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1. Introduction

Sample splitting, in which some of the observations in a data
sample are used as a training set for model !tting or model
selection, and the remaining observations are used as a test
set for validation or inference, is a fundamental tool in data
analysis. We applaud Leiner et al. (2025) for their important
paper, which introduces data !ssion, a broad generalization of
sample splitting.

Data !ssion refers to any operation that splits a random
variable X ∼ Pθ into two pieces, which we denote here as
X(1) and X(2), such that three properties hold: (a) there exists
a deterministic function T(·) such that X = T

(
X(1), X(2)

)
; (b)

one cannot reconstruct X from X(1) alone; and (c) the marginal
distribution of X(1) and the conditional distribution of X(2) |
X(1) are known, up to the unknown parameter θ . Leiner et al.
(2025) use the term P1 !ssion for the special case in which X(1)

and X(2) are independent, and P2 !ssion for when independence
does not necessarily hold.1 If X is a vector of independent
observations, then sample splitting is an instance of P1 !ssion.
However, data !ssion extends far beyond sample splitting, even
to settings where we observe only a single scalar random variable
X that we wish to partition into two pieces. Such a generalization
is useful in settings where sample splitting is unsatisfying or
inapplicable, such as those discussed in Leiner et al. (2025),
Neufeld et al. (2024a), and Dharamshi et al. (2024b).

While P1 !ssion is extremely useful and easy to use, Leiner
et al. (2025) provide P1 !ssion operations only for the Gaussian
and the Poisson distributions. They provide little guidance on
how to apply P2 !ssion operations in practice, leaving the reader
unsure of how to apply data !ssion outside of the Gaussian and
Poisson settings. The main contributions of our discussion are
as follows:

1. In Section 2, we argue that P1 !ssion is preferable to P2 !ssion
when both are available, both due to its simplicity but also

CONTACT Anna Neufeld acn2@williams.edu Department of Mathematics and Statistics, Williams College, 18 Hoxsey Street, Williamstown, MA 01267.
1For clarity, we will use “P2 !ssion” to refer speci!cally to !ssion that is not P1 !ssion, that is the case in which X(1) and X(2) are not independent. Otherwise,

“!ssion” and “P2 !ssion” would be synonymous.

due to a new information inequality. We also discuss how our
own work (Dharamshi et al. 2024b) shows that P1 !ssion is
available for many more distributions than the two noted by
Leiner et al. (2025), and o"er insight into when P1 !ssion is
possible.

2. In Section 3, we provide guidance on how to actually apply P2
!ssion in practice by revisiting logistic regression. While this
is a setting where P1 !ssion is impossible, we provide a major
improvement on Leiner et al.’s (2025) treatment of logistic
regression using P2 !ssion: we conduct inference on the
parameters of interest rather than on targets of convenience.

3. In Section 4, we show that P2 !ssion can sometimes be
interpreted as P1 !ssion under model misspeci!cation. This
suggests room for improvement in the way that previous
authors have handled P1 !ssion under misspeci!cation,
and suggests an avenue for developing new P2 !ssion
operations.

2. The Case for P1 Fission over P2 Fission

While Leiner et al. (2025) provide a very large number of P2
!ssion examples, they provide only two examples of P1 !ssion:
the Gaussian location family and the Poisson. Furthermore, for
these two examples, they also provide P2 !ssion alternatives.

This may give the reader the impression that P1 !ssion is
rarely available, and that P2 !ssion is as e"ective as P1 !ssion
when both are possible. In Section 2.1, we argue that P1 !ssion
is preferable to P2 !ssion when both are available. In Section 2.2,
we describe our recent work that establishes that P1 !ssion is in
fact widely available.

2.1. P1 Fission Is Preferable over P2 Fission When Both Are
Available

P1 !ssion decomposes X into independent parts, while P2 !ssion
yields dependent parts. At an intuitive level, having independent
parts may seem preferable in the name of simplicity. Indeed, in
the two examples where Leiner et al. (2025) have both P1 and
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P2 strategies available, they choose to only work with the P1
strategies for numerical experiments (and a P2 strategy that they
carry out in the supplement involves more technical machinery
such as quasi-likelihood). However, putting aside convenience,
one may wonder whether there is a statistical advantage to the
independence o"ered by P1 !ssion. The following proposition
answers this question in the a#rmative. For ease of presentation,
we focus on a scalar-valued θ , though a similar result holds for
general θ .

