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Abstract

Additive manufacturing (AM) is a smart manufacturing process to fabricate components with high precision, minimal post-processing, and
increased component complexity in a variety of materials. This research focuses on developing automated image analysis and predictive models
for a widely used 3D material inkjet printing (IJP) process. The interplay of four input process parameters, which include frequency, voltage,
temperature, and meniscus vacuum, on the output metrics of the inkjet printer was evaluated using statistical measures (ANOVA). Droplet types
were classified as no drop, satellite drop, and normal drop using four machine learning classifiers, including random forest, support vector
classifier, k-nearest neighbor, and decision trees. Hyperparameter tuning was performed for each model for over 486 data points. Regression
predictive models were developed for both ink droplet velocity and volume with three linear models (linear, lasso, and ridge regression) and four
non-linear models (random forest, decision tree, support vector regression, and k-nearest neighbor). Mean squared error and the coefficient of
determination, r-squared value, were used to evaluate the performance of the predictive models. For the drop type classification models, k-fold
of 5 yielded the highest accuracy for the RF, KNN, and DT models of around 98%. Similarly, for the regression based predictive models RF, DT
and KNN accuracy results ranged from 97 to 99%. All the machine learning models were validated with experimental data with high prediction
accuracies accuracy. This research serves as a foundation for developing design guidelines for 3D material inkjet printing with applications in
biosensors, flexible electronics, and regenerative tissue engineering.
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1. Introduction jetting processes, binder jetting processes, sheet lamination

processes, and direct write technologies [1]-[3]. Inkjet 3D

3D printing, also known as additive manufacturing (AM),
builds three-dimensional solid objects, layer-by-layer, using
different materials such as polymers, composites, ceramics, and
metals. There are different types of additive manufacturing
processes, which include photo-polymerization processes,
extrusion-based systems, powder bed fusion processes, material

printing (IJP) is one of the most popular AM techniques that
deposits micrometre-scaled material-laden droplets with very
high precision [4]-[11]. Of all the AM processes, inkjet printing
has emerged at the frontline due to its unique features of low
cost, high pattern precision and resolution, scalability,
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compatibility with different substrates, reduced post-

processing, and non-contact approach.

Nomenclature

v voltage in volts

f jetting frequency in kHz

t cartridge ink temperature in degree Celsius

mv  meniscus vacuum in inches H,O
v velocity of the ink droplet in m/s
Vol. volume of the ink droplet in pm?
LR  linear regression

RF  random forest

SVM support vector machine

SVR support vector regressor

DT  decision tree

KNN k-nearest neighbor

The 4" industrial revolution, or Industry 4.0, encompasses a
variety of technologies to transform the manufacturing industry
[12]. It involves concepts such as inter-machine
communication, the internet of things to enable automation,
and developing machines with the minimum technical
intervention of humans [13], [14]. Extending this concept to the
additive manufacturing process, physics-based models have
been developed for IJP to produce micro and nanoscale
dimensions [11], [15]-[17].

There are two different mechanisms by which inkjet printers
generate droplets, which include Continuous Inkjet (CI1J) and
Drop-on-Demand Inkjet (DoD) printing [13]. In a CIJ system,
a stream of droplets is ejected continuously under an applied
electric field and a charging electrode. In a DoD printing
system, the droplet can be ejected based on print demand by a
voltage waveform [14]. In the 1JP process, the liquid material
is jetted out from the printer head (carrying an ink-filled
cartridge) in a sequence of micro-droplets via a micrometer-
sized nozzle head, which are then solidified on the substrate.
The deposited materials are in the form of chemical solutions
and colloidal dispersions. The major actuation mechanisms of
the inkjet nozzle head include thermal, piezoelectric, and
electrohydrodynamic. The benefits of IJP are compatibility
with elastomers, maskless processing, reduced manufacturing
costs, and the fabrication steps [18]. In a continuous inkjet (C1J)
printer, a high-pressure pump pushes ink from a nozzle,
creating continuous ink droplets. The droplets are surrounded
by an electrostatic field created by a charging electrode. Under
the influence of the electrostatic deflection plates, the charged
droplets can pass through the electrostatic field and are finally
printed on the substrate [19], [20]. The unused droplets are
pushed back to the ink chamber. CIJ is an aged technology and
normally used for commercial products and packages. The
drop-on-demand (DoD) printers are either thermal or
piezoelectric in type. In thermal DoD printers, a pulse current
can rapidly vaporize the ink to form a bubble, producing a high
pressure to propel a droplet of ink printed on the substrate [21].
On the other hand, piezoelectric printers use piezoelectric
heads with an ink chamber behind each nozzle. A voltage is
applied, which generates a pressure pulse, ejecting ink droplets
from the nozzle [22]. The advantage of the piezoelectric inkjet
is its wider variety of inks compared to the thermal inkjet, as
there is no need for volatile components in the inks [23]. In this

