.ghui /D F.ghv/

F.ghu/

F.u00
1/

:::

F .u00
i�1/

F.u00
i /D F.ghv/

Again, the diagonal 2–morphisms are of the form  k;x;y for k 2 G and x >1 y objects of .2n/p. The

horizontal 2–morphism comes from composing several of the Fx;y;y0;z maps.

We first apply (E-10) to express E2 as

.3.13/

F.u/

F.u1/

:::

F .ui�1/

F.ui /D F.v/

F.hu/

F.hu1/

:::

F .hui�1/

F.hui /D F.hv/

F.ghu/

F.ghu1/

:::

F .ghui�1/

F.ghui /D F.ghv/

F.ghu/

F.u00
1/

:::

F .u00
i�1/

F.ghv/

Let E
0
2 D ˛g;h;u ı1E2 ı1 ˛�1

g;h;v
. To show E1 D E2, it then suffices to check E

0
1 D E

0
2. Observe that the

first two columns (of objects), along with the 1–morphisms among these objects and the two morphisms
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between these columns, are the same in (3.11) and (3.13). Thus, it suffices to check that the 2–morphisms

E
00
1 and E

00
2 depicted below agree. Set

.3.14/ E
00
1 D

F.hu/

F.hu1/

:::

F .hui�1/

F.hui /D F.hv/

F.hu/

F.u0
1/

:::

F .u0
i�1/

F.u0
i /D F.hv/

F.ghu/

F.gu0
1/

:::

F .gu0
i�1/

F.ghui /D F.ghv/

F.ghu/

F.u00
1/

:::

F .u00
i�1/

F.u00
i /D F.ghv/

and set

.3.15/ E
00
2 D

F.hu/

F.hu1/

:::

F .hui�1/

F.hui /D F.hv/

F.ghu/

F.ghu1/

:::

F .ghui�1/

F.ghui /D F.ghv/

F.ghu/

F.u00
1/

:::

F .u00
i�1/

F.ghv/

In fact, we may assume without loss of generality that .uj /jD1;:::;i D .u00
j /jD1;:::;i , and we do so for

the rest of the proof of (E-1). Write E
00
2..uj // and E

00
1..uj /; .u

0
j // to illustrate the dependence on the

sequences .uj / and .u0
j /. Note that

.3.16/ E
00
1..uj /; .u

0
j //Dˆ.gu0

j
/;.ghuj /

ı2E
00
2..h

�1u0
j // ı2ˆ.huj /;.u

0
j
/;

where, for sequences .vj /jD0;:::;i and .v0
j /jD0;:::;i with vj >1 vjC1 and v0

j >1 v
0
jC1 for all j and such

that v0 D v0
0 and vi D v0

i , the term ˆ.vj /;.v
0
j
/ denotes the 2–morphism

Avi�1;vi
ıAvi�2;vi�1

ı � � � ıAv0;v1
! Av0

i�1
;v0

i
ıAv0

i�2
;v0

i�1
ı � � � ıAv0

0;v
0
1

obtained as a composite of the maps Fx;y;y0;z for x >1 y; y
0
>1 z.

We claim that if .uj / and .h�1u0
j / differ at a single entry, then E

00
1..uj /; .u

0
j // and E

00
2..uj // are the

same. Assuming this, let us check that E
00
1..uj /; .u

0
j // is independent of .u0

j /. We show that if .u0
j / and

.v0
j / differ in only one entry, then E

00
1..uj /; .v

0
j // D E

00
1..uj /; .u

0
j //. It then follows by induction that

E
00
1..uj /; .u

0
j // is independent of u0

j , as needed.
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To see that E
00
1..uj /; .v

0
j //DE

00
1..uj /; .u

0
j // for uj , u0

j and v0
j as above, we use (3.16), from which we need

ˆ.gu0
j
/;.ghuj /

ı2E
00
2..h

�1u0
j // ı2ˆ.huj /;.u

0
j
/ Dˆ.gv0

j
/;.ghuj /

ı2E
00
2..h

�1v0
j // ı2ˆ.huj /;.v

0
j
/:

Rearranging, this is equivalent to

ˆ.gu0
j
/;.gv0

j
/ ı2E

00
2..h

�1u0
j // ı2ˆ.v0

j
/;.u0

j
/ D E

00
2..h

�1v0
j //;

but that is just the claim E
00
1..h

�1v0
j /; .u

0
j // D E

00
2..h

�1v0
j //, which is a case of our assumption, since

.v0
j / and .u0

j / differ in only a single entry. That is, it suffices to prove that if .uj / and .h�1u0
j / differ at a

single entry, then E
00
2..uj // and E

00
1..uj /; .u

0
j // are the same.

It is enough to consider the case i D 2. In this case, we must check that the 2–morphisms represented by

the diagrams below agree.

F.hu/ F.ghu/

F.hu1/

F.hv/

F.u0
1/ F.gu0

1/ F.ghu1/

F.ghv/

D

F.ghv/

F.ghu1/

F.ghu/

F.hv/

F.hu1/

F.hu/

In formulas,

.Fghu;gu0
1;ghu1;ghv ı1 Id/ ı2 .Id ı1  g;hu;u0

1
/ ı2 .Id ı1  g;u0

1;hv
ı1 Id/ ı2 .Id ı1 Fhu;hu1;u

0
1;hv

/

D .Id ı1  g;hu;hu1
/ ı2 . g;hu1;hv ı1 Id/:

This is exactly an instance of (E-20). By the above argument, we have verified (E-1).

The proof of (E-2) is established by substantially similar techniques (but does not require (E-10)), and is

omitted. The proof of uniqueness up to natural isomorphism is analogous to the proof that F itself is

(nonequivariantly) well defined up to natural isomorphism.

Let H be a subgroup of G. For a small category C with a G–action, let C
H , called the H–fixed-point

category, be the subcategory of C whose objects are the objects of C invariant under H , and whose

arrows are those of C that are invariant under H .

Lemma 3.17 Let C be a small category with an action by a finite group G, and fix a functor F W C ! B

with an external action by G. Let H be a subgroup of G. Then there is a well-defined H –fixed-point

functor of F , written FH W C
H ! B, given as follows. On objects v of C

H , FH is defined by

FH .v/D F.v/H , where h 2H acts on F.v/ by  h;v, as in Definition 3.7(1). On morphisms � W x ! y

of C
H , we define F inv.�/D s�1.F.x/H /\t�1.F.y/H /, viewed as a correspondence FH .x/!FH .y/.

Using Definition 3.7(2), h 2 H acts on F inv.�/ by  h;� . For morphisms � in C
H , define FH .�/ by

FH .�/ D .F inv.�//H . Then , given objects x, y, and z of C
H along with morphisms ˇ W x ! y and
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 W y ! z in C
H , the associators Fˇ;
 W F.
/ ıF.ˇ/ ! F.
 ı ˇ/ for ˇ W x ! y and 
 W y ! z of FH

restrict to give a bijection

.3.18/ FHˇ;
 W FH .
/ ıFH .ˇ/! FH .
 ıˇ/;

which we use as the associators of FH in Definition 3.3(3). This data defines a functor F W C
H ! B in

the sense of Definition 3.3.

Proof The hypotheses of the lemma give us the data of Definition 3.3(1) and (2). We must check that

Fˇ;
 does indeed restrict as in (3.18) to verify that FH
ˇ;


is data as in (3), and moreover check that the

pentagon as in Definition 3.3 commutes.

Before starting, we note that, for x and y objects of C
H and � W x ! y a morphism in C

H , the action on

F inv.�/ by  h;� is specified by using that  h;y ı1F inv.�/ and F inv.�/ı1 h;x are canonically identified

with F inv.�/, for all h 2 H , so that the 2–morphism  h;� in Definition 3.7(2) determines a bijection

F inv.�/! F inv.�/. This bijection, written  inv
h;�

, is the action of h 2H on F inv.�/.

Fix objects x, y, and z of C
H and morphisms ˇ W x ! y and 
 W y ! z of C

H . Let us first verify that

Fˇ;
 jFH .
/ıFH .ˇ/ W F
H .
/ ıFH .ˇ/! F.
 ıˇ/

has image in FH .
 ıˇ/. Consider the commuting pentagon from (E-2) for F , for a fixed h 2H :

 h;z ıF.
/ ıF.ˇ/

F.
/ ı h;y ıF.ˇ/

F.
/ ıF.ˇ/ ı h;x

F.
 ıˇ/ ı h;x h;z ıF.
 ıˇ/

 h;
 ı1Id Idı1 h;ˇ

Fˇ;
 ı1IdIdı1Fˇ;


 h;
ıˇ

Recall that the objects of this diagram are correspondences from F.x/ to F.z/, and the arrows of this

diagram are bijections of correspondences. We consider the diagram formed by considering only the

subsets of the above correspondences that have source in FH .x/ and target in FH .z/. To obtain the

following diagram, we have used that the 2–morphisms in (E-2) respect source and target maps. The

arrows in the resulting diagram are again bijections:

. h;zıF.
/ıF.ˇ//\s�1.FH .x//\t�1.FH .z//

.F.
/ı h;yıF.ˇ//\s�1.FH .x//\t�1.FH .z//

.F.
/ıF.ˇ/ı h;x/\s
�1.FH .x//\t�1.FH .z//

.F.
ıˇ/ı h;x/\s
�1.FH .x//\t�1.FH .z//. h;zıF.
ıˇ//\s�1.FH .x//\t�1.FH .z//

 h;
 ı1Id Idı1 h;ˇ

Fˇ;
 ı1IdIdı1Fˇ;


 h;
ıˇ
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However, for any object w of C
H and h1 2H , the restriction of  h1;w to FH .w/ is canonically identified

with the identity 1–morphism FH .w/ ! FH .w/. In particular, the above diagram is canonically

identified with

.3.19/ .F.
/ıF.ˇ//\s�1.FH .x//\ t�1.FH .z//

.F.
/ı h;y ıF.ˇ//\s�1.FH .x//\ t�1.FH .z//

.F.
/ıF.ˇ//\s�1.FH .x//\ t�1.FH .z//

.F.
 ıˇ//\s�1.FH .x//\ t�1.FH .z//.F.
 ıˇ//\s�1.FH .x//\ t�1.FH .z//

 h;
 ı1Id Idı1 h;ˇ

Fˇ;
Fˇ;


 h;
ıˇ

Note that the bottom row is naturally identified with the bijection

 inv
h;
ıˇ W F inv.
 ıˇ/! F inv.
 ıˇ/:

We have a further commutative diagram by restricting the maps  h;
 ı1 Id and Idı1Fˇ;
 from the previous

diagram. Note that the arrows are no longer necessarily bijections — they need only be maps of sets:

.3.20/ F inv.
/ ıF inv.ˇ/

F inv.
/ ıF inv.ˇ/

F inv.
/ ıF inv.ˇ/

F inv.
 ıˇ/F inv.
 ıˇ/

 inv
h;


ı1Id Idı1 
inv
h;ˇ

Fˇ;
Fˇ;


 inv
h;
ıˇ

Because (3.20) commutes, we have equality of the following composites:

.3.21/ Fˇ;
 ı2 .Id ı1  
inv
h;ˇ / ı2 . 

inv
h;
 ı1 Id/D  inv

h;
ıˇ ı2 Fˇ;
 :

On the subset FH .
/ ıFH .ˇ/� F inv.
/ ıF inv.ˇ/, the 2–morphism .Id ı1  inv
h;ˇ
/ ı2 . inv

h;

ı1 Id/ is the

identity. Hence,

Fˇ;
 jFH .
/ıFH .ˇ/ D . inv
h;
ıˇ ı2 Fˇ;
 /jFH .
/ıFH .ˇ/:

Thus the image of Fˇ;
 jFH .
/ıFH .ˇ/ in F inv.
 ı ˇ/ is preserved by  h;
ıˇ . That is, the image of

Fˇ;
 jFH .
/ıFH .ˇ/ is in FH .
 ıˇ/.

The map of sets Fˇ;
 jFH .
/ıFH .ˇ/ is injective by construction. We must check surjectivity. Suppose

� 2 FH .
 ıˇ/. First, we show that the element F�1
ˇ;

.�/ 2 F.
/ ıF.ˇ/ is in F inv.
/ ıF inv.ˇ/.

If F�1
ˇ;

.�/ … F inv.
/ ıF inv.ˇ/, then

.3.22/ .Id ı1  h;ˇ / ı2 . h;
 ı1 Id/F�1
ˇ;
 .�/¤ F�1

ˇ;
 .�/

for some h 2H , by the following observations. Let F�1
ˇ;

.�/D .�2; �1/, with �2 2 F.
/ and �1 2 F.ˇ/,

where s.�2/D t .�1/. Then .Idı1 h;ˇ /ı2 . h;
 ı1 Id/.�2; �1/ can be written .�0
2; �

0
1/ for some �0

2 2F.
/

and �0
1 2 F.ˇ/. By .�2; �1/ … F inv.
/ ı F inv.ˇ/, we have t .�1/ ¤ t .�0

1/ for an appropriate choice
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of h. Thus .�2; �1/ cannot be .�0
2; �

0
1/, giving (3.22). This contradicts commutativity of (3.19), so

F�1
ˇ;

.�/ 2 F inv.
/ ıF inv.ˇ/.

To see that F�1
ˇ;

.�/ 2 FH .
/ ıFH .ˇ/, observe from (3.21) that

Fˇ;
 .. 
inv
h;
�2;  

inv
h;ˇ�1//D Fˇ;
 .�2; �1/;

so �2 and �1 are both H–fixed, by injectivity of Fˇ;
 .

We have then established, for all objects x, y and z of C
H and morphisms ˇ W x! y and 
 W y! z in C

H ,

that FH
ˇ;


defines a bijection FH .
/ ıFH .ˇ/! FH .
 ıˇ/. It remains to check that the pentagon of

Definition 3.3 commutes. This follows immediately from the fact that FH
ˇ;


is a restriction of Fˇ;
 .

Definition 3.23 Fix a group K. Let C be a small category with an action by a finite group G, and fix a

functor F W C ! BK with an external action by G. Let H be a subgroup of G. Call F an H–singular

functor if there exists u an object of C
H and x 2 F.u/ such that the decorated bijection  h between

F.u/ and F.u/ has s�1.x/D t�1.x/, but �.s�1.x//¤ 1 2K. Otherwise, say F is H–nonsingular. If

F is nonsingular for all subgroups H �G, we just say that F is nonsingular.

Let C be a small category with an action by a finite group G. As a matter of convention, we regard any

functor F W C ! B with an external action by G as nonsingular.

Lemma 3.24 Fix a group K. Let C be a small category with an action by a finite group G, and fix

a functor F W C ! BK with an external action by G. Let H be a subgroup of G, and say F is H–

nonsingular. Then there is a well-defined H–fixed-point functor of F , written FH W C
H ! BK , given

as follows. On objects v of C , FH is defined by FH .v/D .FF.v//H , where h 2H acts on FF.v/ as in

Lemma 3.17. On morphisms � W x! y of C
H , we define F inv.�/D s�1.FH .x//\ t�1.FH .y//, viewed

as a decorated correspondence FH .x/!FH .y/. Using Definition 3.7(2), h2H acts on F inv.�/ by h;� .

For morphisms � in C
H , define FH .�/ by FH .�/D .F inv.�//H . Then , given objects x, y and z of C

H

along with morphisms ˇ W x ! y and 
 W y ! z in C
H , the associators Fˇ;
 W F.
/ ıF.ˇ/! F.
 ıˇ/

for ˇ W x ! y and 
 W y ! z of FH restrict to give a bijection

.3.25/ FHˇ;
 W FH .
/ ıFH .ˇ/! FH .
 ıˇ/;

which we use as the associators of FH in Definition 3.3(3). This data defines a functor F W C
H ! BK in

the sense of Definition 3.3.

Proof This is completely analogous to that of Lemma 3.17, and amounts to checking that the constructions

there are compatible with decorations, for a H–nonsingular functor; the details are omitted.

Finally, a similar argument shows:

Lemma 3.26 Fix notation as in Lemma 3.24. The H–fixed-point functor FH admits an .N.H/=H/–

external action , where N.H/ is the normalizer of H in G, by restriction of the external action on F ,

compatible with the .N.H/=H/–action on C
H .
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3.5 Natural transformations

To relate different functors to the Burnside category, we will need the following notion:

Definition 3.27 Let C be a small category. A natural transformation � W F1 ! F0 between 2–functors

F1; F0 W C ! BK is a strictly unitary 2–functor � W 2�C ! BK such that �jf1g�C DF1 and �jf0g�C DF0.

A natural transformation of functors F1; F0 W 2np ! BK with external action by Zp, where Zp acts on

2np by permuting the coordinates, is such an �, itself admitting an external action (where 2� 2np has the

product Zp–action, with Zp acting trivially on 2.).

We usually refer to “natural transformations with external action” as “natural transformations” where it

will not cause confusion.

For C D 2n or 2np , a natural transformation (functorially) induces a chain map between the totalizations of

Burnside functors, which we write as Totd.�/ W Totd.F1/! Totd.F0/, for any homomorphism d WK ! Z2.

(In fact, for a natural transformation with external action by Zp, Totd.�/ is ZŒZp�–equivariant; see

Lemma 3.9.)

Many of the natural transformations we will encounter will be subfunctor inclusions or quotient functor

surjections. Given a functor F W 2np ! BK with external action, a subfunctor with external action (resp.

quotient functor) H W 2np ! BK is a functor that satisfies:

(1) H.v/� F.v/ for all v 2 2np, and the external action of Zp restricts to an action on the set H.v/.

(2) H.�u;v/ � F.�u;v/ for all u � v, with the source and target maps being restrictions of the

corresponding ones on F.�u;v/, and the action of Zp preserves H (in the natural sense).

(3) s�1.x/�H.�u;v/ (resp. t�1.y/�H.�u;v/) for all u� v and for all x 2H.u/ (resp. y 2H.v/).

Equivalently, H.�u;v/D
S

x2H.u/ s
�1.x/ (resp.

S

y2H.v/ t
�1.y/).

If H is a subfunctor (resp. quotient functor) of F , then there is a natural transformation H ! F (resp.

F !H ), and the induced chain map Tot.H/! Tot.F / (resp. Tot.F /! Tot.H/) is an inclusion (resp.

a quotient map) of chain complexes (and is in fact a Zp–equivariant map of chain complexes). See also

[50, Section 3.7].

Definition 3.28 If J is a subfunctor with external action of F W 2np ! BK , then the functor L defined

as L.v/D F.v/ nJ.v/ and L.�u;v/D
S

y2L.v/ t
�1.y/� F.�u;v/ nJ.�u;v/ is a quotient functor of F

(and vice versa). Such a sequence

J ! F ! L

is called a cofibration sequence of Burnside functors; it induces the short exact sequence

0! Tot.J /! Tot.F /! Tot.L/! 0

of chain complexes.
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3.6 Stable equivalence of functors

In the sequel, we will be interested not just in functors F W 2n ! BK , but in stable functors, which are

pairs .F;R/, for F a functor F W 2n ! BK with external action by G and for R an element of the real

representation ring of G, with R a linear combination of copies of the trivial representation and the regular

representation. In case G D f1g, we view stable functors as pairs .F; r/ for r an integer, referring to r

copies of the trivial representation, and F a functor 2n ! BK . Note that a functor F W 2N ! BK with

external action by G D f1g is the same information as a functor F W 2N ! BK without external action.

We denote the regular representation of G by R.G/. For an orthogonal G–representation V , write V C

for its one-point compactification, considered as a pointed space by taking the point at infinity as the

basepoint. We will also write †RF for .F;R/.

Let DetG D zH�.R.G/C/ as a graded ZŒG�–module. We define the totalization of the stable functor

.F; rR C sR.G// by Tot
�

.F; rR C sR.G//
�

D Tot.F /Œr�˝Z Det˝sG , where Tot.F /Œr� denotes the (ordi-

nary) totalization shifted up by r . If s < 0, we make sense of the above formula using the (graded) dual

of DetG . In this section we will describe when two such stable functors are equivalent, following [50,

Definition 3.6].