Proposition 1 (Fisher information allocation of P1 vs. P2). Sup-
pose X ∼ Pθ , where Pθ belongs to a family P , parameterized
by θ ∈ R, for which both P1 and P2 !ssion operations are
available. Let (X(1), X(2)) and (X̃(1), X̃(2)) denote the results of P1
!ssion and P2 !ssion, respectively. Suppose that the Fisher infor-
mations IX(θ), IX(1) (θ), IX(2) (θ), and IX̃(1) (θ) all exist, as well
as IX̃(2)|X̃(1) (θ), which denotes the Fisher information contained
in X̃(2) conditional on X̃(1) (this is a random quantity whose
value depends on X̃(1)). If the two !ssion strategies allocate equal
information to the training set, that is IX(1) (θ) = IX̃(1) (θ), then
on the test sets,

EX̃(1)

[(
IX̃(2)|X̃(1) (θ)

)−1
]

≥
(
IX(2) (θ)

)−1 . (1)

This result, which we prove in Appendix A, is directly
inspired by Rasines and Young’s (2023) Proposition 1 (restated
in Leiner et al. (2025) as “Fact 1”).2 They use this to argue that
the deterministic allocation of Fisher information of P1 !ssion
is more e#cient than sample splitting. Our result, which applies
the same logic, establishes that P1 !ssion is at least as e#cient
as any P2 !ssion strategy. The next example illustrates that the
e#ciency loss can be extreme.

Remark 1 (Information allocation for Poisson). Let X ∼
Poisson(θ). If we apply the P1 !ssion operation from Leiner
et al. (2025) to X with tuning parameter ε, we have that
X(2) ∼ Poisson ((1 − ε)θ) and

(
IX(2) (θ)

)−1 = θ
1−ε . If we apply

the P2 !ssion operation from the supplementary materials of
Leiner et al. (2025) to X with tuning parameter τ , we have that
X̃(2) | X̃(1) ∼ Binomial

(
X̃(1), θ

θ+τ

)
, so that IX̃(2)|X̃(1) (θ) =

τ X̃(1)

θ(θ+τ )2 . Since X̃(1) ∼ Poisson(θ + τ ), there is a nonzero

probability that X̃(1) = 0. Thus, EX̃(1)

[(
IX̃(2)|X̃(1) (θ)

)−1
]

= ∞,
that is con!dence intervals for θ based on P2 !ssion would have
in!nite expected width while

(
IX(2) (θ)

)−1 = θ
1−ε is !nite.

Thus, in addition to the simplicity that comes with indepen-
dence, there is also a statistical justi!cation for preferring P1
!ssion when it is available.

2.2. A Systematic Recipe for P1 Fission

In light of the advantages of P1 !ssion, it is natural to won-
der whether P1 !ssion is possible beyond the normal-location

2As noted in Rasines and Young (2023), “optimality of the Fisher information
is commonly measured through summary statistics of its inverse.”

and Poisson families, and what are the underlying principles
that determine whether P1 !ssion is possible in a particular
family.

In our own work, we have answered these questions,
showing that P1 !ssion is in fact widely available (Neufeld
et al. 2024a; Dharamshi et al. 2024b). In Table 1, we show
that in many of the families for which Leiner et al. (2025)
provide P2 !ssion operations (either through their conjugate
prior strategy or otherwise), P1 !ssion operations are also
available.

Furthermore, our work elucidates the general principles for
when P1 !ssion is possible, and how a P1 !ssion operation
might be constructed. We !rst de!ne data thinning, which is
a K-fold generalization of P1 !ssion (which itself is equivalent
to the “(U, V)-decomposition” de!ned by Rasines and Young
2023).

De!nition 1 (Data thinning, Dharamshi et al. (2024b)). Con-
sider a family of distributions P = {Pθ : θ ∈ $}. We say
that this family is thinned by a function T (·) if there exists a
distribution Gt , not depending on θ , such that when we draw(
X(1), X(2), . . . , X(K)

)
| X ∼ GX , it holds that:

1. X = T
(
X(1), . . . , X(K)

)
.

2.
(
X(1), . . . , X(K)

)
are mutually independent with distributions

that depend on θ .

With this de!nition in place, Dharamshi et al.’s (2024b) The-
orem 1 shows that su#ciency is a key ingredient in making data
thinning possible. As seen in Table 1, this framework allows us to
de!ne P1 !ssion operations (equivalently, thinning operations)
for a wide variety of settings, both within exponential families
and beyond.