research, we focus on DoD inkjet printers as they are primarily
used in 3D printing of functional parts. The print quality in
DoD inkjet AM process largely depends on several factors, of
which piezoelectric voltage (referred to as voltage from here
on), jetting frequency (referred to as frequency from here on),
cartridge temperature (also referred to as ink temperature), and
meniscus vacuum maintained at the nozzles are the most
influential. These factors will influence the ink droplet’s type,
velocity, and volume. Depending on the process parameters,
droplets may not eject from the nozzles (no-droplet condition),
satellites may follow the regular drops, or they may come out
like healthy normal droplets [24], [25]. The resolution of the
printed object also depends on the drop’s velocity and volume.
Analysis of drop-on-demand piezo inkjet printers conducted by
Kang et al., [26] found that increasing the piezoelectric voltage
increased the ejection velocity with associated generation of
satellite drops. Cooling the ink decreased the drop velocity
while diminishing the satellite drops. The videos obtained
from different combinations of voltage and frequency were
processed using image analysis, and it was discovered that
jetting behavior changed with reference to voltage and
frequencies [15]. Optimal voltage and frequencies are required
to eject normal droplets. A study of the jetting evolution of
inkjet printers [27] shows that drop velocity increases with an
increase in cartridge temperature. For the behavior of droplet
impacting substrate, researchers have performed numerous
research work studies [28], [29]. Du et al. [30] studied the
kinetics of the droplets, and Xiao et al. [31] investigated the
droplet collision kinetics. All these studies show the root cause
of the print failure as either droplet type, droplet velocity,
droplet volume, or a combination of some or all of these. The
most challenging part of inkjet printing is achieving a
consistent droplet deposition quality [32]. A machine learning
approach was utilized by Caggiano et al. [33] to develop on-
line fault prediction with automatic image processing in for
timely identifying material defects. Their research was
conducted by capturing images during the layer-by-layer SLM
process. Wu and Xu [34] utilized predictive models for
predicting droplet velocity and volume using ensemble
learning. Lin et al. [35] evaluated the two aspects of droplet
profiles: droplet shape and temperature, using radial basis
function neural networks. Machine learning has been used in
different fields to understand the complexity and nonlinearity
that exist in a system when sufficient data are provided [36]—
[38]. This research focuses on automated image analysis and
building predictive models to improve the droplet quality of the
DoD inkjet printing process. Furthermore, ML models are
utilized to predict droplet characteristics, such as droplet
velocity and volume, based on input parameters. Unlike most
works found in the literature where one or at most two
influencing inkjet parameters were considered, this work used
four (4) most influential factors such as voltage, frequency, ink
temperature, and meniscus vacuum to predict both qualitative
(ink droplet type) and quantitative (volume and velocity)
characteristics of the ink droplet. Moreover, a comprehensive
treatment of machine algorithms was performed for predicting
qualitative and quantitative measures for of droplet
performance. Thus, this paper elucidates the translation of
automated image analysis into seamless predictive models that
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can be implemented in real-world industrial 3D printing
settings.

2. System description

Experiments were conducted on the Fuji Dimatix DMP
2850 inkjet 3D printer as shown in Fig.la. The Dimatix
materials printer (DMP) can handle a wide variety of fluids,
including aqueous-based, solvent-based, UV-curable fluids,
biological solutions, and particle suspensions. Printing efficacy
was optimally achieved by choosing fluid characteristics that
include a viscosity range of 4-8 cps, surface tension range of
28-32 dynes/cm. The cartridge, as shown in Fig. 1b, can handle
chemically compatible materials such as aliphatic
hydrocarbons, aromatic hydrocarbons, aliphatic alcohols,
ketones, ethers, acrylates, and glycols.
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Fig. 1. (a) Dimatix 2850 printer, (b) ink cartridge. [39]

With piezoelectric drop-on-demand inkjet technology, a
drop volume of 2.4 pL with a single dot size of 30 um using 12
jets of nozzles can achieve 75 DPI resolution. The print head is
equipped with a built-in heater and thermistor to heat the ink
and measure the temperature. All these special features make
this printer capable of manufacturing flexible electronic
circuits, RFID antennas, 3D printed materials, and DNA arrays.
Substrates up to 25mm thick with a printable area of 210 mm x
260 mm can be used to achieve a print repeatability of +/- 25
um. To observe the drop and print qualities, two types of
cameras are used: drop watcher and fiducial cameras, as shown
in Fig. 2a and 2b. The drop-watcher camera allows direct
viewing of the jetting nozzles and the actual jetting of the fluid.
The fiducial camera aids in depositing a pattern on a pre-
patterned substrate, in jetting a layer with a different cartridge
material or inspecting the printed features.