A face inclusion � is a functor 2n ! 2N that is injective on objects and preserves the relative gradings.

Note that self-equivalences � W 2n ! 2n are face inclusions. Consider a face inclusion � W 2n ! 2N and a

functor F W 2n ! BK . We define an induced functor F� W 2N ! BK , which is uniquely determined by

requiring that F D F� ı �, and such that for v 2 Ob.2N / n Ob.�.2n//, we have F�.v/ D ¿. For a face

inclusion �, we define j�j D j�.v/j � jvj for any v 2 2n, which is independent of v since � is assumed to

preserve relative gradings. For any functor F , and face inclusion � as above,

.3.29/ TotK.F�/Š†j�j TotK.F /:

To construct such an isomorphism, we denote by cF;v the canonical isomorphism of ZŒK�–modules

AK.F�.�.v///! AK.F.v// for v an object of 2n. For a function � W Ob.2n/! fC1;�1g D Z2, whose

value on v 2 Ob.2n/ will be denoted by �v, we define an isomorphism of graded ZŒK�–modules

�F W TotK.F�/!†j�j TotK.F / by sending the summand AK.F�.�.v/// to AK.F.v// by �F;�;v D �vcF;v .

We next determine under what conditions on f�vgv2Ob.2n/ the map �F is an isomorphism of chain

complexes. For any v >1 w objects of 2n, we need that

.3.30/ .�1/s�.v/;�.w/�w D �v.�1/
sv;wCj�j:

To see this, consider the cellular cochain complex of the n–dimensional cube, with Z2–coefficients:

C �
cell.Œ0; 1�

nI Z2/. The assignment .�1/su;v defines a cochain in C 1cell.Œ0; 1�
nI Z2/ whose coboundary is

the constant 2–cochain that evaluates to �1 on all 2–dimensional faces of Œ0; 1�n. Similarly, the assignment

sending a pair of objects u >1 v of 2n to .�1/j�jCs�.u/;�.v/ is a 1–cochain, again with coboundary the

constant cochain evaluating to �1. Since H 1.Œ0; 1�nI Z2/D 0, we have that .�1/j�jCs�.u/;�.v/ and .�1/su;v
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are cohomologous. The condition that � 2 C 0cell.Œ0; 1�
nI Z2/ has .ı�/.u; v/ D .�1/j�jCs�.u/;�.v/Csu;v is

precisely (3.30). Thus, � satisfying (3.30) exist, and so (3.29) holds. Moreover, any two cochains �

satisfying (3.30) differ by a cocycle in C 0cell.Œ0; 1�
nI Z2/. Since H 0.Œ0; 1�nI Z2/ D Z2, any functions

� W Ob.2n/! Z2 satisfying (3.30) are .˙1/–multiples of each other. Thus the isomorphism in (3.29) is

canonical up to sign.

As a consequence of (3.29), the following holds for any homomorphism d WK ! Z2, for F and � as above:

Totd.F�/Š†j�j Totd.F /:

For Zp acting on 2np D .2n/p and 2Np D .2N /p by cyclic permutation, an equivariant face inclusion

� W 2np ! 2Np will be a face inclusion such that g�D �g for all g 2 Zp.

Let � be an equivariant face inclusion, and F W 2np ! BK a functor with external action by G. Then F�,

defined as above, admits a Zp–external action using the data of Definition 3.7(1)–(2) from the functor F

with Zp–external action.

Lemma 3.31 Fix F W 2np ! BK and an equivariant face inclusion � W 2np ! 2Np. Say that Zp acts

on 2np and 2Np by cyclic permutation , and that F admits a compatible Zp–external action. Fix a

homomorphism d W K ! Z2. The pair .F; �/ induces a Zp–equivariant isomorphism between Totd.F�/

and Det
j�j=p
Zp

˝ Totd.F /, natural up to sign.

Proof We show that

TotK.F�/Š Det
j�j=p
Zp

˝ TotK.F /;

which implies the claim of the lemma.

Note that as Z–complexes, Det
j�j=p
Zp

˝ TotK.F / is naturally identified with †j�j TotK.F /. From the

discussion preceding the lemma, we have an isomorphism (well defined up to sign) of Z–complexes

TotK.F�/Š†j�j TotK.F /;

so it remains to determine the Zp–action on the right-hand side that is compatible with the Zp–action on

TotK.F�/.

Let Zp act on C 0cell.Œ0; 1�
nI Z2/ as follows. It is enough to define the action on a generator of Zp. Let

g D 1p 2 Zp and � 2 C 0cell.Œ0; 1�
nI Z2/, and define

.g�/.v/D �.gv/�.v/�.�v/;

where � is as in the discussion preceding Lemma 3.9.

If � W TotK.F�/ ! †j�j TotK.F / is one of the two isomorphisms (well defined up to sign) as in (3.29),

associated to a choice of function � W Ob.2n/! Z2, then

ı.g�/.v; w/D .�1/sgv;gwCg�gv;�gwCsv;wCsgv;gwCs�v;�wCs�gv;�gwCj�j D .�1/sv;wCs�v;�wCj�j D ı.�/.v; w/:

That is, � and g� agree up to an overall sign, since ı.g�/ D ı.�/. In particular, for fixed g, the term

.�.v// � ..g�/.v// is constant in v 2 Ob.2np/.
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Assume that gD 1p is the standard generator of Zp , as an additive group. We determine .�.v// �..g�/.v//

by considering its evaluation at v D 0 2 Ob.2np/. Then

.�.v// � ..g�/.v//D �.0/�.�.0//:

By definition, �.0/D1, while it is readily checked that �.�.0//D�1 if and only if p is even and j�j=p is odd.

Thus (3.29) is Zp–equivariant if Zp acts on TotK.F�/ as in Lemma 3.9, and K acts on †j�j TotK.F /Š

ZŒj�j�˝Z TotK.F / by the sign representation on ZŒj�j� if p is even, and if p is odd then Zp acts on ZŒj�j�

by the trivial representation. It is direct to check that ZŒj�j� with this Zp–action is DetZp
, as needed.

With this background, we state the relevant notion of equivalence for stable functors:

Definition 3.32 Two stable functors .E1 W 2m1 ! BK ; q1/ and .E2 W 2m2 ! BK ; q2/ are stably equivalent

for d WK ! Z2 if there is a sequence of stable functors f.Fi W 2ni ! BK ; ri /g for 0� i � l with †q1E1 D

†r0F0 and †q2E2 D†rlFl such that, for each pair f†riFi ; †
riC1FiC1g, one of the following holds:

(1) .ni ; ri /D .niC1; riC1/ and there is a natural transformation � W Fi ! FiC1 or � W FiC1 ! Fi such

that the induced map Totd.�/ is a chain homotopy equivalence.

(2) There is a face inclusion � W 2ni ,! 2niC1 such that riC1 D ri � j�j and FiC1 D .Fi /�, or a face

inclusion � W 2niC1 ,! 2ni such that ri D riC1� j�j and Fi D .FiC1/�.

Two nonsingular stable functors .E1;Q1/ and .E2;Q2/ with Ei W 2nip ! BK with external action

by Zp (compatible with the action on 2nip by cyclic permutation) are externally stably equivalent

for a given homomorphism d W K ! Z2 if there exists a sequence of nonsingular stable functors

f.Fi W 2ni ! BK ; Ri /g for 0 � i � l with .E1;Q1/ D .F0; R0/ and .E2;Q2/ D .Fl ; Rl/ such that,

for each pair f.Fi ; Ri /; .FiC1; RiC1/g, one of the following holds:

(i) .ni ; Ri / D .niC1; RiC1/ and there is a natural transformation of functors with external actions

� W Fi ! FiC1 or � W FiC1 ! Fi such that the induced map, for each subgroup H �G, Totd.�
H /

is a chain homotopy equivalence, where �H is the fixed-point functor.

(ii) There is an equivariant face inclusion � W 2nip ,! 2niC1p such that RiC1 DRi � .j�j=p/R.G/ and

FiC1 D .Fi /�, or a face inclusion � W 2niC1p ,! 2nip such that Ri D RiC1 � .j�j=p/R.G/ and

Fi D .FiC1/�.

We call such a sequence, along with the arrows � and � between the .Fi ; Ri /, a d-external stable equivalence

between the stable functors .E1;Q1/ and .E2;Q2/. If, for all d WK! Z2, the maps Totd.�
H / are all chain

homotopy equivalences, then we call the sequence of functors f.Fi W 2ni ! BK ; ri /g a K–equivariant

(stable) equivalence, and say that .E1;Q1/ and .E2;Q2/ are K–equivariantly equivalent. All external

stable equivalences that appear in this paper will be K–equivariant.

An external stable equivalence from .E1;Q1/ to .E2;Q2/ induces a Zp–equivariant chain homotopy

equivalence Tot..E1;Q1//! Tot..E2;Q2//, well defined up to choices of inverses of the chain homotopy

equivalences involved in its construction, and an overall sign (since � is well defined up to an overall sign).
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We will also need the notion of a product of Burnside functors:

Definition 3.33 Given functors F W 2mp ! BK and J W 2np ! B, both with external action by Zp

compatible with the permutation action on .2n/p , we define the product F �J W 2.mCn/p ! BK as follows:

(1) For .v1; v2/ 2 2mp � 2np, define .F �J /..v1; v2//D F.v1/�J.v2/.

(2) For all .u1; u2/>.v1; v2/, define .F�J /.�.u1;u2/;.v1;v2//DF.�u1;v1
/�J.�u2;v2

/. The decoration

on each element of the correspondence is the decoration of F.�u1;v1
/.

(3) For all .u1; u2/ > .v2; v2/ > .w1; w2/, the map .F �J /.u1;u2/;.v1;v2/;.w1;w2/ is defined by

.F �J /.u1;u2/;.v1;v2/;.w1;w2/.x1; x2/D ..F /u1;v1;w1
.x1/; .J /u2;v2;w2

.x2//;

where, if ui D vi or vi D wi , we set .F /ui ;vi ;wi
D Id or .J /ui ;vi ;wi

D Id, respectively.

It is direct to check that this defines a strictly unitary lax 2–functor 2.nCm/p ! BK . A computation

verifies that TotK.F �J /D TotK.F /˝ TotK.J /.

The Zp–external action on F �J is given as follows. On objects,  g;.v;w/ is given by the product action

 g;.v;w/ W F.v/�J.w/! F.gv/�J.gw/, and similarly for the action on correspondences. It is direct

to confirm that these data satisfy Definition 3.7(E-1)–(E-2).

4 Realizations of Burnside functors

In this section, given a functor F W 2n ! BK along with some other choices, we construct an essentially

well-defined spectrum jF j, which is an equivariant spectrum if K ¤ f1g, in a sense that will be made

precise in the course of Section 4.2. As a first step, we construct finite CW complexes kF kV for

sufficiently large representations V so that increasing the parameter V corresponds to suspending the

CW complex kF kV . The finite CW spectrum jF j is then defined from this sequence of spaces. The

construction of kF kV depends on some auxiliary choices, but its stable homotopy type does not. Moreover,

the spectra constructed from two stably equivalent Burnside functors will be homotopy equivalent. Much

of this section is either a generalization of or contained in [50, Section 4], which itself is mostly a

collection of results from [38] along with some background on equivariant topology. The only essentially

new material in the present section is Lemma 4.11.

4.1 Maps from correspondences

We start with the construction of (ordinary) disk maps, following [38, Section 2.10],1 which the reader

may consult for more details. Let B l D fx 2 R
l j kxk � 1g, fix an identification S l DB l=@ with @ WD @B l ,

1Previously, starting with [38] but continuing in [37; 50], one worked with “box maps”. The previous papers could have been

executed in very close analogy using disk maps as formulated here, obtaining homotopy equivalent objects; we prefer disk maps

as they are more suitable for visualizing the group action.
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and view S l as a pointed space with basepoint the image of @. For any subset B � B l of the form

B D fy 2B l j ky�y0k � cg, for some y0 2B l and c 2 R>0 such that ky0k C c < 1, we note that there

is a standard identification of B with a copy of B l by the map � defined by x ! .x�y0/=c, and so we

have a standard identification S l D B=@B . In the sequel, by a subdisk B � B l we will mean a subset B

as above, which we will often identify with B l itself, using �.

Given a collection (indexed by f1; : : : ; tg) of subdisks B1; : : : ; Bt of some disk B , such that the

fBigiD1;:::;t have disjoint interiors, there is an induced map

.4.1/ S l D B=@B ! B=.Bn. VB1[ � � � [ VBt //D
t

_

aD1

Ba=@Ba D
t

_

aD1

S l ! S l :

The last map is the identity on each summand, so the composition (4.1) has degree t . As observed

in [38], this construction is continuous in the position of the subdisks. We let E.B; t/ denote the space of

(indexed) subdisks with disjoint interiors in B , and have a continuous map E.B; t/! Map.S l ; S l/.

We can generalize the above procedure to associate a map of spheres to a map of finite sets A! Y as

follows. Say we have chosen a collection of subdisks fBaga2A where the subdisks Ba � B , for some

fixed disk B , have disjoint interiors. Then we have a map

.4.2/ S l D B=@B ! B
ı

�

B
�

�

[

a2A

VBa

��

D
_

a2A

Ba=@Ba D
_

a2A

S l !
_

y2Y

S l ;

where the last map is built using the map of sets A! Y .

More generally, we can also create maps from a correspondence of sets as follows:

Construction 4.3 Fix finite sets X and Y , and fix a finite correspondence A from X to Y with source

map s and target map t . Say that we also have a collection of disks Bx for x 2X . Finally, take a collection

of subdisks Ba � Bs.a/ with disjoint interiors for a 2 A. We then have an induced map

.4.4/
_

x2X

S l !
_

y2Y

S l

by applying, on Bx , the map associated to the set map s�1.x/! Y . A map constructed this way is said

to refine the correspondence A.

For a pair of finite setsA andX , along with a map of sets s WA!X , and a collection of disks fBxgx2X , let

E.fBxg; s; A;X/ be the space of collections of labeled subdisks fBa�Bs.a/ ja2Ag with disjoint interiors.

Then, choosing a correspondence A D .A; s; t/ and a collection of disks fBxgx2X , Construction 4.3 gives

a map E.fBxg; s; A;X/! Map
�
W

x2X S
l ;

W

y2Y S
l
�

. We write

.4.5/ ˆ.e; .A; s; t// 2 Map

�

_

x2X

S l ;
_

y2Y

S l
�
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for the map associated to e 2E.fBxg; s; A;X/ and the correspondence .A; s; t/. One of the main points

is that, for any disk map ˆ.e; .A; s; t// refining .A; s; t/, the induced map on the l th homology agrees

with the abelianization map

A.A/ W A.X/D zHl

�

_

x2X

S l
�

! A.Y /D zHl

�

_

y2Y

S l
�

:

We now indicate a further generalization of disk maps to cover decorated correspondences.

Construction 4.6 Fix a finite group K and finite sets X and Y , and a decorated correspondence

.A; s; t; �/ from X to Y with A finite and � W A!K. Fix also some collection of disks fBxgx2X . Fix

a homomorphism r WK ! Homeo.B l/. Fix a collection of subdisks Ba � Bs.a/ for a 2 A. There is an

induced map just as in Construction 4.3, but whose construction depends on the decoration � , as follows.

For x 2 X , we have a set map s�1.x/ ! Y , along with decorations for each element of s�1.x/. We

modify the map refining s�1.x/! Y (without decoration) by precomposing with r.�.a//:

S l D B=@B ! B
ı

�

B
�

�

[

a2A

VBa

��

D
_

a2A

Ba=@Ba

W

r.�.a//
������!

_

a2A

Ba=@Ba D
_

a2A

S l !
_

y2Y

S l :

We say that a map constructed this way r–refines (or, when r is clear from context, simply refines) the

decorated correspondence A D .A; s; t; �/.

As before, we can regard Construction 4.6 as a map

ˆ.e;A/ 2 Map

�

_

x2X

S l ;
_

y2Y

S l
�

;

where e 2E.fBxg; s; A;X/ and A D .A; s; t; �/ is a decorated correspondence. Once again, the induced

map on the l th homology agrees with the d–abelianization map, where the homomorphism d is defined by

setting d.k/ to be the topological degree of r.k/ for k 2K.

For V an orthogonal representation of a finite group K, write B.V / for the unit ball of V .

Let EK;V .fBxg; s; A;X/ denote the set of elements in E.fBxg; s; A;X/ whose centers lie in B.V /K .

In other words, each element e of E.fBxg; s; A;X/ is a collection of disks; the element e will be in

EK;V .fBxg; s; A;X/ if and only if the center of each disk in e lies in B.V /K .

Lemma 4.7 [50, Lemma 4.5] Let A and X be finite sets , and let s W A ! X be a map of sets. If

dim.V K/� k, then EK;V .fBxg; s; A;X/ is .k�2/–connected.

Proof The proof is analogous to [38, Lemma 2.29] or [50, Lemma 4.5].

For finite sets X and Y and a finite correspondence A D .A; s; t/ from X to Y , it is convenient to abuse

notation somewhat and writeE.fBxg; s;A; X/ forE.fBxg; s; A;X/, as we will do in the following lemma:

Lemma 4.8 [50, Lemma 4.6] Fix an R–vector space V and orthogonalK–representation r WK!O.V /.

Let A, B , X , Y , and Z be finite sets , and let sA W A ! X and sB W B ! Y be maps of sets. Let
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A D .A; sA; tA; �A/ and B D .B; sB ; tB ; �B/ be decorated correspondences from X to Y and from

Y to Z, respectively. If e 2 E.fBxg; sA; A;X/ and f 2 E.fByg; sB ; B; Y /, then there is a unique

f ıre2E.fBxg; sBıA;BıA; X/ such thatˆ.f ıre;BıA/Dˆ.f;B/ıˆ.e;A/. Moreover , the assignment

E.fByg; sB ; B; Y /�E.fBxg; sA; A;X/! E.fBxg; sBıA;B ı A; X/, by sending a pair .f; e/ to f ır e,

is continuous and sends EK;V .fByg; sB ; B; Y /�EK;V .fBxg; sA; A;X/ to EK;V .fBxg; sBıA;B ı A; X/.

Proof For .b; a/ 2 B �Y A where b has decoration g and a has decoration h, let ebWBb ! BsB.b/ and

eaWBa ! BsA.a/ denote the corresponding disks in E.fBxg; sB ; B; Y / and E.fBxg; sA; A;X/, respec-

tively. Define B.b;a/ � B.V / to be the subdisk given by the image of

Bb
eb�! BsB.b/DtA.a/

r.h�1/
����! BsB.b/ D Ba

ea�! BsA.a/:

This defines f ır e as the image of .f; e/ under the assignment

E.fByg; sB ; B; Y /�E.fBxg; sA; A;X/!E.fBxg; sBıA;B ı A; X/:

It follows from the definitions that ˆ.f ır e;B ı A/Dˆ.f;B/ ıˆ.e;A/.

Finally, consider the restriction of the assignment to EK;V .fByg; sB ; B; Y /�EK;V .fBxg; sA; A;X/. It

is clear that the above construction takes disks centered on V K to disks centered on V K , completing

the proof.

If K is abelian and A D .A; s; t; �/ is a decorated finite correspondence between finite sets X and Y , then

for e 2EK;V .fBxg; s; A;X/, the induced map ˆ.e;A/ is K–equivariant. Note that the condition that K

is abelian is necessary, as ˆ.e;A/ may be a collapse to a slightly smaller disk (modulo boundary), along

with multiplication by g 2K; in order for this to be K–equivariant, we would need kgD gk for all k 2K.

