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1 Introduction

1.1 Motivation

In [30] Khovanov categorified the Jones polynomial: to a link diagram L, he associated a bigraded chain
complex, whose graded Euler characteristic is (a certain normalization of) the Jones polynomial of L,
and whose (graded) chain homotopy type is an invariant of the underlying link. Several generalizations
were soon constructed; for example, Khovanov [31] and Bar-Natan [8] developed theories for tangles.
Ozsvéth, Rasmussen, and Szab6 [47] constructed a version, odd Khovanov homology, also categorifying
the Jones polynomial, and agreeing with Khovanov homology over the field of two elements. A further
generalization, annular Khovanov homology, an invariant of links in the thickened annulus, was introduced
by Asaeda, Przytycki, and Sikora [5]; this was further generalized to odd annular Khovanov homology by
Grigsby and Wehrli in [24]. Other generalizations for other polynomials were given by Khovanov and
Rozansky [32; 33] and others, and have since been extensively developed.

Our purpose here is to investigate the structure of Khovanov homology in the presence of symmetry; that
is, we study the Khovanov homology of periodic links. We say that a link L C S3 is p—periodic if there
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1502 Matthew Stoffregen and Melissa Zhang

is a Z, = 7/ pZ-action on (S 3 L) which preserves L and whose fixed-point set is an unknot U disjoint
from L. A particular application of our techniques is the following:

Theorem 1.1 Let L be a p"—periodic link, for a prime p, with quotient link L. Let Kh(L; F,) denote
the Khovanov homology of L, with coefficients in IFp, the field of p elements. Let AKh(L;,) denote
the annular Khovanov homology of L, viewed in the complement of U = ﬁ/Zp. Let Kho(L; Fp) and
AKho(L;IF,) denote the odd Khovanov homology and annular Khovanov homology, respectively. Then

dim Kh(L:F,) > dimAKh(L:F,) and dimKho(L:F,) > dim AKh,(L:F).

The motivation for this study comes from both the application of classical Smith theory to Floer theories,
and the general perspective of studying Floer and Khovanov invariants via the (often only conjectural)
spectra underlying these theories.

Let G be a group of order p” with p prime, acting on a finite-dimensional topological space M, with
fixed-point set M G A version of the classical Smith inequality states (see Bredon [14] and Smith [54])

(1.2) dim H*(M;F,) > dim H*(M % F,).

In low-dimensional topology and symplectic geometry, many results have been developed in analogy with
the Smith inequality, relating the Floer homology of some object to symmetries with the Floer homology
of its “quotient”, when the latter notion makes sense. In particular, Seidel and Smith [53] proved an
analogue of the Smith inequality for p = 2 in Lagrangian Floer theory. In fact, one of the motivations
for [53] was its application to symplectic Khovanov homology: Seidel and Smith [52] prove a localization
result for the symplectic Khovanov homology of 2—periodic links. Seidel and Smith further remark in [53]
that the combinatorial analogue to their symplectic Khovanov rank inequality was not known to hold
at the time; Corollary 6.20 (a consequence of Theorem 1.1) asserts that this analogue does indeed hold.
(Note that Khovanov homology and symplectic Khovanov homology are known to agree in characteristic
0 by work of Abouzaid and Smith [1], but Smith-type inequalities from Z,—localization only hold in
finite characteristic.)

The Seidel-Smith inequality led to many further developments in low-dimensional topology. For instance,
Hendricks [25] showed that the knot Floer homology of a knot K C S2 has rank at most as large as that
of the knot Floer homology of the preimage K in the branched double cover 3 (K), and also obtained
relationships between knot Floer homology of 2—periodic knots and that of their quotients [26]; see also
Hendricks, Lipshitz, and Sarkar [27], Boyle [13], and Large [35].

From our perspective, the Seidel-Smith inequality reflects the extent to which Floer theories contain more
information than just the resulting chain complex (indeed, the Smith inequality is a fact about spaces,
not about chain complexes). A particularly striking formulation of this principle is found in Lidman
and Manolescu [42], where they showed that, roughly, for a p”—sheeted regular cover 7 : Y — Y there
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is an action of a group G of order p” on the Seiberg—Witten Floer space SWF(Y; 7*s) such that the
fixed-point set is SWF(Y, s), the Seiberg—Witten Floer space of the quotient. They thus obtain a rank
inequality by applying the classical Smith inequality:

> " dim H; (SWF(Y . 7*5):F,) > Y _ dim H; (SWF(Y,5): Fp).
i i
Recall that Lidman and Manolescu [41] identified the reduced homology of SWE(Y, s) with the tilde flavor
of monopole Floer homology HM « (Y, s). Further, Colin, Ghiggini and Honda [16] and Kutluhan, Lee,
and Taubes [34] proved HM «(Y,8) = HF «(Y,8). Then the result of [42] gives an inequality of ranks
of Heegaard Floer homology, and in particular, strong constraints on L—spaces arising as regular covers.

1.2 Results

We relate Khovanov space-level invariants of a periodic link L with those of the quotient link L. This
space-level relationship leads to a relationship on the level of homology that does not seem to follow
in a simple way from the chain complex description of Khovanov homology. A priori, it is difficult to
relate any given Khovanov chain complex of a periodic link with any given Khovanov chain complex of
the quotient, since without further information these are just chain complexes without further structure.
However, Zhang [59] showed, without using space-level invariants, that there is a spectral sequence
relating the annular Khovanov homology of a 2—periodic link with that of its quotient. This took advantage
of a bonus grading in annular Khovanov homology, which is a richer invariant than Khovanov homology
itself (see Grigsby, Licata, and Wehrli [23]); the extra structure was essential to that result.

To set up notation, recall that for a link L. C S3, Lipshitz and Sarkar [43] constructed a CW spectrum
X (L) whose stable homotopy type is an invariant of the underlying link L, and whose reduced cellular
chain complex is precisely the Khovanov chain complex Kc(L). Their construction readily generalizes to
produce an annular Khovanov spectrum of a link L in the thickened annulus. Further, Sarkar, Scaduto,
and Stoffregen [50] constructed a family A}, (L) of CW spectra for n € Z>¢, such that Xo(L) = X, (L),
and the reduced cellular chain complex Ceel (X, (L)) is the even Khovanov chain complex Kc(L) for n
even and the odd Khovanov chain complex Kc,(L) for n odd. It is again straightforward to construct
an annular Khovanov spectrum AK?H, (L) for any n € Z>¢, whose reduced cellular chain complex
Ceell (AKH5 (L)) is the even annular Khovanov chain complex AKc(L) if n is even and the odd annular
Khovanov chain complex AKc,(L) if n is odd. The Khovanov spaces and spectra split as a wedge sum
according to quantum grading's, and in the annular case, (k)—gradings as well, as X, (L) =\/ j an (L)
and AKH, (L) =/ ik AIC?—L,,’k (L), respectively. Furthermore, for n > 1, X, (L) and AKXH,(L) are
Z,—equivariant spectra with geometric fixed points 1, _1(L) and ¥~ AKH,,—1 (L), respectively.
See also [3], where Akhmechet, Krushkal, and Willis [9] construct a stable homotopy refinement of
Beliakova, Putyra, and Wehrli’s [4] quantum annular Khovanov homology.

Our main result is the following:
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1504 Matthew Stoffregen and Melissa Zhang

Theorem 1.3 Fix p > 1 and let Lbea p-periodic link with quotient link L. For each quantum grading j,
there is a well-defined structure of a Z,—equivariant spectrum on X({ (L) and AICHé’k (L), whose Z p—
equivariant stable homotopy type is an invariant of the p—periodic link L (that is, the equivariant stable
homotopy type is preserved by equivariant isotopies and equivariant Reidemeister moves of a diagram D
of L). Further, the geometric fixed points are given by

. B
X (L)Er = \/ AKHS (L),
(1.4) {a.blpa—(p—1)b=/}
i—(p—1D)k .k 7 i,k
AKHET=@=DRK ()20 — Arcul® (L),

Moreover, if n > 1 and p is odd, X,{ (L) and AICH,J; (L) are naturally (Z2xZp)—equivariant spectra,
whose (Z,x7 ,)—equivariant stable homotopy type is an invariant of the p—periodic link L. Then, as
Z,—equivariant spectra,
X (LyEr = \/ AKCHEP (L),
(1.5) {a,blpa—(p—1)b=}
ARHEI=P=DRK([)Er = AKHI*(L).

In fact, if p is odd and V is any finite-dimensional orthogonal (Z,xZy)-representation, there are
(Z2xZp)—equivariant spectra X{,. (L) and .AIC’H{, (L), whose (Z,xZ. p)—equivariant stable homotopy type
is an invariant of the p—periodic link L. Let VZ» be the Z p—fixed subspace of V. Moreover, Xiﬁ (L) and
AICH{, (L) are Z,—stable homotopy equivalent to xV-vee Xd]: (L) and sV-ver AlCHéim VZp (L).

im VZp
Then, as Z.,—equivariant spectra,

i 7 b
P = N a0
(L.6) {a.blpa—(p—1b=J}
—(p—Dk,k 7 .k
ARCHY ~P=VRK(DEr = Axcwl* L (L)

Proof of Theorem 1.1 We begin by noting that, in Theorem 1.3, all the involved objects are suspension
spectra of compact spaces, and the statements in Theorem 1.3 continue to hold at the level of the underlying
topological spaces (see Lemma 5.13 and Theorem 6.7). Then X, (L), here a compact topological space,
admits a Z ,n—action with fixed-point set AKXHo(L). The homology satisfies H(X,(L)) = Kh(L), while
H (AKHo(L)) = AKh(L). Applying (1.2) to M = X,(L), Theorem 1.1 follows for the even case. The
odd case is similar. O

Further, we expect that the Tate spectral sequence arising from the proof of Theorem 1.3 should be com-
patible with spectral sequences from Khovanov to Floer theories, perhaps being related to Hendricks’ [26],
Roberts’ [49], or Xie’s [58] spectral sequences.

We mention a few further possible connections of Theorem 1.3 to other work. First, recall from Beliakova,
Putyra, and Wehrli [9] that annular Khovanov homology of a link L can be realized as the Hochschild
homology of an appropriate bimodule over the platform algebra; see Chen and Khovanov [15] and
Stroppel [55]. Recall moreover that Lawson, Lipshitz, and Sarkar [40] have given a spectrum-level
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version of Khovanov’s invariant for tangles [31]. From these developments, it seems natural to conjecture
that the annular Khovanov spectrum of a link is realized as the topological Hochschild homology of an
appropriate spectral bimodule; this conjecture has been proved by Lawson, Lipshitz, and Sarkar in [39]
after the appearance of the present paper. Given the result of [39], it is interesting to ask whether and
how the actions we construct pass over to give actions on the topological Hochschild homology. See also
Lipshitz and Treumann [44].

Independently, Borodzik, Politarczyk, and Silvero [11] used equivariant flow categories to also show
that Xo(L) = X, (L) admits a Z p—action; their main theorem [11, Theorem 1.2] is the first sentence of
Theorem 1.3, although it is not clear that the action constructed in [11] and that constructed here (in the
case n = 0) agree. In [11], they further relate the Borel equivariant cohomology of X (L) to Politarczyk’s
equivariant Khovanov homology [48]. Jeff Musyt has also constructed a Z,—equivariant Khovanov stable
homotopy type using methods similar to ours [46].

One final potentially surprising point is that, in the odd case, there are several (Z,XxZ,)—equivariant
Khovanov spectra underlying any of the Z,—equivariant spectra X,{ (L), with potentially different
(ZoxZp)—equivariant stable homotopy types. Indeed, as in Theorem 1.3, any of the XIJ,' (L), for a
(ZoxZp)-representation V' with dim VZr = n, is Z,—equivariantly stable homotopy equivalent to
xV-ver X,{ (L). It is not known to us if the (Z,xZ p)—equivariant stable homotopy type of X{,. (L) is
independent of V.

1.3 Techniques and organization

We use the machinery of Burnside functors (roughly speaking, these are functors to the Burnside category,
defined below), introduced by Hu, D Kriz, and I Kriz [28] and Lawson, Lipshitz, and Sarkar [38], to
study the Khovanov spectrum. This machinery first appeared in [38] to handle the product formula for
Khovanov spectra, by giving a construction of the Khovanov spectrum as a certain homotopy colimit,
which is more convenient for many applications. We will use a slight generalization of Burnside functors
of Sarkar, Scaduto, and Stoffregen [50], “decorated” Burnside functors, introduced to generalize the
construction of [38] to produce an odd Khovanov space. We first review the construction of [38], in order
to explain what is done here.

In [38], the dual of the Khovanov chain complex of a link diagram with n ordered crossings is viewed as

a diagram of abelian groups
Fe: (2P — Z-Mod,

and similarly, in [50], the odd Khovanov chain complex is viewed as a diagram
Fo: (2P — Z-Mod.

Let us recall, for K a finite group, the K—decorated Burnside category Bk (written £ if K = {1}),
whose objects are finite sets, whose 1-morphisms are finite correspondences decorated by elements of K,
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and whose 2—morphisms are bijections respecting decorations. The 2—category % naturally comes with
a forgetful functor to abelian groups % — Z-Mod by sending a set S to the free abelian group Z({S)
generated by S. The Khovanov stable homotopy type arises from a lift, according to [38]:

2" ——— Z-Mod
On the other hand, given a homomorphism €: K — Z,, there is a forgetful functor Zx — Z-Mod, again
by sending a set S to the free abelian group Z(S) generated by S, and with Z—Mod-morphisms twisted
by €. The odd Khovanov stable homotopy type arises from a lift:

Z-Mod Z—Mod

The even Burnside functor KCH is obtained by forgetting the Z,—decorations on XHO.

Given a Burnside functor F', [38] gives a recipe, called realization (see Section 4), for how to construct a
space || Fe(L)|| as a homotopy colimit of a certain homotopy-coherent diagram constructed from F. This
is generalized in [50] for the case of nontrivial K, and allows for the construction of an odd Khovanov
space || Fo(L)| in a similar way.

Our goal here is to investigate extra structure on the realizations || F ||, for F = IC?—L(Z) or IC’HO(I:) for L
p—periodic. A natural expectation is that || F || should admit a Z ,—action. Our first technical work consists
of developing the correct notion of “actions “on Burnside functors F : ¢ — Bk, for ¢ a small category,
and on homotopy-coherent diagrams ¢ — Top,,, where Top,, is the category of pointed topological spaces.

First, we briefly explain the notion of “action” on Burnside functors. A first guess is that a Burnside
functor F with action should be a diagram BG x ¥ — %Pk, where BG is the category with one object, and
morphisms G, in analogy with viewing a pointed G—space as a diagram BG — Top,.. The main technical
difficulty is that, for the Khovanov-Burnside functor, G = Z, acts on the category ¢ itself. In Section 3,
we define a notion of external action of a group G on a Burnside functor F as a kind of twist of the
above definition.

We must next see how the realization process of [38] behaves on a Burnside functor F with action. As
before, the problem is that we obtain a homotopy-coherent diagram where the index category itself admits
a G-action (we call such a diagram a diagram with external action by G). Note that a homotopy-coherent
diagram with a G—action (so that G acts trivially on the index category) is simply a homotopy-coherent
diagram in the category of G—spaces, which would be readily handled along the lines of [50].
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In Section 5, we develop some machinery for homotopy colimits for homotopy-coherent diagrams with an
external action. We do not pursue the greatest level of generality here; indeed, a more satisfactory treatment
would be to essentially generalize the bulk of Vogt [56] to this situation; see also work of Dotto and
Moi [20]. The main results are Proposition 5.4 and Lemma 5.6, while the main application to realizations
of Burnside functors is Proposition 5.23. In fact, including Proposition 5.23 substantially increases the
preliminaries we need, but is not needed in order to show that the Khovanov spaces of p—periodic links
admit a Zp—action. Instead, Proposition 5.23 is only needed to show that the resulting Z ,—action is well
defined. In Section 6, we show that IH and HO have external actions under suitable circumstances, and
find the fixed-point functors. This involves a reasonably detailed study of the relationship of resolution
configurations in a periodic link with those in its quotient. It is somewhat interesting that the case of odd
Khovanov homology here is substantially more involved than the even case.

We conclude the introduction with a few remarks. First, in sections dealing with homotopy-coherent
diagrams, we work with diagrams in K—spaces for a group K, although for all of our applications K will
always be Z, or trivial. We include the more general case because it is no more complicated, and also on
account of a conjecture of [50].

To explain this conjecture, recall that there is an infinite family of Khovanov spaces X, (L) of a link L for
n € Z>o, where the n™ space has cellular chain complex equal to the even (resp. odd) Khovanov chain
complex if n is even (resp. odd). The conjecture of [50] is that there should be stable homotopy equivalences

(1.7) Xn(L) = Xpy2(L).

An attractive method of proving this conjecture would be the construction of a further Burnside functor
KHz: (2")°P? — Bz recovering LHO(L) by taking Z — Z». If such a functor could be constructed, our
techniques would apply immediately to its realizations. Note that even if (1.7) holds, Theorem 1.3 is not
entirely boring for n > 2. Indeed, the statement (1.7) requires a choice of homotopy equivalence, and we
expect that the natural family of homotopies realizing this equivalence (constructed from the putative
ICHz) is not contractible. That is, there may be no preferred homotopy equivalence X, — Xy 4».
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2 Khovanov homologies and periodic links

In this section, we briefly review the definition and basic properties of several Khovanov homology
theories. For an oriented link L C §3, we review the even Khovanov homology Kh(L) = Khe(L),
defined by Khovanov [30], and the odd Khovanov homology Kh,(L) defined by Ozsvath, Rasmussen,
and Szabé6 [47]. For an oriented link L in the thickened annulus (S x [0, 1]) x [0, 1], we review the
annular Khovanov homology AKh(L) defined by Asaeda, Przytycki, and Sikora in [5], as well as the
odd annular Khovanov homology AKh, (L), defined in [24] by Grigsby and Wehrli. For a more detailed
introduction to Khovanov homology, see [30]. Our exposition follows [38] closely.

2.1 The cube category

Call 2 = {0, 1} the 1-dimensional cube, viewed as a partially ordered set by setting 1 > 0, or as a category
with a single nonidentity morphism from 1 to 0.

Call 2" = {0, 1}" the n—dimensional cube, with the partial order given by
u=Uy,...,up) >v=(v1,...,vy,) if and only if u; > v; for all i.

It has the categorical structure induced by the partial order, where Homgy» (1, v) has a single element if
u > v and is empty otherwise. Write ¢,, ,, for the unique morphism u — v if it exists. The cube carries
a grading given by |v| =) ; v;. Write u > v if u > v and |u| — |v| = k. When u > v, we call the
corresponding morphism ¢y, , an edge, and call v an immediate successor of u.

We will study chain complexes refining the cube category whose homological gradings correspond to the
gradings of the vertices. When we work with homotopy colimits, it is most useful for us to work with
commutative cubes, ie cubes where the 2—dimensional faces commute. However, in order for 92 = 0 to
hold in the chain complex, we must assign signs to the edges of the cube to force each face to instead
anticommute, leading to the following definition:

Definition 2.1 The standard sign assignment s is the following function from edges of 2" to [F,. For
u =1 v, let k be the unique element in {1,...,n} with u; > vi. Then
k—1
Sup = Z u; mod 2.
i=1
Note that s may be viewed as a 1—cochain in C, ([0, 1]";F). In general, s +c is called a sign assignment
for any 1—cocycle ¢ in C% ([0, 1]"; F>).

2.2 Even Khovanov homology Kh

Khovanov homology, introduced in [30], is a combinatorial link invariant computed from a planar
diagram of an oriented link by considering the cube of resolutions. The result is a bigraded homology
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theory associated to an oriented link. We sometimes refer to this theory as even Khovanov homology to
distinguish it from odd Khovanov homology. For a more complete introduction to this theory, see [8].

Let D be a link diagram with n ordered crossings. Each crossing < can be resolved as the O—resolution

> < or the 1-resolution x

We will view Khovanov homology as coming from a functor
Se: (Zn)op - Z_M0d7

which we define below. The theory is defined similarly over more general rings. In the context of Smith
inequalities (Section 6.5), we will use field coefficients.

Generators For each v € 2", let D, be the complete resolution of D formed by taking the O-resolution
at the i™ crossing if v; = 0, or the I-resolution otherwise. The diagram D, is a planar diagram of
embedded circles. We write Z(D,) for the set of embedded circles (which we just call circles) in Dy,.
A Kauffman state at v will be an element of the powerset of Z(D,). Let §.(v) be the free Z-module
generated by Kauffman states at v. We can think of Kauffman states as the monomials in the symmetric
algebra generated by the circles Z (D), modulo )cl.2 = 0 for each circle x; € Z(Dy), that is, as an element

of Sym(Z(Dv))/(xz)er(Dv)‘

Arrows Letv,u € Ob(2") where u =1 v. Since Dy, and D, differ only at the resolution of one crossing,
either two circles in Dy, merge to become one circle in Dy, or, dually, one circle in D, splits to become
two circles in Dy,. Let ¢3f)u : v — u be the arrow opposite ¢y, y.

First, say that two circles a1, a» € Z(D,) merge to a circle a € Z(D,,). Note that the complements
Z(Dy)\{a1,az} and Z(Dy)\{a} are naturally identified. Define Fe(¢y ) as the Z—algebra map

SYm(Z(Dy))/(x*)xez(py) = SYM(Z(Du)/(¥*)xez(D,)
determined by sending a; and a» to a, and sending other circles by the identity.

Next, say that one circle a € Z(Dy) splits to circles ay,as € Z(D,). Define

Se(qﬁgr,)u (x) = (a1 +az)x,
where we have used the natural identification of Z(Dy)\{a} with Z(D,)\{a1,a>}. One readily checks
that, with these definitions, §. defines a functor (2")°°P — Z-Mod. We call §, the Khovanov functor of D.

Gradings There are two gradings associated to the Khovanov complex: first, there is the homological
grading (or “h—grading”) gry,, and an additional quantum grading (or “q—grading”) gr, that allows for
decategorification to the Jones polynomial.

Let D be a diagram for an oriented link L, n the number of crossings in D, and n4 and n_ the number
of positive and negative crossings (where a negative crossing is locally »Z) in D, respectively. Let
X =aj---a; € §e(Dy) (Where a; € Z(Dy,)); then the gradings of x are given by

grp(x) =|v|—n— and gr,(x) =|Z(Dy)| =20 + |v]|+ny—2n_.
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Note that the morphisms §, (d),?f)u) increase homological grading by 1 and preserve quantum grading. In

particular, we can regard
Fe: (2" — Z—-gMod,

where Z—gMod is the category of graded Z-modules. We write &i for the functor taking (2")°P to the
j—graded component of §e.

2.3 Homology from functors

Khovanov homology is defined from §, as follows. Let
Ke(L)= P Fe(v) and dgi= D (=D Feldu.)-
Ve v=1w
Here s is the standard sign assignment from Definition 2.1. The chain homotopy type of the resulting
complex is an invariant of the oriented link L [30, Theorem 1]. Note that Kc(L) decomposes, over
quantum grading as a chain complex Kc(L) = K¢/ (L). The resulting homology Kh'/ (L) = H' (K¢’ (L))
is the Khovanov homology of L.

2.4 0Odd Khovanov homology Kh,

Odd Khovanov homology, introduced in [47], is structurally very similar to even Khovanov homology,
but instead uses exterior algebra operations to define the differential, introducing signs to the differential
within edges. We will view odd Khovanov homology as coming from a functor

Fo: (2" — Z-Mod.

In order to define odd Khovanov homology from a link diagram D with n ordered crossings, we further
equip D with an orientation of crossings, which is a choice of an arrow at each crossing. Note that an
orientation of the link can be used to acquire an orientation of crossings. The resolution of a diagram D
with an orientation of crossings assigns to v € 2" a collections of embedded circles, along with embedded
oriented arcs joining the circles. That is, locally the O-resolutions of >4 and 3% are )*( and )*( and the
1-resolutions are X_and X, respectively.

For objects v € 2", set §,(v) = A(Z(Dy)), the exterior algebra, over Z, on the set of circles Z (D).
This can be identified with §(v), but the identification is not canonical. To define §, on morphisms, we
start with an auxiliary assignment §/, (with the same objects) defined on edges u =1 v; the functor §, is
obtained by changing suitable signs of §/,. We will call §,, the projective odd Khovanov functor.

For u =1 v such that circles a1, ap € Z(D,,) merge to a circle a € Z(Dy,), set §, (¢3f’u) to be the Z—algebra
map A(Z(Dy)) - A(Z(Dy)) determined by a1, as — a and by identifying the other generators.

For u =1 v such that a circle a € Z(D,) splits into circles a1, a> € Z(D,), and such that the arc in D,,
points from a; to a,, set

T, (Poon) (x) = (a1 —az)x,
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where we view A(Z(Dy)) as a subalgebra of A(Z(D,)) by sending a to either a; or a, and identifying
the other generators; one can quickly check that § does not depend on whether a is sent to a; or ay. It
will be convenient later to have the following terminology from [43]:

Definition 2.2 [43, Definition 2.1] A resolution configuration C is a pair (Z(C), A(C)) where Z(C)
is a collection of pairwise-disjoint embedded circles in S2, and A(C) is a totally ordered collection of
arcs embedded in §2 with A(C) N Z(C) = 9A(C). The number of arcs will be called the index of a
resolution configuration.

An odd resolution configuration will be a resolution configuration as above, but where the arcs are oriented.
For a link diagram D and u =; w € 2", we write D, ,, for the resolution configuration obtained by
performing the w—-resolution and then drawing the i arcs corresponding to the difference between u and w.

The assignment §/, on the edges of (2")°P commutes up to a sign along 2—dimensional faces. We can
adjust §, to give a genuine functor from the cube category, as follows. The 2—dimensional odd resolution
configurations can be divided into four categories (with unoriented arcs being orientable in either direction):

A OO0
c %Q 91020100102 0.020C. 00!
Y Q

Note that §/, commutes on faces of type C, and anticommutes on faces of type A. Meanwhile, §/, both

2.3)

commutes and anticommutes on faces of type X and type Y (that is, §, (¢3f’u)3’0 (¢3)p,v = 0 on faces of
type X and type Y). For later reference, we call type X and type Y odd resolution configurations (as well
as their underlying resolution configurations) ladybug configurations.

We can define obstruction cocycles Q(D) € CC2

C

1([0, 1]"; Z5) as follows (Z2 = {1, —1} will be written
multiplicatively). Define the type X (resp. type Y) obstruction cocycle Q(D)X e Cczeu([O, 11"; Z») (resp.
Q(D)Y) by setting Q(D),{w = —1 on faces of type A and type X (resp. type A and type Y), and
Q(D),{ w = 1 on faces of type C and type Y (resp. type C and type X). In the sequel we will usually
omit the superscript from Q (D)%, and we will choose to work with the type X obstruction cocycle.