Fig. 2. (a) Drop watcher camera, (b) Fiducial camera.

3. Methodology

The research progressed through a series of activities,
including setting up and conducting experiments. These
involved the extraction of output parameters of drop
characteristics (no drop, normal drop, and satellite drop), drop
velocity, and drop volume, image acquisition and processing,
and building droplet prediction machine learning models.

3.1. Design of experiment

Full factorial design was used to choose various
combinations of voltage, frequency, ink temperature, and
meniscus vacuum to study the output parameters, which
include drop quality, velocity, and volume. A design matrix
with four factors (voltage, frequency, ink temperature, and
meniscus vacuum) at three levels (low, medium, and high) and
six replications was used. A total of 486 experimental runs
were conducted (3* x 6 = 486). All four input parameters

contributed equally among all 486 datasets. Experiments were
conducted on the Fujifilm Dimatix DMP 2850 inkjet 3D
printer. Videos were captured from the drop watcher camera
(15 frames per second) for each set of operating parameters. A
custom code was developed using the OpenCV, computer
vision Python library to classify the drop type as normal, no-
drop, or satellite from the videos. The droplet velocity and
volume values for each input parameter combination were
calculated from the image analysis. The input and output
parameters were saved as a .csv file, which served as the
dataset. Python programming language was used in Jupyter
notebook for data pre-processing, feature selection, spot check
classification and regression algorithms, model selection, and
to plot the needed visuals. Fujifilm’s Model 3 fluid was used to
print a selected pattern. A Samba cartridge with a drop volume
of 2.4pL and a drop size of 17 microns was used to conduct the
experiments. The pattern used to run the experiments is shown
in Fig. 3. It was the same for all the runs.

Fig. 3. Pattern (input drawing). [39]

The trajectory of the droplet is described as a drop ejecting
from the nozzle vertically down onto either the drop catcher or
substrate. This can be seen in Fig. 4a where the droplet ejects
from the nozzle of the cartridge. The image captured will have
a mirror image at the top. The camera captures the nozzle tip
and the drop propagation from the nozzle to the drop catcher,
as shown in Fig. 4b. whereby, image analysis was conducted to
classify the drop characteristics and calculate the drop
velocities and volumes.
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Fig. 4. Droplets eject from nozzle (a) physical set-up (b) drop travel image.

Initial experiments were conducted wherein changes were
made to one independent variable at a time to avoid the
influence of confounding variables. Thereby, we evaluate the
extreme limits of the input parameters to eject droplets. Table.
1 shows the results for the limiting conditions. All experiments
were carried out in a controlled environment at a temperature
of 25°C and a relative humidity of 60%.

Table. 1. Process parameter levels and output metrics.

Condition No- Satellite Normal
Drop
1. Voltage range below 17V X
F=5, t=40, MV=3.5
> ’ 3 18 to 27V X

28-30V X

II. Frequency range 1.18 to 7kHz X

V=23, t=40, MV=3.5
8-13kHz X
13.1 and X
above

III. Ink temp range 32°C X

V=23, F=5, MV=3.5 34-40 X
42-46 X

IV. Meniscus 35 X

Vacuum range

V=23, F=5, t=40 4 and above X

Table. 2 shows the design matrix of some of the runs used
for this experiment. It shows combinational values for all input
parameters.

Table. 2. Sample data points of the design matrix.

Run Number  Voltage Frequency  Ink Meniscus

(randomly ™) (kHz) Temperature Vacuum

selected) ©C) (inches of
H,0)

19 17 5 32 35

59 32 10 38 4.5

126 25 15 44 5.5

343 21 8 28 4.0

356 29 13 36 5.0
471 35 18 40 6.0

3.1.1. Velocity of droplet

Images captured from the drop watcher camera were used to
find the droplet’s velocity. Strobe delay was used in
conjunction with the droplet distance from the nozzle in the
captured frame. Strobe delay captured from the drop watcher
video can be seen in Fig. 5, for a delay of 30 psec. The drop
travelled 240 um and thus, the drop velocity was calculated as
a ratio of the distance travelled and the strobe delay. In this
illustration, the drop velocity was 8.0 my/s. In this work, python
programming and image analysis through OpenCV are used to
capture the velocities automatically and were exported into a
.csv file.

The automated method is more precise and faster than the
traditional method presented by [40], [41]. The images were
captured for all the datasets, and the velocity for each dataset
was fed into the machine learning algorithm for predictive
analysis.