Construction 4.9 Fix a finite group G, an abelian groupK, and a finite-dimensional orthogonal .K�G/–

representation s W K �G ! O.V /. Let A W 2 ! BK be a functor with external action  by G, where

G acts on 2 trivially. Write X D A.1/ and Y D A.0/, with A WD A.�1;0/D .A; s; t; �/, where as usual

we write s, t , and � for the source, target, and sign maps of A, respectively. For each x 2 X , define

the disk Bx.V / to be a copy of B.V /; more precisely, one may define Bx.V / D fxg � B.V /. We

usually write Bx for Bx.V / when the representation V is clear from context. Write elements of the set

B.X; V /D
`

x2X Bx.V / as pairs .x; v/, where v 2 B.V / and x 2X . Then define an action of K �G

on B.X; V / by setting, for k 2K and g 2G,

.k �g/ � .x; v/D
�

g � x; s.k�. g;v; x/�g/ � v
�

:

Here �. g;v; x/ denotes the decoration �.s�1.x// for the decorated correspondence  g;v WX !X . This

assignment gives a continuous homomorphism � WK �G ! Homeo.B.X; V //.

Moreover, G acts on E.fBxg; s; A;X/ as follows. View each element e 2E.fBxg; s; A;X/ as a function

assigning a disk e.a/D Ba � Bs.a/ Š B.V /— note that the isomorphism is fixed as each ball Ba is a

copy of B.V /— to each element a 2A. Then, for e 2E.fBxg; s; A;X/, define .g �e/.a/ to be the image

of �.1�g/.e.g�1a// in Bs.a/.
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Example 4.10 We consider an example of Construction 4.9 to see how it looks in practice. In the notation

of Construction 4.9, let K DG D Z2 D f˙1g, and let X be the 2–element set fx; yg. Let V D RK ˚RG

where K �G preserves the decomposition, and the nonidentity element of K acts by �1 on RK and 1

on RG . The nonidentity element of G acts by 1 on RK and �1 on RG . Say that the nontrivial element

of G acts (by decorated bijection) on X by

x �1��! y and y �1��! x:

Here the label over the arrows refers to the value, inK, of the decoration of the bijection. The set B.X; V /

is then two copies, Bx.V / and By.V /, of B.V /. The action of K �K �G on B.X; V / is given by, for

.x; v/ 2 Bx.V /,
�.k � 1/.x; v/D .x; kv/;

and similarly in the By.V / factor. The action of the nontrivial element g 2G on Bx.V / is given by

�.1�g/.x; v/D

�

y;

�

�1 0

0 �1

�

v

�

;

and there is a similar formula for the By.V / factor.

Lemma 4.11 Use the notation from Construction 4.9 and let H be a subgroup of G.

For any N > 0, there exists a fixed finite-dimensional representation VN such that the following

holds. For all finite-dimensional representations V as in Construction 4.9 for which there is an em-

bedding of VN in V , the fixed-point set of EK;V .fBx.V /g; s; A;X/ under the action of H , denoted by

EK;V .fBx.V /g; s; A;X/H , is N –connected and nonempty.

Proof Fix some .K�G/–representation s on V , and assume that dimV K � 1.

Let ZK;V .fBxgx2X ; s; A;X/ denote the space of injective maps (of sets) � W A! B.X; V K/ that lift the

map of sets z WA!X D �0.B.X; V
K//. The group G acts on ZK;V .fBxgx2X ; s; A;X/ by .g � �/.a/D

.s.g//.�.g�1a//. There is a continuous map � W EK;V .fBxgx2X ; s; A;X/!ZK;V .fBxgx2X ; s; A;X/

by sending balls to their centers. This map is .K�G/–equivariant and a homotopy equivalence; here we

have used that the centers of disks in EK;V .fBxgx2X ; s; A;X/ lie in V K . Moreover, the fixed-point set

EK;V .fBxgx2X ; s; A;X/
H is sent by � to ZK;V .fBxgx2X ; s; A;X/

H . Let �H denote the restriction

of � toEK;V .fBxgx2X ; s; A;X/
H . It is straightforward to check that �H is also a homotopy equivalence.

Thus, it suffices to find conditions under which ZK;V .fBxgx2X ; s; A;X/
H is N –connected. We describe

the set ZK;V .fBxgx2X ; s; A;X/
H . Note that G acts on the set A itself, as follows. We have, by the

definition of external actions, a 2–isomorphism

 g;A W  g;Y ıA! A ı g;X :

However, as a set A may be canonically identified with  g;Y ıA by sending an element a of A to the

unique pair .�; a/ of  g;Y ıAD  g;Y �Y A, and similarly for identifying A with A ı g;X . Thus  g;A

defines a bijection A! A, and the collection of these as g 2G varies defines an action of G on A.
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Choose ai 2A for i D 1; : : : ; n in each of the orbits HnA. By the definition of ZK;V .fBxgx2X ; s; A;X/

and the action, an element � of ZK;V .fBxgx2X ; s; A;X/
H is determined by the restriction �jfai giD1;:::;n

,

since, for any a 2 A, with a D hai1 for some i1 2 f1; : : : ; ng and h 2 H , the assumption that � 2

ZK;V .fBxgx2X ; s; A;X/
H ensures that �.1� h/.�.ai1//D �.a/.

For each ai , let Si �H be the stabilizer. For g 2G, define hgi �G to be the subgroup of G generated

by g. Let B D B.V / for some V sufficiently large.

Let Z0
K;V .fBxgx2X ; s; A;X/ denote the space of maps of sets � W A0 D faigiD1;:::;n ! B.X; V K/ that

lift the map of sets z W A0 !X and is such that:

(D-1) The element �.ai / lies in V K�Si .

(D-2) The elements f�.1� h/�.ai /giD1;:::;nIh2H=Si
are disjoint in B.X; V K/.

Alternatively, (D-2) is equivalent to:

(D-20) For each x 2X , the elements f�.1�h/�.ai /giD1;:::;nIh2H=Si
such that s.hai /D x are disjoint

in B.fxg; V K/.

Moreover, if (D-20) is true for a single x 2X , then it is also true for hx for any h2H . Thus, we need only

check (D-20) under the assumption that X is a one-element set fxg; we will assume X D fxg henceforth.

In particular, we have reduced to the case that H acts trivially on X D fxg by replacing H with the

stabilizer of x in H .

From the above discussion, we have that

Z0
K;V .fBxg; s; A;X/DZK;V .fBxg; s; A;X/H ;

so we need only show that Z0
K;V .fBxg; s; A;X/ is highly connected.

Note that Z0
K;V .fBxg; s; A;X/ is exactly the set of tuples .x1; : : : ; xn/ where xi 2 B.V /, so that:

(1) xi 2 V Si .

(2) For each i 2 f1; : : : ; ng, the orbit of xi is isomorphic, as an H–set, to H=Si . Equivalently, for all

g 2H which are not in Si , xi … V hgi.

(3) .x1; : : : ; xn/ … �, where � is the set of tuples .x1; : : : ; xn/ for which there is some pair i ¤ j

with g1xi D g2xj for some g1; g2 2H .

That is, Z0
K;V .fBxgx2X ; s; A;X/D

�
Qn
iD1 V

Si
�

�D, where

D D�[
n

[

iD1

�

.V S1 �V S2 � � � � �V Si�1/�
[

g…Si

V hgi � .V SiC1 � � � � �V Sn/

�

:

For a given N >0, to show that Z0
K;V .fBxgx2X ; s; A;X/, and therefore also ZK;V .fBxgx2X ; s; A;X/

H ,

is N –connected, it suffices to show that D has arbitrarily high codimension in
Qn
iD1 V

Si . We will show

next that this can be achieved by constructing a suitably large V .
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Let RŒG� denote the regular representation of G. Recall that RŒG� satisfies the following two properties:

(1) It contains a copy of the trivial representation; every g 2 G acts trivially on this 1–dimensional

summand.

(2) For any 1¤ g 2G, g acts nontrivially on some irreducible summand of RŒG�.

Given 1¤ g 2G, these two facts show that both the dimension and the codimension of RŒG�hgi are at

least 1.

As D is the union of finitely many pieces, it suffices to show that each piece has high codimension, say at

leastNC2. Choose V Š RŒG�˚NC2 so that V hgi has dimension and codimension at leastNC2. It is now

clear that the non-� pieces ofD have codimension at leastNC2. To see that� also has high codimension,

observe that � is the (finite) union of subsets homeomorphic to diagonals �i;j D f.x; x/ 2 V Si �V Sj g

for i ¤ j , thickened by the remaining components
Q

k¤i;j V
Sk . The dimension of �i;j is at most

min.dimV Si ; dimV Sj /, so its codimension is at least max.dimV Si ; dimV Sj /, which is at least N C 2.

The codimension of �i;j � V Si �V Sj is the same as that of �i;j �
�
Q

k¤i;j V
Sk

�

�
Qn
kD1 V

Sk .

The same argument applies to any representation containing V , completing the proof of the lemma.

Lemma 4.12 Maintain the notation from Lemma 4.11. For e 2EK;V .fBx.V /g; s; A;X/H , the induced

map ˆ.e;A/ is .K�H/–equivariant.

Proof This follows from the definition of disk maps, as well as the definition of the H–action on

E.fBx.V /g; s; A;X/ in Lemma 4.11.

4.2 Equivariant topology

Let Top� be the category of well-based topological spaces. A weak equivalence X ! Y is a map that

induces isomorphisms on all homotopy groups; typically the spaces we consider are simply connected, in

which case the definition reduces to being isomorphisms on all homology groups. Homotopy equivalence

is a special case of weak equivalence, and for CW complexes the two notions are equivalent.

Let G–Top� be the category of well-based topological spaces with a continuous action by a finite group G.

We also require that the inclusions of fixed points XH ! XH
0

, for all subgroups H 0 < H of G, are

cofibrations. For pointed G–spaces X and Y , a map X ! Y is called a weak equivalence if the induced

map XH ! YH is a weak equivalence for all subgroups H of G. (We will also sometimes call such

a map a G–weak equivalence, to distinguish it from a map in G–Top� that is a weak equivalence in

the nonequivariant sense.) A homotopy between G–maps f W X ! Y and h W X ! Y is an extension

to a G–equivariant map k WX � I ! Y , where X � I is given a G–structure by g.x; i/D .gx; i/, such

that kjX�0 D f and kjX�1 D h. A homotopy equivalence in G–Top� induces a weak equivalence. For

G–CW complexes the two notions are equivalent by the G–Whitehead theorem (see [22, Theorem 2.4]),
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and further, a weak equivalence X ! Y induces a weak equivalence between quotients of fixed points,

XH
0

=XH ! YH
0

=YH , for all subgroups H 0 <H of G, and between orbit spaces, X=H ! Y=H , for

all subgroups H of G.

4.3 Homotopy coherence

We briefly review homotopy colimits and homotopy-coherent diagrams, following [38, Section 2.9].

We recall the notion of a homotopy-coherent diagram, which is the data from which a homotopy colimit

is constructed. A homotopy-coherent diagram is intuitively a diagram F W C ! K–Top� which is not

commutative, but commutative up to homotopy, and the homotopies themselves commute up to higher

homotopy, and so on, and for which all the homotopies and higher homotopies are viewed as part of the

data of the diagram. More precisely, we have the following definition:

Definition 4.13 [56, Definition 2.3] A homotopy-coherent diagram F W C !K–Top� is an assignment,

to each x 2 C , of a space F.x/ 2K–Top� and for each n� 1 and each sequence

x0
f1�! x1

f2�! � � �
fn�! xn

of composable morphisms in C , a continuous map

F.fn; : : : ; f1/ W Œ0; 1�
n�1 �F.x0/! F.xn/

with F.fn; : : : ; f1/.Œ0; 1�
n�1� f�g/D �. These maps are required to satisfy the compatibility conditions

.4.14/ F.fn; : : : ; f1/.t1; : : : ; tn�1/

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

F.fn; : : : ; f2/.t2; : : : ; tn�1/ if f1 D Id;

F .fn; : : : ; Ofi ; : : : ; f1/.t1; : : : ; ti�1�ti ; : : : ; tn�1/ if fi D Id for 1 < i < n;

F.fn�1; : : : ; f1/.t1; : : : ; tn�2/ if fn D Id;

F .fn; : : : ; fiC1/.tiC1; : : : ; tn�1/ıF.fi ; : : : ; f1/.t1; : : : ; ti�1/ if ti D 0;

F.fn; : : : ; fiC1ıfi ; : : : ; f1/.t1; : : : ; Oti ; : : : ; tn�1/ if ti D 1:

When C does not contain any nonidentity isomorphisms, homotopy-coherent diagrams may be defined

only in terms of nonidentity morphisms and the last two compatibility conditions.

Given a homotopy-coherent diagram, we can define its homotopy colimit in K–Top�, quite concretely, as

follows:

Definition 4.15 [56, Section 5.10] Given a homotopy-coherent diagram F W C !K–Top�, the homotopy

colimit of F is defined by

.4.16/ hocolimF D f�g q
a

n�0

a

x0

f1�!���
fn�!xn

Œ0; 1�n �F.x0/=�;
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where the equivalence relation � is given by

.fn; : : : ; f1I t1; : : : ; tnIp/

�

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.fn; : : : ; f2I t2; : : : ; tnIp/ if f1 D Id;

.fn; : : : ; Ofi ; : : : ; f1I t1; : : : ; ti�1 � ti ; : : : ; tnIp/ if fi D Id for i > 1;

.fn; : : : ; fiC1I tiC1; : : : ; tnIF.fi ; : : : ; f1/.t1; : : : ; ti�1; p// if ti D 0;

.fn; : : : ; fiC1 ıfi ; : : : ; f1I t1; : : : ; Oti ; : : : ; tnIp/ if ti D 1 for i < n;

.fn�1; : : : ; f1I t1; : : : ; tn�1Ip/ if tn D 1;

� if p D �:

When C does not contain any nonidentity isomorphisms, homotopy colimits may be defined only in terms

of nonidentity morphisms and the last four equivalence relations. That is,

hocolimF D f�g q
a

n�0

a

x0

f1�!���
fn�!xn

8i2f1;:::;ng;fi ¤Id

Œ0; 1�n �F.x0/=�
0;

where �0, in the case C has no nonidentity isomorphisms, is the last four cases of the definition of �.

In this paper the categories C will have no nonidentity isomorphisms, so we will work with the latter

formulation.

We will occasionally need the following:

Definition 4.17 [56, Definition 2.6] A homomorphism of homotopy-coherent diagrams F1; F0 W C !

K–Top� is a collection of maps �x W F1.x/! F0.x/ for each x 2 Ob.C / such that

F0.fn; : : : ; f1/.t1; : : : ; tn�1/ ı�x D �y ıF1.fn; : : : ; f1/.t1; : : : ; tn�1/;

where fn ı � � � ıf1 W x ! y 2 C for all ti .

A homotopy-coherent diagram may itself be viewed as a commutative diagram from an auxiliary category

as in [56, Definition 2.3], and a homomorphism of homotopy-coherent diagrams is a homomorphism (of

diagrams, in the usual sense) of the associated commutative diagrams from the auxiliary category.

We will need the following properties:

(ho-1) Suppose that F0; F1 W C !K–Top� are homotopy-coherent diagrams and � WF1 !F0 is a natural

transformation, defined as a homotopy-coherent diagram

� W 2� C !K–Top�

with �jfig�C DFi , i D 0; 1. Then � induces a map hocolim � W hocolimF1 ! hocolimF0, well defined up

to homotopy, according to [56, Theorem 5.12]. If �.x/ is aK–weak equivalence for each x 2 C — we will

call such an � a K–weak equivalence from F1 to F0 — then hocolim � is a K–weak equivalence as well.
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When the spaces involved are K–CW complexes, a weak equivalence � W F1 ! F0 is also a homotopy

equivalence [56, Proposition 4.6]. That is, there exist �; �0 W F0 ! F1 and

h; h0 W f2! 1! 0g � C !K–Top�

with hjf2!1g�C D �, hjf1!0g�C D �, hjf2!0g�C D IdF0
, h0jf2!1g�C D �0, h0jf1!0g�C D �, and

h0jf2!0g�C D IdF1
. Here we write IdF0

(and similarly IdF1
) for the “identity” natural transformation

2�C !K–Top�, which restricts to F0 on f0g�C and f1g�C , and where the morphism IdF0
.�1;0� c/,

for c an object of C , is the identity F0.c/! F0.c/; there are also well-defined higher homotopies.

(ho-2) A homomorphism F1 ! F0 W C ! K–Top� of homotopy-coherent diagrams induces a K–

equivariant map hocolimF1 ! hocolimF0. This map on homotopy colimits satisfies a certain compati-

bility with (ho-1), as in [56, Proposition 7.1].

(ho-3) For any subgroup H of K, define the fixed-point diagram FH W C ! Top� by setting FH .x/ to

be the fixed points F.x/H . Then there is a natural homeomorphism

.hocolimF /H ' hocolim.FH /:

See [50, (ho-3)]

(ho-4) Let F W C ! Top� and G W D ! Top�. Then there is an induced functor F ^G W C � D ! Top�

with .F ^G/.v�w/D F.v/^G.w/, and there is a natural (in homomorphisms of homotopy-coherent

diagrams) weak equivalence .hocolimF /^ .hocolimG/! hocolim.F ^G/.

(ho-5) Let L W C ! D be a functor between small categories. Given d 2 Ob.D/, the undercategory of d is

defined as follows. It has objects f.c; f / j c 2 C and f W d !L.c/g, and arrows Hom..c; f /; .c0; f 0//D

fg W c! c0 jf 0 DL.g/ıf g. We write d #L for the undercategory of d . The functor L is called homotopy

cofinal if for each d 2 Ob.D/, the undercategory d #L has contractible nerve.

For a homotopy-coherent diagram F W D !K–Top�, there is an induced homotopy-coherent diagram

F ıL WC !K–Top�. IfF.j / is cofibrant for all j 2Ob.D/ andL is homotopy cofinal, then the natural map

hocolimF ıL! hocolimF

is a homotopy equivalence. This follows from the version for homotopy limits in [12]; see [38, Section 2.9,

(ho-4)].

4.4 Little disks refinement

With this background, we are ready to review the little box realization construction of [38, Section 5] and

generalize to functors to BK . Assume from now on that K is abelian.

Definition 4.18 Fix a small category C and a strictly unitary 2–functor F W C ! BK , as well as a finite

abelian group K. Fix a pair of finite-dimensional orthogonal K–representations V1 and V2, where the

action of K on V1 is denoted by r. A spatial refinement of F modeled on .V1; V2/ is a homotopy-coherent

diagram zF W C !K–Top� such that:
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(1) For any u 2 C , zF .u/D
W

x2F.u/B.V /=@B.V /, where V WD V1˚V2.

(2) For any sequence of morphisms u0
f1�! � � �

fn�! un in C and any .t1; : : : ; tn�1/ 2 Œ0; 1�n�1, the map

zFk.fn; : : : ; f1/.t1; : : : ; tn�1/ W
_

x2F.u0/

B.V /=@B.V /!
_

x2F.un/

B.V /=@B.V /

is a K–equivariant disk map .r˚IdV2
/–refining the correspondence F.fn ı � � � ı f1/— note that

F.fn ı � � � ıf1/ is naturally isomorphic to F.fn/�F.un�1/ � � � �F.u1/ F.f1/.

This definition extends [38, Definition 5.1; 50, Definition 4.11].

The main technical result that makes it possible to construct spatial refinements from Burnside functors is

as follows.:

Proposition 4.19 [50, Proposition 4.12; 38, Proposition 5.22] Let C be a small category in which every

sequence of composable nonidentity morphisms has length at most n, and let F W C ! BK be a strictly

unitary 2–functor , with K a finite abelian group.

(1) Fix a finite-dimensional orthogonal K–representation r WK !O.V1/. For V2 a sufficiently large

K–representation , there is a spatial refinement of F modeled on .V1; V2/.

(2) Fix a finite-dimensional orthogonal K–representation r WK !O.V1/. For V2 a sufficiently large

K–representation , any two spatial refinements of F modeled on .V1; V2/ are weakly equivalent.

(3) Fix finite-dimensional orthogonal K–representations r WK !O.V1/, V2, and W . If zF is a spatial

refinement of F modeled on .V1; V2/ then the result of suspending each zF .u/ and zF .fn; : : : ; f1/

by W gives a spatial refinement of F modeled on .V1; V2˚W /.

Proof This is entirely analogous to the proof of [50, Proposition 4.12 ]; see [50, Proposition 4.20] for

equivariant aspects.

