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Abstract 

Additive manufacturing (AM) is a smart manufacturing process to fabricate components with high precision, minimal post-processing, and 
increased component complexity in a variety of materials. This research focuses on developing automated image analysis and predictive models 
for a widely used 3D material inkjet printing (IJP) process. The interplay of four input process parameters, which include frequency, voltage, 
temperature, and meniscus vacuum, on the output metrics of the inkjet printer was evaluated using statistical measures (ANOVA). Droplet types 
were classified as no drop, satellite drop, and normal drop using four machine learning classifiers, including random forest, support vector 
classifier, k-nearest neighbor, and decision trees. Hyperparameter tuning was performed for each model for over 486 data points. Regression 
predictive models were developed for both ink droplet velocity and volume with three linear models (linear, lasso, and ridge regression) and four 
non-linear models (random forest, decision tree, support vector regression, and k-nearest neighbor). Mean squared error and the coefficient of 
determination, r-squared value, were used to evaluate the performance of the predictive models. For the drop type classification models, k-fold 
of 5 yielded the highest accuracy for the RF, KNN, and DT models of around 98%. Similarly, for the regression based predictive models RF, DT 
and KNN accuracy results ranged from 97 to 99%. All the machine learning models were validated with experimental data with high prediction 
accuracies accuracy. This research serves as a foundation for developing design guidelines for 3D material inkjet printing with applications in 
biosensors, flexible electronics, and regenerative tissue engineering. 
 
© 2024 The Authors. Published by ELSEVIER Ltd. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0) 
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1. Introduction 

3D printing, also known as additive manufacturing (AM), 
builds three-dimensional solid objects, layer-by-layer, using 
different materials such as polymers, composites, ceramics, and 
metals. There are different types of additive manufacturing 
processes, which include photo-polymerization processes, 
extrusion-based systems, powder bed fusion processes, material 

jetting processes, binder jetting processes, sheet lamination 
processes, and direct write technologies [1]–[3]. Inkjet 3D 
printing (IJP) is one of the most popular AM techniques that 
deposits micrometre-scaled material-laden droplets with very 
high precision [4]–[11]. Of all the AM processes, inkjet printing 
has emerged at the frontline due to its unique features of low 
cost, high pattern precision and resolution, scalability, 
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compatibility with different substrates, reduced post-
processing, and non-contact approach. 
Nomenclature 

v         voltage in volts 
f          jetting frequency in kHz 
 t         cartridge ink temperature in degree Celsius 
mv      meniscus vacuum in inches H2O 
V        velocity of the ink droplet in m/s 
Vol.    volume of the ink droplet in µm3 

LR      linear regression 
RF      random forest 
SVM  support vector machine 
SVR   support vector regressor 
DT      decision tree 
KNN   k-nearest neighbor 

    The 4th industrial revolution, or Industry 4.0, encompasses a 
variety of technologies to transform the manufacturing industry 
[12]. It involves concepts such as inter-machine 
communication, the internet of things to enable automation, 
and developing machines with the minimum technical 
intervention of humans [13], [14]. Extending this concept to the 
additive manufacturing process, physics-based models have 
been developed for IJP to produce micro and nanoscale 
dimensions [11], [15]–[17]. 
   There are two different mechanisms by which inkjet printers 
generate droplets, which include Continuous Inkjet (CIJ) and 
Drop-on-Demand Inkjet (DoD) printing [13]. In a CIJ system, 
a stream of droplets is ejected continuously under an applied 
electric field and a charging electrode. In a DoD printing 
system, the droplet can be ejected based on print demand by a 
voltage waveform [14]. In the IJP process, the liquid material 
is jetted out from the printer head (carrying an ink-filled 
cartridge) in a sequence of micro-droplets via a micrometer-
sized nozzle head, which are then solidified on the substrate. 
The deposited materials are in the form of chemical solutions 
and colloidal dispersions. The major actuation mechanisms of 
the inkjet nozzle head include thermal, piezoelectric, and 
electrohydrodynamic. The benefits of IJP are compatibility 
with elastomers, maskless processing, reduced manufacturing 
costs, and the fabrication steps [18]. In a continuous inkjet (CIJ) 
printer, a high-pressure pump pushes ink from a nozzle, 
creating continuous ink droplets. The droplets are surrounded 
by an electrostatic field created by a charging electrode. Under 
the influence of the electrostatic deflection plates, the charged 
droplets can pass through the electrostatic field and are finally 
printed on the substrate [19], [20]. The unused droplets are 
pushed back to the ink chamber. CIJ is an aged technology and 
normally used for commercial products and packages. The 
drop-on-demand (DoD) printers are either thermal or 
piezoelectric in type. In thermal DoD printers, a pulse current 
can rapidly vaporize the ink to form a bubble, producing a high 
pressure to propel a droplet of ink printed on the substrate [21]. 
On the other hand, piezoelectric printers use piezoelectric 
heads with an ink chamber behind each nozzle. A voltage is 
applied, which generates a pressure pulse, ejecting ink droplets 
from the nozzle [22]. The advantage of the piezoelectric inkjet 
is its wider variety of inks compared to the thermal inkjet, as 
there is no need for volatile components in the inks [23]. In this 