Jetting Control:
Jetting Frequency: 500 kHz

Fig. 5. Ink droplet travel for a strobe delay of 30 ps.
3.1.2. Droplet volume

Ink droplets were ejected in different forms based on the
preset jetting conditions and the ink properties. To
accommodate all forms of ink droplet shapes including
spherical, elongated, and combinations thereof, the ink droplet
volume was computed using the centroid approach as
compared to the volume formula for simple spherical shape.
For the centroid approach, a cross-sectional area of the ink
droplet as shown in Fig. 6 was calculated. One-half of the
cross-sectional area when rotated about its centroid in the
vertical axis gives the volume of the droplet. This was further
divided into smaller elemental parts, each having an area, 44,
The total half of the droplet cross-sectional was summed as
given in equation 1:

A = BP0k, ()
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Fig. 6. Original and segmented ink droplet images for the region of interest.

The centroid of each elemental part is given as 713,. Using the
concept of the moment of gyration, the centroid of half of the
droplet cross-sectional area can be calculated using equation 2:

1
Ty = ZZZ:lTkAAk (2)

The volume of the ink droplet was computed by rotating half
of the droplet cross-sectional area by 2m and further
simplification is given in equation 3:

Vol.= 2@ Z’]::lrkAAk (3)

Substituting equations 1 and 2 into equation 3, the general
volume calculation using the centroid approach is given as:

Vol.= 2nr A (4)

With equation 4, the droplet volume of any arbitrary shape
can be computed such as non-spherical droplet shapes and
elongated droplet shapes.

3.2. Data management

A crucial prerequisite before using datasets for any
application is to understand the dataset at hand. Failure to do so
can result in inaccurate analytics and unreliable decisions [42].
A total of 486 datasets were used in the prediction models.

3.2.1. Data collection and processing

The collection of data was based on experiments. Videos
and images were captured through the DMP 2850 printer’s
drop watcher camera for each combination of input parameters
as shown in Table 2. Strobe delay values for each dataset were
captured to feed these values into the velocity calculations. The
utmost care was taken to ensure consistency in the background
of the videos and images to avoid region of interest conflicts
while performing image extractions. The videos and images
contain noise from various sources like misfiring at nozzles and
clogging of ink or splashes. To avoid the confusion of
classifying the droplet between normal and satellite, a custom-
written Python code using OpenCV and NumPy libraries was
used to perform background subtraction. The size of the
original images were 720 pixels x 480 pixels x 3 channels for
the width, height, and channels, respectively. The region of
interest (a single nozzle and the ink droplet) was obtained by
cropping the original image size to a width of 20 pixels and
height of 240 pixels and retaining the 3 color channels that were

specified in the Python code used. The image reduction aided
efficient computation for the measured ink droplet types,
volume, and velocities.

The ANOVA (Analysis of Variance) shown in Table 3
represents the results of statistical analysis looking at the
effects of individual factors of voltage, frequency, ink
temperature, and meniscus vacuum on a droplet type (normal,
satellite, or no droplet), as well as the interaction effects
between these factors. Larger F-values (variances between two
populations) typically signal a significant relationship between
the factor and the droplet type. The p-value is the probability
of observing a statistic as extreme as the one calculated under
the null hypothesis (the hypothesis that there is no effect). P-
value (probability of observing a statistic as extreme) less than
0.05 are usually taken as evidence that the factor significantly
affects the outcome. In Table 3, the effects of voltage, ink
temperature, and meniscus vacuum on the droplet type seem to
be significant as the p-values are 0.0014, 0.0033, and 0.0065
respectively, which are less than 0.05. The interactions between
voltage, frequency, ink temperature, and meniscus vacuum are
not statistically significant, with p-values of 0.78 between
voltage and frequency, 0.57 between voltage and ink
temperature, 0.14 between voltage and meniscus vacuum, 1.00
between frequency and ink temperature, and 0.56 for frequency
and meniscus vacuum. The factor frequency does not have a
significant effect on its own with a p-value 0.64 (greater than
0.05).

Table 3. ANOVA table for main and interaction effects on droplet
characteristics.

Source of variation Sum of Degrees  F-value p-value

Squares of

Freedom

voltage 3.74 1 11.0 0.0014
frequency 0.074 1 0.218 0.64
ink temp 3.13 1 9.2 0.0033
Meniscus vac 2.67 1 7.85 0.0065
voltage: frequency 0.026 1 0.07 0.78
Voltage: ink temp 0.1 1 0.31 0.57
voltage: meniscus vac 0.75 1 22 0.1416
Frequency: ink temp 9.08E-28 1 2.67E-27 1
frequency: meniscus vac 0.11 1 0.33 0.56
Ink temp: meniscus vac 1.36 1 4.01 0.049

3.3. Machine learning algorithms
3.3.1. Classification algorithm for drop characteristics

Four machine learning models, random forest, support
vector classifier, k-nearest neighbor, and decision trees, were
used to classify droplet type as no-droplet, satellite, or normal.
Model accuracy and confusion matrix were both used as
classification metrics to determine each model’s performance.
K-fold cross-validation, which provides a more robust and
comprehensive way to assess a model’s performance and
generalization was used compared to a simple train-test split.
Hyperparameter tuning was also performed to explore the
optimal hyperparameter selection for each model. Three k-fold
values of 3, 5, and 8 were used on the 486 data points.
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3.3.1.1. Classification performance metrics
The chosen classification models were evaluated using the
model accuracy and confusion matrix as detailed in Section 4.