The obstruction cocycle cannot a priori be determined from the projective functor §,: (2")°? — Z-Mod
itself; the value Q2(D)y 1 on faces u =5 w € 2" such that §,(¢y )T, (Pw.v) # 0 is determined by F,
but for faces with F,,(¢y)T, (Mur.v) = 0, we need the type of Dy ypy to specify (D )y -

It is shown in [47] that (D) (for either type X or Y) is a cocycle, and thus also a coboundary, since
H?(Ceen1([0, 1]"; Z5)) = 0. That is, there exists some element € € Cclen([O, 1]"; Z:2) such that §e = Q(D),

where 6 denotes the coboundary of Cee ([0, 1]"; Z2). An element € € Ccleu([O, 11"; Z,) satistying e =
Q(D) will be called an edge assignment. Moreover, for edge assignments €] and €5, the product €1¢€5
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is a cocycle in Ccle“([O, 11"; Z5). Since H'(Ceen([0,1]"; Z2)) = 0, any two edge assignments differ by
multiplication by a coboundary in C Cleu([O, 11"; Z>).

We define
So (‘bg?u = Eu,v%lo (d)t())f)u s

which gives a functor §, from the opposite cube category (2")°P — Z—-gMod. Although the identification
of §o(Dy,) and Fe(Dy) is noncanonical, all choices result in the same grading on §,(Dy). Moreover, it
is clear that the arrows §,(¢) preserve g—grading and increase h—grading by 1.

0Odd Khovanov homology is constructed from this functor via

Keo(L) = @P Fo(w) and dgp, = Y (=D Foldun).
ve2r V=W
The homology H' (ch ,0Kh,) = Khi,’j (L) is called the odd Khovanov homology of L, and its isomorphism
class is an invariant of the isotopy class of the oriented link L [47]. We will write KA, (L) for the sum
@; Khy’ (L), and similarly write Kk’ (L) for the sum @; Kh"/ (L) for even Khovanov homology.

We will also need to fix bases for the various Z-modules considered above. For the even case, a natural
set of generators is given by elements a1 ® --- ® ay € Sym(Z(Dv))/(xz)er(Dv) where the a; € Z(Dy)
are distinct. We refer to the elements a1 ® - - ® ay as even Khovanov generators. For the odd case, in
order to choose a basis, we fix at every vertex v € 2" a total ordering > on the set Z(D,). The set

Kg(w)={a1® ---Qay |a; € Z(Dy) and a; <--- < ay}

is called the set of odd Khovanov generators at v. We will usually suppress “even” and “odd” from the
notation for Khovanov generators when the appropriate adjective is clear from context.

Remark 2.4 We summarize our conventions with the following minimal example. Consider a knot
diagram D with one crossing. The cohomological functors Kk and Kh, fr(grrJn link diagrams to Z—Mod
arise from functors §, and §, whose source category is (2)°P, which is 0 =21 1, where 1 > 0.

We have chosen these conventions to match existing literature on our most pertinent tools. “Khovanov
homology” was defined with the differentials increasing homological grading [30]. Lipshitz and Sarkar
constructed their stable homotopy type X using framed flow categories [43]; in this context, the category
2 =1 — 0 is more natural, for the same reason Morse homology is defined homologically. The (singular)
cohomology of X is then “Khovanov homology™.

2.5 Annular filtrations

We call alink L C (R?—{0}) x [0, 1] an annular link; in this section we recall the definition of the annular
and odd annular Khovanov homologies of annular links. The former is first defined by [5], and the latter
is a generalization of their construction, first appearing in [24].

It is convenient to think of annular links as drawn on S? = R? U {oo} with two basepoints, with X at the
origin and © at co. The presence of these basepoints filters both the even and odd Khovanov complexes by
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a filtration grading gr;, discussed below, and the associated graded objects are the annular Khovanov and
the odd annular Khovanov complexes. We will denote their homologies by AKh and AKh,, respectively.

Fix an annular link diagram D. To obtain the annular grading (also called the “(k)—grading”) gr;, we
choose an oriented arc y from X to O that misses all crossings of D; the resulting grading will be
independent of the choice of y. For each Kauffman state of a resolution D,,, viewed as a monomial
Xa, " Xq, in the circles Z(D,), we obtain an orientation of the circles Z(D,), where the circles xg;
fori =1,...,t are oriented clockwise and the other circles are oriented counterclockwise. View the
collection of oriented circles (associated to a Kauffman state) Z(D,,) as an embedded 1-manifold z. The
(k)—grading of x = xg4, -+ x4,, Written gry (x), is defined by gry (x) = I(y. z), the algebraic intersection
number of y and z.

One can check that the maps Fe(¢y7,) and T (¢ )— and thus also the differentials 8Kh and 0k, — can
only preserve or decrease the (k)—grading. We set §% 1 (v) to be the summand of 36 (v) concentrated
in annular gradmg k; equlvalently, this is the span of generators of Sd (v) with annular grading equal
to k. Let SAHn(v) - Se (v) be the inclusion, and let 7 : §2 (v) — SAnn(v) be the prOJectlon We
define the morphisms F% ol (d) u) to be the (k)—grading preserving part of FJ (¢or); thatis, T4 s (¢

nkge (¢U P)tk. Let $am = EB/ X SAnn Then Fann is a functor

Ann - (2n)op — Z—Mod,
which we call the even annular Khovanov functor.

The definitions for gkfna (v) and the odd annular Khovanov functor §ann, are entirely analogous. It will
also be convenient to define ), , the (odd) annular Khovanov projective functor, as the associated
graded object of §, (with respect to the (k)—grading).

The even annular Khovanov homology of L at (gr,, gry)-bigrading (/, k), denoted by AKRIK (L)=
Hi(AKc! & (L)), is defined as the homology of the complex

AK* (L) = P FLE () and 8= Z (=1 Fann (Pupv)-
vel 1w
The even annular Khovanov homology AKh(L) of L is the homology of AKc(L), the direct sum of the
above complexes over all bigradings (J, k). Similarly, the odd annular Khovanov homology AKh, (L)
is the homology of the analogous complex AKc,(L), where §ann, (¢3,p,v) replaces §ann (d)ﬁ,p,v) in the
differential d. The isomorphism classes of AKh(L) and AKh, (L) are invariants of the annular isotopy
class of L.

We can also describe the maps §ann (¢3f)u) in local pictures. It will be useful later to define (odd) annular
resolution configurations as in the definition of resolution configurations, except that we require that the
embedded circles lie in S? — {X, Q} rather than S2. Note that an (odd) annular resolution configuration
has a well-defined underlying (odd) resolution configuration. We sometimes abuse notation and refer to
any of these types of resolution configurations as configurations.
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merge map annular interaction split map
v
1=1) 1= v+ vy
X
V1,V > W (w > v1v2)
VeV W
1—1
@ 1> wi(4v1)
V= Vviw
(w1 )
VoW \%
I—1 1= wy + w2
X — X
wi, Wy = W W wiws
W e W W

Table 1: The six types of saddle interactions between circles in the annulus. Components of the
(even) Khovanov differential are listed in the side columns, with components that fail to preserve
the annular (k)—grading in parentheses; these decrease gr;, by exactly —2. For the odd case the
signs may differ, depending on context.

There are two types of circles in an annular resolution: we call a circle nontrivial if it separates O and X,
and otherwise call it frivial. When the annular grading is relevant, we associate nontrivial and trivial
circles with the labels V and W, respectively. (Similar to the notation in [23; 6], V (resp. W) represents
a 2—-dimensional vector space with generators in (gr,, gry)-bigradings (1, 1) and (-1, —1) (resp. (0, 0)
for both).) A saddle (merge or split) cobordism in the annulus corresponds to one of six situations, which
are captured by the isotopy classes of index-1 annular resolution configurations; see Table 1 for explicit
descriptions of the corresponding differentials. For an elementary cobordism S: D, — D,,, we call a
circle x in Z(Dy) or Z(Dy) active if the component of S containing x is not homeomorphic to a cylinder;
otherwise, we call x a passive circle. The maps §ann (¢,‘jf’u) and §ann, (¢8f)u) are obtained from the maps
in Table 1 by tensoring with the identity map on generators corresponding to passive circles.

There is another grading gr; special to the annular case that we are tempted to call the annular quantum
grading, as it appears to be more relevant in annular Khovanov homology than the quantum grading; it
was first introduced in [23] as the “filtration-adjusted quantum grading” and is defined by gr; = gr, —gry.
This grading will play an important role when we study the Khovanov complexes for periodic links.
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Given an annular link diagram, the Khovanov generators Kg(v) inherit a well-defined (k)-grading, and
we write Kg/*¥ (v) for the Khovanov generators at v € 2" with gr, = j and gry = k.

2.6 Periodic links

Let p be an integer greater than 1. A p—periodic link (l~,, Y) is a link Lcs? together with an orientation-
preserving Zp,—action ¥ on the pair (S3, L) such that the fixed-point set of ¥ on S is an unknot U
disjoint from L. (Often, we will confound notation, and write Y for a generator of this action.) We will

usually write L for such a periodic link, with the action v suppressed from the notation.

For a p—periodic link L, the image of L under the quotient map S3 — S3/v is called the quotient
link, and is denoted by L. Observe that if we remove the fixed-point set, an equivariant isotopy from
p—periodic link (Lo, o) to another p—periodic link (L1, v1) can be viewed as an equivariant ambient
isotopy in the solid torus. Quotienting by the action of ¥, we see that an equivariant isotopy between Lo
and I:l is a lift of an annular isotopy from Lo to L;.

We will need a particularly convenient form of link diagrams for periodic links. A p—periodic link
diagram will be an annular link diagram D in R2 such that the action of Z p by counterclockwise rotation
on R? preserves D (setwise). Such a diagram describes a p—periodic link Lin S3, and every p—periodic
link admits such a diagram. Then D = D /v is a diagram for the quotient link L. We will assume that
all of our diagrams for p—periodic links are p—periodic diagrams.

Note also that given an annular diagram D, we can form a p—periodic link diagram D, called the p—cover
of D, by taking p copies {D;};=1,..,p of D cut along an arc y as in Table 1, and gluing (reversing
orientation on the boundary) D; to D;1; along one boundary component of the cut diagram (with
subscripts interpreted cyclically).

Two p—periodic diagrams D; and D, represent the same periodic link if and only if they are related
by equivariant isotopies and equivariant Reidemeister moves, which are the lifts of Reidemeister moves
on the quotient diagrams D; and D»; see [48]. See Figure 7 for an example. In particular, equivariant
Reidemeister moves do not interact with the basepoint X in the diagram.

Notation 2.5 For bookkeeping purposes, we introduce the notation that ~ generally means “lift of”, as
well as the following rules. Given an ordering of crossings of a diagram D, we obtain an ordering of
crossings on D as follows. Recall that in the definition of annular Khovanov homology we used an arc y.
As the quotient of a periodic diagram D, the diagram D is naturally an annular diagram, and we fix some
arc y from X to O, as in the definition of annular Khovanov homology in the previous section. Let y be
a lift of y to D. We divide the plane containing D into sectors, that is, the connected components of
RZ2-7Z pV, where Z,y denotes the orbit of y under the rotation action of Z,. The sectors are labeled
S1,....8p, where S; is the sector between Y ~15 and ¥ §. The crossings of D are ordered by requiring
that the first n crossings are those contained in S, ordered according to their ordering in the quotient,
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the next n are the crossings of S5, and so on. From now on, unless otherwise stated, given an annular
diagram D with ordered crossings, we will assume its p—cover D has this ordering of crossings.

2.7 Periodic links and Khovanov homologies

Fix an integer p > 1 and a p—periodic diagram D. The rotation action on resolution diagrams induces
an action ¥ on the Khovanov generators, which we describe below. We first observe that for g € Z,
and a circle x of a resolution v, there is a circle gx in the resolution gv, obtained by rotating x through
(g/p)2m (counterclockwise). The group Z, acts on €, F.(v) by sending a Kauffman state xy - - - x;
to y1---ys, where y; = gx;. For the above ordering of the crossings of D and D, this action lies over
the action of Z, on (2")” by cyclic permutation. To be specific, the action of Z, on (2")? is defined by
the property that the generator 1 € Z, sends (x1, X2,...,Xp—1,Xp) € 2")? to (Xp, X1,....Xp—2, Xp—1).
We call a Khovanov generator an invariant generator if it is invariant under the action of Z,. Meanwhile,
Zp acts by bijections on the set Kg(ﬁ), but one can say somewhat more. That is, Z, may send odd
Khovanov generators to +=—multiples of odd Khovanov generators. Let a signed bijection X : S1 — S»
between two finite sets S; and S, be a bijection along with a “sign” map o: S1 — Z,. (Really, we should
view X as a correspondence between S; and S, along with a “sign” map o: X — Z,; see Section 3
for more details.) Then the generator ¥ of Z, acts by signed bijections, Kg(u) — Kg(yu), where the
sign of x € Kg(u) records the sign of the generator ¥ (x) as a Khovanov generator of §, (¥ u). We write
Kg(5 YZ» for the set of invariant Khovanov generators (where invariant just means invariant under the
7 p—action, and does not involve the sign map of the Z,—action).

We conclude this section by discussing the relationship between generators in Kc(D) and their lifts in
Kc(D). In particular, the relationship between gradings of generators in Kc(D) and Ke(D) explains the
role annular filtrations play in the present localization of Khovanov homology.

Proposition 2.6 [59, Proposition 29] There is a bijection between the (even) generators of Kc(D) and
the (even) invariant generators of Kc(ﬁ), given by x +— X, such that

gri(X) = grp(x),  grp(X) = pery(x) and gr (x) = pegr,(x)—(p—1) grg(x).
In particular, this implies gr;, (X) = p gr;, (x).
Proof (see Notation 2.5) Note that 7iy = pn4, io = pn_, and || = plu|. Let x € Kc(D) be a
generator lying at vertex u € 2". Suppose x has

¢ o nontrivial counterclockwise circles,
¢ [ nontrivial clockwise circles,
e y trivial counterclockwise circles, and

e § trivial clockwise circles.
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Let S be a circle in Dy,. If S is nontrivial, then its lift in Dj; consists of a single equivariant nontrivial
circle. On the other hand, if S is trivial, then its lift consists of p copies of a nontrivial circle. We may
then compute the gradings for X:

gre(X) = a—p = grp(x)
gry(x) = |u|—n— = plu|—pn_ = pgry(x)
gry(X) = lu|+a—B+py—pS+in_—2i4 = plu|+pla—B+y—38)—(p—D(@—p)+p(n-—2n4)

= p gry(x)=(p—1) grg (x).
The gr;, relationship follows directly. O

Proposition 2.6 extends to a bijection Kg(D) — Kg(ﬁ)Z" when the order of circles upstairs is chosen to
satisfy the following. If circles ay, ar € Z(Dy,) satisfy a; < ap, then any circles over them, say @; and
da, satisfy ay < ap. Fora € Z(Dy,) let @, be the circle upstairs closest to ¥, proceeding counterclockwise
from y, for those a which do not intersect y. (For nontrivial circles, which necessarily intersect y, there
is no ambiguity.) For trivial a that intersects y, let a denote the circle above a that intersects y furthest
from X. Define d; = '~ for 1 <i < p. We require @; < -- < dp. The bijection Kg(D) — Kg(D)Z»
is determined by taking nontrivial circles to nontrivial circles, and takes a trivial circle a to @y ---dp.

If p is odd, the bijection Kg(D) — Kg(ﬁ)ZF can be described more simply. Each invariant generator
in Kg(ﬁu) is a product of terms coming from nontrivial circles in D, and products x;, --- x;, of trivial
circles related by rotation. Say y; --- yi is an element of Kg(D), with y; <--- < yg. If y; is a nontrivial
circle, let y; be the unique circle over y;. Otherwise let y; be the product y; 1 --- y; p of trivial circles
over y;, where y; 1 is any trivial circle over y;, and y; ; = Y/l Vi,1. Because p is odd, the product
Yi,1 -+ Yi,p is independent of the choice of y; 1. Then the bijection Kg(D) — Kg(ﬁ)zl’ is given by

Y1 Yk Vi ke
3 Burnside categories and functors

In this section we recall the machinery of Burnside functors from [38; 37]. We will also record a slight
generalization of the signed Burnside functors of [50]. Sections 3.1-3.3 are essentially a review of material
from [38; 50]. In Section 3.4, we introduce external actions on Burnside functors and prove basic properties.
The rest of the section consists of generalizing notions of [38] to Burnside functors with external action.

3.1 The Burnside category

Given finite sets X and Y, a correspondence from X to Y is a triple (A, s,¢) consisting of a finite set
A and set maps s: A — X and t: A — Y. The maps s and ¢ are called the source and target maps,
respectively. The correspondence (A4, s, t) is depicted:

X% Ty
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For correspondences (4, s4,%4) from X to Y and (B, sp,tp) from Y to Z, define the composition
(B,sp.tp) o (A,s4,t4) to be the correspondence (C,s,t) from X to Z given by the fiber product
C =Bxy A={((b,a) € BxA]|t(a) = s(b)} with source and target maps s(b,a) = s4(a) and
t(b,a) = tp(b). There is also the identity correspondence from a set X to itself, (X, Idy, Idyx) from X
to X, where Idy: X — X is the identity map. Given correspondences (A4, s4,t4) and (B, sp,tp) from X
to Y, a morphism of correspondences from (A4, s4,t4) to (B, sg,tp) is a bijection f: A — B commuting

with the source and target maps.

Composition (of set maps) gives the set of correspondences from X to Y the structure of a category.
Informally, the Burnside category % is the weak 2—category whose objects are finite sets, morphisms are
finite correspondences, and 2-morphisms are maps of correspondences.

Recall that in a weak 2—category, composition need only be associative up to an equivalence, and similarly
the identity axiom need only hold after composing with a 2—morphism. To be explicit, for finite sets X and
Y and (A4, s, t) a correspondence from X to Y, neither (Y, Idy,Idy)o(A,s,t) nor (A, s,t)o (X, Idy, Idy)
needs to equal (4, s, t). Rather, there are natural 2-morphisms, called left and right unitors,

AYxyA— A and p:Axy X — A,

such that A(y, a) = a and p(a, x) = a. Further, the composition C o (B o A), for A from W to X, B from
X to Y, and C from Y to Z, is not necessarily identical to (C o B) o A. Rather, there is an associator

a:(Cxy Byxxy A— C xy (Bxx A)
given by a((c, b),a) = (c, (b, a)).

We will work with a variant, as in [40, Section 2.11], in which composition is strictly associative. Here,
the objects of 4 are finite sets, and for objects X and Y, the morphism set Hom(X, Y) is the set of pairs
consisting of an integer n and a (¥ x X )-matrix (Ay x)xex,yey of finite subsets A, » of R" satisfying

AyxNAy x=2 if y#£y and Ay xNAy =0 if x#x".
Note that for A C R” and B C R™, A x B is a subset of R” T, Composition is then given by

U Azy X Ay,x)

(Az,y)er,zeZ o (Ay,x)xeX,er = (
yeY

xeX,zeZ

Meanwhile, 2-morphisms are bijections of correspondences (for which the embedding information is not
needed). For more details, see [40, Section 2.11].

Throughout, when we refer to the “Burnside category”, we will mean this strict version of the category.
However, for everything that appears in this paper, the embedding data can be chosen arbitrarily, and so

we will not specify it.

In a 2—category, there are two kinds of composition for 2-morphisms. For objects x, y, and z, and
l-morphisms f, g:x — y and f’, g’: y — z, as well as 2-morphisms B: f — gand y: f/ — ¢/, there is
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the horizontal composite y o1 B: f'o f — g’ o g. Meanwhile, for objects x and y, the set of morphisms
Hom(x, y) is a category, in which we have composition. That is, for fixed morphisms f, g, h: x — y, if
B: f — gand y: g — h are 2-morphisms, then there is a well-defined vertical composite y o, B. When
it is clear which of the two compositions (o or o;) we are referring to, we will omit the subscript. For
more details on 2—categories, we refer the reader to [10].

3.2 Decorated Burnside categories

Fix a group K; for our purposes, K is usually the cyclic group Z, = {1, —1}, written multiplicatively.
Given finite sets X and Y, a decorated correspondence is a correspondence (A4, s4,t4) equipped with a
map 04: A — K, regarded as a tuple (A, 54,24, 04); we call a4 the “decoration” of the correspondence

(or the “sign” if K = Z»):
K

UAT
E A
X Y

We often write “correspondence” for “decorated correspondence”, where it will not cause any confusion.

Let (A,s4,t4,04) be a correspondence from X to Y and (B, sp,tp,op) a correspondence from Y to Z;
we define a composition (B, sp,1g,0B) o (A, 54,t4,04) of decorated correspondences by (C,s,¢,0),
where (C, s, t) is the composition (B, sp,tp) o (A, s4,t4) and o (b,a) = op(b)os(a). Also, we define
the identity correspondence by (X, Idy, Idy, 1) —ie the identity correspondence takes the decoration 1
on all elements of X.

We define maps of decorated correspondences f: (A, s4,4,04) — (B, sp,tp,0p) to be morphisms of
correspondences f: (A, s4,t4) = (B, sp,tp) such that op o f = 04. We may then define the K—Burnside
category B to be the 2—category with objects finite sets, morphisms given by decorated correspondences
along with an embedding as in the definition of the ordinary Burnside category from Section 3.1, and
2-morphisms given by maps of decorated correspondences. Note that the structure maps A, p, and
a of Section 3.1 are easily seen to respect the decoration, confirming that #g, with the embedding
information forgotten, is indeed a weak 2—category. There is a forgetful 2—functor F: Bx — % which
forgets decorations. As with the ordinary Burnside category, we will work with the strict version of the
K-Burnside category, but we will not specify the embedding data when it may be chosen arbitrarily.

For a homomorphism 0: K — Z,, we define a functor Ay: Zx — Z-Mod by sending an object X
of Bk to the free abelian group generated by X, denoted by A, (X). For a decorated correspondence
¢ =(A,s,t,0) from X to Y, we define Ay(¢): Ap(X) — Ay (Y) by

3.1 AP = > c@)i(a)

{acA|s(a)=x}

for elements x € X, extended linearly over Z. When 0 is the trivial morphism, we write A for Aj.
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We also define a functor Ag : Bx — Z[K]-Mod by sending an object X of Zk to the free Z[K]-module
generated by X, denoted by Ag (X). For a decorated correspondence ¢ = (4, s,¢,0) from X to Y, we
define Ap(¢): Ay(X) — Ag (Y) by
32) Ak = Y o@i(a)

{acAl|s(a)=x}
for elements x € X, extended linearly over Z[K]. Note that a homomorphism 0: K — Z, defines a
homomorphism of group rings Z[K] — Z by sending k € K to 9(k) € {1} and extending linearly. The
functor A, is obtained by applying extension of scalars, along Z[K] — Z, to Ag.

3.3 Functors to Burnside categories

We now consider functors from the cube category 2" to the Burnside categories introduced thus far. The
functors F: 2" — Pk we consider will be strictly unitary lax 2—functors, defined below.

Definition 3.3 Let ¥ be a 1—category and 2 a weak 2—category. A strictly unitary lax 2—functor
F:¢ — 2 consists of the following data:

(1) For each object x of %, there is an object F(x) of 2.

(2) For any morphism ¢: x — y in %, there is a 1-morphism F(¢) in 2 from F(x) to F(y). For x an
object of a 1—category or 2—category, let Id, denote the identity morphism at x. We require that, for all
objects x of ¢, F(Idy) is the identity morphism Id 7 (y).

(3) Finally, for any objects x, y, and z of ¥ and morphisms 8: x — y and y: y — z, there is a
2-morphism Fpg ,, in Zk from F(y)o F(B) to F(y o B) that agrees with A (resp. p) when y = Id, (resp.
B = 1dy) such that the diagram

(F(§)o F(y)o F(B) = F(8§)o (F(y)o F(B))

Fy.golldl JIdOlFﬂ’y

F(8oy)o F(B) F(8)o F(yop)
Fm Aﬁ,a
F(8oyop)

commutes. Here, w, x, y and z are objects of ¢ with morphisms f: w —x, y:x — y,and §: y — z.

The more general definition of strictly unitary lax 2—functors between weak 2—categories ¢ and & can be
found in Definitions 4.2 and 4.3 of [38]. We call strictly unitary lax 2—functors simply ‘“2—functors” or
“functors” when it will not cause confusion. If the target of such a functor is the Burnside category or a
variant thereof, we may also refer to such functors as “Burnside functors”.

When ¢ = 2" and u > v > w are objects of ¢, we write [y, 4, for the 2-morphism F(¢y,) 0 F(pu,v) —

F($u,w)-
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Lemma 3.4 [50, Lemma 3.2] Consider objects F (v) for v € 2", a collection of 1-morphisms F (¢y )
in B foredges v =1 w, and 2—morphisms Fy y v/, w: F(¢v,w) 0 F(Pu,v) = F (v w)o F(¢pu ) for each
2—dimensional face described by u =1 v, v’ =1 w, such that the following compatibility conditions hold:

(1) For any 2—dimensional face given by u, v, v and w as above, Fy y v/ = Fu 3 vw

(2) For any 3—dimensional face in 2" on the left, the hexagon on the right commutes:

V—— o Fy w2 X1d
O ————— O

w
/ / IdXFu,U’,v,w” IdXFu,v,v”,w’
*>
z

> o O

Fv’.w.w’/.zxk/ IdxFu,u”,v/,w /Fl‘/’.w’.w.zde

O ———— 0

|

,U// N

s<—c

This collection of data can be extended to a strictly unitary functor F : 2" — Pk, uniquely up to natural

. . _ _1
isomorphism, so that Fy y v/ = Fu,v/’w o2 Fypw-

Definition 3.5 Given a functor F:2" — %k and 0: K — Z,, we construct a chain complex, denoted
by Toty (F), called the totalization of the functor F'. We usually suppress 9 from notation when it is clear.
The underlying chain group of Toty(F) is
Toty (F) = €D 4 (F(v)).
ve2r
We set the homological grading of the summand .4, (F (v)) to be |v|. The differential is given by defining
the components 0y, from A, (F(u)) to Ay (F(v)) by
Do = {(_l)su'vAD(F(¢u,v)) ifu Zl'vv
’ 0 otherwise.
We just write Tot for Tot, when 9 is the map that sends all elements of K to the identity of Z,. Similarly,
we construct a chain complex Totg (F'), called the K—totalization of F. The underlying chain group of
Totx (F) is
Totg (F) = @D Ak (F(v)).

ve2”n
and the homological grading of the summand Ag (F(v)) is |v|. The differential is given by defining the
components 9y, from Ag (F(u)) to Ag(F(v)) by
9, = (=D v Ag (F($u,v)) ifu =10,
u,v — .
0 otherwise.