research, we focus on DoD inkjet printers as they are primarily 
used in 3D printing of functional parts. The print quality in 
DoD inkjet AM process largely depends on several factors, of 
which piezoelectric voltage (referred to as voltage from here 
on), jetting frequency (referred to as frequency from here on), 
cartridge temperature (also referred to as ink temperature), and 
meniscus vacuum maintained at the nozzles are the most 
influential. These factors will influence the ink droplet’s type, 
velocity, and volume. Depending on the process parameters, 
droplets may not eject from the nozzles (no-droplet condition), 
satellites may follow the regular drops, or they may come out 
like healthy normal droplets [24], [25]. The resolution of the 
printed object also depends on the drop’s velocity and volume. 
Analysis of drop-on-demand piezo inkjet printers conducted by 
Kang et al., [26] found that increasing the piezoelectric voltage 
increased the ejection velocity with associated generation of 
satellite drops. Cooling the ink decreased the drop velocity 
while diminishing the satellite drops.  The videos obtained 
from different combinations of voltage and frequency were 
processed using image analysis, and it was discovered that 
jetting behavior changed with reference to voltage and 
frequencies [15]. Optimal voltage and frequencies are required 
to eject normal droplets. A study of the jetting evolution of 
inkjet printers [27] shows that drop velocity increases with an 
increase in cartridge temperature. For the behavior of droplet 
impacting substrate, researchers have performed numerous 
research work studies [28], [29]. Du et al. [30] studied the 
kinetics of the droplets, and Xiao et al. [31] investigated the 
droplet collision kinetics. All these studies show the root cause 
of the print failure as either droplet type, droplet velocity, 
droplet volume, or a combination of some or all of these. The 
most challenging part of inkjet printing is achieving a 
consistent droplet deposition quality [32]. A machine learning 
approach was utilized by Caggiano et al. [33] to develop on-
line fault prediction with automatic image processing in for 
timely identifying material defects. Their research was 
conducted by capturing images during the layer-by-layer SLM 
process. Wu and Xu [34] utilized predictive models for 
predicting droplet velocity and volume using ensemble 
learning. Lin et al. [35] evaluated the two aspects of droplet 
profiles: droplet shape and temperature, using radial basis 
function neural networks. Machine learning has been used in 
different fields to understand the complexity and nonlinearity 
that exist in a system when sufficient data are provided [36]–
[38]. This research focuses on automated image analysis and 
building predictive models to improve the droplet quality of the 
DoD inkjet printing process. Furthermore, ML models are 
utilized to predict droplet characteristics, such as droplet 
velocity and volume, based on input parameters. Unlike most 
works found in the literature where one or at most two 
influencing inkjet parameters were considered, this work used 
four (4) most influential factors such as voltage, frequency, ink 
temperature, and meniscus vacuum to predict both qualitative 
(ink droplet type) and quantitative (volume and velocity) 
characteristics of the ink droplet. Moreover, a comprehensive 
treatment of machine algorithms was performed for predicting 
qualitative and quantitative measures for of droplet 
performance. Thus, this paper elucidates the translation of 
automated image analysis into seamless predictive models that 
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can be implemented in real-world industrial 3D printing 
settings.  

2. System description 

   Experiments were conducted on the Fuji Dimatix DMP 
2850 inkjet 3D printer as shown in Fig.1a. The Dimatix 
materials printer (DMP) can handle a wide variety of fluids, 
including aqueous-based, solvent-based, UV-curable fluids, 
biological solutions, and particle suspensions. Printing efficacy 
was optimally achieved by choosing fluid characteristics that 
include a viscosity range of 4-8 cps, surface tension range of 
28-32 dynes/cm. The cartridge, as shown in Fig. 1b, can handle 
chemically compatible materials such as aliphatic 
hydrocarbons, aromatic hydrocarbons, aliphatic alcohols, 
ketones, ethers, acrylates, and glycols. 

Fig. 1. (a) Dimatix 2850 printer, (b) ink cartridge. [39] 
With piezoelectric drop-on-demand inkjet technology, a 

drop volume of 2.4 pL with a single dot size of 30 µm using 12 
jets of nozzles can achieve 75 DPI resolution. The print head is 
equipped with a built-in heater and thermistor to heat the ink 
and measure the temperature. All these special features make 
this printer capable of manufacturing flexible electronic 
circuits, RFID antennas, 3D printed materials, and DNA arrays. 
Substrates up to 25mm thick with a printable area of 210 mm x 
260 mm can be used to achieve a print repeatability of +/- 25 
µm. To observe the drop and print qualities, two types of 
cameras are used: drop watcher and fiducial cameras, as shown 
in Fig. 2a and 2b. The drop-watcher camera allows direct 
viewing of the jetting nozzles and the actual jetting of the fluid. 
The fiducial camera aids in depositing a pattern on a pre-
patterned substrate, in jetting a layer with a different cartridge 
material or inspecting the printed features.  
 

(a)     (b)  

Fig. 2.  (a) Drop watcher camera, (b) Fiducial camera. 