Model accuracy

Model accuracy is the ratio of rightly classified instances by
the model to the total number of instances as expressed in
equation 5. A higher model accuracy is desirable, and at the
same time, the issue of overfitting was checked. .

accuracy =
True Positive + True Negative

)

True Positive + False Positive + True Negative + False Negative
Confusion matrix

This is a table that shows the classification of data points
into possible categories. The number of categories depends on
the number of classes. In this work, three classes were
considered, there are 3 X 3 = 9 possible categories.

3.3.2. Regression algorithms for drop velocity and volumes

Both ink droplet velocity and volume predictions were
considered to be a regression problem because they are both
continuous variables. Three linear models (linear, lasso, and
ridge regression) and four non-linear models (random forest,
decision tree, support vector regression, and k-nearest
neighbor) were used to predict both the ink droplet volume and
velocity. The mean squared error, the coefficient of
determination, and the r-squared value were used to evaluate
the performance of each model.

3.3.2.1. Regression performance metrics

The seven candidate regression models were evaluated
using both the mean squared error, MSE, and the coefficient of
determination, R?.

Mean squared error (MSE)

This is one of the most commonly used metrics to measure
the performance of a regression predictive model. It measures
the average squared difference between the actual and the
model predicted values. Equation 6 shows how the mean
squared error is calculated. A lower MSE value is mostly
desirable as it depicts the regression model closely predicting
the actual values.

MSE = =37, (vi = 91)? (6)

where,

n is the total number of data points,

y; is the actual (experimental) value of the dependent for the
i data point,

#; is the predicted value of the dependent for the i data
point.

Coefficient of determination, R?

It measures the goodness of fit of a regression model. It
quantifies the proportion of the variance in the dependent
variable that can be predicted from the independent variable(s).
Equation 7 shows how the coefficient of determination is
measured.

SSR

~ Sr (7)

SST

R =1

where:

SSR - sum of squares of residuals, the sum of squared
differences between the observed y values and the predicted y
values from the regression model.

SST - total sum of squares, the sum of squared differences
between each y value and the mean of all y values.

R? value ranges from 0 to 1. A higher value closer to 1 is
desirable as it shows that the regression model explains a larger
portion of the variance in the dependent variable and the model
fits the inkjet droplet data appropriately.

Model overfitting was checked with a new set of validation
data as detailed in Subsection 4.4 of this work.

4. Results

In this section, first, the droplet type prediction is discussed
based on the four classifiers. Both velocity and volume results
are discussed in the next section for the seven regressors, and
at k-fold values of 3, 5, and 8. All the classifiers and regressors
are discussed at k-fold values of 3, 5, and 8, respectively.

4.1. Droplet type prediction

Both model accuracy and the confusion matrix were used to
measure the performance of the classifiers at different values
of k. The coded values for the droplet types include: (0 — no
drop, 1 - satellite drop, 2 - normal drop). The confusion
matrices shown in subsequent figures represent these coded
values of the droplet type.

The mean of the accuracies obtained during k -iterations
served as the model accuracy of the classifier at that given k-
fold value. For constructing the model confusion matrix, all the
k confusion matrices were aggregated. Then, for a normalized
confusion matrix, each category on a row was divided by the
row sum. Confusion matrices and accuracy plots are described
in the following sections for the best model performers.

4.1.1. Model performance for droplet type prediction atk =5
4.1.1.1. Confusion matrix atk = 5

All the classifiers at k =5, perfectly classified the no-droplet
type and there were improvements in the classification of
normal droplets from the best at k = 3 which was 98% to 99%
(see Fig. 7a and 7b, Fig 9a and 9b, Fig. 10a and 10b). The only
exception in this case was for the random forest classifier at k
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= 5 which maintained its previous 98% as shown in Fig 8a and Normalized Confusion Matrix for RandomForest(Classifir() at K=5
8b.
In the same trend at k = 3, the support vector machine had

. . . . K 08
the least classification for the satellite droplet with an accuracy
of 72%, followed by the random forest classifier and k-nearest |
neighbor with accuracies of 85% and 89% respectively. g
Decision tree classifier was the highest with an accuracy of < o
91% for the satellite droplet type.
It is worthy of note that majority of the wrongly classified 02 ()
satellite data points were classified as normal and others as no-
droplets. 00
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- 250 Fig. 8. Confusion matrices for droplet type prediction using random forest at
k=35, (a) aggregated and (b) normalized.
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Normalized Confusion Matrix for DecisionTreeClassifier() at—'§=05

Fue label

02 (b)

-0.0

Predicted label

Fig. 10. Confusion matrices for droplet type prediction using decision tree at
k =5, (a) aggregated and (b) normalized.