3.4 External actions on Burnside functors

We will be especially interested in functors to the Burnside category that admit “extra symmetries” as
follows. For a group G, let BG denote the category with one object, and morphism set G. The composition
in BG is given by g oh = hg. Let Cat denote the category of small categories.
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Definition 3.6 Let G be a group and ¥ a small category. A group action of G on ¥ is a functor
¥ : BG — Cat such that the object of BG is sent to ¢’. Alternatively, a group action of G on ¢ consists of
a group action ¥ of G on Ob(%), along with an isomorphism of sets ¢ : Hom(x, y) — Hom(yg x, Vg y)
for each g € G, compatible with composition of morphisms in ¢ and such that ¥, ¢ = ¥,,. We further
require that the group action preserves identity morphisms.

Definition 3.7 Fix a Burnside functor F: ¢ — Pk, for ¢ a small category. Say there exists an action
of G by ¥ on . An external action on F compatible with ¥ consists of the following data. In the
following, to ease the notation, for an object v of ¢ and an element g € G, we will write gv for the
object of ¢ obtained by acting by g on v, and similarly for morphisms of %'

(1) For all g € G and v objects of ¥, there is a collection of 1-isomorphisms

Vgw: F(v) = F(gv)

in Bx. We also require, for each g,h € G and v an object of %, that there exists a 2—-morphism
Ve hw:Yehw > Vg hv © Vhy (note that if such a 2-morphism exists, it is unique).
(2) For each morphism A: x — y in ¢ and each g € G, there is a 2-morphism, which is part of the data
of an external action,

Ve, a:VYg,yo F(A) > F(gA)oYg x.
The data are subject to the following conditions:
(E-1) Let A:u — v be a 1-morphism in ¢, for objects u and v of €. The 2-morphism V¢ 4 is given
by the composite

> hn.vo1ld Ido
1ﬂgh,v © F(A) m—l) 1/’g,hvwh,v © F(A) M) Wg,hv ° F(hA) © 1ﬂh,u
Vg .nao1ld Ido1Y¥rg . nou
L’ F(ghA) ° Wg,huw}z,u i) F(ghA) © 1;”gh,u-

It is convenient to record relations such as this schematically. Depicting 2—morphisms by double arrows
and 1-morphisms by single arrows, the above equation can be represented as

RN

F(u) — F(hu) — F(ghu) F(u) — F(ghu)

|11 =17

F(v) — F(hv) — F(ghv) F(v) — F(ghv)

~_1 “

The figure on the left-hand side represents a 2-morphism from g ,, © F(A4) to F(ghA) o Ygpy» as
follows. The horizontal and curved 1-morphisms are of the form v , for kK € G and x an object of ¢,
while the vertical 1-morphisms are A: u — v, hA: hu — hv, and ghA: ghu — ghv. Associated to
each path, by traversing single arrows from F(u) to F(ghv), there is a 1-morphism F(u) — F(ghv).
For instance, Vg, © F'(A) is obtained from the arrow F(u) — F(v), composed with the curved arrow
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v — ghv. Each square in the rectangle records a 2-morphism as in (2). The semicircular regions have
2-morphisms as in (1). The 2—-morphism represented by the figure is the composite of the 2—morphisms in
the squares and top and bottom regions. The square on the other side of the schematic equality represents
the 2-morphism V¢, 4. For more on this notation, we refer to [36, Section 2].

(E-2) Letu, v and w be objects of ¢ and let A:u — v and B: v — w be 1-morphisms in . We require
that the following pentagon commutes (where three additional associators have been suppressed):

F(gB)OWg,v o F(A)

‘/’g,BOV w‘l Ye.a

Yewo F(B)oF(A)  F(gB)oF(gA)oygu

IdolFA_Bl ngA,ggolld
1/fg,BoA

Yew oF(BoA) — F(gBOgA)OWg,u

TN

Fu) — F(v) — F(w) Fu) — F(w)

| 171 - | 7]

F(gu) — F(gv) — F(gw)  F(gu) — F(gw)
W

Remark 3.8 One can view Definition 3.7(E-1) as stating that the “action” by G on F is compatible with

Schematically,

multiplication in G, while (E-2) says that the “action” of G on F is compatible with composition in €.

Note that 2”7 = (2")?, and let Z,, act by cyclic permutation of the factors 2" of 27, as in Section 2.7.
Let F: 2" — Bk be a Burnside functor with compatible external action. The complex Totg (F'), for
F:2"? — Ak admitting an external Z ,—action compatible with permutation of the coordinates, admits its
own Z p—action as follows. For u € Ob(2"P), let 7 (u) = (—1)#i=n(p=Dlui=IH#i>n(p—Dlui=1}) ¢ (41},
Define g« : Totg (F') — Totg (F) for g € Z, as follows. For g = 1,, the generator of 7, (written additively)
and x € F(v), set g«(x) = 1(v)o (g, x)g(x) and extend linearly, where g(x) and o (g, x) are defined as
follows. Let ¥4, be the correspondence from F'(v) to F(gv) as in Definition 3.7 with source map s,
target map ¢, and decoration 0 : V¢, — K, and set o (g, x) = o(s~(x)) and g(x) = 1(s~(x)). The
action of general g =[(1,) € Z, is defined by (lp)i.

It is a direct but tedious check to see that g« is a chain map for all g € Zj, and a similar check gives

(1,)f =1d, so we obtain:

Lemma 3.9 Let Z, act on2"? as above. For F :2"? — 2 a functor with compatible external action, the
complex Totgz,, (F) is naturally a chain complex over Z[Zp x K]. It follows that, for each homomorphism
0: K — Z», the complex Toty (F) is a chain complex over Z[Zp].
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For a small category ¥ with an action by a group G, along with functors Fp, F,: ¢ — %Pk with compatible
external actions Y} and v,, respectively, we say that F and F, are G—equivariantly naturally isomorphic
if there is a functor J : ¢ x 2 — %Pk with external action (where the action on 2 is trivial) such that J|¢xo
is F1 and J|gx1 is F2, and J(Idy X ¢1,0) is an isomorphism for all objects v of %.

Lemma 3.10 Let Z, act on (2")? by cyclic permutation of the factors of 2". Consider the data F as in
Lemma 3.4 along with the following data:

(1) Foreach object v of (2")? and g € Z,, there is a 1-isomorphism (in k) V¢ v: F(v) — F(gv). We
also require, for all g,h € G and v an object of (2")?, a 2-morphism g p : Voo —> Ve hvVh,v
(note that if such a 2—morphism exists, it is unique).

(2) ForgeZpandu =1 v € 2"P, there is a 2—-morphism Vg y v : Yg,v © Fdu,w) = F(Pgu,gv) o Vg u-
Assume that the data satisfies the following conditions:

(E-1") Foranyu =1 v €2"? and for all g,h € G, we have

Wgh,u,v = a‘;ﬁlh,u o2 (Wg,hu,hv old) oz (Ido l»[’h,u,v) C20Ug hv-
That is, the data (Vg v, Vgu,v. 0g h,y) satisfy (E-1) for length-1 morphisms.
(E-2") For any objects u and v of (2")?, write F(¢y,y) = A,y to ease the notation. For objects

u=1v,v =1 wof 2")? and g € G, the following hexagon commutes:

IdoYrg u,v
Agv,gw o Vg,v 0 Auy ———— Aguv,gw © Agu,gv° Vgu

‘/fg.v.V' w‘gv.gv’.gw"zld

Vgw © Avw 0 Auy Agv,.gw © Agu,gv' © Vg u

IdoFu,vk Vo o pold Af:.u,v’
g.v'w

Vew © Av/,w 0 Auy ———— Agv/,gw © Vg,v © Aupy

Then this collection of data extends to a strictly unitary functor F : (2")? — %k admitting an external

7 p—action, which is unique up to Z p,—equivariant natural isomorphism.

Proof We briefly describe the argument for Lemma 3.4, which is identical to that of [37, Proposition 4.3].
The functor F' constructed in Lemma 3.4 is defined by, for each ¢, ,, choosing a sequence u =1 u; =1

=1 uj—1 =1 u; =v and then setting F(¢y,v) = F(Pu,;_,,v)0 -0 F(¢y,u,). Foreachu =; v=; w, we
need a 2-morphism Fy y,w: F(¢p,w) 0 F(Pu,v) = F(¢pu,w). Suppose that the sequence defining F(¢y,v)
iSu =1 uy =1 -+ =1 u; = v, that defining F(¢y,w) is v =1 v1 =1 --- =21 v; = w, and that defining

F(puw)isu=gu) =1 =1 u:._H. = w. We then need a bijection of decorated sets
(F(¢vj_1,w) 0---0 F(¢y,u)) o (F(¢u,-_1,v) 0.0 F(pyu,)) — F(¢u;+j71,w) ©:--0 F(¢u,u’l)
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Such a bijection is obtained by taking a composition of bijections of the form Id o Fy j )’ , oId as in the
statement of Lemma 3.4. Lemma 3.4(2) guarantees that the bijection of decorated sets thus constructed is
independent of the choices of the Fy y ,/ ;.

To simplify the notation for the proof, for any objects u > v of (2")?, write Ay = F(Pu,v). We
need to define 2—-isomorphisms in B, Vg uv: Ve,v © Auy = Agu,gv © Ygu for all u > v so that
(E-1) and (E-2) hold. Recall that in the construction of F', for each u =; v we selected a sequence
Uu=q1uy=1---=1u; =v,and set Ay y = Ay;_,,p 00 Ay,u,. We then have a diagram, where the solid
arrows represent 2—morphisms, and the dashed arrow has not yet been defined:

1pgsvoA“i—lsUO“'OAu,ul e Agui_l,ngWg,ui_l O---OAu’ul o Agui_l,gvo"'oAgu,gul Olﬁg,u

! !

VegwoAyy ——--- - > Agu,gvoVgu

The vertical 2-morphisms are given by the construction of F: the left one is part of the definition, and the
right one arises from a sequence of bijections of the form Ido Fy y ,/ ; old, as in the proof of Lemma 3.4.
Although the decomposition of the right vertical 2-morphism into the Fy y )’ , is not well defined, the
resulting composite is well defined. The horizontal 2—morphisms in the top row are instances of the maps
Vg, x,y, as in (2), for objects x =1 y of (2")?. We define the 2-morphism v/ ,, , (taking the place of the
dashed arrow) to make the diagram commutative.

For checking that (E-1) holds, we draw the following schematic figures, interpreted as in Definition 3.7,
which the determined reader can translate into equations. Let us set up some notation. Fix g, h € Z,.
Say that in the definition of F', we have selected the sequences u =1 u; =1 --- =1 u; = v, hu =4 u’1 >

~-=yu; =hvand ghu =y u} =1 --- =1 u/ = ghv to define Ay v, Apy py and Agpy ghy, respectively.
Consider the 2—morphism

/.
El . Iﬁg,hv © 1)”h,v © Aui_l,v 6:-+0 Au,ul - Au;/_l,ghv O---0 Au,u1 o lﬁg,hu o 1)”h,u

defined as the composite

F(u) —— F(hu) F(hu) —— F(ghu) F(ghu)

F(uy) ———— F(huy) F(u|) —— F(gu)) F(uf)
} 1 { { {
3.11) E|= . . .
} 1 1 1 l

F(ui—1) — F(hui_y) Fuj_y) ———— F(guj_y) Fui_,

| — | | — | J

F(uj)=F () = F(hu;)=F(hv) F(u})=F(hv)— F(ghu;)=F(ghv) Fu})=F(ghv)
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Each of the diagonal 2-morphisms is of the form V¢ x , for some k € G and x =1 y objects of (2")?. The
horizontal 2-morphisms are composites of 2-morphisms of the form Idoy Fy y ,/ ;o1ld for x =1 y, y'=z.

Define E; = ocg_

2-morphism E, defined by

lh,u o1 E| o1 g . To verify (E-1), we need to show that E; is the same as the

F(u) ——— F(ghu) F(ghu)

F(uy) ——— F(ghuy) F(uY)
l l 1
(3.12) E, = : : :
l l 1

F(uj—1) —— F(ghui-1) Fui_,

| _— | |

F(uj) = F(v) — F(ghu;) = F(ghv)  F(uj) = F(ghv)

Again, the diagonal 2-morphisms are of the form v . ,, for k € G and x > y objects of (2")?. The
horizontal 2-morphism comes from composing several of the F ) y’ , maps.

We first apply (E-1') to express E; as

1 T

Fu) —— F(hu) ———  F(ghu) F(ghu)

F(u)) ——— F(huy) —— F(ghu,) F(uY)
I ! I !
(3.13) : : : :
1 l 1 1

F(uji—y) ———— F(huj—1) ——— F(ghu;—1) F(ui_,

F(u;) = F(v) — F(hu;) = F(hv) — F(ghu;) = F(ghv) F(ghv)

~_ 1 7

Let B}, = ag py 01 Ez 01 a;’}l,v. To show E; = E,, it then suffices to check E| = E/,. Observe that the

first two columns (of objects), along with the 1-morphisms among these objects and the two morphisms
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between these columns, are the same in (3.11) and (3.13). Thus, it suffices to check that the 2-morphisms
E7 and E/ depicted below agree. Set

F(hu) F(hu) ——— F(ghu) F(ghu)

F(huy) F(u)) ——— F(gu)) F(uY)
A 4 4 4
(3.14) Ef= : : :
i 1 i i

F(hu;—1) F(u;_;) —— F(gu;_,) Fu}_,

| | = | |

F(hu;) = F(hv) F(u}) = F(hv) — F(ghu;) = F(ghv) F(u})= F(ghv)

and set
F(hu) ——— F(ghu) F(ghu)
F(huy) ——— F(ghu,) F(uf)
S S s
(3.15) Ej = : : :
' ' i
F(huj—1) —— F(ghu;—1) F(ui_,
F(hu;) = F(hv) — F(ghu;) = F(ghv) F(ghv)

In fact, we may assume without loss of generality that (u;);=1,..,; = (u}/ )j=1,....i» and we do so for
the rest of the proof of (E-1). Write E7((u;)) and E’((u;), (u})) to illustrate the dependence on the
sequences (u;) and (u}). Note that

(3.16) E7((u)), (u))) = Dgu’).(ghu,) ©2 E5((h™'u})) on D). ))>

/
.......... +1

that vo = vy and v; = v;, the term @, ) () denotes the 2-morphism
T

for all j and such

Av;_y,0; © Av; 5,0y 00 Ao = Ay

g 0 vy 0o Ay

i—2° 0-V]

obtained as a composite of the maps Fy,, /- for x =1 y,y' =1 z.

We claim that if (#;) and (h_lu}) differ at a single entry, then E7((u;), (u;.)) and E7((u;)) are the
same. Assuming this, let us check that E{((u;), (u})) is independent of (u}). We show that if (u}) and

(v}) differ in only one entry, then E((u;), (v})) = E7((u;), (u})). It then follows by induction that
EY((u)), (u})) is independent of u}, as needed.
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To see that E7((u;), (vj’.)) =E7((u)), (u})) foru;, u; and vj’. as above, we use (3.16), from which we need

Plgu)).(ghu;) 02 E5((H147)) 02 Dy, 5 = Pgn) (i) ©2 B3 (71 07) 02 D, )
Rearranging, this is equivalent to
D (gu)).(gv)) 02 B3 (1)) 02 Dy ury = B ((h™10))),
but that is just the claim IE/l’((h_lv}), (u; ) = E’z’((h_lv]’.)), which is a case of our assumption, since
(vj/.) and (u}) differ in only a single entry. That is, it suffices to prove that if (#;) and (h_lu}) differ at a
single entry, then E7((u;)) and E7((u;), (u;)) are the same.

It is enough to consider the case i = 2. In this case, we must check that the 2-morphisms represented by
the diagrams below agree.

F(hu) — F(ghu) F(hu) — F(ghu)

I/ N |/

F(huy) = F(u)) —— F(gu|) =——= F(ghu1) = F(huy) » F(ghu)

| —" — | |

F(hv) —— F(ghv) F(hv) — F(ghv)

In formulas,

(thu,gu’1 ,ghuy,ghv °1 Id) 02 (Id o1 wg,hu,u’l) 02 (Id o1 1/fg,u’1 ,hv ©1 Id) 02 (Id o1 Fhu,hul,u’1 ,hv)
= (Id oy Wg,hu,hm) 02 (Vfg,hul,hv o1 Id).
This is exactly an instance of (E-2’). By the above argument, we have verified (E-1).

The proof of (E-2) is established by substantially similar techniques (but does not require (E-1")), and is
omitted. The proof of uniqueness up to natural isomorphism is analogous to the proof that F itself is
(nonequivariantly) well defined up to natural isomorphism. |

Let H be a subgroup of G. For a small category ¢ with a G—action, let €, called the H—fixed-point
category, be the subcategory of ¥ whose objects are the objects of ¥ invariant under H, and whose
arrows are those of % that are invariant under H.

Lemma 3.17 Let € be a small category with an action by a finite group G, and fix a functor F : € — %
with an external action by G. Let H be a subgroup of G. Then there is a well-defined H —fixed-point
functor of F, written FH: ¢H — 5, given as follows. On objects v of ¢H FH s defined by
FH(v)y= F(v)¥, where h € H acts on F(v) by Vh v, as in Definition 3.7(1). On morphisms ¢: x — y
of ¢H , we define F™ (¢) = s~ (F(x)")nt~1(F(y)H), viewed as a correspondence FH (x) — FH (y).
Using Definition 3.7(2), h € H acts on F™(¢) by Yp,¢- For morphisms ¢ in ¢H  define FH (¢) by
FH(¢) = (F™(¢))H. Then, given objects x, y, and z of ¢ along with morphisms : x — y and
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y:y — z in¢H, the associators Fg,:F(y)oF(B) — F(yop)forf:x—yand y:y —z of FH
restrict to give a bijection

(3.18) Fgl  FR(y)o FR(B) - F¥(y o p),

which we use as the associators of F¥ in Definition 3.3(3). This data defines a functor F : € H _, %in
the sense of Definition 3.3.

Proof The hypotheses of the lemma give us the data of Definition 3.3(1) and (2). We must check that
Fpg,, does indeed restrict as in (3.18) to verify that F ;Iy is data as in (3), and moreover check that the
pentagon as in Definition 3.3 commutes.

Before starting, we note that, for x and y objects of ¥ and ¢: x — y a morphism in 4, the action on
F™(¢) by Vh 4 is specified by using that ¥y, ), 01 F nv(#) and Fi™(¢) o, Yy x are canonically identified
with Fi™(¢), for all A € H, so that the 2—-morphism Vp,¢ in Definition 3.7(2) determines a bijection

F™(¢) — F™™(¢). This bijection, written 1//}1“;5, is the action of 7 € H on F™(¢).

Fix objects x, y, and z of € and morphisms : x — y and y: y — z of €. Let us first verify that
Fgylpnor gy F7 () o FH(B) — F(y o p)

has image in F ¥ (y o B). Consider the commuting pentagon from (E-2) for F, for a fixed h € H:
E(y)oyn,yo F(B)

Wh.yOV wl Vhs

Yn,zo F(y)o F(B) F(y)o F(B)oynx

IdolFﬂ!yl lFﬂ!yolld
1»[/'h,yoB

Wh,zoF(VO,B) — F(VOIB)OWh,x

Recall that the objects of this diagram are correspondences from F(x) to F(z), and the arrows of this
diagram are bijections of correspondences. We consider the diagram formed by considering only the
subsets of the above correspondences that have source in F (x) and target in F (z). To obtain the
following diagram, we have used that the 2—morphisms in (E-2) respect source and target maps. The
arrows in the resulting diagram are again bijections:

(F(y)oyn,yo F(B)Ns~ (FH ()Nt~ (FH (2))

WnzoF () FB)Ns~ (FA)N (FH () (F(y)oF(B)oyn)Ns~ (FH ()N~ (FH(2))

IdO]Fﬁ’yJ JFﬂ,yolld

(VnzoF(yop)ns™ (FH ()Nt~ (FH (2)) Yrreh (F(yoB)oyn)Ns™ (FH ()Nt~ (FH (2))
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However, for any object w of € and 11y € H, the restriction of Vi, wtoF H (1) is canonically identified
with the identity 1-morphism F (w) — FH (w). In particular, the above diagram is canonically

identified with
(F(y)oyn,yo F(B)Ns  (FH(x) Nt~ (FH (z))

WM W! B

G (Fyo FBYNsT (FHNNT (FH () (F()o FB)Ns  (FA )N~ (FH(2))

FB,VJ JFIS.V

wh. ofB
(F(yop)ns~ (FH ()N (FH (2)) = (F(yoB))ns™ (FH (x)) e (FH (2))
Note that the bottom row is naturally identified with the bijection
Ui op: F™ (v o f) = F™(yof).
We have a further commutative diagram by restricting the maps ¥ ,, o11d and Idoy Fg , from the previous
diagram. Note that the arrows are no longer necessarily bijections — they need only be maps of sets:

Fil’]V(,y) o FinV(IB)

Vil V wm Vi

(3.20) FinV(,y) o FinV(IB) Fin\/(y) o FinV(IB)

Fgy l lFB,V
winv

Fil’lV(y 0’3) M Fil’lV(y o ,3)

Because (3.20) commutes, we have equality of the following composites:
(3:21) Fp.y 02 (Ido1 ¥g) 02 (Y 01 1d) = Y’y g 02 Fp .
On the subset FH (y)o FH(B) c F™(y)o F™(B), the 2-morphism (Id o; w;l‘jg) 0y (w}l"’; o1 Id) is the
identity. Hence, .

Fpylrngrori gy = Whiyop 02 Fpy)lF 11 (proF 1 p)-
Thus the image of Fg | # (y)or# (p) N F™(y o B) is preserved by Vh,yop- That is, the image of
Fﬂ,y|FH(y)oFH(ﬂ) is in FH()/ 0,3)
The map of sets Fg | p 1 ()0 F H (g) 18 injective by construction. We must check surjectivity. Suppose

v € FH(y o B). First, we show that the element Fﬁ_’}l,(v) € F(y)o F(B) isin FI™(y)o FI™(p).
If Fﬁ_’;(v) ¢ F™V(y) o FI™V(B), then

(3.22) (Id oy Yp,g) 02 (Yny 01 1) F ), (v) # Fgl(v)

for some h € H, by the following observations. Let Fﬂ_’;(v) = (v2,v1), with vy € F(y) and vy € F(B),
where s(v2) =(v1). Then (Idoy ¥ g) 02 (Y, 011d)(v2, v1) can be written (v}, v}) for some v} € F(y)
and v} € F(B). By (v2,v1) ¢ F™(y) o F™(B), we have #(vy) # t(v]) for an appropriate choice
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of h. Thus (v2,v1) cannot be (v5,v]), giving (3.22). This contradicts commutativity of (3.19), so
FrLv) € F™(y) o F™(B).
To see that Fﬂ_)l,(v) € FH(y)o FH(B), observe from (3.21) that

Fp oy (Ui v2. Yl v1)) = Fg (v2,v1),
so v and vy are both H-fixed, by injectivity of Fg ,,.

We have then established, for all objects x, y and z of ¥ and morphisms f:x — y and y:y — z in €4,
that FHy defines a bijection FH (y)o FH (8) — FH (y o B). It remains to check that the pentagon of
Definition 3.3 commutes. This follows immediately from the fact that F BHV is a restriction of Fg,. O

Definition 3.23 Fix a group K. Let ¥ be a small category with an action by a finite group G, and fix a
functor F': € — %Pk with an external action by G. Let H be a subgroup of G. Call F an H-singular
functor if there exists u an object of ¥¥ and x € F(u) such that the decorated bijection v/, between
F(u) and F(u) has s71(x) =t~ (x), but (s 1(x)) # 1 € K. Otherwise, say F is H-nonsingular. If
F' is nonsingular for all subgroups H C G, we just say that I is nonsingular.

Let ¢ be a small category with an action by a finite group G. As a matter of convention, we regard any
functor F: ¥ — % with an external action by G as nonsingular.

Lemma 3.24 Fix a group K. Let ¢ be a small category with an action by a finite group G, and fix
a functor F: ¢ — Pk with an external action by G. Let H be a subgroup of G, and say F is H—-
nonsingular. Then there is a well-defined H —fixed-point functor of F, written FH : ¢ — 2y given
as follows. On objects v of ¢, FH is defined by F¥ (v) = (FF(v))H, where h € H acts on FF(v) as in
Lemma 3.17. On morphisms ¢: x — y of €™, we define F™ (¢) = s~ (FH (x))Nnt = (FH (y)), viewed
as a decorated correspondence F* (x) — FH (y). Using Definition 3.7(2), h € H acts on F™ (¢) by Vho-
For morphisms ¢ in 6™, define F¥ (¢) by FH (¢p) = (F™(¢))". Then, given objects x, y and z of €H
along with morphisms f: x — y and y: y — z in €, the associators Fgy: F(y)oF(B) — F(yop)
forf:x — y and y:y — z of FH restrict to give a bijection

(3.25) Fgl . FR(y)o FF(B) - F¥(y o p),

which we use as the associators of FH in Definition 3.3(3). This data defines a functor F : ¢ — %g in
the sense of Definition 3.3.

Proof This is completely analogous to that of Lemma 3.17, and amounts to checking that the constructions

there are compatible with decorations, for a H—nonsingular functor; the details are omitted. a
Finally, a similar argument shows:

Lemma 3.26 Fix notation as in Lemma 3.24. The H —fixed-point functor FH admits an (N(H)/H)-
external action, where N(H) is the normalizer of H in G, by restriction of the external action on F,
compatible with the (N(H )/ H )—action on ¢H .
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3.5 Natural transformations

To relate different functors to the Burnside category, we will need the following notion:

Definition 3.27 Let ¥ be a small category. A natural transformation n: F1 — Fy between 2—functors
F1, Fo: ¢ — P is a strictly unitary 2—functor 1: 2 x ¢’ — %k such that n|1yx¢ = F1 and n(o1x¢ = Fo.
A natural transformation of functors Fy, Fo: 2"? — % with external action by Z,, where Z, acts on
2"P by permuting the coordinates, is such an 7, itself admitting an external action (where 2 x 2" has the
product Zp—action, with Z,, acting trivially on 2.).

We usually refer to “natural transformations with external action” as “natural transformations” where it

will not cause confusion.

For ¥ = 2" or 2", a natural transformation (functorially) induces a chain map between the totalizations of
Burnside functors, which we write as Toty (1) : Toty (F) — Toty (Fp), for any homomorphism 0: K — Z5.
(In fact, for a natural transformation with external action by Z,, Toty(n) is Z[Zp]-equivariant; see
Lemma 3.9.)

Many of the natural transformations we will encounter will be subfunctor inclusions or quotient functor
surjections. Given a functor F: 2" — g with external action, a subfunctor with external action (resp.
quotient functor) H : 2"? — P is a functor that satisfies:

(1) H(v) C F(v) for all v € 2", and the external action of Z, restricts to an action on the set H(v).