In light of Section 2.1, Table 1 shows that, for many of the
distributions considered in Leiner et al. (2025), P1 !ssion oper-
ations are available and preferable. This may leave one to wonder
whether P2 !ssion should ever be used in practice. As high-
lighted in the table, Dharamshi et al. (2024b) and Dharamshi
et al. (2024a) establish that there are situations in which P1
!ssion is unavailable or impossible; in these cases, P2 !ssion is
indeed important in practice. The remainder of our discussion
focuses on these cases.

3. Improving P2 Fission for Logistic Regression

In their main text, Leiner et al. (2025) do not o"er concrete
guidance on applying P2 !ssion in practical contexts. How-
ever, Section E.4 of their supplementary materials does pro-
vide one case study of applying P2 !ssion to a concrete prob-
lem, namely logistic regression. This is an important exam-
ple for P2 !ssion since, as noted in Table 1, Dharamshi et al.
(2024b) prove that P1 !ssion is impossible in the Bernoulli
family.

In Section 3.1, we review their proposal and point out a
major shortcoming: they are not able to conduct inference on
the parameters of interest. Then, in Section 3.2, we show that we
can improve their example, establishing more persuasively the
practical usefulness of P2 !ssion.
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Table 1. The parameter θ (likewise θ1 and θ2) is always unknown (i.e., the !ssion operation must not rely on it) while all other parameters are known.

Distribution Pθ P1 P2

P1 and P2 available,
P1 preferable.

N(θ , σ 2) Rasines and Young (2023)

...
Leiner et al. (2025)

...

Np(θ , ") Rasines and Young (2023)
Poisson(θ) Leiner et al. (2025)

NegBin(r, θ) ...
Neufeld et al. (2024a)

...

Binomial(r, θ)
Exp(θ)

Gamma(α, θ)

Gamma(θ , β) ...
Dharamshi et al. (2024b)

...

Dirichlet(θ , ()
Exponential family

P1 available,
P2 not yet considered.

Multinomialp(r, θ) Neufeld et al. (2024a)
Beta(θ , β)

...
Dharamshi et al. (2024b)

...

...
Not yet considered

...

Beta(α, θ)
Weibull(θ , ) )
Pareto() , θ)

N(µ, θ)
Unif(0, θ)

θ · Beta(α, 1)
θ + Exp(λ)

P2 available,
P1 impossible or

not yet considered.

Bernoulli(θ) Impossible (Dharamshi et al. (2024b)) ...
Leiner et al. (2025)

...

Categorical(θ) Impossible (Dharamshi et al. (2024b))
N1(θ1, θ2) Impossible (Dharamshi et al. (2024a))

Gamma(θ1, θ2) Not yet considered
NegBin(θ1, θ2) Not yet considered

Binomial(θ1, θ2) Not yet considered

NOTE: For each family, we include a citation to the authors who, to the best of our knowledge, !rst proposed the decomposition as a general alternative to sample splitting.
We have omitted citations to authors who proposed the decompositions for speci!c tasks. For example, the P1 decomposition of the Poisson follows from a much-used
thinning property (see e.g., Chen et al. (2021) and Sarkar and Stephens’s (2021) use for speci!c tasks related to model validation, or Neufeld et al.’s (2024b) use for a speci!c
task related to inference). Similarly, Tian and Taylor (2018) and Tian (2020) use the N(θ , σ 2) decomposition for speci!c tasks. Finally, Joe (1996) use the natural exponential
family P1 decompositions as generative models for time series. Finally, we note that this table is not exhaustive; some of the distributions considered in Dharamshi et al.
(2024b) are omitted here for brevity.

3.1. Leiner et al.’s (2025) Proposal for Logistic Regression

In Section A of their supplementary materials, Leiner et al.
(2025) describe a P2 !ssion of the Bernoulli distribution, which
for reference we restate here.

Example 1 (P2 !ssion of a Bernoulli (Leiner et al. 2025)). We
observe Y ∼ Bernoulli(θ). For a tuning parameter ε, sample
Z ∼ Bernoulli(ε) and then let Y(1) = (1 − Z) Y + Z (1 − Y)
and Y(2) = Y , which yields

Y(1) ∼ Bernoulli(θ + ε − 2θε),

Y(2) | Y(1) ∼ Bernoulli
(

θ

θ + (1 − θ)( ε
1−ε )2Y(1)−1

)

. (2)

In Section E.4 of the supplementary materials, Leiner et al.
(2025) apply this decomposition to logistic regression. We
brie$y describe this example below.