4.1.1.2. Model mean accuracy at k =5

The support vector machine has the least accuracy at 92%
compared to other classifiers at k = 5. Relative to its previous
value when k = 3, there is about 4% increase. In that order,
random forest, k-nearest neighbor, and decision tree classifiers
were all outstanding with mean accuracies of 98%, 99%, and
99%, as shown in Fig. 11.

Model Mean Accuracy at k=5

10 4

0.8
>
v
e
S 0.6
S
<<
- 0.92) 0.99 ] 0.99 |
@ 04
1]
=

0.2

0.0 -

s & = 5
Model

Fig 11. Mean model accuracies for all candidate classifiers at k= 5.

In general, varying k from 3 to 5 showed great improvements
for each droplet type classification. Also, the overall model
mean accuracies improved- significantly as well. The results
when k was increased from 5 to 8, despite the need for more
computational works, showed minimal improvements and
some led to the model behaving perfectly (a characteristic of
overfitting).

4.2. Velocity prediction

Drop velocity was captured as the ratio of the maximum
distance traveled from the nozzle to the strobe delay. To
understand the relationship between the four input parameters
and the droplet velocity, seven machine learning models were
considered as regression predictors. Linear models (linear
regression, lasso regression, and ridge regression) and non-
linear models (random forest, support vector regression, k-
nearest neighbor regression, and decision tree) were the
candidate models. The models were evaluated using both the
mean squared error values and the R?-score to choose the best

model. A minimum mean squared value and a higher R%-score
closer to 1 show a model that perfectly fits the inkjet droplet
data set. Fig. 12 shows plot of the mean squared errors and the
mean R2-scores for the candidate models at different k-fold
values.

4.2.1. Best performance for velocity prediction at k = 5

The linear models have both their mean MSE and mean R?
values to be the same as when k = 3. The non-linear models
shared the same trends for the mean MSE values except that
the mean R? value increased from 0.97 to the decision tree
regressor value of 0.98 and support vector regressor increased
by 1% to 88% as shown in Fig. 12.

Plots of MSE and R2 Score for Velocity atk = 5
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Fig. 12. Mean MSEs and mean R*-scores for all candidate models at k = 5 for
velocity prediction.

4.3. Volume prediction

Fig. 13, 14, and 15 show plots of the mean squared errors and
the mean R2-scores for the candidate models at different k-fold
values.

4.3.1. Model performance for volume predictions at k = 3, 5,
and 8

The actual volume values were normalized for the entire
dataset by dividing each value by the maximum volume since
the difference between the actual and the predicted would be
squared before obtaining the mean. The volume predictions at
different k-fold values show similar trends to the velocity
predictions but with slightly different values.

As the values of k increases, from k = 3 to 5, there were
significant improvements for both mean MSE and mean R?
values as seen in Fig. 13 and 14.

Increasing k from 5 to 8, tends to show minimal
improvements of only about 1% across the mean MSE values
as mean R? values stay the same as seen in Fig. 15.
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Plots of MSE and R2 Score for Volume atk = 3
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Fig 13. Mean MSEs and mean R?-scores for all candidate models at k = 3 for
volume prediction.

Plots of MSE and R2 Score for Volume atk =5
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Fig. 14. Mean MSEs and mean R?-scores for all candidate models atk = 5 for
volume prediction.

Plots of MSE and R2 Score for Volume atk = 8
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Fig. 15. Mean MSEs and mean R?-scores for all candidate models atk = 5 for
volume prediction.

In general, at k =5, either decision tree or k-nearest neighbor
regressor predicts the velocity and volume with minimal mean
MSE and mean R? values.

4.4. Experimental validation

Experimental validation was performed on a new set of 12
validation datasets to check and compare the best models for

drop type classifications, and regression prediction for drop
velocity and drop volume at k-fold of 3, 5, and 8. The validation
was carried out to check for overfitting, as that is how well each
model generalizes. Across the three predicted outputs, k-fold
value of 5, gave optimal model metrics without overfitting for
the promising predictive models as summarized in Tables 4, 5,
and 6 for the ink droplet type, velocity, and volume
respectively.