4.5 Realization of cube-shaped diagrams

Finally, in this section we will discuss how to construct a CW complex kF k, and then a spectrum jF j,

from a diagram F W 2n ! BK . We assume in this section that K is abelian. Let 2C be the category with

objects f0; 1;�g and unique nonidentity morphisms 1! 0 and 1! �, and let 2nC D .2n/q � where, for

v 2 2n� f0ng, there is a unique arrow v ! �, and Hom.0n;�/D ¿.

Let zF W 2n ! K–Top� be a spatial refinement of F modeled on .V1; V2/ for some finite-dimensional

orthogonal K–representations V1 and V2, and let zFC W 2nC !K–Top� be the diagram obtained from zF

by setting zFC.�/D pt; we will sometimes abuse notation by also calling zFC a spatial refinement of F .

Let kF k.V1;V2/ be the homotopy colimit of zFC (we will sometimes suppress .V1; V2/ from the notation).

Sometimes we write k zFCk to indicate dependence on the choice of spatial refinement. We call kF k.V1;V2/

a (spatial) realization of F W 2n ! BK for the pair .V1; V2/.
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Corollary 4.20 [38, Corollary 5.6; 50, Corollary 4.14] Let V1 be a finite-dimensional orthogonal K–

representation. For V2 a sufficiently large finite-dimensional orthogonal K–representation , the realization

kF k.V1;V2/ is well defined up to weak equivalence in K–Top�.

Proof This follows from Proposition 4.19 and properties of homotopy colimits (ho-1).

The homotopy colimit kF k may be given various CW structures. First, from Definition 4.15, there is

the standard CW structure, with cells Œ0; 1�m �Bx , parametrized by tuples .fm; : : : ; f1/ subject to some

relations. Usually this will not be a K–CW decomposition (as some cells may be, for example, fixed by

the action of K, but not fixed pointwise, as in the definition of a K–CW structure).

The fine structure on kF k is obtained from the standard structure by subdividing each cell Œ0; 1�m �Bx
into K–cells; to see that this is possible, see for example [2] or [29]. This is an equivariant cell structure,

and so in particular kF k has the homotopy type of a K–CW complex, although otherwise we will not

use this structure.

Further, kF k has the coarse cell structure of [38, Section 6]. There they construct a CW structure

on kF k for F a (not K–decorated) Burnside functor, with cells formed by taking unions of the balls

Œ0; 1�m �Bx.V / so that there is exactly one (nonbasepoint) cell C.x/ for each x 2
`

u F.u/. The coarse

cell structure generalizes in a straightforward way to K–equivariant realizations to give a CW complex

structure on kF k such that the action of K permutes the cells, but it is not a K–CW structure. In the

sequel, we will treat kF k as a CW complex with the coarse cell structure.

Proposition 4.21 Fix a finite abelian group K, and a finite-dimensional orthogonal K–representation

r W K ! O.V1/. If F W 2n ! BK is a functor , then the shifted reduced (coarse) cellular complex

zCcell.kF k.V1;V2//Œ�dimV1 � dimV2� is isomorphic to the totalization Totd.F / with the cells mapping

to the corresponding generators , where d W K ! Z2 is the topological degree of r. If � W F1 ! F0

is a natural transformation of Burnside functors , then there is an induced K–equivariant cellular map

�� W kF1k ! kF0k, and the induced cellular chain map agrees with Totd.�/.

Proof This follows from the proof of [50, Proposition 4.16].

We will use the notion of an equivariant spectrum as in [45, Chapter XII], which we recall here. Fix a finite

group G and a complete G–universe U , that is, an infinite-dimensional real inner product space equipped

with an orthogonal G–action, such that, for each finite-dimensional orthogonal G–representation V , U

contains the direct sum of countably many copies of V . We refer to finite-dimensional G–subspaces of U

as indexing spaces. A G–prespectrum E indexed on U is a family of based G–spaces E.V /, running

over all indexing spaces V , together with maps

�V;W W†W�VE.V /!E.W /
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whenever V � W , where †W�V denotes suspension by the orthogonal complement of V in W , and

where it is required that �V;V D Id. The following diagram is also required to commute:

†Z�W†W�VE.V / †Z�WE.W /

†Z�VE.V / E.Z/

Š

A spectrum E is a prespectrum such that the adjoints of the maps �V;W , given by

Q�V;W WE.V /!�W�VE.W /;

are homeomorphisms.

The forgetful functor ` from spectra to prespectra has a left adjoint L, called spectrification, such that for

E a spectrum, L`E DE.

A map of prespectra (or spectra) f WE1 !E2 consists of a G–equivariant map E1.V /!E2.V / for all

indexing spaces V , respecting the structure maps.

A homotopy of maps of spectra f1; f2 WE1 !E2 is a G–equivariant map of prespectra h WE1^IC !E2,

where IC is the unit interval with a disjoint basepoint added, such that hjE1^i D fi for i D 1; 2.

In order to construct a spectrum from a Burnside functor, we will also consider virtual representations, as

considered in [19] or [18].

Definition 4.22 For a finite group K (with complete universe U fixed), the category of virtual repre-

sentations of K has objects the pairs .V;W / for indexing spaces V and W . We will usually write the

pair .V;W / as V 	W . A (virtual) map V1 	W1 ! V2 	W2 is the equivalence class of a pair of

K–equivariant isometries

f W V1˚Z1 ! V2˚Z2 and g WW1˚Z1 !W2˚Z2;

whereZ1 andZ2 are indexing spaces. The equivalence relation between pairs .f; g/ as above is generated

by setting .f; g/� .f ˚ k; g˚ k/ where k is any K–isometry T1 ! T2 of indexing spaces, and where

f ˚ k and g˚ k are defined by

f ˚ k W V1˚ .Z1CT1/! V2˚ .Z2CT2/ and g˚ k WW1˚ .Z1CT1/!W2˚ .Z2CT2/:

We will write .V1	W1/C .V2	W2/ for .V1˚V2/	 .W1˚W2/. We call virtual representations that

are of the form V 	 0 ordinary representations. Associated to any virtual representation there is a natural

element of the representation ring of K.

Construction 4.23 Fix a finite abelian group K, and a finite-dimensional orthogonal K–representation

r WK !O.V1/. Let C be a small category in which every sequence of composable nonidentity morphisms

has length at most n, for some n, and let .F W C ! BK ; W / be a stable functor, where we take a virtual

representation representative of W as W D W1 	W2. We define a spectrum j.F;W /jV1
as follows.

We start with the definition of a prespectrum j.F;W /jP;V1
. First, fix V2 a sufficiently large indexing
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space, and define j.F;W /jP;V1
.V2/ as follows. We require that the virtual representation W ˚ V2 is

isomorphic to an (ordinary) representation, and set j.F;W /jP;V1
.V2/D kF k.V1;V2CW /. The resulting

space j.F;W /jP;V1
.V2/ depends on some choices, but its weak-equivalence class is well defined by

Corollary 4.20. For indexing spaces V3 containing V2, set

j.F;W /jP;V1
.V3/D†V3�V2kF k.V1;V3CW /;

with the structure maps acting by the identity in the suspension factor. For indexing spaces V3 such that

V2 š V3, we set j.F;W /jP;V1
.V3/D �, a single basepoint, with trivial structure maps.

It is readily confirmed that j.F;W /jP;V1
is a prespectrum, depending on the choices of a virtual repre-

sentation W1	W2 underlying W , an indexing space V2, and a spatial realization of .V1; V2˚W /. We

set j.F;W /jV1
D Lj.F;W /jP;V1

. Said differently, j.F;W /jV1
is homotopy equivalent to the suspension

spectrum †W�V2†1.k.F;W /k.V1;V2//.

Proposition 4.24 confirms that this spectrum is well defined up to equivariant homotopy.

We record a result of [50] (there it is proved for K D Z2; the more general proof is no different):

Proposition 4.24 [50, Lemma 4.17] Let .F W 2n ! BK ; W / be a stable Burnside functor and let

r WK!O.V1/ be a finite-dimensional orthogonal representation of K. The spectrum realization j†W F jV1

is well defined up to K–equivariant stable homotopy equivalence. For stable Burnside functors .Fi ; Wi /

for i D 1; 2, a K–equivariant stable equivalence � W †W1F1 ! †W2F2 induces a K–equivariant stable

homotopy equivalence

j�jW j†W1F1jV1
! j†W2F2jV1

:

Proof This follows using the fact that k.F;W /k.V1;V2/ is well defined up to weak equivalence for V2

sufficiently large, as well as Proposition 4.19(3). Here we use that j†W F jV1
is the suspension spectrum

†W�V2†1.k.F;W /k.V1;V2//. The construction of j�j is as in the proof of [50, Lemma 4.17].

5 External actions and realization

Our goal in this section will be to show that, for a Burnside functor F with an external action  , a suitable

realization of F admits aG–action, and the fixed-point set can be explicitly described as a realization of yet

another Burnside functor. In Section 5.1, we deal with some generalities on homotopy-coherent diagrams,

then specialize to homotopy-coherent diagrams from Burnside functors in Section 5.2. Throughout this

section we assume that K is a finite abelian group.

5.1 External actions on homotopy-coherent diagrams

Definition 5.1 Let F W C ! Top� be a homotopy-coherent diagram, where C is a small category such

that there is some n for which each sequence of composable nonidentity morphisms has length at most n.

Say that a finite group G acts on C by  . An external action N of G on F , compatible with  , is defined
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as follows. An external action consists of a homomorphism N WG ! Homeo
�
W

c2Ob.C / F.c/
�

lifting the

group action  of G on Ob.C /— and preserving the basepoint. The action N is required to “commute

with composition” in the sense that

.5.2/ N g.F.fi ; : : : ; f1/.t1; : : : ; ti�1/.y//D F. g.fi /; : : : ;  g.f1//.t1; : : : ; ti�1/. N gy/

for all g 2 G and y 2 F.c/. For a functor F W C ! K–Top�, an external action on F is as above but

further requiring that the K and G actions commute.

Remark 5.3 A homotopy-coherent diagram with external action by G may be thought of as an analogue

of a G–space in the category of homotopy-coherent diagrams. First, note that a pointed G–space X may

be viewed as a functor X W BG ! Top�, where BG is the category with one object, and morphisms G. A

more flexible notion (though equivalent for many purposes, see [21; 17]) is a homotopy-coherent diagram

X W BG ! Top�.

Consider the case of a small category C without a G–action. Then one might define a “G–equivariant”

diagram as a homotopy-coherent diagram BG � C ! Top�. For the case of present interest, that is, for a

small category C with G–action, we need a “twisted” version of the above definition, as in Definition 5.1.

Proposition 5.4 Fix F W C ! Top�, where C has an action  and F admits an external action , as in

Definition 5.1. Then the homotopy colimit hocolimF admits a G–action by

g.fm; : : : ; f1I t1; : : : ; tmIy/D . gfm; : : : ;  gf1I t1; : : : ; tmI N gy/:

Similarly, if F W C !K–Top� admits an external action by G, the homotopy colimit in K–Top� inherits

a .K�G/–action by the same formula.

Proof This consists of unraveling the definition of homotopy colimits (Definition 4.15) and applying (5.2).

We work with the version of the homotopy colimit in which no nonidentity isomorphisms appear in

the index category (as is possible from our hypotheses on C ). One first sees by directly considering

Definition 4.15 that G acts on the homotopy colimit (as a set), and the continuity of the G–action in

Definition 5.1 implies that the G–action on the homotopy colimit is continuous. The K–equivariant

version is analogous.

Definition 5.5 Let F1; F2 W C !K–Top� be homotopy-coherent diagrams, where C has an action  

and F1 and F2 admit external actions, all as in Definition 5.1. We say that F1 and F2 are externally

weakly equivalent (usually shortened to weakly equivalent if the context is clear) if there is a diagram

F3 W 2� C !K–Top�, where 2� C is given the product G–action with G acting trivially on 2, such that

F3ji�C DFiC1 and F3 itself has an external action. Furthermore, we require that the maps F1.x/!F2.x/

are weak equivalences of K–spaces for each x 2 C .

Lemma 5.6 Let H be a subgroup of G, and let F W C ! BK be as in Definition 5.1. Then the

H–fixed-point set .hocolimF /H of hocolimF is the homotopy colimit of the homotopy-coherent

diagram FH W C
H ! K–Top� with entries FH .u/D F.u/H , and with morphisms defined as follows.
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For a sequence of composable morphisms .fi ; : : : ; f1/ of C , with u 2 Ob.C / the domain of f1, the

map FH .fi ; : : : ; f1/.t1; : : : ; ti�1/ is given by the restriction of the map F.fi ; : : : ; f1/.t1; : : : ; ti�1/

to F.u/H .

Proof We describe the fixed-point set of hocolimF explicitly. First, by the construction of homotopy

colimits, by applying the relations iteratively, each point that is not the basepoint in hocolimF may be

represented (uniquely) by a tuple .fm; : : : ; f1I t1; : : : ; tmIy/ for m � 0, with none of ti D 0; 1. Such a

point is in the fixed-point set if and only if

.fm; : : : ; f1/D .hfm; : : : ; hf1/

as tuples in the set Hom.C / of homomorphisms of C , and y D hy. That is, the fi must come from the

H–fixed arrows, ie elements of Hom.CH /, and the lemma follows.

5.2 Realizations

We start with a minor modification of the Construction 4.9:

Construction 5.7 Fix a finite group G, a finite abelian group K, and a pair of finite-dimensional

orthogonal .K�G/–representations si W K �G ! O.Vi / for i D 1; 2. Let X W f�g ! BK be a functor

with external action  by G, where G acts on the one-point category f�g (that is the category with a

unique object � and no nonidentity morphisms) trivially. Write X for X.�/. Let V D V1˚V2, and define

B.X; V / D
`

x2X Bx.V /. Then define an action of K �G on B.X; V / by setting, for k 2 K, g 2 G,

and .v1; v2/ 2 V1˚V2 D V ,

.k �g/ � .x; v1; v2/D
�

g � x; s1.k�. g;v; x/�g/ � v1; s2.k �g/ � v2
�

:

Here �. g;v; x/ denotes the decoration �.s�1.x// for the decorated correspondence  g;v WX !X . This

assignment gives a continuous homomorphism � WK �G ! Homeo.B.X; V //.

Lemma 5.8 Let K be an abelian group. Fix a small category C such that there is some n for which each

sequence of composable nonidentity morphisms has length at most n, and C has an action  by a finite

group G. Fix a Burnside functor F W C ! BK where F admits an external action N by G, compatible

with  .

Let zF be a spatial refinement for F , modeled on K–representations .V1; V2/. Suppose V1 and V2 admit

G–actions commuting with the actions of K. We define an action of K�G onB
�
S

u2Ob.C / F.u/; V1˚V2
�

as in Construction 5.7. Suppose , for each g 2G, u 2 Ob.C /, x 2 F.u/, and p 2 Bx=@Bx , that

.5.9/ g. zF .fi ; : : : ; f1/.t1; : : : ; ti�1/.p//D zF .g.fi /; : : : ; g.f1//.t1; : : : ; ti�1/.gp/:

In this notation , the term gp does not refer to the action of g 2 G applied to p 2 V1 ˚ V2. Rather , we

view p as an element of B
�
S

u2Ob.C / F.u/; V1˚V2
�

, and gp is the result of applying the action , as in

Construction 5.7, of G on B
�
S

u2Ob.C / F.u/; V1˚V2
�

to p, and similarly for the left-hand side of (5.9).
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Then hocolim zF admits a G–action , commuting with its natural K–action , given by

.fm; : : : ; f1I t1; : : : ; tm�1Iy/! .gfm; : : : ; gf1I t1; : : : ; tm�1Igy/:

Proof This follows directly from Proposition 5.4.

The following special case will be our main use of the lemma. If F W 2np ! BK is a Burnside functor

admitting an external action by Zp compatible with the action of Zp on 2np by permutation of coordinates,

with zF satisfying the conditions of Lemma 5.8 for C D 2np, we have that k zFCk admits a Zp–action,

commuting with its natural K–action, as above.

Definition 5.10 We call a spatial refinement zFC of a Burnside functor F W C ! BK with a G–external

action satisfying (5.9) a G–coherent refinement of F .

We next try to build a homotopy-coherent diagram satisfying the conditions of Lemma 5.8. The key is to

provide a suitable generalization of [38, Proposition 5.2].

Proposition 5.11 [38, Proposition 5.2; 50, Proposition 4.12] Let C be a small category admitting a

G–action  , in which every sequence of composable nonidentity morphisms has length at most n, and

let F W C ! BK be a strictly unitary 2–functor admitting an external G–action. Fix a finite-dimensional

orthogonal .K�G/–representation r WK �G !O.V1/.

(1) There exists some finite-dimensional .K�G/–representationW such that , for all finite-dimensional

representations V2 of K�G which admit an embedding of W , there exists aG–coherent refinement

of F modeled on .V1; V2/.

(2) There exists some finite-dimensional .K�G/–representationW such that , for all finite-dimensional

representations V2 of K �G which admit an embedding of W , any two G–coherent refinements

of F modeled on .V1; V2/ are K–weakly equivalent. Let � denote the functor � W 2� C ! BK that

is two copies of F (on f0g � C and f1g � C ) along with identity arrows along the 2–factor. Then ,

if zF0 and zF1 are G–coherent refinements of F modeled on .V1; V2/, there exists a G–coherent

refinement Q� of � such that Q�jf0g�C D zF0 and Q�jf1g�C D zF1.

(3) If zF.V1;V2/ is a G–coherent refinement of F modeled on .V1; V2/, then the result of suspending

each zF.V1;V2/.u/ and zF.V1;V2/.fn; : : : ; f1/ by a .K�G/–representation V 0 gives a G–coherent

spatial refinement of F modeled on .V1; V2˚V 0/.

Proof For (1), we inductively construct a spatial refinement zF .

First, choose representatives a! of the orbits of Hom.C / under the action ofG. For each representative a! ,

let S! � G be its stabilizer subgroup. For each a! , choose a .K�S!/–equivariant disk map refining

F.a!/; such maps exist by Lemmas 4.11 and 4.12. Then, define the maps associated to each a 2 Hom.C /

by, if ga! D a, setting g zF .a!/g�1 DW zF .ga!/. Here, recall that g 2G acts via Construction 5.7.
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It follows from the construction of zF .a!/ that zF .a/ is independent of the choice of g, so ga! D a holds.

Let us see that the maps constructed thus satisfy Lemma 5.8 for i D 1. We need to check that

g zF .f /.p/D zF .gf /.gp/

for all g 2 G, arrows f of C , and points p 2 B.V /. By hypothesis, f D ha! for some a! and

h 2G. Then zF .ha!/ is defined by h zF .a!/h�1, and the i D 1 case of (5.9) follows readily, using that

s zF .a!/s�1 D zF .a!/ for s 2 S! .

Fix l � 1 and suppose that for any sequence v0 !f1 � � � !fl vl of nonidentity morphisms, we have

chosen a map ef1;:::;fl
W Œ0; 1�l�1 !EK;V .fBxgx2F.v0/; sF.fl ı���ıf1/; F .fl ı� � �ıf1/; F .v0//, compatible

in that

efl ;:::;f1
.t1; : : : ; ti�1; 0; tiC1; : : : ; tl�1/D efl ;:::;fi

.tiC1; : : : ; tl�1/ ı efi�1;:::;f1
.t1; : : : ; ti�1/;

efl ;:::;f1
.t1; : : : ; ti�1; 1; tiC1; : : : ; tl�1/D efl ;:::;fi ıfi�1;:::;f1

.t1; : : : ; ti�1; tiC1; : : : ; tl�1/;

and satisfying the i D l condition of Lemma 5.8.

Choose representatives a! for the orbits of the G–action on the set of all composable tuples .f1; : : : ; fl/,

where the fi are morphisms v0 !f1 � � � !flC1 vlC1 for vi objects of C , with stabilizers S! as before.

Here, G acts on the set of composable tuples by acting on each of the morphisms in a composable tuple.