3. Methodology 

The research progressed through a series of activities, 
including setting up and conducting experiments. These 
involved the extraction of output parameters of drop 
characteristics (no drop, normal drop, and satellite drop), drop 
velocity, and drop volume, image acquisition and processing, 
and building droplet prediction machine learning models. 

3.1. Design of experiment 

   Full factorial design was used to choose various 
combinations of voltage, frequency, ink temperature, and 
meniscus vacuum to study the output parameters, which 
include drop quality, velocity, and volume. A design matrix 
with four factors (voltage, frequency, ink temperature, and 
meniscus vacuum) at three levels (low, medium, and high) and 
six replications was used.  A total of 486 experimental runs 
were conducted (34 x 6 = 486). All four input parameters 
contributed equally among all 486 datasets. Experiments were 
conducted on the Fujifilm Dimatix DMP 2850 inkjet 3D 
printer. Videos were captured from the drop watcher camera 
(15 frames per second) for each set of operating parameters. A 
custom code was developed using the OpenCV, computer 
vision Python library to classify the drop type as normal, no-
drop, or satellite from the videos. The droplet velocity and 
volume values for each input parameter combination were 
calculated from the image analysis. The input and output 
parameters were saved as a .csv file, which served as the 
dataset. Python programming language was used in Jupyter 
notebook for data pre-processing, feature selection, spot check 
classification and regression algorithms, model selection, and 
to plot the needed visuals. Fujifilm’s Model 3 fluid was used to 
print a selected pattern. A Samba cartridge with a drop volume 
of 2.4pL and a drop size of 17 microns was used to conduct the 
experiments. The pattern used to run the experiments is shown 
in Fig. 3. It was the same for all the runs.  

 
 
 
 
 
 
 

 
Fig. 3. Pattern (input drawing). [39] 

 
The trajectory of the droplet is described as a drop ejecting 

from the nozzle vertically down onto either the drop catcher or 
substrate. This can be seen in Fig. 4a where the droplet ejects 
from the nozzle of the cartridge. The image captured will have 
a mirror image at the top. The camera captures the nozzle tip 
and the drop propagation from the nozzle to the drop catcher, 
as shown in Fig. 4b. whereby, image analysis was conducted to 
classify the drop characteristics and calculate the drop 
velocities and volumes. 
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Fig. 4. Droplets eject from nozzle (a) physical set-up (b) drop travel image. 
 

Initial experiments were conducted wherein changes were 
made to one independent variable at a time to avoid the 
influence of confounding variables. Thereby, we evaluate the 
extreme limits of the input parameters to eject droplets. Table. 
1 shows the results for the limiting conditions. All experiments 
were carried out in a controlled environment at a temperature 
of 25 oC and a relative humidity of 60%.  

Table. 1. Process parameter levels and output metrics. 

Condition No-
Drop 

Satellite Normal 

I. Voltage range 
F=5, t=40, MV=3.5 

below 17V x     

18 to 27V     x 

28-30V   x   

II. Frequency range 
V=23, t=40, MV=3.5 

1.18 to 7kHz     x 

8-13kHz     x 

13.1 and 
above 

  x   

III. Ink temp range 
  
V=23, F=5, MV=3.5 

32oC x     

34-40     x 

42-46   x   

IV. Meniscus 
Vacuum range 
  
V=23, F=5, t=40 

3.5     x 

4 and above   x   

 
Table. 2 shows the design matrix of some of the runs used 

for this experiment. It shows combinational values for all input 
parameters. 

Table. 2. Sample data points of the design matrix. 

Run Number 

(randomly 
selected) 

Voltage 
(V) 

Frequency 
(kHz) 

Ink 

Temperature 

(oC) 

Meniscus 
Vacuum 

(inches of 
H2O) 

19 17 5 32 3.5 

59 32 10 38 4.5 

126 25 15 44 5.5 

343 21 8 28 4.0 

… … … … … 

… … … … … 

356 29 13 36 5.0 

477 35 18 40 6.0 

3.1.1. Velocity of droplet 
 
Images captured from the drop watcher camera were used to 

find the droplet’s velocity. Strobe delay was used in 
conjunction with the droplet distance from the nozzle in the 
captured frame. Strobe delay captured from the drop watcher 
video can be seen in Fig. 5, for a delay of 30 µsec. The drop 
travelled 240 µm and thus, the drop velocity was calculated as 
a ratio of the distance travelled and the strobe delay. In this 
illustration, the drop velocity was 8.0 m/s. In this work, python 
programming and image analysis through OpenCV are used to 
capture the velocities automatically and were exported into a 
.csv file. 

The automated method is more precise and faster  than the 
traditional method presented by [40], [41]. The images were 
captured for all the datasets, and the velocity for each dataset 
was fed into the machine learning algorithm for predictive 
analysis. 
            

 

Fig. 5. Ink droplet travel for a strobe delay of 30 µs. 