4.4.1. Drop type validation

Table 4 shows the drop type predictions at the given input
parameter values for the four considered classifiers against the
experimental values. For each classifier, say at a given k-fold
value, k number of predictions were made for each given set of
input parameter values. Maximum voting, that is, the mode of
the class, was chosen from the k number of predictions to
represent the drop type class. A special case will be when k-
fold value is 3 and for each iteration, the classifier classifies
into distinct classes, say 0, 1, and 2. 0 which has no drop class
is reserved for such scenarios. No such special case was
encountered in this work. The validation results show that all
the models irrespective of the chosen classifier and the k-fold
value classified the drop type correctly. For reliability, k=5 was
chosen as the best k-fold value for drop classification for any
classifier as shown in Table 4.

4.4.2. Velocity validation

For the velocity, there was an improvement from k = 3 to k
= 5. At k = 8, there was no or marginal improvement for the
promising models. Thus, k = 5 was the overall best k-fold
value, see Table 5. All the linear models failed to closely
predict the velocity of the drop for the unseen data. Their
velocity predictions were not surprising as they all have large
MSE values of 0.02, 0.03, and 0.02 for linear regression, lasso,
and ridge at k = 5 respectively as illustrated in Fig. 22 relative
to the non-linear models. Also, their R? were very low, with the
highest value of 0.41 for linear regression and ridge.

On the contrary, at k = 5, most of the non-linear models
performed well across their MSE and R? values. All the models
perfectly predicted the actual velocity with MSE values of 0
and R? values of 0.98 except the SVR which performed
moderately well.

4.4.3. Volume validation

Table 6 shows the optimal value of k-fold of 5 for the
considered regression models for the volume predictions. With
similar trends for both MSE and R? values for the velocity
predictions. All the linear models performed poorly with very
low R? of 0.41 for linear regression and ridge with lasso
having 0.1. Their poor performance is further buttressed by
their higher MSE values relative to the non-linear models.

The non-linear models had higher R? values very close to 1
and their MSE values were perfect except for SVM which had
an R? value of 0.88 and an MSE value of 0.1.

In summary, the developed models for predicting the inkjet
droplet type, velocities, and volumes generalized the inkjet data
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without overfitting. Any of the candidate classifier at k=5, the non-linear models (random forest regressor, support vector
rightly classified the droplet type. For the velocities and  regressor, decision tree regressor, and k-neighbor regressor)
volumes, the linear models underfit the given inkjet data  closely fit the data at k = 5 except for the support vector
irrespective of the chosen k-fold values. On the other hand, all regressor which gave relatively moderate results.

Table 4: Drop type predictions by candidate model classifiers and actual drop type on the validation set at the best k-fold value of 5.

Input Parameters AI/ML Classifiers Ground-truth values
v f t mv SVM3 RF3 KNN3 DT3 Experimental Drop Type
17 10 32 35 2 2 2 2 2
17 5 44 5.5 2 2 2 2 2
25 10 32 4.5 0 0 0 0 0
25 5 32 4.5 0 0 0 0 0
25 5 44 35 1 1 1 1 1
32 10 44 35 1 1 1 1 1
21 18 28 4.0 0 0 0 0 0
21 13 28 6.0 0 0 0 0 0
35 13 36 5.0 2 2 2 2 2
29 13 40 5.0 2 2 2 2 2
21 8 28 6.0 1 1 1 1 1
21 13 36 6.0 1 1 1 1 1

Table 5: Velocity predictions by candidate model regressors and actual velocity on the validation set at the best k-fold value of 5.

Input Parameters AI/ML Regressors Ground-truth values
v f t mv Lin Reg5 Lasso5 Ridge5 RF5 DT5 SVR5 KNN3 Experimental Velocity
17 10 32 35 2.20 3.56 224 1.76 1.72 3.03 1.72 1.72
17 5 44 5.5 3.57 3.72 3.59 3.37 3.37 3.29 3.37 3.37
25 10 32 4.5 5.22 5.99 5.24 0.31 0.00 1.31 0.00 0.00
25 5 32 4.5 5.47 5.99 5.48 0.15 0.00 1.32 0.00 0.00
25 5 44 3.5 7.94 6.16 7.92 8.47 8.23 8.92 8.13 8.41
32 10 44 3.5 11.16 8.59 11.11 9.24 9.07 9.48 9.07 9.07
21 18 28 4.0 2.83 4.74 2.87 0.44 0.20 1.11 0.20 0.00
21 13 28 6.0 2.18 4.74 2.23 0.36 0.24 1.43 0.24 0.00
35 13 36 5.0 10.58 9.69 10.54 7.72 7.66 8.95 7.66 7.66
29 13 40 5.0 8.12 +7.33 8.10 6.92 6.90 8.26 6.90 6.97
21 8 28 6.0 2.43 4.74 2.47 1.51 1.54 2.80 1.54 1.54
21 13 36 6.0 3.19 4.82 3.22 2.82 2.75 4.03 2.75 2.75

Table 6: Volume predictions by candidate model regressors and actual volume on the validation set at the best k-fold value of 5.