(2) H(¢u,y) C F(¢u,) for all u > v, with the source and target maps being restrictions of the
corresponding ones on F(¢y ), and the action of Z, preserves H (in the natural sense).
(3) s7Y(x) C H(pu,v) (resp. t~1(y) C H(¢y,v)) for all u > v and for all x € H(u) (resp. y € H(v)).
Equivalently, H(¢u,0) = Uxeman ™' () (tesp. Uyepy ! ()
If H is a subfunctor (resp. quotient functor) of F, then there is a natural transformation H — F (resp.
F — H), and the induced chain map Tot(H ) — Tot(F') (resp. Tot(F') — Tot(H)) is an inclusion (resp.

a quotient map) of chain complexes (and is in fact a Zp,—equivariant map of chain complexes). See also
[50, Section 3.7].

Definition 3.28 If J is a subfunctor with external action of F:2"P — %, then the functor L defined

as L(v) = F(v)\ J(v) and L(¢py,y) = UyeL(v) t~1(y) C F(¢puw) \ J(Pu.v) is a quotient functor of F
(and vice versa). Such a sequence
J—>F—L

is called a cofibration sequence of Burnside functors; it induces the short exact sequence

0 — Tot(J) — Tot(F) — Tot(L) — 0

of chain complexes.
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3.6 Stable equivalence of functors

In the sequel, we will be interested not just in functors F : 2" — %g, but in stable functors, which are
pairs (F, R), for F' a functor F: 2" — %k with external action by G and for R an element of the real
representation ring of G, with R a linear combination of copies of the trivial representation and the regular
representation. In case G = {1}, we view stable functors as pairs (F, r) for r an integer, referring to r
copies of the trivial representation, and F a functor 2" — Zg. Note that a functor F: 2V — % with
external action by G = {1} is the same information as a functor F: 2V — % without external action.
We denote the regular representation of G by R(G). For an orthogonal G—representation V, write V' +
for its one-point compactification, considered as a pointed space by taking the point at infinity as the
basepoint. We will also write SR F for (F, R).

Let Detg = H *(R(G)™) as a graded Z[G]-module. We define the totalization of the stable functor
(F,rR + sR(G)) by Tot((F, rR + sR(G))) = Tot(F)[r] ®z Det%s, where Tot(F)[r] denotes the (ordi-
nary) totalization shifted up by r. If s < 0, we make sense of the above formula using the (graded) dual
of Detg. In this section we will describe when two such stable functors are equivalent, following [50,
Definition 3.6].

A face inclusion ¢ is a functor 2" — 2% that is injective on objects and preserves the relative gradings.
Note that self-equivalences ¢: 2" — 2" are face inclusions. Consider a face inclusion ¢: 2" — 2" and a
functor F: 2" — Pg. We define an induced functor F,: 2¥ — g, which is uniquely determined by
requiring that F = F, o (, and such that for v € Ob(2¥) \ Ob(:(2")), we have F,(v) = &. For a face
inclusion ¢, we define || = |t(v)| — |v| for any v € 2", which is independent of v since ¢ is assumed to

preserve relative gradings. For any functor F', and face inclusion ¢ as above,
(3.29) Totgx (F,) = = Totg (F).

To construct such an isomorphism, we denote by ¢f , the canonical isomorphism of Z[K]-modules
Ag (F,(t(v))) = Ag (F(v)) for v an object of 2". For a function o : Ob(2") — {+1,—1} = Z,, whose
value on v € Ob(2") will be denoted by o,, we define an isomorphism of graded Z[K]-modules
por : Totg (F,) — il Totg (F') by sending the summand Ag (F,(t(v))) to Ax (F(v)) by pr,.,v = 0vCF,p.

We next determine under what conditions on {0y },eob(27) the map pp is an isomorphism of chain
complexes. For any v =1 w objects of 2", we need that

(3.30) (=1)Sw g, = O'v(_l)sv,w'Ht'.

To see this, consider the cellular cochain complex of the n—dimensional cube, with Z,—coefficients:
Cx,([0,1]%; Z3). The assignment (—1)**-» defines a cochain in C, Cleu([O, 1]"; Z») whose coboundary is
the constant 2—cochain that evaluates to —1 on all 2—-dimensional faces of [0, 1]*. Similarly, the assignment
sending a pair of objects u =1 v of 2" to (—1)lt5ww . is a 1-cochain, again with coboundary the
constant cochain evaluating to —1. Since H ([0, 1]7; Z2) = 0, we have that (—1)/4+5t.@) and (—1)%u.v
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are cohomologous. The condition that o € CC%H([O, 11" Z») has (§0)(u, v) = (=1)HFsi.tsu jg
precisely (3.30). Thus, o satisfying (3.30) exist, and so (3.29) holds. Moreover, any two cochains o
satisfying (3.30) differ by a cocycle in CC%H([O, 11": Z»). Since H°([0,1]*;Z») = Z», any functions
0: 0b(2") — Z satisfying (3.30) are (£ 1)-multiples of each other. Thus the isomorphism in (3.29) is
canonical up to sign.

As a consequence of (3.29), the following holds for any homomorphism 0: K — Z5, for F and ¢ as above:
Toty(F,) == =M Toty (F).

For Z acting on 2"? = (2")? and 2P = (2N)? by cyclic permutation, an equivariant face inclusion

1:2"P — 2NP will be a face inclusion such that gt = 1g for all g € Z,.

Let ¢ be an equivariant face inclusion, and F : 2"? — %k a functor with external action by G. Then F,,
defined as above, admits a Zp,—external action using the data of Definition 3.7(1)—(2) from the functor F
with Z ,—external action.

Lemma 3.31 Fix F: 2"’ — Bk and an equivariant face inclusion 1: 2"7 — 2P Say that Zp acts
on 2"? and 2NP by cyclic permutation, and that F admits a compatible Zp—external action. Fix a
homomorphism 0: K — Z,. The pair (F,t) induces a Z,—equivariant isomorphism between Tot, (F,)
and Detlzlljp ® Toty (F'), natural up to sign.
Proof We show that
Totk (F,) = Dety)!? @ Totx (F),

which implies the claim of the lemma.
Note that as Z—complexes, Det% ? @ Totgx (F) is naturally identified with = Totg (F). From the
discussion preceding the lemma, we have an isomorphism (well defined up to sign) of Z—complexes

Totgx (F,) = =M Totg (F),
so it remains to determine the Z ,—action on the right-hand side that is compatible with the Z,—action on
Totx (F,).
Let Zj, act on CC%H([O, 1]"; Z>) as follows. It is enough to define the action on a generator of Z,. Let
g=1p€Zyando € C2([0,1]"; Z>), and define

(go)(v) = o (gv)r(v)T(W),
where 7 is as in the discussion preceding Lemma 3.9.

If p: Totg (F,) — pIl Totg (F') is one of the two isomorphisms (well defined up to sign) as in (3.29),
associated to a choice of function ¢ : Ob(2") — Z5, then

S(go—)(v w) — (_1)ng.gw+gtgv.tgw+Sv.w+ng.gw+szv,tw+stgv.tgw+|t| — (_1)Sv.w+stv.tw+|[| — 8(0)(U U))

That is, 0 and go agree up to an overall sign, since §(go) = §(o). In particular, for fixed g, the term
(g (v))-((go)(v)) is constant in v € Ob(2"?).
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Assume that g = 1,, is the standard generator of Z, as an additive group. We determine (0 (v))-((go)(v))
by considering its evaluation at v = 0 € Ob(2"?). Then

(0(v)) - ((go)(v)) = (0)7(:(0)).
By definition, 7(0) = 1, while it is readily checked that 7(¢:(0)) = —1 if and only if p is even and |¢|/ p is odd.

Thus (3.29) is Zp—equivariant if Z, acts on Totg (F,) as in Lemma 3.9, and K acts on > Totg (F) =
Z[|t|]] ®z Totg (F) by the sign representation on Z[|¢|] if p is even, and if p is odd then Z, acts on Z|¢|]
by the trivial representation. It is direct to check that Z[|¢|] with this Zp—action is Detz,, as needed. O

With this background, we state the relevant notion of equivalence for stable functors:

Definition 3.32 Two stable functors (E1:2"™! — Bk, q1) and (E2:2™2 — Bk, q2) are stably equivalent
for 0: K — Z, if there is a sequence of stable functors {(F;: 2" — Bx,r;)} for 0 <i <[ with Z91 E} =
370 Fy and X492 E, = X" Fj such that, for each pair {7 F;, X7i+1 F; 1}, one of the following holds:

(1) (nj,r;) = (nj41,ri+1) and there is a natural transformation n: F; — F;4+1 or n: F;4+1 — F; such
that the induced map Toty(7) is a chain homotopy equivalence.

(2) There is a face inclusion ¢: 2" < 2"i+1 guch that r;1; = r; —|¢| and Fj4+q1 = (F}),, or a face
inclusion ¢: 2"%i+1 < 2" such that r; = r;+1 — |t|] and F; = (Fi41)..

Two nonsingular stable functors (E1, Q1) and (E», Q») with E;: 2" P — PBg with external action
by Z, (compatible with the action on 2"/ by cyclic permutation) are externally stably equivalent
for a given homomorphism ?: K — Z, if there exists a sequence of nonsingular stable functors
{(F;: 2" — Bk, R;)} for 0 <i <1 with (E1, Q1) = (Fo, Ro) and (E>, Q») = (Fj, R;) such that,
for each pair {(F;, R;), (Fi+1, Ri+1)}, one of the following holds:

(1) (ni, Ri) = (nj+1, Ri+1) and there is a natural transformation of functors with external actions
n: Fi — F; 11 or n: F; ;1 — F; such that the induced map, for each subgroup H C G, Toty(nf)
is a chain homotopy equivalence, where n is the fixed-point functor.

(i1) There is an equivariant face inclusion ¢: 2" ? < 2"i+1P guch that R;+1 = R; — (|¢|/ p)R(G) and
F; 11 = (F;),, or a face inclusion ¢: 2"i+1P < 2" P guch that R; = R;+1 — (|t|/p)R(G) and
Fi = (Fit1)e

We call such a sequence, along with the arrows 7 and ¢ between the (F;, R;), a 0-external stable equivalence
between the stable functors (E1, Q1) and (E2, Q). If, forall 9: K — Z,, the maps Toty(n) are all chain
homotopy equivalences, then we call the sequence of functors {(F; : 2" — Bk, ri)} a K—equivariant
(stable) equivalence, and say that (E1, Q1) and (E», Q») are K—equivariantly equivalent. All external
stable equivalences that appear in this paper will be K—equivariant.

An external stable equivalence from (Ey, Q1) to (E2, O2) induces a Z,—equivariant chain homotopy
equivalence Tot((E1, Q1)) = Tot((E2, Q2)), well defined up to choices of inverses of the chain homotopy
equivalences involved in its construction, and an overall sign (since o is well defined up to an overall sign).
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We will also need the notion of a product of Burnside functors:

Definition 3.33 Given functors F: 2"” — %k and J: 2"? — 2, both with external action by Z,
compatible with the permutation action on (2*)?, we define the product F x J : 20"TMP _s 2, as follows:

(1) For (vy,vp) € 2P x 2P define (F x J)((v1,v2)) = F(v1) x J(v2).

(2) Forall (u1,u2) > (v1,v2), define (FxJ) (D@, us),1,02) = F(Puy,v1)XJ (Pu,,v,). The decoration
on each element of the correspondence is the decoration of F(¢y, v,)-

(3) Forall (uq,u2) > (v2,v2) > (w1, w2), the map (F X J) @, ,us),(v1,v2),(w;,wy) 1S defined by

(F x J)(ul,uz),(vl,vz),(wl,wz)(xl’x2) = ((F)ul,vl,wl (x1), (J)uz,vz,wz(XZ))v
where, if u; = v; or v; = w;, we set (F)y; v;,w; = Id or (J)u; v;,w; = Id, respectively.

It is direct to check that this defines a strictly unitary lax 2—functor 20t+mp s . A computation
verifies that Totg (F x J) = Totg (F) ® Totg (J).

The Zp—external action on F x J is given as follows. On objects, ¥g () is given by the product action
Ve, (vw): F(v)xJ(w) — F(gv) x J(gw), and similarly for the action on correspondences. It is direct
to confirm that these data satisfy Definition 3.7(E-1)—(E-2).

4 Realizations of Burnside functors

In this section, given a functor F': 2" — %k along with some other choices, we construct an essentially
well-defined spectrum | F'|, which is an equivariant spectrum if K # {1}, in a sense that will be made
precise in the course of Section 4.2. As a first step, we construct finite CW complexes || F'||y for
sufficiently large representations V' so that increasing the parameter V' corresponds to suspending the
CW complex || F||y. The finite CW spectrum | F'| is then defined from this sequence of spaces. The
construction of || F'||y> depends on some auxiliary choices, but its stable homotopy type does not. Moreover,
the spectra constructed from two stably equivalent Burnside functors will be homotopy equivalent. Much
of this section is either a generalization of or contained in [50, Section 4], which itself is mostly a
collection of results from [38] along with some background on equivariant topology. The only essentially
new material in the present section is Lemma 4.11.

4.1 Maps from correspondences
We start with the construction of (ordinary) disk maps, following [38, Section 2.10],! which the reader
may consult for more details. Let B! = {x e R | ||x|| <1}, fix an identification S’ = B! /9 with 8 := B,

Ipreviously, starting with [38] but continuing in [37; 50], one worked with “box maps”. The previous papers could have been
executed in very close analogy using disk maps as formulated here, obtaining homotopy equivalent objects; we prefer disk maps
as they are more suitable for visualizing the group action.

Geometry & Topology, Volume 28 (2024)



Localization in Khovanov homology 1537

and view S’ as a pointed space with basepoint the image of 3. For any subset B C B’ of the form
B={yeB"||y—yol <c} for some yo € B! and ¢ € R~ such that || yo|| + ¢ < 1, we note that there
is a standard identification of B with a copy of B by the map ¢ defined by x — (x — yo)/c, and so we
have a standard identification S' = B /9B. In the sequel, by a subdisk B C B ! we will mean a subset B
as above, which we will often identify with B! itself, using ¢.

Given a collection (indexed by {1,...,t}) of subdisks Bj,..., B; of some disk B, such that the
{Bi}i=1,..,: have disjoint interiors, there is an induced map

t t
@.1) S' = B/9B — B/(B\(B1U---UB,) = \/ Ba/3Ba=\/ §' - 5.
a=1 a=1

The last map is the identity on each summand, so the composition (4.1) has degree 7. As observed
in [38], this construction is continuous in the position of the subdisks. We let £ (B, t) denote the space of
(indexed) subdisks with disjoint interiors in B, and have a continuous map E(B,t) — Map(S L's l).

We can generalize the above procedure to associate a map of spheres to a map of finite sets A — Y as
follows. Say we have chosen a collection of subdisks {B;}sc4 Where the subdisks B, C B, for some
fixed disk B, have disjoint interiors. Then we have a map

U é’a)) =\/ Ba/0Ba=\/ S' > \/ 5.

acA acA acA yeyY

4.2) s =B/3B — B/(B\(

where the last map is built using the map of sets A — Y.

More generally, we can also create maps from a correspondence of sets as follows:

Construction 4.3 Fix finite sets X and Y, and fix a finite correspondence A4 from X to Y with source
map s and target map ¢. Say that we also have a collection of disks B for x € X. Finally, take a collection
of subdisks B, C Bg(,) with disjoint interiors for a € A. We then have an induced map
4.4) \/ st=\/ s

xeX yeyY

by applying, on B, the map associated to the set map s~!(x) — Y. A map constructed this way is said
to refine the correspondence A.

For a pair of finite sets A and X, along with a map of sets s: A — X, and a collection of disks { By }xex, let
E({Bx}, s, A, X) be the space of collections of labeled subdisks { B; C By(y) | a € A} with disjoint interiors.
Then, choosing a correspondence A = (4, s, t) and a collection of disks { By }xecx, Construction 4.3 gives
amap E({Bx}.s. A, X) - Map(\,ex st Vyey Sl). We write

(4.5) D(e, (A,s,1)) € Map( \ stV S’)

xeX yeyYy
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for the map associated to e € E({Bx}, s, A, X) and the correspondence (A4, s, ). One of the main points

lm

is that, for any disk map ®(e, (A, s,?)) refining (4, s, t), the induced map on the /™ homology agrees

with the abelianization map
A(A): A(X) = ﬁ,( \/ sl) — A(Y) = H,( \/ sl).
xeX yeyY

We now indicate a further generalization of disk maps to cover decorated correspondences.

Construction 4.6 Fix a finite group K and finite sets X and Y, and a decorated correspondence
(A,s,t,0) from X to Y with A finite and 0: A — K. Fix also some collection of disks {Bx}xecx. Fix
a homomorphism t: K — Homeo(B'). Fix a collection of subdisks B, C Bg(q) for a € A. There is an
induced map just as in Construction 4.3, but whose construction depends on the decoration o, as follows.
For x € X, we have a set map s~ !(x) — Y, along with decorations for each element of s~!(x). We
modify the map refining s~ (x) — Y (without decoration) by precomposing with t(c(a)):

s! :B/aB—>B/(B\(U §a)) =\/ Ba/3B, L¥@@), \/ Ba/3Ba=\/ 5" > \/ s".
acA acA acA acA yey

We say that a map constructed this way t—refines (or, when t is clear from context, simply refines) the
decorated correspondence A = (A4, s,t,0).

As before, we can regard Construction 4.6 as a map

d(e, A) eMap( \/ st \/ Sl),

xeX yeyY

where e € E({Bx},s,4,X) and A = (A, 5,t,0) is a decorated correspondence. Once again, the induced
map on the /"™ homology agrees with the 9—abelianization map, where the homomorphism 0 is defined by
setting 9(k) to be the topological degree of v(k) for k € K.

For V' an orthogonal representation of a finite group K, write B(V') for the unit ball of V.

Let Ex, v ({Bx},s, A, X) denote the set of elements in E({By}, s, A, X) whose centers lie in B(V)K.
In other words, each element e of E({By},s, A, X) is a collection of disks; the element e will be in
Ex v ({Bx}.s, A, X) if and only if the center of each disk in e lies in B(V)K.

Lemma 4.7 [50, Lemma 4.5] Let A and X be finite sets, and let s: A — X be a map of sets. If
dim(VX) > k, then Ex.v({Bx},s, A, X) is (k—2)—connected.

Proof The proof is analogous to [38, Lemma 2.29] or [50, Lemma 4.5]. O

For finite sets X and Y and a finite correspondence A = (4, s,¢) from X to Y, it is convenient to abuse
notation somewhat and write E({By}, s, A, X) for E({Bx}, s, A, X), as we will do in the following lemma:

Lemma 4.8 [50, Lemma 4.6] Fix an R—vector space V and orthogonal K —representationt: K — O(V).
Let A, B, X, Y, and Z be finite sets, and let s4: A — X and sp: B — Y be maps of sets. Let
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A = (A,s4,t4,04) and B = (B, sp,tp,0p) be decorated correspondences trom X to Y and from
Y to Z, respectively. If e € E({Byx},s4,A,X) and f € E({By},sp,B,Y), then there is a unique
fore€ E({Bx},SBod,BoA, X) such that ®( f ore, BoA) = D(f,B)od(e, A). Moreover, the assignment
E({By},sB,B,Y)x E({Bx},54, A, X) = E({Bx},SBoa,B o A, X), by sending a pair (f,e) to f o.e,
is continuous and sends Ex v ({By},sp, B,Y) X Ex vy ({Bx}.54, A, X) to Eg, v ({Bx}, SBoa.Bo A, X).

Proof For (b,a) € B xy A where b has decoration g and a has decoration 4, let e;: By, — B, ) and
eq: By — By, (q) denote the corresponding disks in E({Bx},sp, B,Y) and E({Bx},s4, A, X), respec-
tively. Define B, 4) C B(V') to be the subdisk given by the image of

h—l
By, <b> Bsp()=t14(a) R Bsy ) = Ba > Bsa@:-

This defines f o, e as the image of (f, ¢) under the assignment
E({By}’SB’ B, Y) X E({BX}vSA’ A, X) - E({Bx}a SBOAvB OA? X)
It follows from the definitions that ®(f o, e,BoA) = ®(f,B) o P(e, A).

Finally, consider the restriction of the assignment to Ex v ({By},sp, B,Y) X Ex v ({Bx}. 54, 4, X). It
is clear that the above construction takes disks centered on VX to disks centered on VX, completing
the proof. |

If K is abelian and A = (A4, s, ¢, 0) is a decorated finite correspondence between finite sets X and Y, then
fore € Ex vy ({Bx}.s, A, X), the induced map ®(e, A) is K—equivariant. Note that the condition that K
is abelian is necessary, as ®(e, A) may be a collapse to a slightly smaller disk (modulo boundary), along
with multiplication by g € K; in order for this to be K—equivariant, we would need kg = gk forall k € K.

Construction 4.9 Fix a finite group G, an abelian group K, and a finite-dimensional orthogonal (K xG)—
representation s: K x G — O(V). Let A: 2 — Pk be a functor with external action ¥ by G, where
G acts on 2 trivially. Write X = A(1) and ¥ = A(0), with A := A(¢1,0) = (4, s,t,0), where as usual
we write s, f, and o for the source, target, and sign maps of A, respectively. For each x € X, define
the disk By (V) to be a copy of B(V); more precisely, one may define Bx(V) = {x} x B(V). We
usually write B, for By (V') when the representation V' is clear from context. Write elements of the set
B(X,V) =l ex Bx(V) as pairs (x,v), where v € B(V) and x € X. Then define an action of K x G
on B(X, V) by setting, for k € K and g € G,

(kxg) (x,v)= (g-x,s(ka(wg,v,x) xg)- v).

Here o (¢4, X) denotes the decoration o (s~1(x)) for the decorated correspondence Ygv: X — X. This
assignment gives a continuous homomorphism p: K x G — Homeo(B(X, V)).

Moreover, G acts on E({Bx},s, A, X) as follows. View each element e € E({By}, s, A, X) as a function
assigning a disk e(a) = By C By(q) = B(V') —note that the isomorphism is fixed as each ball By is a
copy of B(V)—to each element a € A. Then, for e € E({Bx},s, A, X), define (g-e)(a) to be the image
of p(1 x g)(e(g~"a)) in By(g).
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Example 4.10 We consider an example of Construction 4.9 to see how it looks in practice. In the notation
of Construction 4.9, let K = G = Z, = {£1}, and let X be the 2—element set {x, y}. Let V = Rx ®Rg
where K x G preserves the decomposition, and the nonidentity element of K acts by —1 on Rg and 1
on Rg. The nonidentity element of G acts by 1 on Rg and —1 on Rg. Say that the nontrivial element
of G acts (by decorated bijection) on X by

x_—1>y and y_—1>x.

Here the label over the arrows refers to the value, in K, of the decoration of the bijection. The set B(X, V')
is then two copies, Bx (V') and By (V'), of B(V). The action of K C K x G on B(X, V) is given by, for
(x,v) € Bx(V),

p(k x1)(x,v) = (x, kv),

and similarly in the B) (V') factor. The action of the nontrivial element g € G on By (V) is given by

pixae = (. (g 1)v)

and there is a similar formula for the By, (V') factor.

Lemma 4.11 Use the notation from Construction 4.9 and let H be a subgroup of G.

For any N > 0, there exists a fixed finite-dimensional representation Vy such that the following
holds. For all finite-dimensional representations V as in Construction 4.9 for which there is an em-
bedding of V inV, the fixed-point set of Ex y ({Bx(V)},s, A, X) under the action of H, denoted by
Exyv({Bx(V)},s. A, X)H | is N —connected and nonempty.

Proof Fix some (K xG)-representation s on V', and assume that dim VK >1.

Let Zg,v ({Bx}xex. s, A, X) denote the space of injective maps (of sets) {: A — B(X, VK) that lift the
map of sets z: A — X = mo(B(X, VK)). The group G acts on Zkyv({Bx}xex.s. A, X) by (g-{)(a) =
(5(2))(¢(g™'a)). There is a continuous map 7: Ex.y ({Bx}xex,5, 4, X) = Zg v ({Bx}xex, s, 4, X)
by sending balls to their centers. This map is (K xG)—equivariant and a homotopy equivalence; here we
have used that the centers of disks in Ex y ({Bx}xex.s, A, X) lie in VK. Moreover, the fixed-point set
Ex,v({Bx}xex,s. A, X)H is sent by mto Zg vy ({Bx}xex. S, A, X)H . Let 7 denote the restriction
of mto Ex,y({Bx}xex.s, A, X YH 1t is straightforward to check that 7 is also a homotopy equivalence.

Thus, it suffices to find conditions under which Zg y ({Bx}xex.s, A, X YH is N—connected. We describe
the set Zg v ({Bx}xex.s, A, X)H . Note that G acts on the set A itself, as follows. We have, by the
definition of external actions, a 2—isomorphism

Ve d:YgyoA—>AoYg x.

However, as a set A may be canonically identified with ¥4 y o A by sending an element a of A to the
unique pair (v,a) of Ygy 0 A =Ygy Xy A, and similarly for identifying A with A o ¢ x. Thus ¥ 4
defines a bijection A — A, and the collection of these as g € G varies defines an action of G on A.
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Choose a; € Afori =1,...,n in each of the orbits H\ A. By the definition of Zg y ({Bx}xex.s. 4, X)
and the action, an element { of Zg y ({Bx}xex. S, 4, X)H is determined by the restriction Cliaiyizr o

since, for any a € A, with a = ha;, for some iy € {1,...,n} and h € H, the assumption that { €
Zk,v({Bx}xex. s, A, X)H ensures that p(1 x h)({(ai,)) = ¢(a).

For each a;, let S; C H be the stabilizer. For g € G, define (g) C G to be the subgroup of G generated
by g. Let B = B(V') for some V sufficiently large.

Let Z}{’V({Bx}xex,s, A, X) denote the space of maps of sets &: A’ = {a;}i=1...n — B(X, VK) that

.....

lift the map of sets z: A" — X and is such that:

(D-1) The element ¢(a;) lies in VEX*Si.

(D-2) The elements {p(1 x h){(a;)}i=1,.. n:heH/s; are disjoint in B(X, VK.
Alternatively, (D-2) is equivalent to:

(D-2") For each x € X, the elements {p(1 x )¢ (a;)}i=1
in B({x}, V).

n:heH/s; such that s(ha;) = x are disjoint

.....

Moreover, if (D-2') is true for a single x € X, then it is also true for Ax for any & € H. Thus, we need only
check (D-2') under the assumption that X is a one-element set {x}; we will assume X = {x} henceforth.
In particular, we have reduced to the case that H acts trivially on X = {x} by replacing H with the
stabilizer of x in H.