3.1.2. Droplet volume 
 
   Ink droplets were ejected in different forms based on the 

preset jetting conditions and the ink properties. To 
accommodate all forms of ink droplet shapes including 
spherical, elongated, and combinations thereof, the ink droplet 
volume was computed using the centroid approach as 
compared to the volume formula for simple spherical shape. 
For the centroid approach, a cross-sectional area of the ink 
droplet as shown in Fig. 6 was calculated. One-half of the 
cross-sectional area when rotated about its centroid in the 
vertical axis gives the volume of the droplet. This was further 
divided into smaller elemental parts, each having an area, 𝛥𝐴௞ . 
The total half of the droplet cross-sectional was summed as 
given in equation 1: 

𝐴 =  ∑ 𝛥𝐴௞
௡
௞ୀଵ      (1) 
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Fig. 6. Original and segmented ink droplet images for the region of interest. 

The centroid of each elemental part is given as 𝑟௞ . Using the 
concept of the moment of gyration, the centroid of half of the 
droplet cross-sectional area can be calculated using equation 2: 

𝑟௚ =  ଵ
஺

∑ 𝑟௞𝛥𝐴௞
௡
௞ୀଵ   (2) 

The volume of the ink droplet was computed by rotating half 
of the droplet cross-sectional area by 2𝜋  and further 
simplification is given in equation 3: 

𝑉𝑜𝑙. = 2𝜋 ∑ 𝑟௞𝛥𝐴௞
௡
௞ୀଵ    (3) 

Substituting equations 1 and 2 into equation 3, the general 
volume calculation using the centroid approach is given as: 

𝑉𝑜𝑙. =  2𝜋𝑟௚𝐴   (4) 

With equation 4, the droplet volume of any arbitrary shape 
can be computed such as non-spherical droplet shapes and 
elongated droplet shapes. 

3.2. Data management 

A crucial prerequisite before using datasets for any 
application is to understand the dataset at hand. Failure to do so 
can result in inaccurate analytics and unreliable decisions [42]. 
A total of 486 datasets were used in the prediction models. 

3.2.1. Data collection and processing 
 
   The collection of data was based on experiments. Videos 

and images were captured through the DMP 2850 printer’s 
drop watcher camera for each combination of input parameters 
as shown in Table 2. Strobe delay values for each dataset were 
captured to feed these values into the velocity calculations. The 
utmost care was taken to ensure consistency in the background 
of the videos and images to avoid region of interest conflicts 
while performing image extractions. The videos and images 
contain noise from various sources like misfiring at nozzles and 
clogging of ink or splashes. To avoid the confusion of 
classifying the droplet between normal and satellite, a custom-
written Python code using OpenCV and NumPy libraries was 
used to perform background subtraction. The size of the 
original images were 720 pixels x 480 pixels x 3 channels for 
the width, height, and channels, respectively. The region of 
interest (a single nozzle and the ink droplet) was obtained by 
cropping the original image size to a width of 20 pixels and 
height of 240 pixels and retaining the 3 color channels that were 

specified in the Python code used. The image reduction aided 
efficient computation for the measured ink droplet types, 
volume, and velocities. 

The ANOVA (Analysis of Variance) shown in Table 3 
represents the results of statistical analysis looking at the 
effects of individual factors of voltage, frequency, ink 
temperature, and meniscus vacuum on a droplet type (normal, 
satellite, or no droplet), as well as the interaction effects 
between these factors. Larger F-values (variances between two 
populations) typically signal a significant relationship between 
the factor and the droplet type. The p-value is the probability 
of observing a statistic as extreme as the one calculated under 
the null hypothesis (the hypothesis that there is no effect). P-
value (probability of observing a statistic as extreme) less than 
0.05 are usually taken as evidence that the factor significantly 
affects the outcome. In Table 3, the effects of voltage, ink 
temperature, and meniscus vacuum on the droplet type seem to 
be significant as the p-values are 0.0014, 0.0033, and 0.0065 
respectively, which are less than 0.05. The interactions between 
voltage, frequency, ink temperature, and meniscus vacuum are 
not statistically significant, with p-values of 0.78 between 
voltage and frequency, 0.57 between voltage and ink 
temperature, 0.14 between voltage and meniscus vacuum, 1.00 
between frequency and ink temperature, and 0.56 for frequency 
and meniscus vacuum. The factor frequency does not have a 
significant effect on its own with a p-value 0.64 (greater than 
0.05).  

Table 3. ANOVA table for main and interaction effects on droplet 
characteristics. 

Source of variation Sum of 
Squares 

Degrees 
of 
Freedom 

F-value p-value 

voltage 3.74 1 11.0 0.0014 
frequency 0.074 1 0.218      0.64 
ink temp 3.13 1 9.2 0.0033 
Meniscus vac 2.67 1 7.85 0.0065 
voltage: frequency 0.026 1 0.07 0.78 
Voltage: ink temp 0.1 1 0.31 0.57 
voltage: meniscus vac 0.75 1 2.2 0.1416 
Frequency: ink temp 9.08E-28 1 2.67E-27 1 
frequency: meniscus vac 0.11 1 0.33 0.56 
Ink temp: meniscus vac 1.36 1 4.01      0.049 

 

3.3. Machine learning algorithms 

3.3.1. Classification algorithm for drop characteristics 
 
Four machine learning models, random forest, support 

vector classifier, k-nearest neighbor, and decision trees, were 
used to classify droplet type as no-droplet, satellite, or normal. 
Model accuracy and confusion matrix were both used as 
classification metrics to determine each model’s performance. 
K-fold cross-validation, which provides a more robust and 
comprehensive way to assess a model’s performance and 
generalization was used compared to a simple train-test split. 
Hyperparameter tuning was also performed to explore the 
optimal hyperparameter selection for each model. Three k-fold 
values of 3, 5, and 8 were used on the 486 data points. 
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3.3.1.1. Classification performance metrics 
The chosen classification models were evaluated using the 

model accuracy and confusion matrix as detailed in Section 4. 
 