Then for the induction step, given a! D .f1; : : : ; flC1/ where v0
f1�! � � �

flC1���! vlC1 is a composable

sequence of arrows, we have a continuous map

S l�1 D @.Œ0; 1�l/!EK;V
�

fBx j x 2 F.v0/g; sF.flC1ı���ıf1/; F .flC1 ı � � � ıf1/; F .v0/
�

defined by

.5.12/
.t1; : : : ; ti�1; 0; tiC1; : : : ; tl/ 7! eflC1;:::;fiC1

.tiC1; : : : ; tl/ ı efi ;:::;f1
.t1; : : : ; ti�1/;

.t1; : : : ; ti�1; 1; tiC1; : : : ; tl/ 7! eflC1;:::;fiC1ıfi ;:::;f1
.t1; : : : ; ti�1; tiC1; : : : ; tl/:

By the argument from Lemma 4.11, this map extends to a map, call it eflC1;:::;f1
, from Œ0; 1�l , which is

.K�S!/–equivariant. Define ef 0
lC1

;:::;f 0
1
, for .f 0

lC1
; : : : ; f 0

1/D ga! for some g 2G by gea!
g�1. This

is well defined as in the i D 1 case (independent of the choice of g for which .f 0
lC1

; : : : ; f 0
1/D ga!) and

gives that the collection of e.f 0
lC1

;:::;f 0
1/

thus defined satisfy the i D l C 1 case of Lemma 5.8.

We have used that external actions respect composition, as in Definition 3.7, in order to see that each

gea!
g�1 is a family of disk maps refining the composite correspondence F.f 0

lC1
ı � � � ıf 0

1/.

By definition, the maps

ˆ.efm;:::;f1
; F .fm ı � � � ıf1// W Œ0; 1�

m�1 �
_

x2F.v0/

Bx.V /=@Bx.V /!
_

x2F.vm/

Bx.V /=@Bx.V /;

running over the set of all tuples of composable nonidentity arrows v0 !f1 � � � !fm vm, assemble to

form a homotopy-coherent diagram.

Next we address (2). Fix G–coherent refinements zFi of F , for i D 0; 1. It suffices to construct a

G–coherent refinement Q� W 2�C !K–Top� with Q�jfig�D D zFi . Using the construction in the proof of (1),
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we can construct such Q�, and it follows from the definitions that Q�.�1;0 � Idu/, for each u 2 Ob.D/, will

be a homotopy equivalence (where �1;0 is the unique nonidentity morphism in 2). By (ho-1), zF0 and zF1
are then K–weakly equivalent.

Item (3) is clear.

Let us consider the fixed-point sets of the homotopy colimit constructed in Lemma 5.8. We state the

following result only for Burnside functors from the cube category; the result for general C as in

Lemma 5.8 differs only notationally and will not be needed. Henceforth, we will always view 2np as a

category with Zp–action by permuting the coordinates. The Zp–fixed-point set is readily identified with

a copy of � W 2n ! .2n/p, which we call the canonical embedding of cube categories.

Lemma 5.13 Let zF be a Zp–coherent refinement of F W 2np ! BK , a nonsingular Burnside functor with

external action by Zp, compatible with the permutation action on 2np . Say that zF is modeled on .V1; V2/.

For H a subgroup of Zp, the H–fixed-point set , k zF kH , is a .K�.Zp=H//–equivariant realization of the

fixed-point Burnside functor FH , modeled on .V H1 ; V H2 /. That is ,

k zF kH.V1;V2/
D k zFHk.VH

1 ;VH
2 /:

Additionally, zFH is a K–equivariant refinement of FH .

For a Zp–external natural transformation � W 2np � 2! BK , where Zp acts by permutation on 2np and

trivially on 2, we have similarly k Q�kH
.V1;V2/

D kQ�Hk.VH
1 ;VH

2 /. Finally , Q�H is a K–equivariant refinement

of �H .

Proof By Lemma 5.6, .hocolim zFC/H is described explicitly, by restricting to the homotopy-coherent

subdiagram . zFH /C W .2np/HC !K–Top�. Recall that zFH has an explicit description as in Lemma 5.6.

We have

.hocolim zFC/H D hocolim.2np/H
C
. zFH /C:

The homotopy-coherent diagram zFH is a K–equivariant refinement of FH , and is in fact .Zp=H/–

coherent (with Zp=H external action as in Lemma 3.26), by unwrapping the definitions. The previous

equation then shows that k zF kH D hocolim.eFH /C for the .Zp=H/–coherent refinement eFH WD zFH . The

claim that k zF kH
.V1;V2/

D k zFHk.VH
1 ;VH

2 / follows.

The remaining claims in the lemma are proved entirely analogously.

Lemma 5.14 Let 2n�2np be the canonical embedding. Fix a nonsingular Burnside functorF W2np!BK

with external action , where F admits an external action lifting the Zp–action on 2np . We will denote both

actions by  .

Let F be a Zp–coherent refinement. Then the fixed-point set .hocolimFC/Zp is hocolim zJC, for zJ

some K–equivariant refinement of FZp .

Proof This follows immediately from Lemma 5.13.
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We can now discuss how the realizations of different Burnside functors are related.

Lemma 5.15 [50, Lemma 4.15] A cofibration sequence J ! F !H of functors with external action

2np ! BK compatible with the permutation action on 2np, upon realization , induces a cofibration

sequence in .K�Zp/–Top�. In general , any external natural transformation � W F1 ! F0 of Burnside

functors 2np ! BK induces a .K�Zp/–equivariant map on sufficiently large realizations k zF1k ! k zF0k,

well defined up to .K�Zp/–equivariant homotopy.

Proof The proof is parallel to that of [50, Lemma 4.15], which produces a K–equivariant map of

realizations as a Puppe map. We will need some of the details in the proof of Lemma 5.17, so we go over

the argument.

Suppose � W 2npC1 ! BK is the natural transformation. Then .F0/�0 is a subfunctor and .F1/�1 is

the corresponding quotient functor, where �i W 2np ! 2npC1 is the face inclusion to fig � 2np. For a

fixed .K�Zp/–representation V1 and for any sufficiently large .K�Zp/–representation V2, we have Zp–

coherent realizations of F0 and F1, and obtain a cofibration sequence, as in the proof of [50, Lemma 4.15]:

.5.16/ k.F0/�0k.V1;V2/ ! k�k.V1;V2/ ! k.F1/�1k.V1;V2/:

However, k.F0/�0k.V1;V2/ D kF0k.V1;V2/, while k.F1/�1k.V1;V2/ D †kF1k.V1;V2/ since kF1k.V1;V2/ is

constructed as a homotopy colimit over 2nC, while k.F1/�1k.V1;V2/ is constructed as a homotopy colimit

over 2nC1
C . Therefore, the Puppe map

k.F1/�1k.V1;V2/ D†kF1k.V1;V2/ D kF1k.V1;V2˚R/

!†k.F0/�0k.V1;V2/ D†kF0k.V1;V2/ D kF0k.V1;V2˚R/

is the required map. To see that the map is also Zp–equivariant, we use that, under the hypothesis of

Lemma 5.15, the cofibration sequence itself is Zp–equivariant, from which the Puppe map can be chosen

to be Zp–equivariant. Well-definedness of the map up to .K�Zp/–equivariant homotopy follows from

the well-definedness of Puppe maps.

Write �� for the map kF1k.V1;V2/ ! kF0k.V1;V2/ as in Lemma 5.15. Recall that neither the coarse nor

standard CW structures need be equivariant CW structures.

Lemma 5.17 [50, Proposition 4.16] Let F W 2np ! BK be a Burnside functor with Zp–external action

compatible with the permutation action , and fix a coherent realization kF k modeled on .V1; V2/ with V2

sufficiently large. Then:

(1) The shifted reduced coarse cellular complex zCcell.kF k/Œ�dimV1 � dimV2� is isomorphic (as a

chain complex) to the totalization Totd.F /, with the cells mapping to the corresponding generators.

Here , d is the topological degree of the action of K on V1.

(2) If � W F1 ! F0 is an external natural transformation , then the map �� W kF1k ! kF0k is cellular

with respect to the coarse CW structure , and the induced cellular map on the coarse structure agrees

with Totd.�/.
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(3) If F is nonsingular , the restriction to fixed points .��/
H W kF1kH ! kF0kH , for H a subgroup

of Zp, is .K�.Zp=H//–equivariantly homotopic to

.�H /� W kFH1 k.VH
1 ;VH

2 / ! kFH0 k.VH
1 ;VH

2 /;

the map of realizations induced by the H–fixed-point functor �H W FH1 ! FH0 . Here we have used

kFikH.V1;V2/
D kFHi k.VH

1 ;VH
2 /, for suitable realizations , by Lemma 5.13.

(4) Finally, .��/
H is a cellular map on the coarse CW structures on kFikH.V1;V2/

. The induced cellular

chain map on theH–fixed points , in the coarse CW structure of theH–fixed-point set , is Totd.�
H /.

Proof The first two claims are just Proposition 4.21, and do not involve the external action.

Let us fix Q� a Zp–equivariant spatial refinement of �, with restriction zFi on 2np � fig for i D 0; 1. By

taking fixed points in the cofibration sequence (5.16), we have a cofibration sequence

.5.18/ k zF0k
H ! kQ�kH ! k zF1k

H :

The .K�.Zp=H//–equivariant homotopy type of the Puppe map for the sequence (5.18) is exactly .��/
H ,

using that �� is defined as a Puppe map. We have that Q�H is a refinement of �H by Lemma 5.13, and so

the cofibration sequence above defines the homotopy class of the map .�H /� in Proposition 4.21.

Claim (4) is a consequence of (2) and (3).

Lemma 5.19 Let F W 2np ! BK be a nonsingular Burnside functor with external action by Zp. For a

fixed finite-dimensional orthogonal .K�Zp/–representation V1 and for V2 sufficiently large , kF k.V1;V2/

is well defined up to weak equivalence in .K�Zp/–Top�.

Proof Fix coherent refinements zF0 and zF1 modeled on .V1; V2/ for V2 large. By Proposition 5.11(2),

there is a homotopy-coherent diagram Q� W 2� 2np !K–Top� such that Q�ji�2np D zFi . We need to show

that, for any subgroup H �K � Zp, the induced map

.��/
H W k zF1k

H ! k zF0k
H

is a (nonequivariant) homotopy equivalence.

We treat first the case that H is contained in the Zp factor. We observe that for any homomorphism

d W K ! Z2, Totd.�
H / is the identity. By Lemma 5.17(4), �H induces a map between cellular chain

complexes
zCcell.k zF1k

H /! zCcell.k zF0k
H /;

which may be identified with Totd.�
H / up to a shift. Then, for each subgroup H � Zp, �H is a

.K�.Zp=H//–equivariant map which is a priori a homotopy equivalence in the nonequivariant sense,

since Totd.�
H / is identified with the identity map.

For a general subgroup H �K � Zp (that is, a subgroup which need not be contained in the Zp factor),

let H 0 denote the image of H in Zp. It is a consequence of the formula for the action of K �G on

the homotopy colimit in Lemma 5.8 that k zFikH is a spatial realization of the fixed-point functor FH
0

,
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modeled on .V H1 ; V H2 /, for iD1; 2. By the same argument, k Q�kH is a spatial realization of the fixed-point

functor �H
0

, modeled on .V H1 ; V H2 /. As in the proof of Lemma 5.15, the map

.5.20/ .��/
H W k zF0k

H ! k zF1k
H

is then identified up to homotopy with the Puppe map

.�H
0

/�W kFH
0

0 k.VH
1 ;VH

2 / ! kFH
0

1 k.VH
1 ;VH

2 /:

We have already established that the Puppe maps .��/
H 00

are homotopy equivalences when H 00 is a

subgroup of Zp �K � Zp , so �H in (5.20) is an equivalence for all H . This establishes that kF k.V1;V2/

is well defined up to weak equivalence, as needed.

In order to describe the relationship between realizations of externally stably equivalent Burnside functors,

we need a further object. Let Jp W 2p ! BK be the nonsingular Burnside functor (with external action

by Zp) with Jp.1
p/ a 1–element set, and Jp.v/D ¿ for v ¤ 1p.

Lemma 5.21 For any pair of finite-dimensional orthogonal K � Zp representations .V1; V2/, the realiza-

tion of Jp satisfies kJpk.V1;V2/ D†V1˚V2.R.Zp//
C.

Proof By (ho-5), it suffices to prove the lemma in the case that zJp.1p/D S0, with the trivial Zp–action.

From [38, Proposition 6.1], there is a nonequivariant identification of k zJpk withMp�Œ0; 2�=@.Mp�Œ0; 2�/,

where Mp is the permutahedron on p symbols.

Recall that the permutahedronMp is the .p�1/–dimensional convex hull of the orbit of .1; 2; : : : ; p/2 R
p

under the action of the symmetric group Sp on p letters (where Sp acts on R
p by permuting the

coordinates).

Moreover, Mp has the structure of a cubical complex so that the .m�1/–dimensional cubes are in

correspondence with sequences .u0 >u1 > � � �>um�1/ of objects of 2p with ui ¤ 0p 2 Ob.2p/ for all i .

The Zp–action on Mp � Œ0; 2�=@.Mp � Œ0; 2�/ determined by its isomorphism with k zJpk is given by

permuting the cubes (taking each cube Œ0; 1�m�1 labeled by a sequence .u0 > u1 > � � � > um�1/

to the cube Œ0; 1�m�1 labeled by some other sequence .v0 > v1 > � � � > vm�1/ by the identity map

Œ0; 1�m�1 ! Œ0; 1�m�1) and acting by the identity on the Œ0; 2� factor, by direct inspection of the proof of

[38, Proposition 6.1].

The identification between Mp , viewed as a cubical complex and viewed as a convex hull in R
p , is such

that each cube is mapped linearly to R
p. In particular, the vertices of the polytope Mp are exactly the

.p�1/–tuples .0; : : : ; 0/ in the cubes associated to maximal sequences .u0 >u1 > � � �>um�1/ of objects

of 2p with ui ¤ 0p 2 Ob.2np/ for all i . These maximal sequences are in bijection with permutations of

the set f1; : : : ; pg.

Finally, the Zp–action on Mp induced by the isomorphism with k zJpk agrees with the Zp–action on the

convex hull by the permutation .1; : : : ; p�1; p/! .2; : : : ; p; 1/. To see this, by the preceding paragraph
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it suffices to identify the two actions on the vertices. The identification on vertices follows from the

descriptions of the two actions above.

Then Mp � Œ0; 2� is identified (not metrically, but topologically) with the unit ball in R.Zp/, and the

lemma follows.

We also need a simple fact about indexing categories:

Lemma 5.22 The natural Zp–equivariant functor 2
p
C � 2npC ! 2

.nC1/p
C is homotopy cofinal.

Proposition 5.23 An external K–equivariant stable equivalence .E1; W1/!.E2; W2/ of stable nonsingu-

lar functors .E1 W 2n1p ! BK ; W1/ and .E2 W 2n2p ! BK ; W2/ induces a .K�Zp/–equivariant homotopy

equivalence j†W1E1jV1
! j†W2E2jV1

for any finite-dimensional orthogonal .K�Zp/–representation V1.

Proof We need only check that Definition 3.32(1)–(2) induce equivariant homotopy equivalences.

For (1), say we have a natural transformation F1 ! F2 of Burnside functors with external action. Fix a

finite-dimensional orthogonal .K�Zp/–representation V1. Associated to a natural transformation with

external action, there is a map kF1k.V1;V2/ ! kF2k.V1;V2/ for any realizations, for V2 sufficiently large,

by Lemma 5.15. Again by Lemma 5.17, the resulting (equivariant) map is a K–homotopy equivalence

kFH1 k.V1;V2/ ! kFH2 k.V1;V2/ for all H (having applied the Whitehead theorem on each fixed-point set).

By the G–Whitehead theorem, F1 and F2 are .K�Zp/–equivariantly homotopy equivalent.

For (2), it will suffice to show, for the face inclusion � W 2np ! 2.nC1/p and any Burnside functor

F W 2np ! BK , that †R.Zp/kF k.V1;V2/ is (equivariantly) homotopy equivalent to kF�k.V1;V2/ for any V2

sufficiently large. We will check this using the relationship of homotopy colimits to smash products.

First, observe by (ho-4) that we have a natural K–weak equivalence

.5.24/ .hocolim2p
C

zJC/^ .hocolim2np
C

zFC/! hocolim2p
C

�2
np
C
. zJC ^ zFC/:

We must check that this map is Zp–equivariant. To do so, we would like to use naturality of the map in

(ho-4). In order to use that naturality, we need to use the external action to generate homomorphisms of

homotopy-coherent diagrams.

Choose a generator g 2 Zp. Let Fg�1 W 2npC ! 2
np
C be the functor of the action of g�1 on 2

np
C . We

consider the pullback homotopy-coherent diagram Fg�1. zFC/D zFC ı Fg�1 . The external action of Zp

on zFC is precisely the data of a homomorphism of homotopy-coherent diagrams ‰g W Fg�1. zFC/! zFC,

by Definition 5.1. We then obtain a well-defined K–equivariant map by (ho-2),

hocolim Fg�1. zFC/! hocolim zFC:

Note that hocolim Fg�1. zFC/ is not identical to hocolim zFC. However, there is a natural homeomorphism

(in homomorphisms of homotopy-coherent diagrams with externalG–action) between hocolim Fg�1. zFC/

and hocolim zFC, defined essentially by relabeling, as follows.
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Recall that hocolim zFC is defined as a quotient of the disjoint union of certain spaces Œ0; 1�n � zF .x0/,

parametrized by tuples of arrows .f1; : : : ; fn/ of 2np with fi W xi�1 ! xi for objects xi of 2np. Now

hocolim Fg�1. zFC/ is a quotient of a disjoint union of spaces Œ0; 1�n � Fg�1. zFC/.x0/ parametrized by

tuples of arrows .f1; : : : ; fn/ of 2np with fi Wxi�1!xi for objects xi of 2np . We have a homeomorphism

.5.25/ hocolim zFC ! hocolim Fg�1. zFC/

given by identifying the space Œ0; 1�n � zF .x0/, associated to the tuple .f1; : : : ; fn/, to the space

Œ0; 1�n�Fg�1. zFC/.gx0/, associated to the tuple .gf1; : : : ; gfn/. Here we have used that Fg�1. zFC/.gx0/

and zF .x0/ are equal. We choose the identification between Œ0; 1�n� zF .x0/ and Œ0; 1�n�Fg�1. zFC/.gx0/

to be the identity on the Œ0; 1�n factor. It is direct to check that this identification is compatible with the

gluing rules in Definition 4.15.

All of this discussion applies equally well, replacing zFC with zJC or zFC ^ zJC. In fact, we have a

commutative diagram, where the vertical arrows are homomorphisms:

.hocolim2p
C
.Fg�1

zJC//^ .hocolim2np
C
.Fg�1

zFC// hocolim2p
C

�2
np
C
.Fg�1. zJC ^ zFC//

.hocolim2p
C

zJC/^ .hocolim2np
C

zFC/ hocolim2p
C

�2
np
C
. zJC ^ zFC/

Moreover, the Zp–action on hocolim zFC fits into the commutative diagram

hocolim2np
C
.Fg�1

zFC/

hocolim2np
C

zFC

hocolim2np
C

zFC

‰g

g

where the vertical arrow is the map induced by the homomorphism, and the diagonal arrow labeled by g

is as in the definition of the Zp–action on hocolim zFC. The remaining diagonal map is the inverse of

the identification from (5.25). The analogous diagrams for .hocolim2p
C

zJC/ ^ .hocolim2np
C

zFC/ and

hocolim2p
C

�2
np
C
. zJC ^ zFC/ also commute. Using the above commutative square, and the naturality of

(ho-4) with respect to homomorphisms, (5.24) is Zp–equivariant. Moreover, the map

.hocolim2p
C

zJC/^ .hocolim2np
C

e
FHC/! hocolim2p

C
�2

np
C
. zJC ^ e

FHC/:

is a K–weak equivalence for each subgroup H of Zp, by the same argument. That is, (5.24) is a

.K�Zp/–weak equivalence.

As a consequence of the definitions, zJC ^ zFC is the pullback of some G–coherent spatial refinement

AJ �FC under L W 2pC � 2npC ! 2
.nC1/p
C . Moreover, it is immediate that J �F D F�.