Example 2 (Inference for logistic regression using P2 !ssion of
a Bernoulli). Let X ∈ Rn×p be a (!xed) matrix of covariates
with rows denoted xi, and let Y ∈ {0, 1}n be a vector of binary
responses. Assume that

Yi ∼ Bernoulli(θi), where θi = exp(βTxi)

1 + exp(βTxi)
, (3)

and β ∈ Rp is sparse. Leiner et al. (2025) suggest the following
work$ow for inference on the nonzero coe#cients.

1. For i = 1, . . . , n, apply the decomposition in Example 1 to
split Yi into Y(1)

i and Y(2)
i .

2. Select variables S ⊆ {1, . . . , p} by running standard logistic
lasso so%ware (with cross-validation to select the penalty
parameter) on

{
(x1, Y(1)

1 ), . . . , (xn, Y(1)
n )

}
.

3. Fit a standard logistic GLM on
{
(x1S, Y(2)

1 ), . . . , (xnS, Y(2)
n )

}
,

where xiS denotes the ith observation subset to the variables
in S. This is a misspeci!ed model, since (2) implies that the
log odds of the mean of Y(2) is not linear in the covariates.
Thus, use sandwich standard errors for inference to obtain
valid con!dence intervals for the parameters that minimize
the KL-divergence between the “working model” (assumed
by the use of a standard logistic GLM) and the conditional
distribution in (2).

We note that the parameters that are targeted in Step 3 of
their approach are not the same parameters that appear in the
original model (3). This is a serious practical limitation of the
approach, as we demonstrate here. We generate 2000 datasets
with n = 500 and p = 50 where β0 = 0.6 and βj = 0 for
j = 1, . . . , p. Note that Yi ∼ Bernoulli(0.6) for i = 1, . . . , n,
and so none of the covariates contribute to the data generating
mechanism. For each dataset, we carry out the three-step process
described in Example 2, which follows Section E.4 of Leiner et al.
(2025). Figure 1 shows that the p-values for the selected variables
do not follow a uniform distribution, even though β1 = · · · =
βp = 0. Thus, Type 1 error of the selected variables is not
controlled.
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Table 2. Coverage, selection probability, and conditional power for the method in Example 3, for the simulation described in Section 3.2.

j Coverage Proportion of Proportion of datasets
of βj datasets w/ w/ Xj selected where

Xj selected H0 : βj = 0 is rejected

1 0.95 0.32 0.88
2 0.94 0.94 1.00
3 0.94 0.74 0.99

Average over
all others 0.95 0.02 0.05

NOTE: The proportion of datasets with Xj selected (for the non-null variables) is a function of how much information is in the training set, whereas the proportion of these
datasets for which we reject the null hypothesis that βj = 0 is a function of the information in the test set. Thus, we can trade o" the performance in these columns by
changing the tuning parameter ε in Example 1: in these simulations, we use ε = 0.8.

As this is the only example of P2 !ssion given in Leiner
et al. (2025), it might appear that P2 !ssion never lends itself
to inference on the parameters of interest. However, we show in
the next section that this is not the case. With care, we are able
to apply this same decomposition of the Bernoulli for inference
on the parameter of interest β .

3.2. A Better Way To Do P2 Fission for Logistic Regression

The problem in Example 2 does not lie in the Bernoulli P2 !ssion
operation in Step 1 (see Example 1): instead, the problem lies in
the fact that Step 3 uses a likelihood derived from the marginal
distribution of Y(2) rather than the conditional distribution of
Y(2) | Y(1).

To address this, we re-consider Step 3 of Example 2. It turns
out that (2) implies that

log
(

Pr
(
Y(2) = 1 | Y(1)

)

Pr
(
Y(2) = 0 | Y(1)

)
)

=
{

log
( 1−ε

ε

)
+ β0 + βTxi if Y(1) = 1,

log
(

ε
1−ε

)
+ β0 + βTxi if Y(1) = 0.

Thus, we can improve on Step 3, as shown in the following
example.