From the above discussion, we have that
Ziey(Behs A X) = Zg y({ B} s, A, X) T
so we need only show that Z }(’V({Bx}, s, A, X) is highly connected.
Note that Z}(’V({Bx}, s, A, X) is exactly the set of tuples (x1, ..., x,) Where x; € B(V'), so that:
(1) x;eVSi
(2) Foreachi €{l,...,n}, the orbit of x; is isomorphic, as an H-set, to H/S;. Equivalently, for all
g € H which are not in S;, x; ¢ V(&)
3) (x1,...,x,) ¢ A, where A is the set of tuples (x1,...,x,) for which there is some pair i # j
with g1x; = gox; for some g1, g2 € H.

That is, Zj ,, ({Bx}xex. s, 4. X) = ([T/=; V5') — D, where

n
D=AU U((VS1 x V52 x . ox VSi-1) x U v ig) X(VSi-H N VSn)).
i=1 g¢sS;
For a given N > 0, to show that Z}(’V({Bx}xex, s, A, X), and therefore also Zg .y ({ Bx }xex, S, 4, X)H,
is N—connected, it suffices to show that D has arbitrarily high codimension in []7_, V'Si . We will show
next that this can be achieved by constructing a suitably large V.
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Let R[G] denote the regular representation of G. Recall that R[G] satisfies the following two properties:

(1) It contains a copy of the trivial representation; every g € G acts trivially on this 1-dimensional
summand.

(2) For any 1 # g € G, g acts nontrivially on some irreducible summand of R[G].

Given 1 # g € G, these two facts show that both the dimension and the codimension of R[G]!8 are at
least 1.

As D is the union of finitely many pieces, it suffices to show that each piece has high codimension, say at
least N +2. Choose V 2 R[G]®¥ 12 5o that V(¢ has dimension and codimension at least N +2. It is now
clear that the non-A pieces of D have codimension at least N +2. To see that A also has high codimension,
observe that A is the (finite) union of subsets homeomorphic to diagonals A; ; = {(x, x) € VSi x VSiy
for i # j, thickened by the remaining components ]_[k#l-, j VSk. The dimension of A;,; is at most
min(dim V'S¢, dim V5/), so its codimension is at least max(dim V'S¢, dim V57 ), which is at least N + 2.
The codimension of A; ; C V51 x V5 is the same as that of A; j x ([Tr ; V%) C [Tizy V5%,

The same argument applies to any representation containing V', completing the proof of the lemma. 0O

Lemma 4.12 Maintain the notation from Lemma 4.11. Fore € Ex y ({Bx(V)},s, A, X)H | the induced
map ®(e, A) is (K x H )—equivariant.

Proof This follows from the definition of disk maps, as well as the definition of the H—action on
E({Bx(V)},s,A,X) in Lemma 4.11. |

4.2 Equivariant topology

Let Top,. be the category of well-based topological spaces. A weak equivalence X — Y is a map that
induces isomorphisms on all homotopy groups; typically the spaces we consider are simply connected, in
which case the definition reduces to being isomorphisms on all homology groups. Homotopy equivalence
is a special case of weak equivalence, and for CW complexes the two notions are equivalent.

Let G-Top,, be the category of well-based topological spaces with a continuous action by a finite group G.
We also require that the inclusions of fixed points X 7 — X ', for all subgroups H' < H of G, are
cofibrations. For pointed G—spaces X and Y, a map X — Y is called a weak equivalence if the induced
map X# — Y # is a weak equivalence for all subgroups H of G. (We will also sometimes call such
a map a G-weak equivalence, to distinguish it from a map in G-Top,, that is a weak equivalence in
the nonequivariant sense.) A homotopy between G—maps f: X — Y and h: X — Y is an extension
to a G—equivariant map k: X x I — Y, where X x [ is given a G-structure by g(x,i) = (gx,i), such
that k|xxo = f and k|xx1 = h. A homotopy equivalence in G-Top,, induces a weak equivalence. For
G-CW complexes the two notions are equivalent by the G—Whitehead theorem (see [22, Theorem 2.4]),
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and further, a weak equivalence X — Y induces a weak equivalence between quotients of fixed points,
XH )xH 5 yH jyH forall subgroups H' < H of G, and between orbit spaces, X/H — Y /H, for
all subgroups H of G.

4.3 Homotopy coherence

We briefly review homotopy colimits and homotopy-coherent diagrams, following [38, Section 2.9].

We recall the notion of a homotopy-coherent diagram, which is the data from which a homotopy colimit
is constructed. A homotopy-coherent diagram is intuitively a diagram F: ¢ — K-Top, which is not
commutative, but commutative up to homotopy, and the homotopies themselves commute up to higher
homotopy, and so on, and for which all the homotopies and higher homotopies are viewed as part of the
data of the diagram. More precisely, we have the following definition:

Definition 4.13 [56, Definition 2.3] A homotopy-coherent diagram F: ¥ — K-Top, is an assignment,
to each x € ¥, of a space F(x) € K-Top, and for each n > 1 and each sequence
o Doy B By,

of composable morphisms in ¥, a continuous map

F(fuoooou SO0, 1" X F(x0) > F(xn)

with F(fp, ..., f1)([0, 1]%71 x {x}) = *. These maps are required to satisfy the compatibility conditions
4.14) F(fn,...,fl)(ll,...,tn_l)
F(fn,...,]iz)(l‘z,...,l‘n_l) iff1=Id,
F(fn,..o, fiooos SO, tictiy oo th—1) if fi=Idforl <i <n,
= F(fn—1,- . SO0, ..o Tn—2) if f, =1d,
F(fa.ooos fixD)@igr, s tn=1)oF (fir oo SO, ticn) i 4 =0,
F(fuoooos fit10fiveoos O, Biy oo tn1) ift; = 1.

When ¥ does not contain any nonidentity isomorphisms, homotopy-coherent diagrams may be defined
only in terms of nonidentity morphisms and the last two compatibility conditions.

Given a homotopy-coherent diagram, we can define its homotopy colimit in K—Top,,, quite concretely, as
follows:

Definition 4.15 [56, Section 5.10] Given a homotopy-coherent diagram F : ¢ — K-Top,,, the homotopy
colimit of F is defined by

(4.16) hocolim F = {+} II | | [T [0.11"x F(xo)/~.
n=0 fl fn
X T > Xn
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where the equivalence relation ~ is given by

(fn,...,fl;tl,...,[n;p)

(fn,...,fg;lz,...,ln;p) ifflzld,

(fn,...,ﬁ,...,fl;tl,...,tj_l'Zl‘,...,ln;p) iffl' =Id fori > 1,
S Une fivnttivn ot F(fi D@ ti-1, )i G =0,

(frsevos fid10 fiveoos f1it1s oo diy oot tns D) ift; =1fori <n,

(fu=1,---s f1it1, .- s tn—15 D) ift, =1,

* if p==x.

When % does not contain any nonidentity isomorphisms, homotopy colimits may be defined only in terms
of nonidentity morphisms and the last four equivalence relations. That is,

hocolim F = {+} 11 | | ] 101" x Fxo)/~
n=0 VAL

X0—> " —>Xp
Viel,..,n}, f; £1d

where ~/, in the case % has no nonidentity isomorphisms, is the last four cases of the definition of ~.
In this paper the categories ¥ will have no nonidentity isomorphisms, so we will work with the latter
formulation.

We will occasionally need the following:

Definition 4.17 [56, Definition 2.6] A homomorphism of homotopy-coherent diagrams Fy, Fy: € —
K-Top, is a collection of maps ¢, : F1(x) — Fp(x) for each x € Ob(%) such that

FO(fn’ R fl)(tl’ .. -,ln—1)°¢x = ¢y OFl(fn, .. -’fl)(tl’ s ,tn—l),
where f,o0---0 fi1:x —> y € € forall ;.
A homotopy-coherent diagram may itself be viewed as a commutative diagram from an auxiliary category

as in [56, Definition 2.3], and a homomorphism of homotopy-coherent diagrams is a homomorphism (of
diagrams, in the usual sense) of the associated commutative diagrams from the auxiliary category.

We will need the following properties:

(ho-1) Suppose that Fy, Fy: ¢ — K-Top, are homotopy-coherent diagrams and n: F; — Fy is a natural
transformation, defined as a homotopy-coherent diagram

n:2x% — K-Top,

with n|¢yx¢ = Fi, i =0, 1. Then 1 induces a map hocolim 7: hocolim F; — hocolim Fy, well defined up
to homotopy, according to [56, Theorem 5.12]. If (x) is a K—weak equivalence for each x € ¥ — we will
call such an n a K—weak equivalence from F; to Fo— then hocolim 7 is a K—weak equivalence as well.
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When the spaces involved are K—CW complexes, a weak equivalence n: Fy — Fy is also a homotopy
equivalence [56, Proposition 4.6]. That is, there exist ¢, ’: Fy — F; and

h.h': {2 —>1— 0} x% — K-Top,

with b|{2—>1}x<€ = bl{l—)O}x% = é‘a h|{2—>0}x%) = IdFo’ h/|{2—>1}x<f = é‘/’ h/|{1—>0}x<f = 17, and
b’ l¢2—03x%# = IdF,. Here we write Idf, (and similarly Id g, ) for the “identity” natural transformation
2x ¢ — K-Top,, which restricts to Fp on {0} x ¢ and {1} x ¢, and where the morphism Id g, (¢1,0 X ¢),
for ¢ an object of ¥, is the identity Fo(c) — Fo(c); there are also well-defined higher homotopies.

(ho-2) A homomorphism F; — Fy: ¢ — K-Top, of homotopy-coherent diagrams induces a K-
equivariant map hocolim F; — hocolim Fy. This map on homotopy colimits satisfies a certain compati-
bility with (ho-1), as in [56, Proposition 7.1].
(ho-3) For any subgroup H of K, define the fixed-point diagram F# : ¢ — Top, by setting F 7 (x) to
be the fixed points F(x). Then there is a natural homeomorphism

(hocolim F)f ~ hocolim(F ).
See [50, (ho-3)]
(ho-4) Let F:%¢ — Top, and G: 2 — Top,.. Then there is an induced functor F A G: € x 2 — Top,

with (F A G)(v x w) = F(v) A G(w), and there is a natural (in homomorphisms of homotopy-coherent
diagrams) weak equivalence (hocolim F') A (hocolim G) — hocolim(F A G).

(ho-5) Let L:% — 2 be a functor between small categories. Given d € Ob(2), the undercategory of d is
defined as follows. It has objects {(c, ) |c € € and f:d — L(c)}, and arrows Hom((c, f), (¢, f/)) =
{g:c—c'| f'=L(g)o f}. Wewrite d | L for the undercategory of d. The functor L is called homotopy
cofinal if for each d € Ob(2), the undercategory d | L has contractible nerve.

For a homotopy-coherent diagram F: 9 — K-Top,, there is an induced homotopy-coherent diagram
Fol:%¥— K-Top,. If F(j)iscofibrant for all j € Ob(2) and L is homotopy cofinal, then the natural map

hocolim F o L — hocolim F
is a homotopy equivalence. This follows from the version for homotopy limits in [12]; see [38, Section 2.9,
(ho-4)].
4.4 Little disks refinement

With this background, we are ready to review the little box realization construction of [38, Section 5] and
generalize to functors to B . Assume from now on that K is abelian.

Definition 4.18 Fix a small category ¥ and a strictly unitary 2—functor F': ¥ — Bk, as well as a finite
abelian group K. Fix a pair of finite-dimensional orthogonal K—representations V1 and V5, where the
action of K on Vj is denoted by t. A spatial refinement of F modeled on (V1, V») is a homotopy-coherent
diagram F:¢— K-Top,, such that:
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(1) Foranyu €€, F(u) =\/ cpay BV)/0B(V), where V := Vi @ V5.

(2) For any sequence of morphisms ¢ EARSNF/N U, in ¢ and any (11, ...,t,—1) € [0, 1”71, the map
Fe(foooo o SO tam)): \/ B(O)/0B(V) > \/ B(V)/B(V)
x€F (ug) x€F (uy)

is a K—equivariant disk map (t@®Idy, )-refining the correspondence F(f, o---o fi)—note that
F(fno---o f1)is naturally isomorphic to F(fn) X F(u,_,) *** XF@,;) F(f1)-

This definition extends [38, Definition 5.1; 50, Definition 4.11].

The main technical result that makes it possible to construct spatial refinements from Burnside functors is
as follows.:

Proposition 4.19 [50, Proposition 4.12; 38, Proposition 5.22] Let ¢ be a small category in which every
sequence of composable nonidentity morphisms has length at most n, and let F: € — Pk be a strictly
unitary 2—functor, with K a finite abelian group.

(1) Fix a finite-dimensional orthogonal K-representationt: K — O(V1). For V, a sufficiently large
K —representation, there is a spatial refinement of F modeled on (Vy, V3).

(2) Fix a finite-dimensional orthogonal K -representationt: K — O(V1). For V, a sufficiently large
K -representation, any two spatial refinements of F modeled on (V1, V,) are weakly equivalent.

(3) Fix finite-dimensional orthogonal K -representationst: K — O(V1), V>, and W. If Fisa spatial
refinement of F modeled on (V1, V) then the result of suspending each F (u) and F(fy, ..., f1)
by W gives a spatial refinement of F modeled on (V1, V> & W).

Proof This is entirely analogous to the proof of [50, Proposition 4.12 ]; see [50, Proposition 4.20] for
equivariant aspects. a

4.5 Realization of cube-shaped diagrams

Finally, in this section we will discuss how to construct a CW complex || ||, and then a spectrum | F|,
from a diagram F: 2" — %g. We assume in this section that K is abelian. Let 24 be the category with
objects {0, 1, *} and unique nonidentity morphisms 1 — 0 and 1 — *, and let 2% = (2") LI * where, for
v € 2" —{0"}, there is a unique arrow v — *, and Hom(0", x) = @.

Let F: 2" — K-Top, be a spatial refinement of F' modeled on (V7, V>) for some finite-dimensional
orthogonal K-representations V; and V>, and let Ft: 2" — K-Top, be the diagram obtained from F
by setting F T (*) = pt; we will sometimes abuse notation by also calling Fta spatial refinement of F.
Let || F||(v,,v,) be the homotopy colimit of F7 (we will sometimes suppress (V1, V») from the notation).
Sometimes we write || FTt || to indicate dependence on the choice of spatial refinement. We call || F'|| (v, 1)
a (spatial) realization of F:2" — PBg for the pair (V1, V3).
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Corollary 4.20 [38, Corollary 5.6; 50, Corollary 4.14] Let V; be a finite-dimensional orthogonal K—
representation. For V, a sufficiently large finite-dimensional orthogonal K —representation, the realization
| £l (v,,v,) is well defined up to weak equivalence in K—Top,.

Proof This follows from Proposition 4.19 and properties of homotopy colimits (ho-1). a

The homotopy colimit || F || may be given various CW structures. First, from Definition 4.15, there is
the standard CW structure, with cells [0, 1] x By, parametrized by tuples ( f;, ..., f1) subject to some
relations. Usually this will not be a K—CW decomposition (as some cells may be, for example, fixed by
the action of K, but not fixed pointwise, as in the definition of a K—CW structure).

The fine structure on || F'|| is obtained from the standard structure by subdividing each cell [0, 1]™ x By
into K—cells; to see that this is possible, see for example [2] or [29]. This is an equivariant cell structure,
and so in particular || F'|| has the homotopy type of a K—CW complex, although otherwise we will not
use this structure.

Further, || F| has the coarse cell structure of [38, Section 6]. There they construct a CW structure
on || F| for F a (not K—decorated) Burnside functor, with cells formed by taking unions of the balls
[0, 1]™ x Bx (V) so that there is exactly one (nonbasepoint) cell C(x) for each x € [ [,, F(u). The coarse
cell structure generalizes in a straightforward way to K—equivariant realizations to give a CW complex
structure on || F'|| such that the action of K permutes the cells, but it is not a K—CW structure. In the
sequel, we will treat || F'|| as a CW complex with the coarse cell structure.

Proposition 4.21 Fix a finite abelian group K, and a finite-dimensional orthogonal K -representation
. K - O(Vy). If F:2" — Pk is a tunctor, then the shifted reduced (coarse) cellular complex
Ceenl(|| F (v, v5))[—dim V1 — dim V3] is isomorphic to the totalization Tot,(F') with the cells mapping
to the corresponding generators, where 0: K — 7. is the topological degree of v. If n: F; — Fy
is a natural transformation of Burnside functors, then there is an induced K—equivariant cellular map
ns«: || F1ll = || Fol|, and the induced cellular chain map agrees with Toty ().

Proof This follows from the proof of [50, Proposition 4.16]. |

We will use the notion of an equivariant spectrum as in [45, Chapter XII], which we recall here. Fix a finite
group G and a complete G—universe U, that is, an infinite-dimensional real inner product space equipped
with an orthogonal G—action, such that, for each finite-dimensional orthogonal G-representation V, U
contains the direct sum of countably many copies of V. We refer to finite-dimensional G—subspaces of U
as indexing spaces. A G—prespectrum E indexed on U is a family of based G—spaces E(V'), running
over all indexing spaces V, together with maps

oyw:ZVVEWV)—> EW)
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whenever V C W, where =%~V denotes suspension by the orthogonal complement of V in W, and
where it is required that o,y = Id. The following diagram is also required to commute:

YZWEW-VEW)» 2Z2-WEW)

- l

SZVE(WV)— E(Z)
A spectrum E is a prespectrum such that the adjoints of the maps oy,w, given by

syw:E(WV)— Q" VEW),
are homeomorphisms.

The forgetful functor £ from spectra to prespectra has a left adjoint L, called spectrification, such that for
E aspectrum, LLE = E.

A map of prespectra (or spectra) f: E; — E» consists of a G—equivariant map E1(V) — E» (V) for all
indexing spaces V, respecting the structure maps.

A homotopy of maps of spectra f1, f»: E1 — E» is a G—equivariant map of prespectra i: E1 A [ — E»,
where /4 is the unit interval with a disjoint basepoint added, such that h|g, A; = f; fori =1,2.

In order to construct a spectrum from a Burnside functor, we will also consider virfual representations, as
considered in [19] or [18].

Definition 4.22 For a finite group K (with complete universe I/ fixed), the category of virtual repre-
sentations of K has objects the pairs (V, W) for indexing spaces V and W. We will usually write the
pair (V, W) as Vo W. A (virtual) map Vi © Wy — Vo, © W, is the equivalence class of a pair of
K—equivariant isometries

f:VlEBZI—>V2@Zz and g:W 1 ®Zy > Wb Z,,

where Z1 and Z, are indexing spaces. The equivalence relation between pairs ( f, g) as above is generated
by setting (f,g) ~ (f ®k, g ® k) where k is any K—-isometry 77 — T> of indexing spaces, and where
f @k and g & k are defined by

f@k:Vi®(Z1+T1)—>Va®(Z2+T2) and g@k: W1 (Z1+T1) > Wad(Z2+T>).

We will write (V1 © Wy) + (Vo & Wa) for (V1 & Vo) © (W) @ Wa). We call virtual representations that
are of the form V' © 0 ordinary representations. Associated to any virtual representation there is a natural
element of the representation ring of K.

Construction 4.23 Fix a finite abelian group K, and a finite-dimensional orthogonal K-representation
t: K — O(V1). Let ¢ be a small category in which every sequence of composable nonidentity morphisms
has length at most #, for some n, and let (F: € — Pk, W) be a stable functor, where we take a virtual
representation representative of W as W = W; © W,. We define a spectrum |(F, W)|y, as follows.
We start with the definition of a prespectrum |(F, W)|p,y,. First, fix V5 a sufficiently large indexing
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space, and define |(F, W)|p,y, (V2) as follows. We require that the virtual representation W @ V, is
isomorphic to an (ordinary) representation, and set |(F, W)|p v, (V2) = || F||(v, v,+w). The resulting
space |(F, W)|p,v, (V2) depends on some choices, but its weak-equivalence class is well defined by
Corollary 4.20. For indexing spaces V3 containing V5, set

[(F, W)lp.v, (V3) = V32| F v, v 1wy,

with the structure maps acting by the identity in the suspension factor. For indexing spaces V3 such that
Vo & Va3, we set |(F, W)|p, v, (V3) = *, a single basepoint, with trivial structure maps.

It is readily confirmed that |(F, W)|p,y, is a prespectrum, depending on the choices of a virtual repre-
sentation W; © W, underlying W, an indexing space V5>, and a spatial realization of (V1, V2 & W). We
set |(F, W)|y, = L|(F, W)|p,y,. Said differently, |(F, W)|y, is homotopy equivalent to the suspension
spectrum W V2 32%(||(F, Wl vy, v))-

Proposition 4.24 confirms that this spectrum is well defined up to equivariant homotopy.
We record a result of [50] (there it is proved for K = Z; the more general proof is no different):

Proposition 4.24 [50, Lemma 4.17] Let (F: 2" — %k, W) be a stable Burnside functor and let
t: K — O(V1) be a finite-dimensional orthogonal representation of K. The spectrum realization | =W F | Vi
is well defined up to K—equivariant stable homotopy equivalence. For stable Burnside functors (F;, W;)
fori = 1,2, a K—equivariant stable equivalence n: >WiF, — W2 F, induces a K —equivariant stable

homotopy equivalence
nl: (=7 Fily, = (72 Faly,.

Proof This follows using the fact that || (F, W)||(y, 1) is well defined up to weak equivalence for V>
sufficiently large, as well as Proposition 4.19(3). Here we use that |2 F |y, is the suspension spectrum
W=V23(|(F, W)||(v,,v»))- The construction of || is as in the proof of [50, Lemma 4.17]. m|

5 External actions and realization

Our goal in this section will be to show that, for a Burnside functor F' with an external action ¥, a suitable
realization of F' admits a G—action, and the fixed-point set can be explicitly described as a realization of yet
another Burnside functor. In Section 5.1, we deal with some generalities on homotopy-coherent diagrams,
then specialize to homotopy-coherent diagrams from Burnside functors in Section 5.2. Throughout this
section we assume that K is a finite abelian group.

5.1 External actions on homotopy-coherent diagrams

Definition 5.1 Let F': ¥ — Top, be a homotopy-coherent diagram, where % is a small category such
that there is some n for which each sequence of composable nonidentity morphisms has length at most 7.
Say that a finite group G acts on % by V. An external action { of G on F, compatible with v/, is defined
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as follows. An external action consists of a homomorphism ¥ : G — Homeo(\/ ceob(@) F (c)) lifting the
group action ¥ of G on Ob(%) — and preserving the basepoint. The action ¥ is required to “commute
with composition” in the sense that

(52)  Ye(F(firer o Ot tic) () = FWg (1) g (fO)t1, - tim1) (YY)

for all g € G and y € F(c). For a functor F: ¢ — K-Top,, an external action on F is as above but
further requiring that the K and G actions commute.

Remark 5.3 A homotopy-coherent diagram with external action by G may be thought of as an analogue
of a G—space in the category of homotopy-coherent diagrams. First, note that a pointed G—space X may
be viewed as a functor X : BG — Top,, where BG is the category with one object, and morphisms G. A
more flexible notion (though equivalent for many purposes, see [21; 17]) is a homotopy-coherent diagram
X : BG — Top,.

Consider the case of a small category ¥ without a G—action. Then one might define a “G—equivariant”
diagram as a homotopy-coherent diagram BG x 4 — Top,.. For the case of present interest, that is, for a
small category ¢ with G—action, we need a “twisted” version of the above definition, as in Definition 5.1.

Proposition 5.4 Fix F: ¢ — Top,, where € has an action W and F admits an external action, as in
Definition 5.1. Then the homotopy colimit hocolim F admits a G-action by

§Umee o St tmyy) = (Yg frne oo Vg f1i 01t Vg Y).

Similarly, if F:% — K-Top, admits an external action by G, the homotopy colimit in K-Top,, inherits
a (K xG)-action by the same formula.

Proof This consists of unraveling the definition of homotopy colimits (Definition 4.15) and applying (5.2).
We work with the version of the homotopy colimit in which no nonidentity isomorphisms appear in
the index category (as is possible from our hypotheses on %). One first sees by directly considering
Definition 4.15 that G acts on the homotopy colimit (as a set), and the continuity of the G—action in
Definition 5.1 implies that the G—action on the homotopy colimit is continuous. The K-equivariant
version is analogous. a

Definition 5.5 Let Fy, F>: ¢ — K-Top, be homotopy-coherent diagrams, where ¢ has an action ¥
and F; and F, admit external actions, all as in Definition 5.1. We say that F; and F, are externally
weakly equivalent (usually shortened to weakly equivalent if the context is clear) if there is a diagram
F3:2x% — K-Top,, where 2 x ¢ is given the product G—action with G acting trivially on 2, such that
F3|ixe = Fj+1 and F3 itself has an external action. Furthermore, we require that the maps Fy(x) — F>(x)
are weak equivalences of K—spaces for each x € ¥

Lemma 5.6 Let H be a subgroup of G, and let F': ¥ — Pk be as in Definition 5.1. Then the
H —fixed-point set (hocolim F)H of hocolim F is the homotopy colimit of the homotopy-coherent
diagram FH : ¢H — K_Top, with entries FH (1) = F(u)®, and with morphisms defined as follows.
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For a sequence of composable morphisms (f;, ..., f1) of €, with u € Ob(%¢) the domain of fi, the
map FE(fi, ..., fi)(t1.....ti_1) is given by the restriction of the map F(f;,..., fi)(t1,....ti_1)
to Fu)a.

Proof We describe the fixed-point set of hocolim F explicitly. First, by the construction of homotopy
colimits, by applying the relations iteratively, each point that is not the basepoint in hocolim F may be
represented (uniquely) by a tuple (fi, ..., f1;t1,...,tm;y) for m > 0, with none of ¢;, =0, 1. Such a
point is in the fixed-point set if and only if

(fms-os J1) = (Wfme o 1)

as tuples in the set Hom(%’) of homomorphisms of ¢, and y = hy. That is, the f; must come from the
H—fixed arrows, ie elements of Hom(%¢#), and the lemma follows. |

5.2 Realizations

We start with a minor modification of the Construction 4.9:

Construction 5.7 Fix a finite group G, a finite abelian group K, and a pair of finite-dimensional
orthogonal (K xG)-representations s;: K x G — O(V;) fori = 1,2. Let X: {*} — %k be a functor
with external action ¥ by G, where G acts on the one-point category {*} (that is the category with a
unique object * and no nonidentity morphisms) trivially. Write X for X (x). Let V = V; & V>, and define
B(X,V) = [l ex Bx(V). Then define an action of K x G on B(X, V) by setting, for k € K, g € G,
and (v1, ) e Vi@V =V,

(kxg)-(x,v1,v2) = (g x.81(ko(Yg,v.x) x g) - v1,52(k X g) - v2).