Using Lemma 5.22 and (ho-5), we have a K–homotopy equivalence

hocolim2p
C

�2
np
C
. zJC ^ zFC/' hocolim

2
.nC1/p
C

.AJ �FC/:
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This homotopy equivalence is once again equivariant with respect to the Zp–action, because the homotopy

equivalence is natural in the involved diagrams. For each subgroup H � Zp , we obtain a similar map of

H–fixed-point sets. However, the same hypotheses we have used to this point apply to the H–fixed-point

sets, since they come from refinements of the Burnside functor FH , according to Lemma 5.13. That is,

the map on H–fixed-point sets is also a homotopy equivalence, and by the G–Whitehead Theorem,

.hocolim2p
C

zJC/^ .hocolim2np
C

zFC/' hocolim
2

.nC1/p
C

.AJ �FC/

now .K�Zp/–equivariantly. Applying Lemma 5.21, the result follows.

6 Applications to Khovanov spectra and Khovanov homology

In this section, we recall the definition and main properties of Khovanov spectra from [38], as well as the

generalization of the Lawson–Lipshitz–Sarkar construction to the odd Khovanov case [50].

Fix a link L with diagram D, from which we obtain the Khovanov functor Fe.D/ W 2n ! Z–Mod and the

odd Khovanov functor Fo.D/ W 2n ! Z–Mod; we will often omit the diagram D from the notation where

it is clear from context. In [38], Lawson, Lipshitz, and Sarkar extended Fe W 2n ! Z–Mod to a stable

Burnside functor KH W 2n ! B:

2n Z–Mod

B

Fe

KH

In [50], Fo.L/ was extended to a stable functor KHO W 2n ! BZ2
such that Totd.KHO/ D Fe for

d D 0 W Z2 ! Z2, and Totd.KHO/ D Fo for d D Id. In [50], it was shown that the equivariant stable-

equivalence class of KHO.D/ is an invariant of the link L. From KHO, one can construct an infinite

family Xn.L/ of Khovanov spaces (or spectra), well defined up to stable homotopy, whose definition we

will see in Section 6.1.

Once we have recalled these definitions, we will see in Section 6.2 that the machinery of Sections 3–5

applies to the Khovanov–Burnside functors KHO and KH. That is, we will show that KH and KHO,

as well as their annular analogues, admit external actions in various settings. This is largely, but not

entirely, formal. In Section 6.3, we will show that the fixed-point functors of these Khovanov–Burnside

functors agree with certain annular Khovanov–Burnside functors. This section is not formal, and relies

on understanding the relationship between resolution configurations in the periodic link and the quotient

link; this becomes particularly complicated in the odd case. In Section 6.4, we show that the external

actions are well defined; this section is largely formal once an understanding of the fixed-point functors is

obtained. One can also obtain the results of this section without knowing the fixed-point functor explicitly,

but it is somewhat easier with the results of Section 6.3 in hand. Here we also wrap up the construction

of space-level invariants, proving Theorem 1.3 using the tools from Section 5. We end with some spectral

sequences in Section 6.5, and some questions in Section 6.6.

Geometry & Topology, Volume 28 (2024)



Localization in Khovanov homology 1561

6.1 The Khovanov–Burnside functor

The purpose of this section is to explicitly describe the various Burnside functors we will use [37, Section 6].

We start by recalling the construction of the functor KHO.D/ for D a diagram of an oriented link L with

n ordered crossings, a choice of orientation of crossings, a choice of edge assignment as in Section 2.4,

and finally an ordering of the circles of each resolution. Following Lemma 3.4, it suffices to define

KHO.D/ on objects, edges �u;v with u>1 v, and across 2–dimensional faces of the cube 2n. For brevity,

we write KHO for KHO.D/. On objects, set

KHO.u/D Kg.u/:

For each edge u>1 v in 2n, and each element y 2 KHO.v/, write

Fo.�
op
v;u/.y/D

X

x2KHO.u/

�x;yx:

Note that each �x;y 2 f�1; 0; 1g. Define

KHO.�u;v/D f.y; x/ 2 KHO.v/�KHO.u/ j �x;y D ˙1g;

where the sign on elements of KHO.�u;v/ is given by �x;y of the pair, and the source and target maps

are the natural ones.

We need only define the 2–morphisms across 2–dimensional faces. In fact, there is a unique choice

of 2–morphisms compatible with the preceding data. To be more specific, for any 2–dimensional face

u>1 v; v
0
>1 w, and any pair .x; y/ 2 KHO.u/�KHO.w/, there is a unique bijection between

Ax;y WD s�1.x/\ t�1.y/� KHO.�v;w/�KHO.v/KHO.�u;v/

and

A0
x;y WD s�1.x/\ t�1.y/� KHO.�v0;w/�KHO.v0/KHO.�u;v0/

that preserves the signs. (That is, the signed sets Ax;y and A0
x;y both have at most one element of any

given sign.) Indeed, the only resolution configurations for which Ax;y has more than one element are the

ladybug configurations. The unique sign-preserving matching turns out to be the right ladybug matching

of [43] for a type X edge assignment, and is the left ladybug matching for a type Y edge assignment. This

completes the description of a strictly unitary lax 2–functor KHO0.D/ associated to the data as above.

We call the identification (for any x and y) of sets Ax;y and A0
x;y above the ladybug matching. Recall

also that we work with stable Burnside functors; that is, pairs of a Burnside functor and an integer. We

define the (odd) Khovanov–Burnside functor by KHO D .KHO0;�n�/, the Burnside functor shifted

down by n�. It follows from the construction that we may write KHO as a sum over quantum gradings:

KHO D
`

j KHOj , where KHOj is the subfunctor from Khovanov generators in quantum grading j .

Recall that the equivariant stable equivalence class of KHO is a link invariant, as in the following theorem.

In what follows, let zR be the nontrivial 1–dimensional real representation of Z2.
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� �
1 1

� � �
x1 x2 y1

�
x1x2

a1

a2

a3

Figure 1: An example Burnside functor F W 21 ! BZ2
. We visualize elements of F.1/ and

F.0/ as dots, and regard the morphism F.�1;0/ as a collection of arrows. Here, we let F.1/D
f1; x1; x2; x1x2g, the set of Khovanov generators associated to a resolution configuration of two

circles, and F.0/ D f1; y1g, the set of Khovanov generators associated to a single circle. Set

F.�1;0/D fa1; a2; a3g. Then s.ai / is given by the tail of the arrow ai , and t .ai / is given by the

head of the arrow ai . This is the Khovanov–Burnside functor associated to two circles merging to

a single circle. Generators at the same height have the same quantum grading.

Theorem 6.1 [50, Theorem 1.7 ] The equivariant stable equivalence class of the stable functor KHO is

independent of the choices in its construction , and is a link invariant. Let AKHO
j
n be a spatial refinement

of KHOj in sufficiently high dimension , modeled on zRn. Then the Z2–equivariant stable homotopy type

of the spatial realization X
j
n D k.AKHO

j
n/

Ck is a link invariant. Moreover , there is a CW structure on X
j
n

for which the reduced cellular chain complex zC �
cell.X

j
n / equals Kc

j
o.LI Z/D TotId.KHOj /� if n is odd ,

or Kcj .LI Z/D TotdD0.KHOj /� if n is even.

Let KH D F.KHO/ denote the stable Burnside functor obtained by applying the forgetful functor

BZ2
! B; call this the even Khovanov–Burnside functor. It agrees with the construction of [38]. We

illustrate an example Khovanov–Burnside functor in Figure 1.

Next, we address the construction of the stable annular Khovanov–Burnside functor AKHO.D/ D
`

j;k AKHOj;k.D/ W 2n ! BZ2
associated to a diagram D of an annular link L, along with an ordering

of the n crossings, an orientation of the crossings, a choice of edge assignment, and an ordering of circles

at each resolution. We define, for u 2 2n,

AKHO
j;k.u/D Kgj;k.u/:

For each edge u>1 v in 2n, and each element y 2 AKHO.v/, write

FAnno
.�

op
v;u/.y/D

X

x2AKHO.u/

�x;yx:

Define

AKHO.�u;v/D f.y; x/ 2 AKHO.v/�AKHO.u/ j �x;y D ˙1g;

where the sign on elements of AKHO.�u;v/ is given by �x;y of the pair, and the source and target maps

are the natural ones. The matching along 2–dimensional faces is obtained from that of KHO, and the

formal desuspension of AKHO is also inherited from KHO. We have the following theorem:
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Theorem 6.2 The equivariant stable equivalence class of the functor AKHO.D/ is independent of the

choices involved in its construction , and is an invariant of the annular link L. Let BAKHO
j;k
n be a spatial

refinement of AKHOj;k in sufficiently high dimension , modeled on zRn. Then the Z2–equivariant stable

homotopy type of the spatial realization AKH
j;k
n D k.BAKHO

j;k
n /Ck is a link invariant. Moreover , there

is a CW structure on k.BAKHO
j;k
n /Ck for which the reduced cellular chain complex zC �

cell.AKH
j;k
n / equals

AKc
j
o.LI Z/D TotId.AKHOj;k/� if n is odd , or AKcj .LI Z/D TotdD0.AKHOj;k/� if n is even.

Proof This follows from keeping track of the annular gradings in the invariance proof of the equivariant

stable equivalence class of KHO.

We write AKH W 2n ! B for the even annular Khovanov–Burnside functor, obtained from AKHO by

applying the functor BZ2
! B.

6.2 Equivariant Khovanov–Burnside functors

In this section, we apply the machinery from Sections 3–5 to construct Burnside functors with external

action. We first outline the notation used in this section. Let p>1 be an integer, and consider a p–periodic

link QL with (annular) periodic diagram zD. Let  denote the rotation of the annulus by 2�=p.

We abuse notation by writing  also for the actions on QL and zD. The quotient link LD QL= has (annular)

diagram DD zD= , with n crossings. We refer to information relating to QL as “upstairs” and information

relating to the quotient L as “downstairs”.

Theorem 6.3 Let QL be a p–periodic link. Then there is a natural Zp–external action on AKH. QL/ and

KH. QL/, whose external equivariant stable equivalence class is an invariant of the equivariant isotopy type

of the link QL. If p is odd , then there is a natural Zp–external action on AKHO. QL/ and KHO. QL/, whose

external equivariant stable equivalence class is an invariant of the equivariant isotopy type of the link QL.

We will prove this theorem over the course of the next few sections. We start with the construction.

Proposition 6.4 Let zD be a p–periodic link diagram. In terms of the diagram zD, there is a well-defined

Zp–external action on AKH. zD/ and KH. zD/.

Proof Recall from Section 2.6 that Zp acts on
`

u22np Kgj;k.u/ for any j; k 2 Z. We write  u for the

generator obtained from the Khovanov generator u by rotation by 2�=p.

For each v 2 2np and i 2 Zp, we have a (bijective) correspondence

E i ;vWAKH.v/! AKH. iv/;

by sending the generator x 2 AKH.v/D Kg.v/ to  ix 2 AKH. iv/. We view E i ;v as a 1–morphism

in B.

For u >1 v, it is easy to check that there are natural bijections  W AKH.�u;v/ ! AKH.� u; v/

and  W KH.�u;v/ ! KH.� u; v/. (Here we have abused notation: the bijections are induced by the

rotation  , hence the name.) Moreover, if a 2 AKH.�u;v/, one can check directly that s. a/D  s.a/
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and t . a/D  t.a/. For u>1 v, let

E i ;�u;v
WE i ;v ıAKH.�u;v/! AKH.� iu; iv/ ıE i ;u

be the 2–morphism in B induced by  i W AKH.�u;v/! AKH.� iu; iv/. Note that E i ;�u;v
is indeed

a 2–morphism, since  i W AKH.�u;v/! AKH.� iu; iv/ is compatible with source and target maps.

There are similar constructions of E i ;v and E i ;�u;v
for KH in place of AKH.

We are almost in the situation of Lemma 3.10; in order to apply that lemma and obtain an external action

E on AKH. zD/ and KH. zD/, we need to check (E-10) and (E-20). The hypothesis (E-10) holds because, for

each pair u>1 v and integers i and j , there is at most one 2–morphism between E iCj ;v ıAKH.�u;v/

and AKH.E iCju; iCj v/ ıE iCj ;u. For (E-20), we need only show that the Zp–action respects the

ladybug matching. However, this is also essentially automatic; let us see how formal properties of the

ladybug matching guarantee this. First of all, we need only consider squares u>1 v; v
0
>1 w in 2np such

that KH.�u;v/— or AKH.�u;v/— has two elements, as otherwise the diagram in Lemma 3.10(E-20) is

automatically commutative. That is, we may assume the resolution configuration associated to u>2 w is

a ladybug configuration.

Then the arrows from the action in (E-20) are obtained from the maps

Kg.u/! Kg. u/

(similarly for v, v0 and w), obtained by rotating the resolution Du to D u (using the fact that KH.�u0;u00/

is a subset of the product KH.u0/�KH.u00/ for any u0 and u00 in 2np). Finally, the ladybug matching is

an invariant of planar isotopy [43, Lemma 5.8], so the diagram commutes. Lemma 3.10 then implies that

there is a Zp–external action on AKH. zD/ and KH. zD/, as needed.

We next generalize this to the odd case. We will need an auxiliary lemma:

Lemma 6.5 Suppose that p is odd. Let C
Zp;�

cell .Œ0; 1�npI F2/ be the subcomplex of C �
cell.Œ0; 1�

npI F2/

consisting of elements fixed by the Zp–action , with respect to the product cell structure on Œ0; 1�np . Then

H 2.C
Zp

cell .Œ0; 1�
npI F2//DH 1.C

Zp

cell .Œ0; 1�
npI F2//D 0.

Proof Say c 2 C
Zp;1

cell .Œ0; 1�npI F2/ has ıc D 0. Now, c D ıe for some e 2 C 0cell.Œ0; 1�
npI F2/. Then

.1C /ıeD 0, so .1C /e is a cocycle. However, the only cocycles in C 0cell.Œ0; 1�
npI F2/ are the constant

cochains evaluating to 0 or 1 on all vertices of Œ0; 1�np . The cochain evaluating to 1 is not in the image of

1C , since the image of 1C is characterized as those cochains such that on each Zp–orbit the sum of

evaluation over the orbit is 0. Thus .1C /eD0, and so c is the boundary of an invariant cochain, as needed.

Next, say c 2C
Zp;2

cell .Œ0; 1�npI F2/ with ıcD 0. Say cD ıe for e 2C 1cell.Œ0; 1�
npI F2/. As before, .1C /e

is a cocycle, so there exists f with ıf D .1C  /e. Then ı.1C  C � � � C  p�1/f D 0. That is,

.1C C � � � C p�1/f is either the constant 0–cocycle or the constant 1–cocycle. Since p is odd, we

obtain that, in the former case, f must vanish on invariant vertices of Œ0; 1�np, and in the latter case,

f evaluates to 1 on the invariant vertices. However, adding the nontrivial cocycle to f still produces

Geometry & Topology, Volume 28 (2024)



Localization in Khovanov homology 1565

a cochain f 0 such that ıf 0 D .1C  /e, and so we may assume that f vanishes on all the invariant

vertices of Œ0; 1�np and that .1C  C � � � C  p�1/f D 0. That is, f lives in a free Zp–submodule

of C 0cell.Œ0; 1�
npI F2/, and using .1C C � � � C p�1/f D 0, it follows that f D .1C /g for some

g2C 0cell.Œ0; 1�
npI F2/. Then ıgD eCe0 for some e0 in the image of multiplication by .1C C� � �C p�1/,

since C 1cell.Œ0; 1�
npI F2/ is a free F2ŒZp�–module. Then, since ı2 D 0, we have ıe0 D c. Finally, the image

of .1C C � � � C p�1/ on C 1cell.Œ0; 1�
npI F2/ is equal to the set of invariant cochains in degree 1, so c

is the boundary of an invariant cochain, as needed.

Proposition 6.6 Suppose p is odd. Let zD be a p–periodic link diagram. Then there is a well-defined

Zp–external action on AKHO. zD/ and KHO. zD/. Moreover , this Zp–external action is nonsingular (see

Definition 3.23).

Proof We begin by choosing an equivariant orientation of crossings for zD, by which we mean that for

each orbit of the np crossings of zD under the action of Zp , we choose a representative crossing, orient it,

and then use the Zp–action to define an orientation of crossings for all crossings in the same orbit.

Next, we need to show that there exists an equivariant edge assignment. By this, we mean that the

function � as in Section 2.4 can be chosen so that �v;u D � v; u. For p D 2 this is not generally

possible, as may be confirmed by drawing the usual picture of the Hopf link. However, recall that an

edge assignment amounts to the choice of an element � 2C 1cell.Œ0; 1�
npI F2/ with coboundary ı�D�. zD/,

tacitly identifying Z2 D f˙1g with F2. We first observe that �. zD/ is Zp–equivariant, since the odd

resolution configuration Cu;w for u>2 w is planar isotopic to the odd resolution configuration C u; w ,

and since �. zD/u;w is determined by the isotopy type of Cu;w for each u >2 w 2 2np. The condition

�u;v D � u; v means that we require � 2 C
Zp;1

cell .Œ0; 1�npI F2/. By Lemma 6.5, such an � exists.

Finally, we must also choose orderings of the circles at each resolution. In fact, any ordering of circles will

do. We must now describe the action of  on Kg. Forgetting the sign,  takes Kg.u/ to Kg. u/, as in the

proof of Proposition 6.4. SayZ. zDu/Dfa1; : : : ; al1g such that a1< � � �<al1 andZ. zD u/Dfb1; : : : ; bl1g

such that b1 < � � �< bl1 . For x D a1˝ � � � ˝ak 2 Kg.u/ taken to b�.1/˝ � � � ˝ b�.k/ 2 Kg. u/, the sign

is just sgn.�/.

We have now constructed  on objects of AKHO. zD/ and KHO. zD/. Since the edge assignment is

equivariant, for u>1 v we have actions

 W AKHO.�u;v/! AKHO.� u; v/ and  W KHO.�u;v/! KHO.� u; v/:

The proof of the proposition now proceeds as in the proof of Proposition 6.4. To see nonsingularity

of the resulting external action, consider any Khovanov generator x 2 Kg.u/ fixed by  (viewed as a

bijection, not a signed bijection). In particular,  uD u. Every invariant generator x is a product of terms

coming from nontrivial circles of zDu and products xi1 � � � xip of trivial circles related by rotation. So, to

prove nonsingularity, it suffices to check that the sign is 1 for invariant generators x which come from a

nontrivial circle of zDu, or for a single product x D xi1 � � � xip of trivial circles related by rotation. (Note
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that if x D 1,  acts as the identity.) In the former case, certainly  takes x to x with sign 1. In the

latter,  acts by some permutation of xi1 � � � xip . To verify that the sign of  is 1, it suffices to check a

particular ordering of the circles of u. To see this, note that reordering the circles changes the action of  

(viewed as a permutation of f1; : : : ; lg using the ordering of the circles) by conjugation. Ordering the

trivial circles in a Zp–orbit by order of appearance, going counterclockwise starting from an arc Q
 , we

see that, indeed,  acts with sign C1 on all invariant generators; here we have used that p is odd.

6.3 Fixed-point functors

In this section, we find the fixed-point Burnside functors of the equivariant Khovanov–Burnside functors

constructed above. The main result is the following:

Theorem 6.7 Let zD be a p–periodic link diagram (with p>1), with quotient diagramD. The Khovanov

fixed-point functors are

(1) AKH.D/D KH. zD/Zp ,

(2) AKHj;k.D/D AKHpj�.p�1/k;k. zD/Zp ,

for any pair of quantum and .k/–gradings .j; k/. If p is odd , we further have , for suitable choices of

crossing orientations , edge assignments , and circle orderings at each resolution:

(3) AKHO.D/D KHO. zD/Zp ,

(4) AKHOj;k.D/D AKHOpj�.p�1/k;k. zD/Zp .