Example 3 (Improved inference for logistic regression using P2
!ssion of a Bernoulli). In the setting of Example 2, conduct Steps
1 and 2. Replace Step 3 with the following:

3. Fit a standard logistic GLM to
{
(x1S, Y(2)

1 ), . . . , (xnS, Y(2)
n )

}
,

with an o"set that equals log
(

ε
1−ε

)
if Y(1)

i = 0, and log
( 1−ε

ε

)

otherwise.

This method makes use of the conditional distribution of Y(2) |
Y(1), and therefore yields valid con!dence intervals for the orig-
inal parameters.

Figure 1 shows that this leads to uniform p-values for the
selected coe#cients.

We next generate 2000 datasets with β0 = 0.6, β1 = −0.9,
β2 = 2.1, β3 = −1.5, and β4 = · · · = βp = 0. Table 2 shows
that the standard (non-sandwich) logistic regression con!dence
intervals from Example 3 achieve nominal coverage for each
coe#cient whenever it is selected. Table 2 also shows that the
method from Example 3 tends to select the truly important
variables for the model, and has high power to determine that
these variables are signi!cant when they are selected.

Thus, the conditional distribution of Y(2) | Y(1) under the
Bernoulli P2 !ssion operation in Example 1 is quite tractable for
logistic regression, and allows for valid post-selective inference
using standard so%ware. This provides a proof of concept that
P2 !ssion is a powerful tool that may be useful in practice. We
believe that Example 3 makes this case more persuasively than
the example in Leiner et al.’s (2025) supplement (re-stated as our
Example 2), as in the latter example the parameters of interest
are not the targets of inference. In the next section, we explore
additional possible uses for P2 !ssion.

Scripts to reproduce the numerical results in this section can
be found at https://github.com/anna-neufeld/!ssion_logistic/.

4. P2 Fission as P1 Fission under Misspeci!cation

In this section, we argue that directly working with the condi-
tional distribution of X(2) | X(1) provides room for improvement
in the way that previous authors have treated the setting of P1
!ssion under model misspeci!cation.

4.1. Misspeci!ed P1 Fission of the Gaussian Distribution

We !rst recall the P1 !ssion operation for the Gaussian distri-
bution with known variance from Neufeld et al. (2024a). This is

Figure 1. Uniform QQ-plot of p-values for all selected variables across all datasets
under the global null, for the simulation described in Section 3. While the method
of Example 2 (taken from Leiner et al. (2025)) does not control the Type 1 error, our
proposal in Example 3 achieves uniformly distributed p-values by directly working
with the conditional distribution.

https://github.com/anna-neufeld/fission_logistic/
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equivalent (up to a constant scaling) to the operations of Leiner
et al. (2025) and Rasines and Young (2023).

Example 4 (P1 !ssion of the Gaussian with known variance). We
observe X ∼ N

(
θ , σ 2). For a tuning parameter ε, we let

(
X(1)

X(2)

) ∣∣∣∣X = x ∼ N
([

εx
(1 − ε)x

]
,

[
ε(1 − ε)σ 2 −ε(1 − ε)σ 2

−ε(1 − ε)σ 2 ε(1 − ε)σ 2

])
, (4)

which yields
(

X(1)

X(2)

)
∼ N

([
εθ

(1 − ε)θ

]
,
[
εσ 2 0

0 (1 − ε)σ 2

])
. (5)

If σ 2 is unknown, then we cannot draw from the distribu-
tion in (4). The question of what to do if σ 2 is unknown has
been considered by numerous authors. Both Rasines and Young
(2023) and Leiner et al. (2025) propose applying (4) with an
estimate σ̂ 2, and then treating the resulting folds X(1) and X(2)

as though they were independent; both sets of authors justify
this approach using an asymptotic argument. We refer to such an
approach as “approximate P1 !ssion”. However, since data !ssion
is most useful when the number of observations n is small (or
even n = 1), estimating σ 2 from the data is unlikely to be fruitful
in practical settings, and the asymptotic arguments of Rasines
and Young (2023) and Leiner et al. (2025) are unlikely to apply.
Thus, we feel that “approximate P1 !ssion” leaves something to
be desired.

Proposition 10 of Neufeld et al. (2024a) provides the follow-
ing !nite sample result, which quanti!es the magnitude of the
correlation between X(2) and X(1) when we apply (4) with a
“guess” of σ 2.

Example 5 (Gaussian P1 !ssion under misspeci!cation). Suppose
that we observe X ∼ N

(
µ, σ 2), with both µ and σ 2 unknown.