Input Parameters AI/ML Regressors Ground-truth values
v f t MV Lin Reg5 Lasso5 Ridge5 RF5 DTS5 SVR5 KNNS5 Experimental Volume
17 10 32 35 2462.63 3407.51 2478.96 2744.01 2873.36 4285.88 2873.36 2881.00
17 5 44 5.5 3650.41 3682.71 3656.13 2356.38 2338.00 3399.48 2338.00 2333.00
25 10 32 4.5 3234.05 3799.81 3241.37 197.52 0.00 897.16 0.00 0.00
25 5 32 4.5 4195.58 3855.52 4194.33 414.10 0.00 1459.28 0.00 0.00
25 5 44 35 7405.39 4235.99 737591 8081.18 8093.72 6967.48 7767.45 8295.00
32 10 44 3.5 8209.81 4626.25 8171.15 11329.14 11498.96 10430.44 11498.96 11488.00
21 18 28 4.0 852.23 3438.39 881.77 331.45 0.00 1002.89 0.00 0.00

21 13 28 6.0 -175.28 3386.78 -136.84 101.93 28.48 1416.99 0.00 0.00
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35 13 36 5.0 5458.77 4495.77 5443.24 6884.40
29 13 40 5.0 4800.47 4213.21 4792.94 4097.42
21 8 28 6.0 786.24 3442.49 816.12 1069.23
21 13 36 6.0 932.36 3550.18 961.05 734.83
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7388.32 6884.81 7388.32 7386.00
4264.07 5685.21 4264.07 4265.00
1025.14 1579.65 1025.14 1022.00
708.27 1918.37 661.15 658.00

All the datasets used to validate the drop characteristics were
compared with actual images and the predictions had close
agreement. Fig. 16 shows the actual images of all the datasets

used for validation.
0-No droplets

1-Satellite droplets
v21 3 128 mv6 vell 54 vol1022 .00

2-Normal droplets
V175 t44 mvS.5 vel3 37 vol2333.00-
Mam

V25 £5 32 mav4.5 vel0 vol0
No droplets

V29 £13 140 mvS5 vel6.97 vol4265.00

Main

w17 10 52 ;3.5 vell. 72 vol2881.00

‘ O -Nozzlepoint ~ [_] - Droplet ‘

Fig. 16. Actual images and drop characteristics for the validation datasets.
5. Conclusions

3D materials inkjet printing has become a prominent
additive manufacturing process with applications spanning the
electronics, healthcare, and automotive domains. Although
inkjet printing has been around for several decades, there is a
lack of systematic know-how about the relationship between
multiple input parameters and printing outcomes. Our group
proposes an automated image analysis methodology that can
capture droplet characteristics on-the-fly based on videos
captured during printing. The custom OpenCV python image
processing code developed in this research is utilized to
identify different droplet conditions which include: no droplet,
satellite droplet and normal droplet. The image processing
algorithm was able to accurately identify these conditions by
eliminating noise and extraneous features within the video
frames. Moreover, droplet velocity and volume were calculated
with high precision specifically for elongated and non-
spherical droplets which frequently occur during the drop
evolution phase after ejection from the nozzle. The ANOVA
statistical measure revealed that voltage, ink temperature, and
meniscus vacuum had a significant effect on the output metrics.

A multitiered machine learning strategy was implemented
for predicting both qualitative droplet types and quantitative

droplet characteristics. In stage 1, classification algorithms
including random forest (RF), support vector classifier (SVC),
k-nearest neighbor (KNN), and decision trees (DT) models
were utilized to predict droplet types. Among these, the RF,

KNN and DT models achieved the highest accuracy around
98% with a k = 5 folds design. Similarly, regression-based
models for predicting droplet velocity and volume performed
at optimal levels with k = 5 folds design based on
hyperparameter optimization. This was also confirmed based
on the confusion matrix results wherein, it is important to
balance higher model accuracies with a substantial increase in
computational times. This could be an important consideration
when implementing these algorithms in real-time for process
control, and higher latencies beyond a threshold may not be
acceptable for practical applications. For the velocities and
volumes, the linear models underfit the given inkjet data,
irrespective of the chosen k-fold values. On the other hand, all
the non-linear models (random forest regressor, support vector
regressor, decision tree regressor, and k-neighbor regressor)
closely fit the data at k = 5 except for the support vector
regressor. Experimental validation of new test data sets showed
close agreement between predicted outcomes of droplet type
and actual velocities and volumes.

Future research would include correlating the in-flight
droplet behavior with substrate deposition to obtain high
fidelity printing, thus, providing a closed loop mechanism that
can aid in the development of a digital twin model for a 3D
material printer.
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