Proof Write � W 2n ,! 2np for the canonical embedding. Let us first address the case of F D KH. zD/;

that is, let us see that FZp D AKH.D/. By Lemma 3.10 and the fact that the fixed-point category

of 2np is the image of the canonical embedding � W 2n ! 2np, it suffices to identify FZp .�u/ for each

u 2 2n, the correspondences FZp .��u;�v/ for u>1 v, and the 2–morphisms associated to 2–dimensional

faces of 2n. Proposition 2.6 shows that FZp .�u/ is canonically identified with AKH.u/, and that the

quantum gradings are as in the statement. We package the proof that the 1–morphisms are correct as

Proposition 6.8, and the claim about 2–morphisms as Lemma 6.16. Assuming those lemmas, the present

theorem follows directly.

Proposition 6.8 Let zD be a p–periodic link diagram with p > 1. Fix u>1 v 2 Ob.2n/ and consider a

sequence of objects of 2np given by �u>1 u1 >1 � � � >1 up D �v. Then

.6.9/
KH. zD/Zp .�up�1;�v ı � � � ı��u;u1

/Š AKH.D/.�u;v/;

AKH. zD/Zp .�up�1;�v ı � � � ı��u;u1
/Š AKH.D/.�u;v/;

where Š denotes natural isomorphism. Further , if p is odd , then

KHO. zD/Zp .�up�1;�v ı � � � ı��u;u1
/Š AKHO.D/.�u;v/;

AKHO. zD/Zp .�up�1;�v ı � � � ı��u;u1
/Š AKHO.D/.�u;v/;

for appropriate choices for zD andD of crossing orientations and edge assignments , and of circle orderings

at each resolution.
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Proof First consider the case for F D KH. zD/. By commutativity of the 2–dimensional faces of the

cube, it suffices to show the identification of 1–morphisms for any particular path fuigi .

Note that in the sequence of resolutions Du;Du1
; : : : ;Dup

there may be circles, present in each of

the Dui
, which are inactive for each of the elementary cobordisms from Dui

to Dui�1
; it is easy to see

that the isomorphisms in the statement of Proposition 6.8 hold if and only if they hold for the sequence of

resolutions with the inactive circles deleted. The proof of the proposition then amounts to a case-by-case

check of the three different types of merges; see Figure 2.

First, say �
op
v;u represents a V ˝ V ! W merge. The p–cover is illustrated by the top left picture in

Figure 2. In that figure, �v is the diagram consisting of two concentric circles, while �u is the diagram

consisting of a single Zp–orbit of circles. Then F.�v/ has four invariant generators f1; x1; x2; x1x2g,

where x1; x22Z. zD�v/, and F.�u/ has two invariant generators f1; y1 � � �ypg, where y1; : : : ; yp 2Z. zD�u/,

all lying in the same Zp–orbit.

The first map �
op
�v;up�1

is a merge, and then all the following maps f�op
ui ;ui�1

g0<i<p are split maps. Recall

that we use the convention that u0 D �u and up D �v. It is straightforward to check that F.��u;�v/
Zp Š

fa1; a2g with source and target maps s.ai /D y1 � � �yp and t .ai /D xi . Thus, F.��u;�v/
Zp is naturally

isomorphic to AKH.D/.�u;v/ for this case.

If �
op
v;u represents a V ˝W ! V merge, then all p maps f�op

ui ;ui�1
g1�i�p are merge maps. The invariant

generators at �v are f1; x; y1 � � �yp; xy1 � � �ypg, with x2Z.D�v/ a nontrivial circle and where yi 2Z.D�v/

are trivial circles forming a single Zp–orbit. The invariant generators at �u are f1; zg for z 2Z.D�u/. Then

we have the correspondence F.��u;�v/
Zp D fa1; a2g with s.a1/D 1, s.a2/D z, t .a1/D 1, and t .a2/D x.

We then observe that F.��u;�v/
Zp is naturally isomorphic to AKH.D/.�u;v/ in this case as well.

A similar situation occurs for the W ˝ W ! W merge case. The invariant generators at Qv are

f1; x1 � � � xp; y1 � � �yp; x1 � � � xpy1 � � �ypg, where xi 2Z.D�v/ are all in the same Zp–orbit, and similarly

X

V ˝ V

�p�1m�����! X

W
˝p

X

V ˝ W
˝p

mp

��! X

V

X

W
˝2p

mp

��! X

W
˝p

Figure 2: The three equivariant annular merges, with p D 5 illustrated. Here � stands for “split”

and m stands for “merge”.
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for yi 2Z.D�v/. The invariant generators at �u are f1; z1 � � � zpg where zi 2Z.D�u/ lie in the same Zp–

orbit. One may quickly check thatF.��u;�v/
Zp Dfa1; a2; a3g with s.a1/D1, t .a1/D1, s.a2/Dx1 � � � xp ,

t .a2/D z1 � � � zp , s.a3/D y1 � � �yp , and t .a3/D z1 � � � zp . It follows readily that F.��u;�v/
Zp is naturally

isomorphic to AKH.D/.�u;v/ in this case.

The above cases, along with duality (for the corresponding equivariant split maps) [38, Section 10] show

that (6.9) holds.

The case of F D AKH. zD/ is very similar, so we omit the details here.

Next we treat the case F D KHO. zD/. We have already seen that, if we forget the signs, .FF /Zp D

AKH.D/. Now, AKHO.D/ can be viewed as a way of sprinkling signs on the correspondences of

AKH.D/— and similarly for KHO. zD/ relative to KH. zD/— and we need to say that these sprinklings

respect the equality of Burnside functors in (6.9).

Recall that in order to define F , we needed to choose the data of an (equivariant) orientation of crossings,

as well as an equivariant edge assignment. Say we have fixed these data. Now, in order to define

AKHO.D/, we need an orientation of crossings of D, as well as an edge assignment of D. We choose

the orientation of crossings coming from taking the quotient of the orientation of crossings of zD. In order

to compare AKHO.D/ with F , we must find a way to define an edge assignment on D, given the edge

assignment upstairs. We start with the following lemma. Recall that Kg. zD/Zp upstairs is identified with

Kg.D/ downstairs, using the choice of an arc Q
 , as in the discussion after Proposition 2.6.

Lemma 6.10 Let C be an index-1 annular resolution configuration with associated odd annular Khovanov

projective functor F0
Anno

W 2op ! Z–Mod. Let p be odd , and let zC denote the p–cover of C , with some

choice of lift of 
 to Q
 . Set vi D 0p�i1i 2 Ob.2p/. Let F0
o W .2p/op ! Z–Mod denote the odd Khovanov

projective functor associated to zC . Then

.6.11/ .F0
o.�

op
vp�1;vp

/ ı � � � ıF0
o.�

op
v0;v1

//Zp
D F0

Anno
.�

op

0;1/:

Here we have written .F0
o.�

op
vp�1;vp

/ ı � � � ı F0
o.�

op
v0;v1

//Zp
to denote the restriction of the composite

.F0
o.�

op
vp�1;vp

/ ı � � � ıF0
o.�

op
v0;v1

// to the submodule of F0
o.0

p/ spanned by Zp–invariant generators , and

then its projection to the submodule of F0
o.1

p/ spanned by Zp–invariant generators. Recall that the

ordering of the arcs and circles of zC are defined with respect to the lift Q
 .

Proof The proof is a case-by-case check of index-1 annular resolution configurations. First, consider the

resolution configuration associated to a merge V ˝ V ! W . That is, say we have the following picture

in the base:

X

D0



X

D1
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Q
 zD05
Q
 zD15

y5

y4

y3y2

y1

Figure 3: The V ˝ V ! W case for p D 5. The map downstairs is x1; x2 ! x, where

x1; x2 2 Z.D0/ and x 2 Z.D1/. Let Z. zD05/ D f Qx1; Qx2g, the elements over x1 and x2, and

let Z. zD15/D fy1; : : : ; y5g, related by the action of Z5. Then upstairs the map on fixed points is

Qxi ! .y5�y1/.y1�y2/.y2�y3/.y3�y4/y5 D y1y2y3y4y5. Moreover, the element 12 F0
o.0

5/

is sent to a term in F0
o.1

5/ which is killed by projection to the summand of invariant generators,

and the element Qx1 Qx2 is annihilated by F0
o.�

op

05;15/. This verifies Lemma 6.10 in this example.

For this case, consider Figure 3, which illustrates the proof for p D 5; the proof for general p is entirely

analogous, and is omitted.

Next, consider the resolution configuration associated to a merge V ˝W ! V . In this case, both upstairs

and downstairs there are only merge maps, from which the lemma follows readily.

Next, consider the case W ˝W !W . Again, upstairs there are only merges, from which the result is imme-

diate. Note here that the ordering of the circles in the lift is chosen according to the discussion in Section 2.7.

Next, consider the case W ! W ˝W . For this, downstairs we haveZ.D0/D fxg andZ.D1/D fy1; y2g,

and upstairs Kg.0p/Zp D f1; z1 � � � zpg and Kg.1p/Zp D f1;w11 � � �w1p; w
2
1 � � �w2p; w

1
1 � � �w1pw

2
1 � � �w2pg,

where the ordering is such that y1 < y2 and w11 �w1i <w
2
1 �w2i for all i , and fzig, fw1i g, and fw2i g are

the orbits of circles z1, w11 and w21 , respectively, under Zp.

Downstairs, having fixed an orientation of the crossing going from y1 to y2, we have

F0
Anno

.�
op

0;1/.1/D y1�y2 and F0
Anno

.�
op

0;1/.x/D y1y2:

Upstairs, using the definition of the odd Khovanov projective functor,

F0
o.�

op
vp�1;vp

/ ı � � � ıF0
o.�

op
v0;v1

/.1/D .w11 �w21/ � � � .w1p �w2p/;

F0
o.�

op
vp�1;vp

/ ı � � � ıF0
o.�

op
v0;v1

/.z1 � � � zp/D .w11 �w21/ � � � .w1p �w2p/.z1 � � � zp/D w11 � � �w1pw
2
1 � � �w2p:

From this calculation, we have obtained the lemma in the W ! W ˝ W case.

The cases V ! W ˝ V and W ! V ˝ V are very similar to the cases we have done so far, and we omit

them; this completes the proof of Lemma 6.10.

Now, we must see how to translate from an (equivariant, type X) edge assignment Q� on zD to an edge

assignment on D. Fix u >1 v 2 2n. We define vi 2 2np by vi D .v/p�i .u/i , as elements of .2n/p for

0� i � p. We then define an element � 2 C 1cell.Œ0; 1�
nI Z2/ by

�u;v D Q�vp;vp�1
� � � Q�v1;v0

:
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Recall the definition of the obstruction cocycle�.D/ from Section 2.4. Any cochain c 2C 1cell.Œ0; 1�
nI Z2/

for which ıc D �.D/ gives a functor AKHO.D/c W 2n ! BZ2
, the odd annular Khovanov–Burnside

functor with edge assignment �, whose stable equivalence class is well defined, ie independent of c. To

proceed, we need to confirm that ı� D �.D/. We will work with the type X obstruction cocycle; the

following lemma also holds for the type Y obstruction cocycle, if the edge assignment upstairs is chosen

to be type Y (the proof below immediately generalizes to the type Y case).

Lemma 6.12 For � 2 C 1cell.Œ0; 1�
nI Z2/ as defined above , ı� D�.D/.

Proof For x 2 C 2cell.Œ0; 1�
nI Z2/ and u>2 w 2 2n, we write xu;w for the evaluation of x on the copy of

Œ0; 1�2 corresponding to the pair .u;w/. We need to check, for each 2–dimensional face u>1 v; v
0
>1 w,

that .ı�/u;w D�.D/u;w . There are two cases to consider.

The first case is that F0
Anno

.�
op
v;u/F

0
Anno

.�
op
w;v/¤ 0. Then �.D/u;w is determined by

F0
Anno

.�
op
v;u/F

0
Anno

.�
op
w;v/D F0

Anno
.�

op

v0;u/F
0
Anno

.�
op

w;v0/

if and only if �.D/u;w D 1. However, if F0
Anno

.�
op
v;u/F

0
Anno

.�
op
w;v/D 0, more data is needed to determine

�.D/u;w . For comparison, if we worked with F0
o in place of F0

Anno
, more data is needed to define

�.D/u;w only for ladybug resolution configurations Cu;w (in that case �.D/u;w D �1 for type X edge

assignments, etc).

Let us consider the case where F0
Anno

.�
op
v;u/F

0
Anno

.�
op
w;v/ ¤ 0. Write wi D wp�ivi , w0

i D wp�iv0i ,

vi D vp�iui , and v0
i D v0p�iui as objects in 2np. Then, using Lemma 6.10,

Q�vp;vp�1
� � � Q�v1;v0

Q�wp;wp�1
� � � Q�w1;w0

D Q�v0
p;v

0
p�1

� � � Q�v0
1;v

0
0
Q�w 0

p;w
0
p�1

� � � Q�w 0
1;w

0
0

if and only if

F0
Anno

.�
op
v;u/F

0
Anno

.�
op
w;v/D F0

Anno
.�

op

v0;u/F
0
Anno

.�
op

w;v0/;

since

Q�vp;vp�1
� � � Q�v1;v0

Q�wp;wp�1
� � � Q�w1;w0

F0
o.�

op
vp�1;vp

/ ı � � � ıF0
o.�

op
v0;v1

/F0
o.�

op
wp�1;wp

/ ı � � � ıF0
o.�

op
w0;w1

/

D Q�v0
p;v

0
p�1

� � � Q�v0
1;v

0
0
Q�w 0

p;w
0
p�1

� � � Q�w 0
1;w

0
0
F0
o.�

op

v0
p�1;v

0
p
/ ı � � � ıF0

o.�
op

v0
0;v

0
1

/F0
o.�

op

w 0
p�1;w

0
p
/ ı � � � ıF0

o.�
op

w 0
0;w

0
1

/:

The last equality holds because Q� is an edge assignment. We have verified .ı�/u;w D�.D/u;w on all

faces of the first case.

We next treat the second case, faces where F0
Anno

.�
op
v;u/F

0
Anno

.�
op
w;v/D0. We start by cataloging such faces:

Lemma 6.13 Say u>1 v>1 w and let Cu;w be an index-2 odd annular resolution configuration such that

.6.14/ F0
Anno

.�
op
v;u/F

0
Anno

.�
op
w;v/D 0:

Then either the underlying resolution configuration of Cu;w is type X or Y , or Cu;w consists of three

concentric nontrivial circles C1, C2, and C3 with C1 and C2 joined by an arc , as well as C2 and C3 joined

by an arc , or the dual configuration of the latter.
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X

X

X

X

Figure 4: Cases I–IV, from left to right, of the annular resolution configurations of type X.

Proof The proof of this lemma is a case-by-case check.

Next, we check that .ı�/u;w D�.D/u;w for configurations Cu;w of type X or Y; such faces are always

of the second case. We may as well assume now that uD 11, v D 10, v0 D 01, and w D 00, to simplify

notation. First consider Cu;w of type X. There are four annular resolution configurations to consider,

pictured in Figure 4.

Recall that we need to show

.6.15/ Q�vp;vp�1
� � � Q�v1;v0

Q�wp;wp�1
� � � Q�w1;w0

D �Q�v0
p;v

0
p�1

� � � Q�v0
1;v

0
0
Q�w 0

p;w
0
p�1

� � � Q�w 0
1;w

0
0
:

However, by definition of an edge assignment,

p
Y

iD1

Q�vi ;vi�1
Q�v0

i
;v0

i�1
Q�wi ;wi�1

Q�w 0
i
;w 0

i�1
D

Y

.a;c/2I

�. zD/a;c ;

where I is defined as follows. Note that an element of 22p, say c D c1 � � � c2p, determines elements

cL D c1c3 � � � c2p�1 2 2p and cR D c2c4 � � � c2p 2 2p . The objects cL; cR 2 2p will be called the first and

second 2p factors of c. The set I is the set of pairs .a; c/ with c D 02x 2 .22/p for some x 2 .22/p�1,

and where a is the result of replacing the rightmost 0 in the first 2p–factor of c with a 1, and the rightmost

0 in the second 2p–factor with a 1. For example, .0412; 06/ and .015; 0313/ are both in I for p D 3; in

the latter pair, cL D 021 and cR D 012. We visualize the product
Q

�. zD/ as a product with a term for

each face of a grid, whose vertices are objects of .22/p . We draw this in the p D 3 case, with only a few

vertices labeled:

.06/ .051/ .03101/ .010101/

.101010/ .16/

Each of the faces of this grid G, corresponding to a >1 b; b
0

>1 c 2 .22/p, is assigned a label in

fA;C;X;Yg according to the type of the corresponding odd resolution configuration zDa;c . Sometimes

we will assign the faces of the grid a ˙1, using that �. zD/a;c D 1 for faces of type C and Y, and �1 for
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faces of type A and X. We will work to understand this grid in cases I–IV. For instance, we will see

below that for case I and p D 3, the grid is

.06/ .051/ .03101/ .010101/

.101010/ .16/

X

X

X

C

C

C

CC

C

Given a vertex c 2 Vert.G/ with vertex b 2 Vert.G/ directly below and b0 2 Vert.G/ directly to the right,

we call Db the left resolution of Dc , and Db0 the right resolution of Dc . Note that each edge of the

grid corresponds to resolving a crossing that is entirely contained within a single sector (recalling the

notation of sectors from Section 2.6), and so we may label each edge of the grid by the sector in which

the corresponding surgery occurs.

First we treat the configuration I. Here, upstairs, we give a picture for p D 3:

X

Q


Let G denote the grid associated to such a configuration. It is immediate from the definitions that all

the faces on the main diagonal of G are type X. Now, for each off-diagonal face D, we see that one

of the resolutions performed must be a merge. Moreover, each off-diagonal resolution configuration is

disconnected. Inspecting the list of odd 2–dimensional resolution configurations, any such configuration

is of type C. Thus, the total number of faces of type A or X is odd, which is equivalent to (6.15), since

each face of type A or X contributes a factor of �1, while faces of type C and Y do not. So we have

verified Lemma 6.12 in this case.

Next, we treat case II. The picture upstairs is again illustrated for p D 3:

X

Q
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X
X X

X

X
X

X
X

Figure 5: The off-diagonal resolution configurations in case II. The first four configurations are

realized up to isotopy by expressions of the form .�1; 0�/ 2 22q �22r and their permutations, while

the last four are obtained from permutations of .�1;�1/ 2 22q � 22r .

It is readily checked once again that all of the diagonal faces are type X. Fix an off-diagonal face with

upper-left vertex at a 2 Vert.G/, whose left-resolution is in the qth sector and whose right-resolution

is in the r th sector for r ¤ q. Write 22t for the t th factor of 22 in .22/p. Then the resulting resolution

configuration depends only on the initial condition of c in 22r and 22q . To see this, consider the restriction

of Da;c to a sector St outside of Sq and Sr . It will be an arc connecting the boundary components @CSt

and @�St (where the positive (resp. negative) boundary @CSt (resp. @�St ) of a sector St will denote

the end obtained by traversing counterclockwise (resp. clockwise)), as well as some disjoint circles, no

matter the restriction of c to 22t . In particular, the resulting 2-dimensional resolution configuration Da;c

is formed by drawing the parts of the resolution configuration in the qth and r th sectors, and attaching

these on their boundaries; see for example Figure 5.

Next, fix c 2 Vert.G/, the upper-left corner of a square fa; b; b0; cg in G, where Db is the left resolution

and Db0 is the right resolution. Say the pair a >2 c differs only in entries e1 and e2, where e1 is in the

qth sector and e2 is in the r th sector. Let aq , ar , cq , and cr denote the restrictions of a and c to 22q and 22r ,

respectively, and recall that the type of the resolution configurationDa;c depends only on aq , cq , ar , and cr .

Note furthermore that the only c in the grid for which cq D cr D 02 is cD 02p , which does not participate

in an off-diagonal face. So we need only consider pairs .a; c/ with .cq; cr/¤ .02; 02/. We list all such

resolution configurations and their types in Figure 5. Indeed, we see that all the off-diagonal faces of G

are type C, which completes case II (since type X faces appear an odd number of times on the diagonal).