Here 0 (4.4, X) denotes the decoration o (s~!(x)) for the decorated correspondence Vg »: X — X. This
assignment gives a continuous homomorphism p: K x G — Homeo(B(X, V)).

Lemma 5.8 Let K be an abelian group. Fix a small category ¢ such that there is some n for which each
sequence of composable nonidentity morphisms has length at most n, and ¢ has an action ¥ by a finite
group G. Fix a Burnside functor F: ¢ — %k where F admits an external action ¥ by G, compatible
with .

Let F be a spatial refinement for F', modeled on K -representations (V1, V»). Suppose V1 and V, admit
G —actions commuting with the actions of K. We define an action of KxG on B (UueOb(%}) Fu), e V2)
as in Construction 5.7. Suppose, for each g € G, u € Ob(¥), x € F(u), and p € B, /3By, that

(5.9) gF(fivooos 1, tim))(P)) = F(8(f). .. g(fD)(t1. - .. ti—1)(gP)-

In this notation, the term gp does not refer to the action of g € G applied to p € V1 @ V5. Rather, we
view p as an element of B(UueOb(‘@”) Fu), " & Vz), and gp is the result of applying the action, as in
Construction 5.7, of G on B (Uu €Ob(%) Fu), V1 & Vz) to p, and similarly for the left-hand side of (5.9).

Geometry & Topology, Volume 28 (2024)



1552 Matthew Stoffregen and Melissa Zhang

Then hocolim F admits a G-action, commuting with its natural K-action, given by
(fm’---’fl;tlv---,tm—l;)’)_> (gfm’---’gfl;tl,u-,tm—l;gy)-

Proof This follows directly from Proposition 5.4. a

The following special case will be our main use of the lemma. If F:2"? — Pk is a Burnside functor
admitting an external action by Z, compatible with the action of Z, on 2"? by permutation of coordinates,
with F satisfying the conditions of Lemma 5.8 for ¢ = 2”7, we have that | F || admits a Z p—action,
commuting with its natural K—action, as above.

Definition 5.10 We call a spatial refinement F*t of a Burnside functor F: %4 — %k with a G—external
action satisfying (5.9) a G—coherent refinement of F.

We next try to build a homotopy-coherent diagram satisfying the conditions of Lemma 5.8. The key is to
provide a suitable generalization of [38, Proposition 5.2].

Proposition 5.11 [38, Proposition 5.2; 50, Proposition 4.12] Let ¢ be a small category admitting a
G-action V¥, in which every sequence of composable nonidentity morphisms has length at most n, and
let F: ¢ — Pk be a strictly unitary 2—functor admitting an external G —action. Fix a finite-dimensional
orthogonal (K xG)-representationt: K x G — O(V1).

(1) There exists some finite-dimensional (K x G )-representation W such that, for all finite-dimensional
representations V> of K x G which admit an embedding of W, there exists a G —coherent refinement
of F modeled on (V1, V).

(2) There exists some finite-dimensional (K x G )—representation W such that, for all finite-dimensional
representations V, of K x G which admit an embedding of W, any two G —coherent refinements
of F modeled on (V1, V») are K—weakly equivalent. Let n denote the functor n: 2 X ¢ — Py that
is two copies of F (on {0} x ¢ and {1} x ¢) along with identity arrows along the 2—factor. Then,
if 170 and F | are G—coherent refinements of F modeled on (V1, V), there exists a G—coherent
refinement 7) of 7 such that 7j|oyx¢ = Fy and Nl{1yxe = F.

3) If ﬁ(Vl V) is a G—coherent refinement of F modeled on (V1, V3), then the result of suspending
each ﬁ(Vl,Vz)(M) and f(yl,yz)(fn, ..., f1) by a (KxG)-representation V' gives a G—coherent
spatial refinement of F modeled on (V1,V, @ V).

Proof For (1), we inductively construct a spatial refinement F.

First, choose representatives a, of the orbits of Hom(%’) under the action of G. For each representative a,,
let S, C G be its stabilizer subgroup. For each ay, choose a (K xS, )—equivariant disk map refining
F(ay); such maps exist by Lemmas 4.11 and 4.12. Then, define the maps associated to each a € Hom(%)

1

by, if ga, = a, setting gﬁ (ap)g™ =: F (gay). Here, recall that g € G acts via Construction 5.7.
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It follows from the construction of F (ay) that F (a) is independent of the choice of g, so ga, = a holds.
Let us see that the maps constructed thus satisfy Lemma 5.8 for i = 1. We need to check that

gF(f)(p) = F(gf)(gp)

for all g € G, arrows f of ¥, and points p € B(V). By hypothesis, f = ha, for some a, and
h € G. Then F(hag) is defined by hF (aw)h™!, and the i = 1 case of (5.9) follows readily, using that
sF(ag)s™ = F(agy) for s € S,.
Fix [ > 1 and suppose that for any sequence vg SN 5Ty of nonidentity morphisms, we have
chosenamapeys, . 7 :[0, 1" > Eg,v({Bx}xeF (vo)s SE(fyoo0 1) F(f1o---0 f1), F(vg)), compatible
in that

efro filts oo tic1,00ti1, o i) = e, i (Gigrs .. 1) oes_ (T, tit),

efro fillts oo ticy, Litigr, oo i) =€, fiofio g, fi (T oo limt Gk 1, o, ),

and satisfying the i =/ condition of Lemma 5.8.

Choose representatives a,, for the orbits of the G—action on the set of all composable tuples ( f1,..., f7),
where the f; are morphisms vg N s v;4+1 for v; objects of €, with stabilizers S, as before.
Here, G acts on the set of composable tuples by acting on each of the morphisms in a composable tuple.
Then for the induction step, given a, = (f1,..., fi+1) where vg S, L S V741 is a composable
sequence of arrows, we have a continuous map

S!71=9(0.11") = Ex.v ({Bx | x € F0)}.5F(fi10-0 /1) F(fi41077+0 f1). F(v0)
defined by
(5.12) (s tic1, Otir, ooty ey Uit oeg, (o tiet),
(oo ticn Ltigns i) ey o fine fi T oo lim 1 L1 oo 1),
By the argument from Lemma 4.11, this map extends to a map, call it es, ., . 7, from [0, 1]%, which is
(K xSy)—equivariant. Define Cfl, 1t TOT (f{41--++ f1) = gae for some g € G by geaq, g ! This
is well defined as in the i/ = 1 case (independent of the choice of g for which ( f; 1 f{) =gay) and
gives that the collection of e Florss D) thus defined satisfy the i =/ + 1 case of Lemma 5.8.
We have used that external actions respect composition, as in Definition 3.7, in order to see that each
g€a,8 "
By definition, the maps

D(es,,.fi- F(fno--0 f):[0. 1" x  \/ Bx(V)/3Bx(V) > \/ Bx(V)/3Bx(V).
x€F (vg) x€F (vm)

is a family of disk maps refining the composite correspondence F(f;' | oo f]).

running over the set of all tuples of composable nonidentity arrows vg -5 fm oy, assemble to
form a homotopy-coherent diagram.

Next we address (2). Fix G—coherent refinements ﬁ, of F, fori = 0,1. It suffices to construct a
G—coherent refinement 7j: 2x ¢ — K-Top, with 7j|(;1xo = F;. Using the construction in the proof of (1),
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we can construct such 7, and it follows from the definitions that 7j(¢1,0 x Idy), for each u € Ob(2), will
be a homotopy equivalence (where ¢ o is the unique nonidentity morphism in 2). By (ho-1), Fo and F
are then K—weakly equivalent.

Item (3) is clear. O

Let us consider the fixed-point sets of the homotopy colimit constructed in Lemma 5.8. We state the
following result only for Burnside functors from the cube category; the result for general € as in
Lemma 5.8 differs only notationally and will not be needed. Henceforth, we will always view 2"” as a
category with Z ,—action by permuting the coordinates. The Z ,—fixed-point set is readily identified with
a copy of ¢: 2" — (2™)?, which we call the canonical embedding of cube categories.

Lemma5.13 Let F beaZ p—coherent refinement of F :2"P — Pk, a nonsingular Burnside functor with
external action by Z.,, compatible with the permutation action on 2"?. Say that F is modeled on (V1, ).
For H a subgroup of 7, the H—fixed-point set, || F|H,isa (Kx(Zp/H))—equivariant realization of the
fixed-point Burnside functor F H modeled on (VH , VZH ). That is,

o H rH
||F||(V1,V2) =|IF ||(V1H,V2H)-
Additionally, FH jsaK —equivariant refinement of FH .

For a Z p—external natural transformation n: 2"? x 2 — %k, where Z, acts by permutation on 2"? and
tr1v1ally on 2, we have similarly ||77||(V1 Vy) = = ||7¥ ||(VH VY- Finally, ¥ is a K—equivariant refinement
of nf

Proof By Lemma 5.6, (hocolim F +)H s described explicitly, by restricting to the homotopy-coherent
subdiagram (FH)*: (np )f — K-Top,,. Recall that FH has an explicit description as in Lemma 5.6.
We have

(hocolim FT)H = hocolimyp) (FHHy*.

The homotopy-coherent diagram FH isa K—equivariant refinement of F¥ | and is in fact (Z p/H)—
coherent (with Zp /H external action as in Lemma 3.26), by unwrapping the definitions. The previous
equation then shows that || F F||1# = hocolim(F FH ) for the (Z,/ H )—coherent refinement F H = FH The
claim that ||F||(V1’V2) =||FH® ||(V1H,V2H) follows.

The remaining claims in the lemma are proved entirely analogously. O
Lemma5.14 Let 2" C2"*P be the canonical embedding. Fix a nonsingular Burnside functor F :2"P — Bk

with external action, where F' admits an external action lifting the 7 ,—action on 2"?. We will denote both
actions by V.

Let F be a Zp—coherent refinement. Then the fixed-point set (hocolim F )Z» js hocolim Jt, for J
some K —equivariant refinement of F%».

Proof This follows immediately from Lemma 5.13. O
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‘We can now discuss how the realizations of different Burnside functors are related.

Lemma 5.15 [50, Lemma 4.15] A cofibration sequence J — F — H of functors with external action
2"P — Pk compatible with the permutation action on 2"?, upon realization, induces a cofibration
sequence in (K xZp,)-Top,. In general, any external natural transformation n: Fy — Fy of Burnside
functors 2"P — Pk induces a (K xZp)—equivariant map on sufficiently large realizations || Fill = | Foll,
well defined up to (K xZ,)—equivariant homotopy.

Proof The proof is parallel to that of [50, Lemma 4.15], which produces a K—equivariant map of
realizations as a Puppe map. We will need some of the details in the proof of Lemma 5.17, so we go over
the argument.

Suppose 7: 2"7T1 — % is the natural transformation. Then (Fp),, is a subfunctor and (Fy),, is
the corresponding quotient functor, where 1; : 27 — 2"P11 is the face inclusion to {i} x 2"?. For a
fixed (K xZp)-representation V; and for any sufficiently large (K xZ,)-representation V5, we have Z,—
coherent realizations of Fy and Fi, and obtain a cofibration sequence, as in the proof of [50, Lemma 4.15]:

(5.16) I (Fo)w vy, v) = Il vy ve) = I(ED G v, 1)

However, [[(Fo)uo ll(v,v2) = [ Foll(vi,v5), while [[(F1)y [l(vy,v5) = ZllF1lv,,v,) since [[Filly,v,) is
constructed as a homotopy colimit over 2% , while ||(F1),, ||(v,,») is constructed as a homotopy colimit
over z’frl. Therefore, the Puppe map

[CFDu vr,v2) = ElFill v, vy = 1 FLl vy, va0m)

= Z[[(Fo)wo l071,v2) = Zll Foll(vy,v2) = 1 Follvy, vaeR)
is the required map. To see that the map is also Z,—equivariant, we use that, under the hypothesis of
Lemma 5.15, the cofibration sequence itself is Zp—equivariant, from which the Puppe map can be chosen

to be Zp—equivariant. Well-definedness of the map up to (K xZp,)—equivariant homotopy follows from
the well-definedness of Puppe maps. O

Write 74 for the map || F1 (v, ,v,) — | Foll(v,,v») as in Lemma 5.15. Recall that neither the coarse nor
standard CW structures need be equivariant CW structures.

Lemma 5.17 [50, Proposition 4.16] Let F: 2"? — %k be a Burnside functor with Z ,—external action
compatible with the permutation action, and fix a coherent realization || F || modeled on (V1, V,) with V,
sufficiently large. Then:

(1) The shitted reduced coarse cellular complex écell(”F |D[—dim V; — dim V5] is isomorphic (as a
chain complex) to the totalization Toty( F'), with the cells mapping to the corresponding generators.
Here, 0 is the topological degree of the action of K on V.

(2) If n: F1 — Fy is an external natural transformation, then the map nx: || F1|| — || Fol| is cellular

with respect to the coarse CW structure, and the induced cellular map on the coarse structure agrees
with Toty (7).
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(3) If F is nonsingular, the restriction to fixed points (1<) : | F{|# — || Fo|®, for H a subgroup
of Zp, is (Kx(Zp/H))—equivariantly homotopic to
Hy . H H
(™ )x: || Fy ||(V1H,V2H) — || Fy ||(V1H,V2H)’
the map of realizations induced by the H —fixed-point functor n : F IH — FOH . Here we have used
| F; ||(f‘11l Ty = I Fl.H ||(V1H,V2H)’ for suitable realizations, by Lemma 5.13.
(4) Finally, (1) is a cellular map on the coarse CW structures on || F; ||éLII,l V) The induced cellular

chain map on the H —fixed points, in the coarse CW structure of the H —fixed-point set, is Toty (7).

Proof The first two claims are just Proposition 4.21, and do not involve the external action.

Let us fix 77 a Zp,—equivariant spatial refinement of 1, with restriction Fj on 2" x {i} fori =0, 1. By
taking fixed points in the cofibration sequence (5.16), we have a cofibration sequence

(5.18) I Foll® — 11717 — | Fi 7.

The (K x(Zp/H ))—equivariant homotopy type of the Puppe map for the sequence (5.18) is exactly (),
using that 74 is defined as a Puppe map. We have that 777 is a refinement of n by Lemma 5.13, and so
the cofibration sequence above defines the homotopy class of the map (7). in Proposition 4.21.

Claim (4) is a consequence of (2) and (3). O

Lemma 5.19 Let F:2"? — Pk be a nonsingular Burnside functor with external action by Z,. For a
fixed finite-dimensional orthogonal (K xZp)-representation V1 and for V, sufficiently large, || F |y, v,)
is well defined up to weak equivalence in (K xZp,)-Top,.

Proof Fix coherent refinements fo and F 1 modeled on (V7, V») for V5 large. By Proposition 5.11(2),
there is a homotopy-coherent diagram 7: 2 x 2" — K—Top, such that 7j|;x2nr = F;. We need to show
that, for any subgroup H C K x Z, the induced map

H.,r H - H
() FL — N Foll
is a (nonequivariant) homotopy equivalence.

We treat first the case that H is contained in the Z, factor. We observe that for any homomorphism
3: K — 7, Toty(nf) is the identity. By Lemma 5.17(4), nf induces a map between cellular chain

complexes
Coen(| Fr 1) = Coen(ll Foll ™).

which may be identified with Tot,(n") up to a shift. Then, for each subgroup H C Lip, nf is a
(Kx(Zp/H))—equivariant map which is a priori a homotopy equivalence in the nonequivariant sense,
since Toty (nf) is identified with the identity map.

For a general subgroup H C K x Z,, (that is, a subgroup which need not be contained in the Z, factor),
let H' denote the image of H in Z,. It is a consequence of the formula for the action of K X G on
the homotopy colimit in Lemma 5.8 that || F; | # is a spatial realization of the fixed-point functor FH’,
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modeled on (V7 V2H ), fori = 1,2. By the same argument, ||7j]| ¥ is a spatial realization of the fixed-point
functor n ", modeled on (VH, VZH ). As in the proof of Lemma 5.15, the map

(5.20) )| Foll T — | Fi )™
is then identified up to homotopy with the Puppe map
O I Ny iy = WF Nyt gy

We have already established that the Puppe maps (74)7 " are homotopy equivalences when H” is a
subgroup of Z, C K x Z,, so nf in (5.20) is an equivalence for all H. This establishes that || F vy, v5)
is well defined up to weak equivalence, as needed. |

In order to describe the relationship between realizations of externally stably equivalent Burnside functors,
we need a further object. Let J,: 27 — Pk be the nonsingular Burnside functor (with external action
by Zp) with J,(17) a 1-element set, and J,(v) = & for v # 17.

Lemma 5.21 For any pair of finite-dimensional orthogonal K x Z, representations (Vy, V), the realiza-
tion of Jy satisfies || Jp (v, vy = S1OV2(R(Zp))T.

Proof By (ho-5), it suffices to prove the lemma in the case that .7p(lp ) = SO, with the trivial Z,-action.
From [38, Proposition 6.1], there is a nonequivariant identification of || J~p | with M, x[0,2]/3d(Mp %[0, 2]),
where M), is the permutahedron on p symbols.

Recall that the permutahedron M), is the (p—1)—dimensional convex hull of the orbitof (1,2, ..., p) e R?
under the action of the symmetric group S, on p letters (where S, acts on R? by permuting the
coordinates).

Moreover, M, has the structure of a cubical complex so that the (m—1)—dimensional cubes are in
correspondence with sequences (u® > u! > - > u~1) of objects of 22 with u’ # 0”7 € Ob(2”) for all ;.

The Zp,—action on M, x [0,2]/d(M, x [0,2]) determined by its isomorphism with ||J:,|| is given by

1

permuting the cubes (taking each cube [0, 1]”~1 labeled by a sequence (u® > u! > ... > u™71)

1> ... > vl by the identity map

to the cube [0, 1]~! labeled by some other sequence (v° > v
[0, 1]~ — [0, 1]~ 1) and acting by the identity on the [0, 2] factor, by direct inspection of the proof of

[38, Proposition 6.1].

The identification between M), viewed as a cubical complex and viewed as a convex hull in R?, is such
that each cube is mapped linearly to R”. In particular, the vertices of the polytope M), are exactly the

> ... > ™ 1) of objects

(p—1)—tuples (0, ..., 0) in the cubes associated to maximal sequences (u® > u
of 27 with u’ # 0P € Ob(2"P) for all i. These maximal sequences are in bijection with permutations of

the set {1,..., p}.

Finally, the Z,—action on M, induced by the isomorphism with || ];, | agrees with the Z,—action on the
convex hull by the permutation (1,..., p—1, p) > (2,..., p, 1). To see this, by the preceding paragraph
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it suffices to identify the two actions on the vertices. The identification on vertices follows from the

descriptions of the two actions above.

Then M), x [0, 2] is identified (not metrically, but topologically) with the unit ball in R(Z,), and the
lemma follows. O

We also need a simple fact about indexing categories:

Lemma 5.22 The natural 7 ,—equivariant functor gi X g’f’ is homotopy cofinal.

Proposition 5.23 An external K —equivariant stable equivalence (E1, W1) — (E», W>) of stable nonsingu-
lar functors (E1:2"'? — Bk, W) and (E:2"?P — Pk, W) induces a (K X Z,)—equivariant homotopy
equivalence |S"1 E1 |y, — |SW2 E, |y, for any finite-dimensional orthogonal (K xZ. p)—Tepresentation V7.

Proof We need only check that Definition 3.32(1)—(2) induce equivariant homotopy equivalences.

For (1), say we have a natural transformation F; — F, of Burnside functors with external action. Fix a
finite-dimensional orthogonal (K xZ,)-representation V7. Associated to a natural transformation with
external action, there is a map || F1|(v,,v,) = [ F2ll(v,,v») for any realizations, for V> sufficiently large,
by Lemma 5.15. Again by Lemma 5.17, the resulting (equivariant) map is a K—-homotopy equivalence
| F IH vy, ) = |l FZH | (v,,v») for all H (having applied the Whitehead theorem on each fixed-point set).
By the G—Whitehead theorem, F and F; are (K xZ,)—equivariantly homotopy equivalent.

For (2), it will suffice to show, for the face inclusion ¢: 2"? — 2(*+1DP and any Burnside functor
F: 2" — B, that SRZ») | F | (v,,v») is (equivariantly) homotopy equivalent to || ||y, ;) for any V>
sufficiently large. We will check this using the relationship of homotopy colimits to smash products.

First, observe by (ho-4) that we have a natural K—weak equivalence
(5.24) (hocolimgi J A (hocolim;:jrp F ) > hocolimgi x2"? (J~ tAF ).

We must check that this map is Zj,—equivariant. To do so, we would like to use naturality of the map in
(ho-4). In order to use that naturality, we need to use the external action to generate homomorphisms of
homotopy-coherent diagrams.

Choose a generator g € Zp. Let Fy—1: g’f — g{’;” be the functor of the action of g~! on g’_’(’ . We

consider the pullback homotopy-coherent diagram Fg—1 (ﬁ )= FtoF ¢—1. The external action of Z
on Ftis precisely the data of a homomorphism of homotopy-coherent diagrams Wg : F, -1 (f ) — Ft,
by Definition 5.1. We then obtain a well-defined K—equivariant map by (ho-2),

hocolim F, -1 (FT) = hocolim F .

Note that hocolim F,—1 (f *) is not identical to hocolim F*t. However, there is a natural homeomorphism
(in homomorphisms of homotopy-coherent diagrams with external G—action) between hocolim Fy—1 (f ™)
and hocolim F T, defined essentially by relabeling, as follows.
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Recall that hocolim F1 is defined as a quotient of the disjoint union of certain spaces [0, 1]" x F (x0),

parametrized by tuples of arrows ( f1,..., f,) of 2™” with f;: x;—1 — x; for objects x; of 2"7. Now
hocolim Fg—1 (Ff)isa quotient of a disjoint union of spaces [0, 1]" x Fy—i (F)(x0) parametrized by
tuples of arrows ( f1, ..., f») of 2"? with f;:x;—1 — x; for objects x; of 2"”. We have a homeomorphism
(5.25) hocolim F T — hocolim F g1 (FT)

given by identifying the space [0,1]" x F(xo), associated to the tuple (fi,..., fu), to the space
[0, 11" x Fy—1 (F ) (gx0), associated to the tuple (g f1, . . ., g/»). Here we have used that Foi (F1)(gx0)
and F (xo) are equal. We choose the identification between [0, 1] x F (xo) and [0, 1]" x F . (F)(gx0)
to be the identity on the [0, 1]? factor. It is direct to check that this identification is compatible with the
gluing rules in Definition 4.15.

All of this discussion applies equally well, replacing F*t with J* or F¥ A J%. In fact, we have a
commutative diagram, where the vertical arrows are homomorphisms:

(hocolimgi (Fg—1 J~+)) A (hocolimgrjrp (Fg—1 F+)) — hocolimzﬁ x2"? (Fg—1 (f"' A F+))

l l

(hocolimgi JHA (hocolimzfjrp FT) hocolimzi X2\ (JtAFY)

Moreover, the Zp—action on hocolim FT fits into the commutative diagram
hocolimgfjrp (Fg— Ft)

\ . _

Ve hocohmzip FT

/g

hocolim,nr F +
24

where the vertical arrow is the map induced by the homomorphism, and the diagonal arrow labeled by g

is as in the definition of the Z,—action on hocolim F*. The remaining diagonal map is the inverse of

the identification from (5.25). The analogous diagrams for (hocohmzp J +) A (hocol1m2np Ft) and

hocolim,r , ,np (J JtAF Jr) also commute. Using the above commutatlve square, and the naturahty of
=4 %24

(ho-4) with respect to homomorphisms, (5.24) is Z,—equivariant. Moreover, the map

(hocolimzi JHA (hocolimgip FH+) hocolimgfr X2 (JTAFHET),

is a K—weak equivalence for each subgroup H of Zj,, by the same argument. That is, (5.24) is a
(K xZp)—-weak equivalence.

As a consequence of the definitions, JtAFtisthe pullback of some G—coherent spatial refinement
J x Ft under L: gi X 2'_1‘_1’ — gg’_’“)". Moreover, it is immediate that J x F = F,.

Using Lemma 5.22 and (ho-5), we have a K—homotopy equivalence

hocolimgi x2"? (JTAFY) ~ hocolingfﬂ)p (J x F1).
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This homotopy equivalence is once again equivariant with respect to the Zp—action, because the homotopy
equivalence is natural in the involved diagrams. For each subgroup H C Z,, we obtain a similar map of
H—fixed-point sets. However, the same hypotheses we have used to this point apply to the H—fixed-point
sets, since they come from refinements of the Burnside functor F H , according to Lemma 5.13. That is,
the map on H—fixed-point sets is also a homotopy equivalence, and by the G—Whitehead Theorem,

(hocolimzi JHA (hocolimzrjrp FH)y~ hocolim,¢i+1)p (J?F ™)
e £ 24

now (K xZp)—equivariantly. Applying Lemma 5.21, the result follows. |

6 Applications to Khovanov spectra and Khovanov homology

In this section, we recall the definition and main properties of Khovanov spectra from [38], as well as the
generalization of the Lawson—Lipshitz—Sarkar construction to the odd Khovanov case [50].

Fix a link L with diagram D, from which we obtain the Khovanov functor §.(D): 2" — Z-Mod and the
odd Khovanov functor §,(D): 2" — Z-Mod; we will often omit the diagram D from the notation where
it is clear from context. In [38], Lawson, Lipshitz, and Sarkar extended §,: 2" — Z-Mod to a stable
Burnside functor KH: 2" — £:

2" 7-Mod

In [50], §»(L) was extended to a stable functor LXHO: 2" — %z, such that Toty(KHO) = §. for
0=0:Zy — Z3, and Toty(KHO) = §, for 0 = Id. In [50], it was shown that the equivariant stable-
equivalence class of KHO(D) is an invariant of the link L. From LHO, one can construct an infinite
family X}, (L) of Khovanov spaces (or spectra), well defined up to stable homotopy, whose definition we
will see in Section 6.1.

Once we have recalled these definitions, we will see in Section 6.2 that the machinery of Sections 3-5
applies to the Khovanov—Burnside functors KHO and K. That is, we will show that KH and KHO,
as well as their annular analogues, admit external actions in various settings. This is largely, but not
entirely, formal. In Section 6.3, we will show that the fixed-point functors of these Khovanov—Burnside
functors agree with certain annular Khovanov—Burnside functors. This section is not formal, and relies
on understanding the relationship between resolution configurations in the periodic link and the quotient
link; this becomes particularly complicated in the odd case. In Section 6.4, we show that the external
actions are well defined; this section is largely formal once an understanding of the fixed-point functors is
obtained. One can also obtain the results of this section without knowing the fixed-point functor explicitly,
but it is somewhat easier with the results of Section 6.3 in hand. Here we also wrap up the construction
of space-level invariants, proving Theorem 1.3 using the tools from Section 5. We end with some spectral
sequences in Section 6.5, and some questions in Section 6.6.
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6.1 The Khovanov-Burnside functor

The purpose of this section is to explicitly describe the various Burnside functors we will use [37, Section 6].