Model accuracy 
Model accuracy is the ratio of rightly classified instances by 

the model to the total number of instances as expressed in 
equation 5. A higher model accuracy is desirable, and at the 
same time, the issue of overfitting was checked. .  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 ்௥௨௘ ௉௢௦௜௧௜௩௘ ା ்௥௨௘ ே௘௚௔௧௜௩௘
்௥௨௘ ௉௢௦௜௧௜௩௘ ା ி௔௟௦௘ ௉௢௦௜௧௜௩௘ ା ்௥௨௘ ே௘௚௔௧௜௩௘ ା ி௔௟௦௘ ே௘௚௔௧௜௩௘

 (5) 

Confusion matrix 
 
 This is a table that shows the classification of data points 

into possible categories. The number of categories depends on 
the number of classes. In this work, three classes were 
considered, there are 3 × 3 =  9 possible categories. 

3.3.2. Regression algorithms for drop velocity and volumes 
 
Both ink droplet velocity and volume predictions were 

considered to be a regression problem because they are both 
continuous variables. Three linear models (linear, lasso, and 
ridge regression) and four non-linear models (random forest, 
decision tree, support vector regression, and k-nearest 
neighbor) were used to predict both the ink droplet volume and 
velocity. The mean squared error, the coefficient of 
determination, and the r-squared value were used to evaluate 
the performance of each model. 

3.3.2.1. Regression performance metrics 
 
The seven candidate regression models were evaluated 

using both the mean squared error, MSE, and the coefficient of 
determination, 𝑅ଶ. 

 
Mean squared error (MSE) 

 
This is one of the most commonly used metrics to measure 

the performance of a regression predictive model. It measures 
the average squared difference between the actual and the 
model predicted values. Equation 6 shows how the mean 
squared error is calculated. A lower MSE value is mostly 
desirable as it depicts the regression model closely predicting 
the actual values. 

 

𝑀𝑆𝐸 =  ଵ
௡

∑ (𝑦௜  −  𝑦ො௜)ଶ௡
௜ୀଵ   (6) 

where,  
𝑛 is the total number of data points, 
𝑦௜  is the actual (experimental) value of the dependent for the 
𝑖th data point, 
 𝑦ො௜ is the predicted value of the dependent for the 𝑖th data 
point. 
 

Coefficient of determination, 𝑅ଶ 
 
It measures the goodness of fit of a regression model. It 

quantifies the proportion of the variance in the dependent 
variable that can be predicted from the independent variable(s). 
Equation 7 shows how the coefficient of determination is 
measured. 

𝑅ଶ  =  1 −  ௌௌோ
ௌௌ்

  (7) 

where: 

𝑆𝑆𝑅  - sum of squares of residuals, the sum of squared 
differences between the observed 𝑦 values and the predicted 𝑦 
values from the regression model. 

𝑆𝑆𝑇  - total sum of squares, the sum of squared differences 
between each 𝑦 value and the mean of all 𝑦 values. 

𝑅ଶ value ranges from 0 to 1. A higher value closer to 1 is 
desirable as it shows that the regression model explains a larger 
portion of the variance in the dependent variable and the model 
fits the inkjet droplet data appropriately.  

 
Model overfitting was checked with a new set of validation 

data as detailed in Subsection 4.4 of this work. 

4. Results 

In this section, first, the droplet type prediction is discussed 
based on the four classifiers. Both velocity and volume results 
are discussed in the next section for the seven regressors, and 
at k-fold values of 3, 5, and 8. All the classifiers and regressors 
are discussed at k-fold values of 3, 5, and 8, respectively. 

4.1. Droplet type prediction 

Both model accuracy and the confusion matrix were used to 
measure the performance of the classifiers at different values 
of k. The coded values for the droplet types include: (0 – no 
drop, 1 - satellite drop, 2 - normal drop). The confusion 
matrices shown in subsequent figures represent these coded 
values of the droplet type.  

The mean of the accuracies obtained during 𝑘 -iterations 
served as the model accuracy of the classifier at that given k-
fold value. For constructing the model confusion matrix, all the 
𝑘 confusion matrices were aggregated. Then, for a normalized 
confusion matrix, each category on a row was divided by the 
row sum. Confusion matrices and accuracy plots are described 
in the following sections for the best model performers.  