Case III is quite similar to case II and is omitted.
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Finally, we address case IV. The picture upstairs is illustrated for p D 5:

X

We order the crossings so that the edges forming a pentagon correspond to the first factor 2p ! .22/p

and the other edges correspond to the second factor 2p ! .22/p.

We divide length-1 arrows in .22/p into two sets as follows. Recall that each arrow �
op
v;u for u>1 v can

be recorded as the element v 2 .22/p , but with one of the .1; 0/–entries of v replaced by a � to denote the

entry that changes between v and u. If � is at an odd position in 2p (that is, � occurs in the first 2–factor

in some copy 22 � .22/p), we call �
op
v;u a left edge; otherwise we call it a right edge. Similarly, an index-2

resolution configuration from u>2w can be described by an element in .22/p with two bits replaced by �.

Note that resolving a right edge on some resolution Dc is a split, unless c D .10/p. Resolving a left

edge is a merge unless c D .10/k.00/.10/p�k�1 for some k. Further, any resolution configuration

Du;w for which �
op
w;v is a split and �

op

v0;u is a split while �
op

w;v0 and �
op
v;u are merges has type C. We

then need only consider faces in G containing the vertex .10/p or some .10/k.00/.10/p�k�1. However,

.10/k.00/.10/p�k�1 is a vertex of G if and only if k D 0. So only the lower-left corner can be of type

other than C. The picture in the lower-left corner is

X

This is a type X face, and so the proof is completed for case IV.

Translating the above proof to type Y faces is immediate. The grid is the same in each case, with type X

faces replaced with type Y faces.

The only case that remains to check is that of three concentric circles (and its dual). We fix an orientation

of edges as below; the case of other orientations is similar.

X
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We order the crossings so that the outer edges correspond to the first factor 2p ! .22/p and the inner

edges correspond to the second factor 2p ! .22/p. The upper-left corner of G is readily seen to be a

type C configuration, since it consists of two merges. We note that the next configuration on the diagonal

of G is a type X face:

X

In fact, all other faces on the diagonal are type X, since the arcs outside of the “active” sector, up to

isotopy, do not depend on c, as is illustrated below:

�

In particular, there are an even number of faces of type X on the diagonal.

For u 2 .22/p, let juj1 (resp. juj2) denote the number of 1’s occurring in the first copy (resp. second

copy) of 2p ! .22/p . Now suppose Da;c is an index-2 resolution configuration such that jcj1 > jcj2, for

a; c 2 Vert.G/; suppose b is the left resolution and b0 is the right resolution. Such resolution configurations

are, up to isotopy,

From these, we observe that �
op

c;b0 is a merge and �
op

b0;a
is a split, while �

op

c;b
is a split and �

op

b;a
is a merge.

Any such resolution configuration has type C. For any c with jcj2 > jcj1, it turns out similarly that Da;c is

type C. Therefore, the total number of faces of type A and X is even. Then, as in the discussion of case I

in the proof of Lemma 6.12, for the case of three concentric circles downstairs, .ı�/u;w D 1D�.D/u;w .

(The case of three concentric circles with the orientation of edges changed results in replacing the type X

faces on the diagonal by type Y faces.)
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We omit the case dual to three concentric circles; it follows by application of techniques similar to above.

Since there is at most one signed matching compatible with the Khovanov–Burnside functor, the matching

specified above is the ladybug matching. This completes the proof of Lemma 6.12.

We next deal with the case of 2–morphisms for the even Khovanov functor.

Lemma 6.16 Let u>1 v; v
0
>1 w 2 2n. The bijection

KH.��v;�w/
Zp ıKH.��u;�v/

Zp ! KH.��v0;�w/
Zp ıKH.��u;�v0/Zp

is the ladybug matching.

Proof This is quite similar to, but more straightforward than, the proof of Lemma 6.12. First of all, there

is only something to check if the configuration Du;w downstairs is a ladybug (so there is no analogue of

the three-concentric-circles case in the previous proof). Moreover, KH.��v;�w/
Zp ıKH.��u;�v/

Zp D ¿

for configurations of type II and III (appearing in the proof of Lemma 6.12). That is, we need only

consider index-2 annular resolution configurations downstairs of types I and IV.

Case I is a similar calculation to Lemma 6.12 and is omitted. For case IV, we argue inductively. For

odd p we are already done by the comment before the proof, and it is a straightforward calculation to

verify that the lemma holds for the case p D 2.

For p odd, the lemma follows as a consequence of Lemma 6.12, since an edge assignment determines the

ladybug matching.

Say we have verified case IV for fixed p0. We show how to verify it for p D 2p0. The resolution

configuration zD upstairs is formed from p0 sectors of the form below; the dotted lines indicate the boundary

of one of the p0 sectors, and the dashed line further bisects this sector into two of the p D 2p0 sectors:

X

2

4

3

1

We now draw the grid G as in the odd case, except that we order the crossings using the ordering of .24/p
0

rather than .22/p. That just means that, in the above picture, we resolve all edges labeled 1 (resp. 2)

before any of those labeled 3 (resp. 4). The Zp0–fixed resolutions look as in Figure 6, in one of the p0

sectors. In the configuration zD1010, label the inner circle by x and the outer circle by y.

Using our inductive hypothesis (and looking at the ladybug matching on zD=Zp0), the circle x is matched

with z1 � � � zp0 , where zi are the circles in zD1100 that intersect (the dotted) sector boundaries. A further use
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X X X

w1

w2

X X

z

X X

y
x

X X

Figure 6: Resolution configurations appearing in Lemma 6.16. Here are pictured (one sector

of) the resolution configurations invariant under the action of Zp0 � Zp . The configurations on

the top row are zD04 , zD0100, zD0101, zD1000, and zD1100, and those on the bottom row are zD1101,
zD1010, zD1110, and zD14 . We have simplified the indexing by writing the indices for the quotient

diagram zD=Zp0 .

of our inductive hypothesis matches z1 � � � zp0 with the product w11 � � �w1p0w
2
1 � � �w2p0 , where the w1 and

w2 are as labeled in Figure 6. Note that the generator w11 � � �w2p0 is indeed Zp–invariant, as are x and y.

Taking the quotients of zD1010 and zD0101 by Zp , we see that Nx, the generator downstairs corresponding

to x, indeed corresponds, under the right ladybug matching, to Nw, the generator downstairs corresponding

to the product w11 � � �w2p0 . This establishes the inductive step, and completes the lemma.

6.4 Well-definedness of the action

In this section we show that, for a p–periodic link QL, the Zp–external stable equivalence class of the

Burnside functor KH is an invariant of QL if p is odd, the external equivariant stable equivalence class

of KHO is an invariant of QL, and the corresponding statements for the annular functors AKH and

AKHO hold.

Proof of Theorem 6.3 Throughout the proof we will usually abbreviate “(equivariant) external stable

equivalence class” to “equivalence class”, where it will cause no confusion. We start with the case of p

odd and KHO. We must first show that the equivalence class of KHO. zD/, for a fixed diagram zD, is an

invariant of the choices made in its construction. Namely, we show independence of the orientation of

crossings, the (equivariant) edge assignment, and the ordering of the circles ai at each resolution. The

proof of these claims almost follows verbatim from the start of the proof of [50, Theorem 1.7].

� Edge assignment Let � and �0 be two different equivariant edge assignments of the same type.

As noted in [47, Lemma 2.2], ��0 is a (multiplicative) (Zp–invariant) cochain in C 1cell.Œ0; 1�
nI Z2/. By

Lemma 6.5, ��0 is the coboundary of an invariant 0–cochain ˛ on the cube of resolutions. That is, there is a

map ˛ W 2n ! f˙1g such that for any v>1w, we have ˛.v/˛.w/D �.�
op
w;v/�

0.�
op
w;v/. If F0 and F1 are the

corresponding functors 2n ! BK , we construct a stable equivalence using the functor F2 W 2nC1 ! BZ2
,

defined by F2ji�2n D Fi , and on the arrows between the two copies of 2n using the signed (identity)

correspondence F1.v/! F2.v/ determined by ˛. That is, we apply the sign reassignment by ˛ in the
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language of [50, Definition 3.5]. Using the invariance of ˛, we see that F2 admits an external action. It

is straightforward that this natural transformation induces quasi-isomorphisms on the totalization of all

fixed-point functors, finishing this check.

� (Equivariant) orientations at crossings Recall that [47, Lemma 2.3] asserts that for oriented diagrams

.L; o/ and .L; o0/ and an edge assignment � for .L; o/, there exists an edge assignment of the same

type �0 for .L; o0/ such that Kco.L; o; �/Š Kco.L; o
0; �0/. The isomorphism constructed in that lemma

respects the Khovanov generators, and so induces an isomorphism of Burnside functors. The natural

generalization to the equivariant setting also holds; that is, for a change of equivariant orientation of

crossing, the corresponding odd Khovanov chain complexes are identified (and �0 is equivariant), from

which independence of KHO follows. (Independence of the (equivariant) orientations of crossings can

also be proved using (equivariant) Reidemeister II moves twice, as in [51, Figure 4.5].)

� Type of edge assignment Lemma 2.4 of [47] shows that an edge assignment � of a link diagram

with oriented crossings .L; o/ of type X can also be viewed as a type Y edge assignment for some

orientation o0. That is, the type X Burnside functor associated to .L; o; �/ is already the type Y Burnside

functor associated to .L; o0; �/. In fact, ifL is a periodic link diagram, the orientation o0 constructed in [47]

is equivariant. Moreover, the identification of the Burnside functors is equivariant, handling this case.

� Ordering of circles at each resolution We must check that reordering the circles of a resolution

results in an equivalent Burnside functor. For this, let Kg.u/ and Kg0.u/ denote the Khovanov generators

for two differing (equivariant) orderings of the circles for a fixed equivariant link diagram. These orderings

are related by a bijection from Kg.u/ to Kg0.u/. One checks directly that these bijections relate the two

functors F1; F2 W 2n ! BK by a sign reassignment, which, moreover, commutes with the action of Zp.

We now assume that the ordering of the circles upstairs is chosen as at the end of Section 2.6. We show

how to check invariance of KHO under Reidemeister moves by upgrading the proof for chain complexes

to Burnside functors, as is done in [37; 43], with the only change that we keep track of the external action

in the course of the proof. We will work out the details in the case of a Reidemeister I move; this case

will make clear what modifications are necessary to the usual invariance proof of KHO (without external

action) for Reidemeister II and III moves. Indeed, the proof of invariance is largely an iterated version of

the usual invariance proof of Khovanov homology.

Let zD be a periodic link diagram, and let zD0 be a diagram that differs from zD by only an equivariant

Reidemeister I (R1) move, which consists of p usual Reidemeister moves in the same orbit. See Figure 7,

where we choose one of the R1 moves for concreteness. Let F1 denote the odd Khovanov–Burnside

functor of zD, and F2 that of zD0.

From its definition Kg. zD0/D
`

i22p Kg. zD0
i /, where zD0

i denotes the resolution of zD0 by resolving the

orbit of the R1–crossing according to i 2 2p . Let C denote the subcomplex spanned by all the generators

of
`

j¤0p Kg. zDj / as well as the generators of Kg. zD0/ that do not contain the product a1 � � � ap, where
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X

zD

X

zD0

Figure 7: An equivariant Reidemeister I move. The left-hand image denotes a periodic link

diagram zD (with p D 3 pictured), with a Zp–orbit of a certain unknotted arc picked out. The

right-hand image denotes the periodic link diagram zD0 obtained by performing a Reidemeister I

move along each arc of the orbit.

the ai are as in Figure 8. Iterating the usual proof [7, Section 3.5.1] of Reidemeister I invariance shows

that C is acyclic.

Furthermore, Kco. zD/ is naturally identified with Kco. zD0/=C . We have a quotient map

.6.17/ Kco. zD0/! Kco. zD/;

which is a chain homotopy equivalence (because C is acyclic). This map is induced from a subfunctor

inclusion KHO. zD/! KHO. zD0/, in that (6.17) is the dual map on totalizations

Tot.F2/
� ! Tot.F1/

�:

Here we have used Theorem 6.1 to relate the Khovanov chain complex with the totalizations. We have a

(Z2–equivariant) stable equivalence F1 ! F2, but we have not yet seen that it is an external equivariant

stable equivalence. We must also show that the induced map

Tot.F
Zq

2 /� ! Tot.F
Zq

1 /�

is a homotopy equivalence for each q > 1 dividing p. For this, let b1; : : : ; bp=q denote the images of the

Reidemeister circles ai in the quotient zD=Zq . Consider the subcomplex E of AKco. zD0=Zq/ generated

X

ap�1

ap a1

zD0
0p

X

zD0
1p

Figure 8: Some resolutions of the link diagram zD. The ellipses to the upper-right record that we

have omitted all but three sectors of the periodic link diagram zD0.
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as before by all generators except those of . zD0=Zq/0p=q that contain the product b1 � � � bp=q . As usual,

one checks that E is acyclic, and AKco. zD=Zq/D AKco. zD0=Zq/=E, so the map

.6.18/ AKco. zD0=Zq/! AKco. zD=Zq/

is a quasi-isomorphism.

Moreover, the subfunctor inclusion KHO. zD/! KHO. zD0/ described above passes to an inclusion on

Zq–fixed-point functors KHO. zD/Zq ! KHO. zD0/Zq . Using the identification in Theorem 6.7, the

induced map on totalizations is (6.18). Since we have already seen that (6.18) is a quasi-isomorphism, we

have proved invariance under Reidemeister I moves. Keeping track also of the maps induced on even

Khovanov homology shows that the inclusion F1 ! F2 is an equivariant stable equivalence of Burnside

functors with external action, as needed.

Invariance under equivariant Reidemeister II and III moves is shown in much the same way. That is,

for each acyclic subcomplex or quotient complex “move” in the usual proof of invariance of KHO, as

in [50, Section 5.3], one iterates the move p times to produce an acyclic subcomplex (resp. quotient

complex) which is equivariant, and whose quotient (resp. dual subcomplex) is homotopy equivalent to

the original complex. The subcomplexes (resp. quotient complexes) resulting from fixed-point functors

can be understood via Theorem 6.7; the induced maps on the totalization of the fixed-point functors give

chain homotopy equivalences as well, since they are the usual maps used in the proof of invariance of

odd annular Khovanov homology (without external action) from [24, Section 3.2].

The proofs of the even version (for all p > 1) and the two annular versions are entirely analogous.

Proof of Theorem 1.3 Let Xn. QL/ denote an equivariant realization modeled on zRn, where Zp acts

trivially on zRn, of the stable Burnside functor with external action KHO. QL/, and similarly let AKHn.L/

be the realization of AKHO.L/ modeled on zRn.

More generally, say V is a finite-dimensional orthogonal .Z2�Zp/–representation, with p odd, as in the

statement of Theorem 1.3. Write XV . QL/ for an equivariant realization of KHO. QL/ modeled on V , and

similarly for AKHO. The statement that the actions are well defined is the combination of Proposition 5.23

with Theorem 6.3. The fixed-point assertions follow from Theorem 6.7 combined with Lemma 5.14. The

gradings can be recovered from Proposition 2.6.

6.5 Smith inequalities

We now use the results on fixed-point functors from Section 6.3 to obtain rank inequalities for Khovanov

homology. Let p be prime, and G D Zp.

Recall that the classical Smith inequality (1.2) for a finite G–CW complex M is obtained by studying

two spectral sequences arising from the Tate bicomplex

C Tate.M/D .C �.M I Fp/˝ FpŒ�; �
�1�; dTate/

WD . � � �
1� 
���! C �.M I Fp/

N. /
����! C �.M I Fp/

1� 
���! C �.M I Fp/

N. /
����! � � � /;
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where  generates the G–action on singular cochains C �.M I Fp/ and N. / is the norm

1C C 2C � � � C p�1:

The filtration by �–degree gives a spectral sequence E� with E1 ŠH�.M I Fp/˝ FpŒ�; �
�1�, while the

filtration by cohomological degree gives a spectral sequence converging toH�.MG I Fp/˝FpŒ�; �
�1�. The

assumptions give sufficient boundedness to conclude thatE� also converges toH�.MG I Fp/˝FpŒ�; �
�1�,

and the rank inequality follows. (For a more detailed exposition, see [44; 59].)

Theorem 6.19 For a p–periodic link QL for prime p (resp. odd prime p), with quotient link L, and each

pair of quantum and .k/–gradings .j; k/, there is a spectral sequence with

E1 Š AKhpj�.p�1/k;k. QLI Fp/˝ FpŒ�; �
�1� .resp. AKhpj�.p�1/k;k

o . QLI Fp/˝ FpŒ�; �
�1�/

converging to

E1 Š AKhj;k.LI Fp/˝ FpŒ�; �
�1� .resp. AKhj;ko .LI Fp/˝ FpŒ�; �

�1�/:

There is also a spectral sequence with

E1 Š Kh. QLI Fp/˝ FpŒ�; �
�1� .resp. Kho. QLI Fp/˝ FpŒ�; �

�1�/

converging to

E1 Š AKh.LI Fp/˝ FpŒ�; �
�1� .resp. AKho.LI Fp/˝ FpŒ�; �

�1�/:

Proof First, consider the case of p odd, and odd annular Khovanov homology. Construct the Tate

bicomplex for Xn. QL/ for odd n (here, Xn. QL/ is viewed as a space, without passing to the suspension

spectrum). The �–degree filtration gives a spectral sequence with the desired E1–page which converges

to the homology of the fixed-point set Xn. QL/G , which by Theorem 1.3 is AKHn.L/. Now, for the case

of even Khovanov homology, repeat the above recipe with nD 0.

The proof for the spectral sequences starting in the annular case is entirely analogous. Finally, for the

gradings, note that the spectral sequence splits according to the wedge sum components in the CW

realizations.

Corollary 6.20 Maintain the notation from Theorem 6.19. For each pair of quantum and .k/–gradings

.j; k/, the following rank inequalities hold (for vector spaces over Fp):

dim AKhpj�.p�1/k;k. QLI Fp/� dim AKhj;k.LI Fp/;

dim AKhpj�.p�1/k;k
o . QLI Fp/� dim AKhj;ko .LI Fp/:

We also have the rank inequalities (where each object is the sum over all quantum and .k/–gradings)

dim AKh. QLI Fp/� dim Kh. QLI Fp/ � dim AKh.LI Fp/ � dim Kh.LI Fp/;

dim AKho. QLI Fp/� dim Kho. QLI Fp/� dim AKho.LI Fp/� dim Kho.LI Fp/:

Proof The AKh-to-Kh inequalities follow from the filtration of the Khovanov complex [49]. The middle

inequalities follow from Theorem 6.19.
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6.6 Questions

We conclude with some questions about the construction of equivariant Khovanov spaces. Fix throughout

a p–periodic link QL with quotient L.

(q-1) We have not attempted to relate the totalization Tot.KHO/— that is, the equivariant odd/even

Khovanov complex — with any particular CW chain complex of Xn. QL/, viewed as a Zp–equivariant space.

This would be useful to understand in order to relate our constructions with the equivariant Khovanov

homology (or an odd version of the same) constructed by Politarczyk [48]. In more generality, it would

be desirable to better understand a Zp–equivariant cell decomposition of Xn. QL/ so that, for example, the

space X0. QL/ could be related to the space constructed in [11].

(q-2) A better understanding of the case of even p for the odd Khovanov–Burnside functor KHO would

be desirable. In particular, our techniques are sufficient to show that for a given periodic diagram zD

of QL, the functor KHO. zD/ admits a Zp–external action. However, it is not immediately clear that this

action is a link invariant. Moreover, the resulting external action need not be nonsingular. It is not clear

to the authors whether (for n� 1) Theorem 1.3 (including the statement about fixed points) also holds for

even p; we do not know of a counterexample.

(q-3) Are there applications of our constructions to showing that some links are not periodic? Borodzik,

Politarczyk, and Silvero [11] have obtained such applications; are there further applications that require

using the odd theory?

(q-4) Willis [57] showed that the Khovanov homotopy type of torus links T .n;m/ stabilizes as m! 1.

How does this stabilization interact with the Zm–action?
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