We start by recalling the construction of the functor LHO(D) for D a diagram of an oriented link L with
n ordered crossings, a choice of orientation of crossings, a choice of edge assignment as in Section 2.4,
and finally an ordering of the circles of each resolution. Following Lemma 3.4, it suffices to define
KKHO(D) on objects, edges ¢y, wWith u =1 v, and across 2—dimensional faces of the cube 2". For brevity,
we write LHO for CHO(D). On objects, set

KHO(u) = Kg(u).
For each edge u =1 v in 2", and each element y € KHO(v), write

30@)3?14)()’) = Z €x,yX.

X€EKHO(u)

Note that each €y y € {—1,0, 1}. Define
KHO(¢u,p) ={(y.x) € CHO(v) x CHO(u) | €x,y = £1},

where the sign on elements of LHO(¢y,y) is given by €x ) of the pair, and the source and target maps
are the natural ones.

We need only define the 2—morphisms across 2—dimensional faces. In fact, there is a unique choice
of 2-morphisms compatible with the preceding data. To be more specific, for any 2—dimensional face
u =1 v,v’ =1 w, and any pair (x, y) € KHO(u) x KHO(w), there is a unique bijection between

Ax,y =571 x) N7 (y) CKHO(Po,w) Xicrow) KHO(Pu,v)
and
Ay = s ) Nt y) CKHO(Bvw) Xkcnow) KHO(Bu,v)

that preserves the signs. (That is, the signed sets Ay, , and A;’ , both have at most one element of any
given sign.) Indeed, the only resolution configurations for which Ay , has more than one element are the
ladybug configurations. The unique sign-preserving matching turns out to be the right ladybug matching
of [43] for a type X edge assignment, and is the left ladybug matching for a type Y edge assignment. This
completes the description of a strictly unitary lax 2—functor KHOg(D) associated to the data as above.
We call the identification (for any x and y) of sets Ay , and A;,y above the ladybug matching. Recall
also that we work with stable Burnside functors; that is, pairs of a Burnside functor and an integer. We
define the (odd) Khovanov-Burnside functor by KHO = (KHOq, —n_), the Burnside functor shifted
down by n_. It follows from the construction that we may write XHO as a sum over quantum gradings:
KHO =1]] j KHO/, where KHO/ is the subfunctor from Khovanov generators in quantum grading ;.

Recall that the equivariant stable equivalence class of HO is a link invariant, as in the following theorem.
In what follows, let R be the nontrivial 1-dimensional real representation of Z5.
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e —— S e
1 1
ap
X1 X243 1 yq

[ )
X1X2

Figure 1: An example Burnside functor F: 2! — ABz,. We visualize elements of F(1) and
F(0) as dots, and regard the morphism F(¢1,0) as a collection of arrows. Here, we let F (1) =
{1, x1, X2, X1 X2}, the set of Khovanov generators associated to a resolution configuration of two
circles, and F(0) = {1, y1}, the set of Khovanov generators associated to a single circle. Set
F(¢1,0) ={a1,az,as}. Then s(a;) is given by the tail of the arrow a;, and #(a; ) is given by the
head of the arrow a;. This is the Khovanov—Burnside functor associated to two circles merging to
a single circle. Generators at the same height have the same quantum grading.

Theorem 6.1 [50, Theorem 1.7 ] The equivariant stable equivalence class of the stable functor CHQO is
independent of the choices in its construction, and is a link invariant. Let I@’)j be a spatial refinement
of KHO/ in sufficiently high dimension, modeled on R”. Then the Z,—equivariant stable homotopy type
of the spatial realization X}, S = = || (IC’H(’)] )T || is a link invariant. Moreover, there is a CW structure on X J
for which the reduced cellular chain complex C* (X,{ ) equals Kco (L; Z) = Totig(KHO/)* if n is odd,

cell
or K¢/ (L; Z) = Toty—o (KHO/)* if n is even.

Let KH = F(KHO) denote the stable Burnside functor obtained by applying the forgetful functor
Ay, — A, call this the even Khovanov—-Burnside functor. It agrees with the construction of [38]. We
illustrate an example Khovanov—Burnside functor in Figure 1.

Next, we address the construction of the stable annular Khovanov—Burnside functor AKHO(D) =
L1 ik AKHOTK(DY): 2" — A7, associated to a diagram D of an annular link L, along with an ordering
of the n crossings, an orientation of the crossings, a choice of edge assignment, and an ordering of circles
at each resolution. We define, for u € 2",

AKHO* () = Kg/* (u).
For each edge u =1 v in 2", and each element y € AKHO(v), write

Fam, @) () = Y expx.

X€EAKHO(u)
Define

AKHO(¢u,p) = {(y,x) € AKHO(v) x AKHO(u) | €x,y = £1},

where the sign on elements of AKHO(Py,y) is given by €, of the pair, and the source and target maps
are the natural ones. The matching along 2-dimensional faces is obtained from that of KHO, and the
formal desuspension of AXHQO is also inherited from KHQO. We have the following theorem:

Geometry & Topology, Volume 28 (2024)



Localization in Khovanov homology 1563

Theorem 6.2 The equivariant stable equivalence class of the functor AKHO(D) is independent of the
choices involved in its construction, and is an invariant of the annular link L. Let Jm,ﬂk be a spatial
refinement of AKHO7* in sufficiently high dimension, modeled on R”. Then the Z,—equivariant stable
homotopy type of the spatial realization AlC?—l{;’k = (W{,"ﬁ || is a link invariant. Moreover, there
is a CW structure on || (W{;’Cﬁ || for which the reduced cellular chain complex C . (AlCHﬁ’k) equals
AKcl(L; Z) = Totig(AKHO¥*)* if n is odd, or AKc! (L; Z)) = Toty—o (AKHO ¥ )* if n is even.

Proof This follows from keeping track of the annular gradings in the invariance proof of the equivariant
stable equivalence class of LHO. |

We write AKH: 2" — &£ for the even annular Khovanov-Burnside functor, obtained from AKXHO by
applying the functor %z, — 4.

6.2 Equivariant Khovanov-Burnside functors

In this section, we apply the machinery from Sections 3-5 to construct Burnside functors with external
action. We first outline the notation used in this section. Let p > 1 be an integer, and consider a p—periodic
link L with (annular) periodic diagram D. Let ¥ denote the rotation of the annulus by 27/ p.

We abuse notation by writing ¥ also for the actions on L and D. The quotient link L = L /v has (annular)
diagram D = D /¥, with n crossings. We refer to information relating to L as “upstairs” and information
relating to the quotient L as “downstairs”.

Theorem 6.3 Let L be a p—periodic link. Then there is a natural Z p—external action on AKH(L) and
KH(L), whose external equivariant stable equivalence class is an invariant of the equivariant isotopy type
of the link L. If p is odd, then there is a natural 7 p—external action on AKHO(L) and KHO(L), whose
external equivariant stable equivalence class is an invariant of the equivariant isotopy type of the link L.

We will prove this theorem over the course of the next few sections. We start with the construction.

Proposition 6.4 Let Dbea p-periodic link diagram. In terms of the diagram D, there is a well-defined
Z p—external action on AKH(D) and KH(D).

Proof Recall from Section 2.6 that Z, acts on [ [, conp ng,k (u) for any j, k € Z. We write Yu for the
generator obtained from the Khovanov generator u by rotation by 27/ p.
For each v € 2"7 and i € Z,, we have a (bijective) correspondence

Eyi i AKH(v) > AKH v),
by sending the generator x € AKH(v) = Kg(v) to ' x € AKH (¥ v). We view Eyi , as a 1-morphism
in A.

For u > v, it is easy to check that there are natural bijections ¥ : AKH (¢pu,y) — AKH(Pyu,yv)
and ¥ : KH(pu,v) = KH(dyu,yv). (Here we have abused notation: the bijections are induced by the
rotation ¥, hence the name.) Moreover, if a € AKH(¢y ). one can check directly that s(ya) = ¥s(a)
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and t(Ya) = ¥t(a). Foru =1 v, let
E‘/fi,¢u.v: EI/fi,v °© AKH(¢M,U) — A’CH(¢Wiu,T/fiv) © El/fi,u

be the 2—morphism in % induced by ¥ : AKH (¢y.») — AKH(Py iy yiy)- Note that Eyi o - is indeed
a 2-morphism, since ¥ : AKH (¢y.y) — AKH(Pyy iy yiy) is compatible with source and target maps.

There are similar constructions of £y ,, and Ey: 4  for KH in place of AKH.

We are almost in the situation of Lemma 3.10; in order to apply that lemma and obtain an external action
E on AKH(D) and KH (D), we need to check (E-1’) and (E-2’). The hypothesis (E-1") holds because, for
each pair u =1 v and integers i and j, there is at most one 2-morphism between E.i+; ,, © AKH (¢, v)
and AKH(E yi+jy yi+iy) © Eyiti,. For (E-2), we need only show that the Zp,—action respects the
ladybug matching. However, this is also essentially automatic; let us see how formal properties of the
ladybug matching guarantee this. First of all, we need only consider squares u =1 v, v’ =1 w in 2" such
that KH (¢u,v) — or AKH (¢u) — has two elements, as otherwise the diagram in Lemma 3.10(E-2’) is
automatically commutative. That is, we may assume the resolution configuration associated to u =, w is
a ladybug configuration.

Then the arrows from the action in (E-2") are obtained from the maps

Kg(u) — Kg(Yru)

(similarly for v, v” and w), obtained by rotating the resolution D,, to Dy (using the fact that KH (¢

is a subset of the product KH (u’) x KH(u") for any u” and u” in 2"P). Finally, the ladybug matching is
an invariant of planar isotopy [43, Lemma 5.8], so the diagram commutes. Lemma 3.10 then implies that
there is a Zp—external action on A}C’H(ﬁ) and ICH(ﬁ), as needed. |

We next generalize this to the odd case. We will need an auxiliary lemma:

Lemma 6.5 Suppose that p is odd. Let C Lp-

cell

([0, 1]*7; F2) be the subcomplex of C, ([0, 1]"7;IF5)
consisting of elements fixed by the Z —action, with respect to the product cell structure on [0, 1]"?. Then

Proof Say c € Cczﬁ’ ([0, 1]"7; ) has 8¢ = 0. Now, ¢ = e for some e € C ell([O 1]*7;F,). Then
(14+v)de =0, so (1+1)e is a cocycle. However, the only cocycles in C Cell([() 1]"7;F,) are the constant
cochains evaluating to 0 or 1 on all vertices of [0, 1]"7. The cochain evaluating to 1 is not in the image of
1 + ¥, since the image of 1 + v is characterized as those cochains such that on each Z ,—orbit the sum of

evaluation over the orbitis 0. Thus (1+1)e =0, and so c is the boundary of an invariant cochain, as needed.

Next, say ¢ € Ccefl” ([0, 1]"7; F,) with ¢ = 0. Say ¢ = §e fore € CL ([0, 1]"1’ F2). As before, (1+1v)e
is a cocycle, so there exists f with §f = (1 4+ ¥)e. Then §(1 + ¥ 4 --- + Yy P~ 1) f = 0. That is,
(14 4 ---+¥P~1) f is either the constant O—cocycle or the constant 1—cocycle. Since p is odd, we
obtain that, in the former case, f must vanish on invariant vertices of [0, 1]*?, and in the latter case,

f evaluates to 1 on the invariant vertices. However, adding the nontrivial cocycle to f still produces
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a cochain f’ such that §f’ = (1 + v¥)e, and so we may assume that f vanishes on all the invariant
vertices of [0, 1]"? and that (1 + ¢ + -+ ¥?~1) f = 0. Thatis, f lives in a free Z,-submodule
of C ell([O 1]"?;F5), and using (1 + ¥ +---+ ¥P~1) f =0, it follows that f = (1 4+ v)g for some
g€C2,([0,1]"7;F,). Then §g = e+’ for some ¢’ in the image of multiplication by (1+y +---+y 7~ 1),
since C, ell([O 1]”1’ IF,) is a free F2[Zp]-module. Then, since §2 = 0, we have §e’ = c. Finally, the image
of 14+v¢+---+y?”HonC ell([0 1]"7; F,) is equal to the set of invariant cochains in degree 1, so ¢
is the boundary of an invariant cochain, as needed. O

Proposition 6.6 Suppose p is odd. Let D bea p—periodic link diagram. Then there is a well-defined
Z p—external action on AICHO(E) and ICHO(ﬁ). Moreover, this 7 ,—external action is nonsingular (see
Definition 3.23).

Proof We begin by choosing an equivariant orientation of crossings for D, by which we mean that for
each orbit of the np crossings of D under the action of Z p> We choose a representative crossing, orient it,
and then use the Z,—action to define an orientation of crossings for all crossings in the same orbit.

Next, we need to show that there exists an equivariant edge assignment. By this, we mean that the
function € as in Section 2.4 can be chosen so that €, = €yy,yu. For p = 2 this is not generally
possible, as may be confirmed by drawing the usual picture of the Hopf link. However, recall that an
edge assignment amounts to the choice of an element € € C ([0, 1]"7; TF>) with coboundary §e = Q(D),
tacitly identifying Z, = {41} with F». We first observe that Q(D) is Zp—equivariant, since the odd
resolution configuration Cy 4, for u => w is planar isotopic to the odd resolution configuration Cyy yw,
and since Q(D)u w 1s determined by the 1sot0py type of Cy,y for each u =, w € 2"7. The condition

€u,v = €yu,yv Means that we require € € Ccel’l’ 1([0, 1]"7;F,). By Lemma 6.5, such an € exists.

Finally, we must also choose orderings of the circles at each resolution. In fact, any ordering of circles will
do. We must now describe the action of ¥ on Kg. Forgetting the sign, v takes Kg(u) to Kg(¥/u), as in the
proof of Proposition 6.4. Say Z(Dy)={ay,.... aj, y suchthatay <---<ay, and Z(ﬁl/,u) =1{b1,..., by}
such that by <--- <by,. Forx =a; ® ---® ay € Kg(u) taken to by (1) ® -+ - ® bs (k) € Kg(Yu), the sign
is just sgn(o).

We have now constructed ¥ on objects of AICHO(ﬁ) and ICH(’)(E). Since the edge assignment is
equivariant, for ¥ =1 v we have actions

Y AKHO($y0) — AKHO(Gyuyv) and  ¥: KHO(Gu.n) — KHO(byupo)-

The proof of the proposition now proceeds as in the proof of Proposition 6.4. To see nonsingularity
of the resulting external action, consider any Khovanov generator x € Kg(u) fixed by ¥ (viewed as a
bijection, not a signed bijection). In particular, ¥ u = u. Every invariant generator x is a product of terms
coming from nontrivial circles of D, and products x;, ---x;, of trivial circles related by rotation. So, to
prove nonsingularity, it suffices to check that the sign is 1 for invariant generators x which come from a
nontrivial circle of Dy, or for a single product x = x;, --- x;, of trivial circles related by rotation. (Note

Geometry & Topology, Volume 28 (2024)



1566 Matthew Stoffregen and Melissa Zhang

that if x = 1, ¥ acts as the identity.) In the former case, certainly ¥ takes x to x with sign 1. In the
latter, ¥ acts by some permutation of x;, --- x;,. To verify that the sign of v is 1, it suffices to check a
particular ordering of the circles of u. To see this, note that reordering the circles changes the action of
(viewed as a permutation of {1,...,/} using the ordering of the circles) by conjugation. Ordering the
trivial circles in a Z,—orbit by order of appearance, going counterclockwise starting from an arc y, we
see that, indeed, i acts with sign 41 on all invariant generators; here we have used that p isodd. O

6.3 Fixed-point functors

In this section, we find the fixed-point Burnside functors of the equivariant Khovanov—Burnside functors
constructed above. The main result is the following:

Theorem 6.7 Let D be a p-periodic link diagram (with p > 1), with quotient diagram D . The Khovanov
fixed-point functors are

(1) AKH(D) = KH(D)%»,

2) AKHIK (D) = AKHPI=(P=Dkk(D)Zp,
for any pair of quantum and (k)—gradings (j, k). If p is odd, we further have, for suitable choices of
crossing orientations, edge assignments, and circle orderings at each resolution:

3) AKHO(D) = KHO(D)Z»,

(4) AKHOI* (D) = AKHOPI—(p=Dkk( D)Ly

Proof Write ¢: 2" — 2"P for the canonical embedding. Let us first address the case of F = KH(D);
that is, let us see that FZ» = AK#(D). By Lemma 3.10 and the fact that the fixed-point category
of 2”7 is the image of the canonical embedding ¢: 2" — 27, it suffices to identify FZ» (1u) for each
u € 2", the correspondences F Zp (¢uu,v) for u =1 v, and the 2-morphisms associated to 2—dimensional
faces of 2”*. Proposition 2.6 shows that FZ7 (1) is canonically identified with AKX (u), and that the
quantum gradings are as in the statement. We package the proof that the 1-morphisms are correct as
Proposition 6.8, and the claim about 2-morphisms as Lemma 6.16. Assuming those lemmas, the present
theorem follows directly. O

Proposition 6.8 Let D be a p—periodic link diagram with p > 1. Fix u =1 v € Ob(2") and consider a
sequence of objects of 2" given by tu =1 u1 =1 -+ =1 up = v. Then
’CH(ﬁ)Zp (¢u,,_1,w O:--0 ¢Lu,u1) = A’C%(D)((bu,v)a

AKRH(DYE? (b0 0+ 0 Prsauy) = AKH(D) ().
where = denotes natural isomorphism. Further, if p is odd, then

KHO(D)EP (1 40 0+ 0 Pravuy) = AKHO(D) (),
AKHO(D)E? ()0 0+ 0 Pruy) = AKHO(D) (duw),

(6.9)

for appropriate choices for D and D of crossing orientations and edge assignments, and of circle orderings
at each resolution.
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Proof First consider the case for F = ICH(ﬁ). By commutativity of the 2—dimensional faces of the
cube, it suffices to show the identification of 1-morphisms for any particular path {u;};.

Note that in the sequence of resolutions Dy, Dy, ..., Dy, there may be circles, present in each of
the D,,;, which are inactive for each of the elementary cobordisms from D,,; to Dy,;_,; it is easy to see
that the isomorphisms in the statement of Proposition 6.8 hold if and only if they hold for the sequence of
resolutions with the inactive circles deleted. The proof of the proposition then amounts to a case-by-case
check of the three different types of merges; see Figure 2.

First, say ¢$f’u represents a V ® V — W merge. The p—cover is illustrated by the top left picture in
Figure 2. In that figure, (v is the diagram consisting of two concentric circles, while (u is the diagram
consisting of a single Z,—orbit of circles. Then F(tv) has four invariant generators {1, X1, X2, X1 X2},
where x1, xp € Z(5w), and F (tu) has two invariant generators {1, y1 --- yp}, where y1,...,yp € Z(ﬁm),
all lying in the same Z,—orbit.

The first map ¢, ,,,_, is a merge, and then all the following maps {¢,,} ., _, }o<i<p are split maps. Recall
that we use the convention that ug = (u and u, = (v. It is straightforward to check that F (¢m,w)ZP ~
{a1,a>} with source and target maps s(a;) = y1---yp and t(a;) = x;. Thus, F(¢m,w)ZP is naturally
isomorphic to AKXH (D) (¢y,v) for this case.

If ¢3‘fu represents a V ® W — V merge, then all p maps {(]53?,,41._1 }1<i<p are merge maps. The invariant
generators at (v are {1, x, y1 -+ yp, Xy1 -+ yp}, With x € Z(D,y) a nontrivial circle and where y; € Z(D,y)
are trivial circles forming a single Z ,—orbit. The invariant generators at cu are {1, z} for z € Z(D,;). Then
we have the correspondence F(¢m,w)Zl’ ={ay,ar} withs(ay) =1, s(az) =z,t(a;) =1, and t(a3) = x.
We then observe that F (¢m,w)Z" is naturally isomorphic to AKXH(D)(¢y,v) in this case as well.

A similar situation occurs for the W ® W — W merge case. The invariant generators at v are
{1, X1 Xp, y1--"Yp. X1+ XpY1 - Yp}, Where x; € Z(D,y) are all in the same Z ,—orbit, and similarly

en$25 (e

W@p V@ Wer v
o

(5= (50
S AV
W e2p Wer

Figure 2: The three equivariant annular merges, with p = 5 illustrated. Here A stands for “split”
and m stands for “merge”.
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for y; € Z(D,y). The invariant generators at tu are {1,z ---z,} where z; € Z(D,y) lie in the same Z ,—
orbit. One may quickly check that F(¢y,v)%7 ={ay.az,az} withs(a;) =1, t(a1) =1, s(az) =x1 -- “Xp,
t(az) =z1--zp, s(az)=y1---yp,and t(az) =z - - - zp. It follows readily that F(¢>Lu,w)ZP is naturally
isomorphic to AKH(D)(¢u,v) in this case.

The above cases, along with duality (for the corresponding equivariant split maps) [38, Section 10] show
that (6.9) holds.

The case of F = AICH(ﬁ) is very similar, so we omit the details here.

Next we treat the case F = KHO(D). We have already seen that, if we forget the signs, (FF)Zr =
AKH(D). Now, AKHO(D) can be viewed as a way of sprinkling signs on the correspondences of
AKH (D) — and similarly for KHO(D) relative to KXH (D) — and we need to say that these sprinklings
respect the equality of Burnside functors in (6.9).

Recall that in order to define F', we needed to choose the data of an (equivariant) orientation of crossings,
as well as an equivariant edge assignment. Say we have fixed these data. Now, in order to define
AKHO(D), we need an orientation of crossings of D, as well as an edge assignment of D. We choose
the orientation of crossings coming from taking the quotient of the orientation of crossings of D. In order
to compare AKHO(D) with F, we must find a way to define an edge assignment on D, given the edge
assignment upstairs. We start with the following lemma. Recall that Kg(ﬁ)zl’ upstairs is identified with
Kg(D) downstairs, using the choice of an arc §, as in the discussion after Proposition 2.6.

Lemma 6.10 Let C be an index-1 annular resolution configuration with associated odd annular Khovanov
projective functor §, Amn, - 277 = Z-Mod. Let p be odd, and let C denote the p—cover of C, with some
choice of lift of y to 7. Set v; = 071! € Ob(27). Let 5,1 (2P)°P — Z-Mod denote the odd Khovanov
projective functor associated to C. Then

(6.11) (B, Don_10,) 0 0T (bon o))z, = Fann, @1

Here we have written (5, (qbvp L,up) O "0 5, (¢U0 v1))z, to denote the restriction of the composite
& (o p—1,0p) OO T, (¢vo.v,)) to the submodule of §,,(07) spanned by Z,~invariant generators, and
then its projection to the submodule of §, (17) spanned by Z,-invariant generators. Recall that the
ordering of the arcs and circles of C are defined with respect to the lift j.

Proof The proof is a case-by-case check of index-1 annular resolution configurations. First, consider the
resolution configuration associated to a merge V ® V. — W. That is, say we have the following picture

in the base:
Do Dy
Y

(x) X
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i@DIS
O &

Figure 3: The V® V — W case for p = 5. The map downstairs is xj,x, — x, where
X1,%2 € Z(Do) and x € Z(Dy). Let Z(Dys) = {X1, X2}, the elements over x; and x», and
let Z(Dy5) = {y1..... s}, related by the action of Zs. Then upstairs the map on fixed points is

X — (y5s=yD) (1= y2)(y2=3)(¥3=y4)¥s = y1Y2¥34)s. Moreover, the element 1 € §,,(0°)
is sent to a term in F/,(1°) which is killed by projection to the summand of invariant generators,
and the element X X5 is annihilated by §/ (qbo5 15) This verifies Lemma 6.10 in this example.

For this case, consider Figure 3, which illustrates the proof for p = 5; the proof for general p is entirely
analogous, and is omitted.

Next, consider the resolution configuration associated to a merge V® W — V. In this case, both upstairs
and downstairs there are only merge maps, from which the lemma follows readily.

Next, consider the case W QW — W. Again, upstairs there are only merges, from which the result is imme-
diate. Note here that the ordering of the circles in the lift is chosen according to the discussion in Section 2.7.

Next, consider the case W — W ® W. For this, downstairs we have Z (Do) = {x} and Z(Dl) = {y1 V24,

and upstairs Kg(0?)Zr = {1,z -+ zp} and Kg(17)Zr = {1, wi --'w;, w%-'-wg, wl.. wpw1 2}
1

where the ordering is such that y; < y, and w} < w; < w? < wl2 for all i, and {z;}, {wl. }, and {wlz} are
the orbits of circles z1, w% and w%, respectively, under Z,.

Downstairs, having fixed an orientation of the crossing going from y; to y,, we have
Sann, @)D =y1—y2 and  Fyo, (Bo7)(x) = y1y2.
Upstairs, using the definition of the odd Khovanov projective functor,
Fo(Pop_1.0,) 00 Fo (Pug,0) (1) = (wi —w) -+ (wy —wp),
2 2

So Doy 1.0p) 00T (oo (21 2p) = (Wi —wi) -+ (wy —wp)(Z1+++2p) = W] -+ WHwT -+~ Wy,
From this calculation, we have obtained the lemma in the W — W ® W case.
The cases V> W ® V and W — V ® V are very similar to the cases we have done so far, and we omit

them; this completes the proof of Lemma 6.10. |

Now, we must see how to translate from an (equivariant, type X) edge assignment € on D to an edge
assignment on D. Fix u =1 v € 2". We define v; € 2"? by v; = (v)? 7 (u)’, as elements of (2")? for
0 <i < p. We then define an element € € C ([0, 1]": Z>) by

€u,v = €vp,up—1 """ €vy,v0-
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Recall the definition of the obstruction cocycle 2(D) from Section 2.4. Any cochain ¢ € C e“([O, 11" Z2)
for which ¢ = Q(D) gives a functor AKHO(D).: 2" — Az, , the odd annular Khovanov—Burnside
functor with edge assignment €, whose stable equivalence class is well defined, ie independent of ¢. To
proceed, we need to confirm that e = Q(D). We will work with the type X obstruction cocycle; the
following lemma also holds for the type Y obstruction cocycle, if the edge assignment upstairs is chosen
to be type Y (the proof below immediately generalizes to the type Y case).

Lemma 6.12 Fore € Ccleu([O, 11"; Z») as defined above, §¢ = Q(D).

Proof For x € C2,

[0, 1]? corresponding to the pair (1, w). We need to check, for each 2—dimensional face u > v, v’ > w,

([0, 1]"; Z) and u =2 w € 2", we write Xy, for the evaluation of x on the copy of

that (8€)y,w = 2(D)y, . There are two cases to consider.