4.1.1. Model performance for droplet type prediction at k = 5 

4.1.1.1. Confusion matrix at k = 5 
 
All the classifiers at k = 5, perfectly classified the no-droplet 

type and there were improvements in the classification of 
normal droplets from the best at k = 3 which was 98% to 99% 
(see Fig. 7a and 7b, Fig 9a and 9b, Fig. 10a and 10b). The only 
exception in this case was for the random forest classifier at k 
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= 5 which maintained its previous 98% as shown in Fig 8a and 
8b. 

In the same trend at k = 3, the support vector machine had 
the least classification for the satellite droplet with an accuracy 
of 72%, followed by the random forest classifier and k-nearest 
neighbor with accuracies of 85% and 89% respectively. 
Decision tree classifier was the highest with an accuracy of 
91% for the satellite droplet type. 

It is worthy of note that majority of the wrongly classified 
satellite data points were classified as normal and others as no-
droplets. 

 

 

Fig. 7. Confusion matrices for droplet type prediction using support vector 
machine at k = 5, (a) aggregated and (b) normalized. 

 

 

Fig. 8. Confusion matrices for droplet type prediction using random forest at 
k = 5, (a) aggregated and (b) normalized. 

 

 
Fig. 9. Confusion matrices for droplet type prediction using k-nearest 

neighbor classifier at k = 5, (a) aggregated and (b) normalized. 
 

 

(a) 

(a) 

(a) 

(a) 

(b) 

(b) 

(b) 
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Fig. 10. Confusion matrices for droplet type prediction using decision tree at 

k = 5, (a) aggregated and (b) normalized. 

4.1.1.2. Model mean accuracy at k =5 
 
The support vector machine has the least accuracy at 92% 

compared to other classifiers at k = 5. Relative to its previous 
value when k = 3, there is about 4% increase. In that order, 
random forest, k-nearest neighbor, and decision tree classifiers 
were all outstanding with mean accuracies of 98%, 99%, and 
99%, as shown in Fig. 11.  

 

Fig 11. Mean model accuracies for all candidate classifiers at k = 5. 

   In general, varying k from 3 to 5 showed great improvements 
for each droplet type classification. Also, the overall model 
mean accuracies improved- significantly as well. The results 
when k was increased from 5 to 8, despite the need for more 
computational works, showed minimal improvements and 
some led to the model behaving perfectly (a characteristic of 
overfitting). 

4.2. Velocity prediction 

   Drop velocity was captured as the ratio of the maximum 
distance traveled from the nozzle to the strobe delay. To 
understand the relationship between the four input parameters 
and the droplet velocity, seven machine learning models were 
considered as regression predictors. Linear models (linear 
regression, lasso regression, and ridge regression) and non-
linear models (random forest, support vector regression, k-
nearest neighbor regression, and decision tree) were the 
candidate models. The models were evaluated using both the 
mean squared error values and the R2-score to choose the best 

model. A minimum mean squared value and a higher R2-score 
closer to 1 show a model that perfectly fits the inkjet droplet 
data set. Fig. 12 shows plot of the mean squared errors and the 
mean R2-scores for the candidate models at different k-fold 
values. 

4.2.1. Best performance for velocity prediction at k = 5 
 
The linear models have both their mean MSE and mean 𝑅ଶ 

values to be the same as when k = 3. The non-linear models 
shared the same trends for the mean MSE values except that 
the mean 𝑅ଶ  value increased from 0.97 to the decision tree 
regressor value of 0.98 and support vector regressor increased 
by 1% to 88% as shown in Fig. 12. 

 

 

Fig. 12. Mean MSEs and mean R2-scores for all candidate models at k = 5 for 
velocity prediction. 

4.3. Volume prediction 

   Fig. 13, 14, and 15 show plots of the mean squared errors and 
the mean R2-scores for the candidate models at different k-fold 
values. 

4.3.1. Model performance for volume predictions at k = 3, 5, 
and 8 

 
The actual volume values were normalized for the entire 

dataset by dividing each value by the maximum volume since 
the difference between the actual and the predicted would be 
squared before obtaining the mean. The volume predictions at 
different k-fold values show similar trends to the velocity 
predictions but with slightly different values.  

As the values of k increases, from k = 3 to 5, there were 
significant improvements for both mean MSE and mean 𝑅ଶ 
values as seen in Fig. 13 and 14. 

Increasing k from 5 to 8, tends to show minimal 
improvements of only about 1% across the mean MSE values 
as mean 𝑅ଶ values stay the same as seen in Fig. 15. 

 

(b) 
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Fig 13. Mean MSEs and mean 𝑅ଶ-scores for all candidate models at k = 3 for 
volume prediction. 

 

Fig. 14. Mean MSEs and mean 𝑅ଶ-scores for all candidate models at k = 5 for 
volume prediction. 

 

 

Fig. 15. Mean MSEs and mean 𝑅ଶ-scores for all candidate models at k = 5 for 
volume prediction. 

In general, at k = 5, either decision tree or k-nearest neighbor 
regressor predicts the velocity and volume with minimal mean 
MSE and mean 𝑅ଶ values. 