The first case is that § ‘Ann, (¢ w5 ‘Ann, (¢ v) 7 0. Then Q(D)y,y is determined by

SArmo (¢v u)%Anno (¢3)p v) = S/Anno (¢ )8:Arm0 (¢w v’

if and only if Q(D)y . = 1. However, if § ‘Ann, (¢ )5 ‘Anng (¢w v) = 0, more data is needed to determine
Q(D)y,w. For comparison, if we worked with §, in place of § ‘Ann,» More data is needed to define
€2(D)y, only for ladybug resolution configurations Cy 4, (in that case (D), = —1 for type X edge
assignments, etc).

] o o _ L P
Let us consider the case where §, (d)vf)u)S;nno(d)wp,v) # 0. Write w; = w?P™"v', w; = wP™"v",
v; =vP7"u', and v] = v"77'u’ as objects in 2"7. Then, using Lemma 6.10,

€vp,vp—1 """ €v1,00€Wp,wWp—1 T €W, W0 T v,

if and only if
ng’lo (¢3I,)u)’3'fqnno (¢3}p,v) = S";\nno (¢ )SAnno (¢w v/

since
gvp,vp_l "'gvl,vogwp,w,,_l : Gwl,wog (¢v,g 1 vp) o- 03' (¢vo vl)g (‘pwp 1 wp) o- OS (¢wo w1
op op op op
= €v;,,vp s Gul,ug)éwp wy, "Ewi,w(’)go(d’v;,_l,v;)) o-: 'OSO((bv(),vi)go((pwl/,_l,w;) O~ Ogo(d)wé,wi)'

The last equality holds because € is an edge assignment. We have verified (§€)y,,p = S2(D)y,w on all
faces of the first case.

We next treat the second case, faces where sj\mo (¢8?u)3;xnno (¢fvp, v) = 0. We start by cataloging such faces:

Lemma 6.13 Sayu >; v=1 w and let Cy,, be an index-2 odd annular resolution configuration such that

(6.14) Fanng (Do) Fann, (o,

Then either the underlying resolution configuration of Cy 4, is type X or Y, or Cy,, consists of three
concentric nontrivial circles Cy, C», and C3 with Cy and C, joined by an arc, as well as C and C3 joined
by an arc, or the dual configuration of the latter.
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X
X
Figure 4: Cases I-1V, from left to right, of the annular resolution configurations of type X.

Proof The proof of this lemma is a case-by-case check. |

Next, we check that (8¢)y,,y = Q(D)y,w for configurations Cy 4, of type X or Y; such faces are always
of the second case. We may as well assume now that v = 11, v = 10, v/ = 01, and w = 00, to simplify
notation. First consider Cy 4, of type X. There are four annular resolution configurations to consider,
pictured in Figure 4.

Recall that we need to show
(6.15) fv,,,vpfl cee Evlsv()éwp,wpfl e Ewlsw() = _EU;’”;_l e 6”1’”6611’;7’“),/,_1 cee Ewi’w(/).

However, by definition of an edge assignment,

p
l_[ €v;,vi—1 €0l vl Cwiwi—1 €wlwl | T l_[ Q(D)ac.
i=1 (a,c)el

where I is defined as follows. Note that an element of 227, say ¢ = c1 -+ C2p, determines elements
cL =c1c3 - Cap—1 €2P and cg = cac4 -+ c2p € 2P. The objects cr, cg € 27 will be called the first and
second 27 factors of c. The set I is the set of pairs (a, c) with ¢ = 0%x € (22)? for some x € (22)?1,
and where a is the result of replacing the rightmost 0 in the first 27 —factor of ¢ with a 1, and the rightmost
0 in the second 2P —factor with a 1. For example, (0*12,06) and (01°,0313) are both in I for p = 3; in
the latter pair, ¢z, = 021 and cg = 012. We visualize the product []€2(D) as a product with a term for
each face of a grid, whose vertices are objects of (22)?. We draw this in the p = 3 case, with only a few
vertices labeled:
(0%) (0°1) (03101) (010101)

(101010) (19)

Each of the faces of this grid G, corresponding to a =1 b,b’ =1 ¢ € (2%)?, is assigned a label in
{A,C, X, Y} according to the type of the corresponding odd resolution configuration 5a,c. Sometimes
we will assign the faces of the grid a 1, using that 9(5 )a,c = 1 for faces of type C and Y, and —1 for
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faces of type A and X. We will work to understand this grid in cases I-IV. For instance, we will see
below that for case I and p = 3, the grid is

(0% (0°1) (03101) (010101)

x|c|c
c|X|cC
clc|x

(101010) (15)

Given a vertex ¢ € Vert(G) with vertex b € Vert(G) directly below and b’ € Vert(G) directly to the right,
we call Dy the left resolution of D., and Dy, the right resolution of D.. Note that each edge of the
grid corresponds to resolving a crossing that is entirely contained within a single sector (recalling the
notation of sectors from Section 2.6), and so we may label each edge of the grid by the sector in which
the corresponding surgery occurs.

First we treat the configuration 1. Here, upstairs, we give a picture for p = 3:

Q X O
S

Let G denote the grid associated to such a configuration. It is immediate from the definitions that all
the faces on the main diagonal of G are type X. Now, for each off-diagonal face D, we see that one
of the resolutions performed must be a merge. Moreover, each off-diagonal resolution configuration is
disconnected. Inspecting the list of odd 2—dimensional resolution configurations, any such configuration
is of type C. Thus, the total number of faces of type A or X is odd, which is equivalent to (6.15), since
each face of type A or X contributes a factor of —1, while faces of type C and Y do not. So we have
verified Lemma 6.12 in this case.

Next, we treat case II. The picture upstairs is again illustrated for p = 3:
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Figure 5: The off-diagonal resolution configurations in case II. The first four configurations are
realized up to isotopy by expressions of the form (x1, 0x) € 2; x 22 and their permutations, while
the last four are obtained from permutations of (x1, x1) € 25 x 22,

It is readily checked once again that all of the diagonal faces are type X. Fix an off-diagonal face with
upper-left vertex at a € Vert(G), whose left-resolution is in the ¢ sector and whose right-resolution
is in the r' sector for r # g. Write 22 for the ¢! factor of 22 in (22)?. Then the resulting resolution
configuration depends only on the initial condition of ¢ in 22 and 22. To see this, consider the restriction
of Dy ¢ to a sector S; outside of S; and S;. It will be an arc connecting the boundary components 0TS,
and 9~ S, (where the positive (resp. negative) boundary 9% S, (resp. 3~S;) of a sector S; will denote
the end obtained by traversing counterclockwise (resp. clockwise)), as well as some disjoint circles, no
matter the restriction of ¢ to g%. In particular, the resulting 2-dimensional resolution configuration D, .
is formed by drawing the parts of the resolution configuration in the ¢ and r™ sectors, and attaching

these on their boundaries; see for example Figure 5.

Next, fix ¢ € Vert(G), the upper-left corner of a square {a, b,b’, c} in G, where Dy, is the left resolution
and Dy is the right resolution. Say the pair a =, ¢ differs only in entries e; and e,, where e is in the
qth sector and e is in the ' sector. Let agq, dr, ¢q, and ¢, denote the restrictions of a and ¢ to 23 and 23,
respectively, and recall that the type of the resolution configuration D4 . depends only onay, ¢g4, ar, and ¢;.
Note furthermore that the only c in the grid for which ¢, = ¢, = 02 is ¢ = 02, which does not participate
in an off-diagonal face. So we need only consider pairs (a, ¢) with (cg, ¢;) # (0%,0%). We list all such
resolution configurations and their types in Figure 5. Indeed, we see that all the off-diagonal faces of G

are type C, which completes case II (since type X faces appear an odd number of times on the diagonal).
Case III is quite similar to case II and is omitted.
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Finally, we address case IV. The picture upstairs is illustrated for p = 5:

L ..LXZ]_Q
=5

We order the crossings so that the edges forming a pentagon correspond to the first factor 27 — (22)?
and the other edges correspond to the second factor 22 — (22)7.

We divide length-1 arrows in (22)? into two sets as follows. Recall that each arrow ¢3f’u for u =1 v can
be recorded as the element v € (2%)”, but with one of the (1, 0)—entries of v replaced by a * to denote the
entry that changes between v and u. If % is at an odd position in 27 (that is, * occurs in the first 2—factor
in some copy 22 C (22)7), we call ¢Sf’u a left edge; otherwise we call it a right edge. Similarly, an index-2
resolution configuration from u >, w can be described by an element in (2%)? with two bits replaced by .

Note that resolving a right edge on some resolution D, is a split, unless ¢ = (10)?. Resolving a left
edge is a merge unless ¢ = (10)%(00)(10)?~%~1 for some k. Further, any resolution configuration
Dy, for which ¢y, is a split and ¢,y is a split while ¢, and ¢}, are merges has type C. We
then need only consider faces in G containing the vertex (10)? or some (10)¥(00)(10)?~*=1. However,
(10)% (00)(10)?~*~1 is a vertex of G if and only if k = 0. So only the lower-left corner can be of type

other than C. The picture in the lower-left corner is

This is a type X face, and so the proof is completed for case IV.

Translating the above proof to type Y faces is immediate. The grid is the same in each case, with type X
faces replaced with type Y faces.

The only case that remains to check is that of three concentric circles (and its dual). We fix an orientation
of edges as below; the case of other orientations is similar.
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We order the crossings so that the outer edges correspond to the first factor 2”7 — (22)? and the inner
edges correspond to the second factor 27 — (22)”. The upper-left corner of G is readily seen to be a
type C configuration, since it consists of two merges. We note that the next configuration on the diagonal
of G is a type X face:

In fact, all other faces on the diagonal are type X, since the arcs outside of the “active” sector, up to
isotopy, do not depend on ¢, as is illustrated below:

In particular, there are an even number of faces of type X on the diagonal.

For u € (2%)7, let |u|; (resp. |u|2) denote the number of 1’s occurring in the first copy (resp. second
copy) of 27 — (22)P. Now suppose D, ¢ is an index-2 resolution configuration such that ||y > |c|2, for
a, ¢ € Vert(G); suppose b is the left resolution and b’ is the right resolution. Such resolution configurations
are, up to isotopy,

From these, we observe that (]52],3 , is a merge and ¢Z‘f’a is a split, while ¢)§f)b is a split and ¢Z?a is a merge.
Any such resolution configuration has type C. For any ¢ with |c|2 > |c|1, it turns out similarly that D  is
type C. Therefore, the total number of faces of type A and X is even. Then, as in the discussion of case I
in the proof of Lemma 6.12, for the case of three concentric circles downstairs, (§€)y,w = 1 = Q(D)y,w-
(The case of three concentric circles with the orientation of edges changed results in replacing the type X
faces on the diagonal by type Y faces.)
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We omit the case dual to three concentric circles; it follows by application of techniques similar to above.

Since there is at most one signed matching compatible with the Khovanov-Burnside functor, the matching
specified above is the ladybug matching. This completes the proof of Lemma 6.12. m|

We next deal with the case of 2-morphisms for the even Khovanov functor.

Lemma 6.16 Let u >; v,v’' =1 w € 2". The bijection
’CH(¢tv,Lw)Zp o ICH(¢LM,LU)ZP - ICH(¢Lv’,Lw)Zp o ’CH(d’tu,w’)Z’)
is the ladybug matching.

Proof This is quite similar to, but more straightforward than, the proof of Lemma 6.12. First of all, there
is only something to check if the configuration Dy, ,, downstairs is a ladybug (so there is no analogue of
the three-concentric-circles case in the previous proof). Moreover, IC’H(([)LU,Lw)Zl’ o ICH(qu,W)ZP =g
for configurations of type II and III (appearing in the proof of Lemma 6.12). That is, we need only
consider index-2 annular resolution configurations downstairs of types I and IV.

Case I is a similar calculation to Lemma 6.12 and is omitted. For case IV, we argue inductively. For
odd p we are already done by the comment before the proof, and it is a straightforward calculation to
verify that the lemma holds for the case p = 2.

For p odd, the lemma follows as a consequence of Lemma 6.12, since an edge assignment determines the
ladybug matching.

Say we have verified case IV for fixed p’. We show how to verify it for p = 2p’. The resolution
configuration D upstairs is formed from p’ sectors of the form below; the dotted lines indicate the boundary
of one of the p’ sectors, and the dashed line further bisects this sector into two of the p = 2p’ sectors:

&
)

’
’

///2/
0 1 <

We now draw the grid G as in the odd case, except that we order the crossings using the ordering of Q4H?'
rather than (22)”. That just means that, in the above picture, we resolve all edges labeled 1 (resp. 2)
before any of those labeled 3 (resp. 4). The Z,—fixed resolutions look as in Figure 6, in one of the p’
sectors. In the configuration 51010, label the inner circle by x and the outer circle by y.

Using our inductive hypothesis (and looking at the ladybug matching on D /Zp), the circle x is matched
with zy - -+ z,/, where z; are the circles in 51 100 that intersect (the dotted) sector boundaries. A further use
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1\>/ Lo X

Figure 6: Resolution configurations appearing in Lemma 6.16. Here are pictured (one sector
of) the resolution configurations invariant under the action of Z,s C Z,. The configurations on
the top row are 504, 50100, 50101, 51000, and 51100, and those on the bottom row are 51101,
51010, 51110, and 514. We have simplified the indexing by writing the indices for the quotient
diagram 5/Zp/.

of our inductive hypothesis matches z1 - - -z, with the product w} ---w;,w% ---w?,, where the w! and

p
w? are as labeled in Figure 6. Note that the generator w% ---w;/ is indeed Zp—invariant, as are x and y.
Taking the quotients of D919 and D101 by Z,, we see that x, the generator downstairs corresponding
to x, indeed corresponds, under the right ladybug matching, to w, the generator downstairs corresponding

to the product w% .o w;,. This establishes the inductive step, and completes the lemma. a

6.4 Well-definedness of the action

In this section we show that, for a p—periodic link L, the Z p—external stable equivalence class of the
Burnside functor K is an invariant of L if p is odd, the external equivariant stable equivalence class
of KHO is an invariant of L, and the corresponding statements for the annular functors AKX and
AKHO hold.

Proof of Theorem 6.3 Throughout the proof we will usually abbreviate “(equivariant) external stable
equivalence class” to “equivalence class”, where it will cause no confusion. We start with the case of p
odd and KHO. We must first show that the equivalence class of IC’H(’)(ﬁ), for a fixed diagram D, is an
invariant of the choices made in its construction. Namely, we show independence of the orientation of
crossings, the (equivariant) edge assignment, and the ordering of the circles a; at each resolution. The
proof of these claims almost follows verbatim from the start of the proof of [50, Theorem 1.7].

o Edge assignment Let ¢ and €’ be two different equivariant edge assignments of the same type.
As noted in [47, Lemma 2.2], €€’ is a (multiplicative) (Z,—invariant) cochain in Ccle“([O, 11"; Z»). By
Lemma 6.5, €€’ is the coboundary of an invariant O—cochain « on the cube of resolutions. That is, there is a
map & : 2" — {£1} such that for any v >; w, we have a(v)a(w) = €(¢y v )€ (P v). If Fo and F; are the
corresponding functors 2" — %, we construct a stable equivalence using the functor F: 2" 1 — B,
defined by F,|;x2» = F;, and on the arrows between the two copies of 2" using the signed (identity)
correspondence F1(v) — F»(v) determined by «. That is, we apply the sign reassignment by « in the
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language of [50, Definition 3.5]. Using the invariance of o, we see that F, admits an external action. It
is straightforward that this natural transformation induces quasi-isomorphisms on the totalization of all
fixed-point functors, finishing this check.

¢ (Equivariant) orientations at crossings Recall that [47, Lemma 2.3] asserts that for oriented diagrams
(L,0) and (L, 0’) and an edge assignment ¢ for (L, 0), there exists an edge assignment of the same
type €’ for (L, 0’) such that Kc,(L, 0, €) = Kc,(L,0', €’). The isomorphism constructed in that lemma
respects the Khovanov generators, and so induces an isomorphism of Burnside functors. The natural
generalization to the equivariant setting also holds; that is, for a change of equivariant orientation of
crossing, the corresponding odd Khovanov chain complexes are identified (and €’ is equivariant), from
which independence of XHO follows. (Independence of the (equivariant) orientations of crossings can
also be proved using (equivariant) Reidemeister II moves twice, as in [51, Figure 4.5].)

¢ Type of edge assignment Lemma 2.4 of [47] shows that an edge assignment € of a link diagram
with oriented crossings (L, 0) of type X can also be viewed as a type Y edge assignment for some
orientation o’. That is, the type X Burnside functor associated to (L, 0, €) is already the type Y Burnside
functor associated to (L, o', €). In fact, if L is a periodic link diagram, the orientation o’ constructed in [47]
is equivariant. Moreover, the identification of the Burnside functors is equivariant, handling this case.

e Ordering of circles at each resolution We must check that reordering the circles of a resolution
results in an equivalent Burnside functor. For this, let Kg(u) and Kg’(u) denote the Khovanov generators
for two differing (equivariant) orderings of the circles for a fixed equivariant link diagram. These orderings
are related by a bijection from Kg(u) to Kg'(u). One checks directly that these bijections relate the two
functors Fi, F»:2" — Pk by a sign reassignment, which, moreover, commutes with the action of Z,.

We now assume that the ordering of the circles upstairs is chosen as at the end of Section 2.6. We show
how to check invariance of XHO under Reidemeister moves by upgrading the proof for chain complexes
to Burnside functors, as is done in [37; 43], with the only change that we keep track of the external action
in the course of the proof. We will work out the details in the case of a Reidemeister I move; this case
will make clear what modifications are necessary to the usual invariance proof of XHO (without external
action) for Reidemeister II and III moves. Indeed, the proof of invariance is largely an iterated version of
the usual invariance proof of Khovanov homology.

Let D be a periodic link diagram, and let D’ bea diagram that differs from D by only an equivariant
Reidemeister I (R1) move, which consists of p usual Reidemeister moves in the same orbit. See Figure 7,
where we choose one of the R1 moves for concreteness. Let F; denote the odd Khovanov—Burnside
functor of D, and F, that of D’.

From its definition Kg(D') = [Hie2r Kg(ﬁlf ), where 51’ denotes the resolution of D’ by resolving the
orbit of the R1—crossing according to i € 2P. Let C denote the subcomplex spanned by all the generators
of [| 0P Kg(ﬁ ;) as well as the generators of Kg(ﬁo) that do not contain the product ay - - - ap, where
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S
=)

{& S5 T -}

Figure 7: An equivariant Reidemeister I move. The left-hand image denotes a periodic link
diagram D (with p = 3 pictured), with a Z,—orbit of a certain unknotted arc picked out. The
right-hand image denotes the periodic link diagram D’ obtained by performing a Reidemeister I
move along each arc of the orbit.

the a; are as in Figure 8. Iterating the usual proof [7, Section 3.5.1] of Reidemeister I invariance shows
that C is acyclic.

Furthermore, K¢, (D) is naturally identified with Kc, (D")/C. We have a quotient map

(6.17) Kco(D') — Keo(D),

which is a chain homotopy equivalence (because C is acyclic). This map is induced from a subfunctor
inclusion KHO(D) — KHO(D'), in that (6.17) is the dual map on totalizations

Tot(F>)* — Tot(Fy)*.

Here we have used Theorem 6.1 to relate the Khovanov chain complex with the totalizations. We have a
(Z»—equivariant) stable equivalence F; — F>, but we have not yet seen that it is an external equivariant
stable equivalence. We must also show that the induced map

Tot(F4)* — Tot(F)*

is a homotopy equivalence for each ¢ > 1 dividing p. For this, let by, ..., b,,, denote the images of the
Reidemeister circles a; in the quotient D /Z4. Consider the subcomplex E of AKco(ﬁ/ /Z4) generated

a,61 . 56,, X Dip
X X

Figure 8: Some resolutions of the link diagram D. The ellipses to the upper-right record that we
have omitted all but three sectors of the periodic link diagram D’.
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as before by all generators except those of (5’ /Zgq)gr/q that contain the product by ---b, /4. As usual,
one checks that E is acyclic, and AKc¢, (5/Zq) = AKco(ﬁ’/Zq)/E, so the map

(6.18) AKco(D'/Z4) — AKco(D [ Zy)

is a quasi-isomorphism.

Moreover, the subfunctor inclusion ICH(’)(ﬁ) — KHO(D' ) described above passes to an inclusion on
7 4—fixed-point functors IC’H(’)(ﬁ)Zq — ICHO(ﬁ’ yZa. Using the identification in Theorem 6.7, the
induced map on totalizations is (6.18). Since we have already seen that (6.18) is a quasi-isomorphism, we
have proved invariance under Reidemeister I moves. Keeping track also of the maps induced on even

Khovanov homology shows that the inclusion F; — F; is an equivariant stable equivalence of Burnside
functors with external action, as needed.

Invariance under equivariant Reidemeister II and III moves is shown in much the same way. That is,
for each acyclic subcomplex or quotient complex “move” in the usual proof of invariance of XHO, as
in [50, Section 5.3], one iterates the move p times to produce an acyclic subcomplex (resp. quotient
complex) which is equivariant, and whose quotient (resp. dual subcomplex) is homotopy equivalent to
the original complex. The subcomplexes (resp. quotient complexes) resulting from fixed-point functors
can be understood via Theorem 6.7; the induced maps on the totalization of the fixed-point functors give
chain homotopy equivalences as well, since they are the usual maps used in the proof of invariance of
odd annular Khovanov homology (without external action) from [24, Section 3.2].

The proofs of the even version (for all p > 1) and the two annular versions are entirely analogous. O

Proof of Theorem 1.3 Let X}, (Z) denote an equivariant realization modeled on R”, where Z p acts
trivially on R™, of the stable Burnside functor with external action KHO(L), and similarly let AKH, (L)
be the realization of AXHO(L) modeled on R™.

More generally, say V' is a finite-dimensional orthogonal (Z, xZp,)-representation, with p odd, as in the
statement of Theorem 1.3. Write X} (L) for an equivariant realization of XHO(L) modeled on V, and
similarly for AKHQO. The statement that the actions are well defined is the combination of Proposition 5.23
with Theorem 6.3. The fixed-point assertions follow from Theorem 6.7 combined with Lemma 5.14. The
gradings can be recovered from Proposition 2.6. |

6.5 Smith inequalities

We now use the results on fixed-point functors from Section 6.3 to obtain rank inequalities for Khovanov
homology. Let p be prime, and G = Z,.

Recall that the classical Smith inequality (1.2) for a finite G—-CW complex M is obtained by studying
two spectral sequences arising from the Tate bicomplex

CTate(M) — (C*(M,Fp) ®Fp[9, 9—1], dTate)
= (. C*(M:F,) N C*(M:TF,) 1=y, C*(M:TF,) NG,y
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where ¥ generates the G—action on singular cochains C*(M;F,) and N(v) is the norm
T+y 492+ y?

The filtration by 0—degree gives a spectral sequence E® with E! >~ H*(M;F,) ® F,[0, 0], while the
filtration by cohomological degree gives a spectral sequence converging to H*(M S ; Fp)RF,[0, 071]. The
assumptions give sufficient boundedness to conclude that E*® also converges to H*(M 9 ; Fp)®@F,[0,071],
and the rank inequality follows. (For a more detailed exposition, see [44; 59].)

Theorem 6.19 For a p—periodic link L for prime p (resp. odd prime p), with quotient link L, and each
pair of quantum and (k)-gradings (j, k), there is a spectral sequence with

E' = AKhP/=(P=DRK([ ) QF,[0,07  (resp. AKhE/=(P=DRK([.F )y @TF,[0,67"))
converging to
E® =~ AKWK(L:F,) @ F,[0,67]  (resp. AKhI¥(L:F,) @ F,[6,671).
There is also a spectral sequence with
E' >~ Kh(L;F,) @F,[0,.07Y  (resp. Kho(L:F,) @F,[0,071])
converging to
E® = AKh(L;F,) @ F,[0,07']  (resp. AKho(L;F,) @F,[60,071)).

Proof First, consider the case of p odd, and odd annular Khovanov homology. Construct the Tate
bicomplex for X, (L) for odd n (here, X, (L) is viewed as a space, without passing to the suspension
spectrum). The 6—degree filtration gives a spectral sequence with the desired E!—page which converges

to the homology of the fixed-point set X, (L)C, which by Theorem 1.3 is AKH,, (L). Now, for the case
of even Khovanov homology, repeat the above recipe with n = 0.

The proof for the spectral sequences starting in the annular case is entirely analogous. Finally, for the
gradings, note that the spectral sequence splits according to the wedge sum components in the CW
realizations. o

Corollary 6.20 Maintain the notation from Theorem 6.19. For each pair of quantum and (k)—gradings
(j, k), the following rank inequalities hold (for vector spaces over Fp):

dim AKRP/ =Pk ([ ) > dim AKRPK (L F),

dim AKRE/ ~(P=Dkk ([ ) > dim AKRJK (L F).
We also have the rank inequalities (where each object is the sum over all quantum and (k)—gradings)

dim AKh(L;Fp) > dim Kh(L;F,) > dimAKA(L;F,) > dimKh(L;F,),
dim AKhy(L; Fp) > dim Kho(L; Fp) > dim AKho(L; Fp) > dim Kho(L; Fp).

Proof The AKh-to-Kh inequalities follow from the filtration of the Khovanov complex [49]. The middle

inequalities follow from Theorem 6.19. O
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6.6 Questions

We conclude with some questions about the construction of equivariant Khovanov spaces. Fix throughout
a p—periodic link L with quotient L.

(g-1) We have not attempted to relate the totalization Tot(HO) — that is, the equivariant odd/even
Khovanov complex — with any particular CW chain complex of X, (L), viewed as a Z p—equivariant space.
This would be useful to understand in order to relate our constructions with the equivariant Khovanov
homology (or an odd version of the same) constructed by Politarczyk [48]. In more generality, it would
be desirable to better understand a Z,—equivariant cell decomposition of A}, (Z) so that, for example, the
space Xy (I:) could be related to the space constructed in [11].

(g-2) A better understanding of the case of even p for the odd Khovanov—Burnside functor XHO would
be desirable. In particular, our techniques are sufficient to show that for a given periodic diagram D
of L, the functor IC’HO(ﬁ) admits a Zp,—external action. However, it is not immediately clear that this
action is a link invariant. Moreover, the resulting external action need not be nonsingular. It is not clear
to the authors whether (for n > 1) Theorem 1.3 (including the statement about fixed points) also holds for
even p; we do not know of a counterexample.

(g-3) Are there applications of our constructions to showing that some links are not periodic? Borodzik,
Politarczyk, and Silvero [11] have obtained such applications; are there further applications that require
using the odd theory?

(g-4) Willis [57] showed that the Khovanov homotopy type of torus links 7'(n, m) stabilizes as m — co.
How does this stabilization interact with the Z,,—action?
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