4.4. Experimental validation 

   Experimental validation was performed on a new set of 12 
validation datasets to check and compare the best models for 

drop type classifications, and regression prediction for drop 
velocity and drop volume at k-fold of 3, 5, and 8. The validation 
was carried out to check for overfitting, as that is how well each 
model generalizes. Across the three predicted outputs, k-fold 
value of 5, gave optimal model metrics without overfitting for 
the promising predictive models as summarized in Tables 4, 5, 
and 6 for the ink droplet type, velocity, and volume 
respectively.  

4.4.1. Drop type validation 
 
Table 4 shows the drop type predictions at the given input 

parameter values for the four considered classifiers against the 
experimental values. For each classifier, say at a given k-fold 
value, k number of predictions were made for each given set of 
input parameter values. Maximum voting, that is, the mode of 
the class, was chosen from the k number of predictions to 
represent the drop type class. A special case will be when k-
fold value is 3 and for each iteration, the classifier classifies 
into distinct classes, say 0, 1, and 2. 0 which has no drop class 
is reserved for such scenarios. No such special case was 
encountered in this work. The validation results show that all 
the models irrespective of the chosen classifier and the k-fold 
value classified the drop type correctly. For reliability, k=5 was 
chosen as the best k-fold value for drop classification for any 
classifier as shown in Table 4. 

4.4.2. Velocity validation 
 
For the velocity, there was an improvement from k = 3 to k 

= 5. At k = 8, there was no or marginal improvement for the 
promising models. Thus, k = 5 was the overall best k-fold 
value, see Table 5. All the linear models failed to closely 
predict the velocity of the drop for the unseen data. Their 
velocity predictions were not surprising as they all have large 
MSE values of 0.02, 0.03, and 0.02 for linear regression, lasso, 
and ridge at k = 5 respectively as illustrated in Fig. 22 relative 
to the non-linear models. Also, their 𝑅ଶ were very low, with the 
highest value of 0.41 for linear regression and ridge.  

On the contrary, at k = 5, most of the   non-linear models 
performed well across their MSE and 𝑅ଶ values. All the models 
perfectly predicted the actual velocity with MSE values of 0 
and 𝑅ଶ  values of 0.98 except the SVR which performed 
moderately well. 

4.4.3. Volume validation 
 
Table 6 shows the optimal value of k-fold of 5 for the 

considered regression models for the volume predictions.  With 
similar trends for both MSE and 𝑅ଶ  values for the velocity 
predictions. All the linear models performed poorly with very 
low  𝑅ଶ  of 0.41 for linear regression and ridge with lasso 
having 0.1.  Their poor performance is further buttressed by 
their higher MSE values relative to the non-linear models.  

The non-linear models had higher  𝑅ଶ values very close to 1 
and their MSE values were perfect except for SVM which had 
an 𝑅ଶ value of 0.88 and an MSE value of 0.1. 

In summary, the developed models for predicting the inkjet 
droplet type, velocities, and volumes generalized the inkjet data 
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without overfitting. Any of the candidate classifier at k=5, 
rightly classified the droplet type. For the velocities and 
volumes, the linear models underfit the given inkjet data 
irrespective of the chosen k-fold values. On the other hand, all 

the non-linear models (random forest regressor, support vector 
regressor, decision tree regressor, and k-neighbor regressor) 
closely fit the data at k = 5 except for the support vector 
regressor which gave relatively moderate results. 

 

Table 4: Drop type predictions by candidate model classifiers and actual drop type on the validation set at the best k-fold value of 5. 

Input Parameters AI/ML Classifiers Ground-truth values 
v f t mv SVM3 RF3 KNN3 DT3 Experimental Drop Type 
17 10 32 3.5 2 2 2 2 2 
17 5 44 5.5 2 2 2 2 2 
25 10 32 4.5 0 0 0 0 0 
25 5 32 4.5 0 0 0 0 0 
25 5 44 3.5 1 1 1 1 1 
32 10 44 3.5 1 1 1 1 1 
21 18 28 4.0 0 0 0 0 0 
21 13 28 6.0 0 0 0 0 0 
35 13 36 5.0 2 2 2 2 2 
29 13 40 5.0 2 2 2 2 2 
21 8 28 6.0 1 1 1 1 1 
21 13 36 6.0 1 1 1 1 1 

 

Table 5: Velocity predictions by candidate model regressors and actual velocity on the validation set at the best k-fold value of 5. 

Input Parameters AI/ML Regressors Ground-truth values 
v f t mv Lin_Reg5 Lasso5 Ridge5 RF5 DT5 SVR5 KNN5 Experimental Velocity 

17 10 32 3.5 2.20 3.56 2.24 1.76 1.72 3.03 1.72 1.72 
17 5 44 5.5 3.57 3.72 3.59 3.37 3.37 3.29 3.37 3.37 
25 10 32 4.5 5.22 5.99 5.24 0.31 0.00 1.31 0.00 0.00 
25 5 32 4.5 5.47 5.99 5.48 0.15 0.00 1.32 0.00 0.00 
25 5 44 3.5 7.94 6.16 7.92 8.47 8.23 8.92 8.13 8.41 
32 10 44 3.5 11.16 8.59 11.11 9.24 9.07 9.48 9.07 9.07 
21 18 28 4.0 2.83 4.74 2.87 0.44 0.20 1.11 0.20 0.00 
21 13 28 6.0 2.18 4.74 2.23 0.36 0.24 1.43 0.24 0.00 
35 13 36 5.0 10.58 9.69 10.54 7.72 7.66 8.95 7.66 7.66 

29 13 40 5.0 8.12 
                            
+7.33 8.10 6.92 6.90 8.26 6.90 6.97 

21 8 28 6.0 2.43 4.74 2.47 1.51 1.54 2.80 1.54 1.54 

21 13 36 6.0 3.19 4.82 3.22 2.82 2.75 4.03 2.75 2.75 

 

Table 6: Volume predictions by candidate model regressors and actual volume on the validation set at the best k-fold value of 5. 

Input Parameters AI/ML Regressors Ground-truth values 
v f t mv Lin_Reg5 Lasso5 Ridge5 RF5 DT5 SVR5 KNN5 Experimental Volume 

17 10 32 3.5 2462.63 3407.51 2478.96 2744.01 2873.36 4285.88 2873.36 2881.00 

17 5 44 5.5 3650.41 3682.71 3656.13 2356.38 2338.00 3399.48 2338.00 2333.00 

25 10 32 4.5 3234.05 3799.81 3241.37 197.52 0.00 897.16 0.00 0.00 

25 5 32 4.5 4195.58 3855.52 4194.33 414.10 0.00 1459.28 0.00 0.00 

25 5 44 3.5 7405.39 4235.99 7375.91 8081.18 8093.72 6967.48 7767.45 8295.00 

32 10 44 3.5 8209.81 4626.25 8171.15 11329.14 11498.96 10430.44 11498.96 11488.00 

21 18 28 4.0 852.23 3438.39 881.77 331.45 0.00 1002.89 0.00 0.00 

21 13 28 6.0 -175.28 3386.78 -136.84 101.93 28.48 1416.99 0.00 0.00 
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35 13 36 5.0 5458.77 4495.77 5443.24 6884.40 7388.32 6884.81 7388.32 7386.00 

29 13 40 5.0 4800.47 4213.21 4792.94 4097.42 4264.07 5685.21 4264.07 4265.00 

21 8 28 6.0 786.24 3442.49 816.12 1069.23 1025.14 1579.65 1025.14 1022.00 

21 13 36 6.0 932.36 3550.18 961.05 734.83 708.27 1918.37 661.15 658.00 

 
All the datasets used to validate the drop characteristics were 

compared with actual images and the predictions had close 
agreement. Fig. 16 shows the actual images of all the datasets 
used for validation. 

 
Fig. 16. Actual images and drop characteristics for the validation datasets. 

5. Conclusions 

3D materials inkjet printing has become a prominent 
additive manufacturing process with applications spanning the 
electronics, healthcare, and automotive domains. Although 
inkjet printing has been around for several decades, there is a 
lack of systematic know-how about the relationship between 
multiple input parameters and printing outcomes. Our group 
proposes an automated image analysis methodology that can 
capture droplet characteristics on-the-fly based on videos 
captured during printing. The custom OpenCV python image 
processing code developed in this research is utilized to 
identify different droplet conditions which include: no droplet, 
satellite droplet and normal droplet. The image processing 
algorithm was able to accurately identify these conditions by 
eliminating noise and extraneous features within the video 
frames. Moreover, droplet velocity and volume were calculated 
with high precision specifically for elongated and non-
spherical droplets which frequently occur during the drop 
evolution phase after ejection from the nozzle. The ANOVA 
statistical measure revealed that voltage, ink temperature, and 
meniscus vacuum had a significant effect on the output metrics.  

A multitiered machine learning strategy was implemented 
for predicting both qualitative droplet types and quantitative  

 
droplet characteristics. In stage 1, classification algorithms 
including random forest (RF), support vector classifier (SVC), 
k-nearest neighbor (KNN), and decision trees (DT) models 
were utilized to predict droplet types. Among these, the RF, 

KNN and DT models achieved the highest accuracy around 
98% with a k = 5 folds design. Similarly, regression-based 
models for predicting droplet velocity and volume performed 
at optimal levels with k = 5 folds design based on 
hyperparameter optimization. This was also confirmed based 
on the confusion matrix results wherein, it is important to 
balance higher model accuracies with a substantial increase in 
computational times. This could be an important consideration 
when implementing these algorithms in real-time for process 
control, and higher latencies beyond a threshold may not be 
acceptable for practical applications. For the velocities and 
volumes, the linear models underfit the given inkjet data, 
irrespective of the chosen k-fold values. On the other hand, all 
the non-linear models (random forest regressor, support vector 
regressor, decision tree regressor, and k-neighbor regressor) 
closely fit the data at k = 5 except for the support vector 
regressor. Experimental validation of new test data sets showed 
close agreement between predicted outcomes of droplet type 
and actual velocities and volumes.  

Future research would include correlating the in-flight 
droplet behavior with substrate deposition to obtain high 
fidelity printing, thus, providing a closed loop mechanism that 
can aid in the development of a digital twin model for a 3D 
material printer. 
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