For a σ̃ 2 that is not a function of X, sampling
(

X(1)

X(2)

) ∣∣∣∣X = x ∼ N
([

εx
(1 − ε)x

]
,

[
ε(1 − ε)σ̃ 2 −ε(1 − ε)σ̃ 2

−ε(1 − ε)σ̃ 2 ε(1 − ε)σ̃ 2

])
(6)

yields
(

X(1)

X(2)

)
∼ N

([
εµ

(1 − ε)µ

]
,

[
ε2σ 2 + ε(1 − ε)σ̃ 2 ε(1 − ε)(σ 2 − σ̃ 2)
ε(1 − ε)(σ 2 − σ̃ 2) (1 − ε)2σ 2 + ε(1 − ε)σ̃ 2

])
. (7)

On the basis of this result, Neufeld et al. (2024a) argue that as
long as σ 2 and σ̃ 2 are “close”, the dependence between folds can
be ignored. Of course, in practice, it is not clear how an analyst
might obtain an accurate “guess” for the error variance, without
using the data!

Notably, up to small changes in scaling and notation, Exam-
ple 5 is also presented in Section A of the supplementary mate-
rials of Leiner et al. (2025) as a Gaussian P2 !ssion operation for
unknown σ 2. However, they do not elaborate on its use.

In Dharamshi et al. (2024a), we show that interpreting (7) as
P2 !ssion provides a valuable toolset for post-selection inference
or model validation in the setting of a Gaussian with unknown
variance, especially when n is small or n = 1. In particu-
lar, we work with the conditional distribution of X(2) | X(1),
rather than ignoring this dependence, as was done by previous
authors (Leiner et al. 2025; Rasines and Young 2023; Neufeld
et al. 2024a). This conditional distribution poses a number of
statistical and computational challenges, which we address. We
further explore topics such as the expected allocation of Fisher
information between X(1) and X(2) | X(1), which depends both
on ε and the degree of misspeci!cation. As in Section 3.2, we
show that Gaussian P2 !ssion enables inference on parameters
of interest using relatively standard techniques.

As far as we know, Dharamshi et al. (2024a) are the !rst to
propose using P2 !ssion as a remedy to P1 !ssion under mis-
speci!cation. In the remainder of this section, we show that this
idea can be fruitfully applied far beyond the Gaussian setting.

4.2. Misspeci!ed P1 Fission of the Negative Binomial
Distribution

We !rst restate the P1 !ssion operation for the negative binomial
distribution with known overdispersion from Neufeld et al.
(2023) and Neufeld et al. (2024a).

Example 6 (The negative binomial with known overdispersion).
We observe X ∼ NB (r, θ). If r is known, then Neufeld et al.
(2024a) propose to sample X(1) and X(2) as
(

X(1), X(2)
) ∣∣∣∣X = x ∼ DirichletMultinomial (x, εr, (1 − ε)r) ,

(8)
which yields X(1) ∼ NB (εr, θ), X(2) ∼ NB ((1 − ε)r, θ), and
X(1) ⊥⊥ X(2).

If the overdispersion parameter r is unknown, then we cannot
draw from the distribution in (8). Neufeld et al. (2023) suggest
that one can apply (8) with an estimate of r and treat the result-
ing folds as independent, and Neufeld et al. (2024a) provide a
!nite sample result analogous to Example 5 that quanti!es the
covariance between the folds when a non-data-driven “guess” r̃
is used.

In the setting of Example 6, suppose that we plug in a very
particular “guess” r̃ in place of r: we take r̃ → ∞. That is, we per-
form P1 !ssion for the incorrect family P̃ = {limr→∞NB (r, θ) :
θ ∈ (0, 1), r 1−θ

θ = µ} = {Poisson (µ) : µ ∈ (0, ∞)}.

Example 7 (Applying Poisson P1 !ssion under misspeci!cation).
We observe X ∼ NB(r, θ), where both r and θ are unknown.
Apply Poisson P1 !ssion to X: that is, sample

(
X(1), X(2)

) ∣∣∣∣X = x ∼ Multinomial (x, ε, (1 − ε)) .

This yields X(1) ∼ NB
(

r, θ
θ+ε−εθ

)
and X(2) | X(1) ∼

NB
(
r + X(1), θ + ε − εθ

)
. This is identical to the P2 !ssion

operation for the negative binomial given in Appendix A of
Leiner et al. (2025).
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Thus, the negative binomial P2 !ssion operation of Leiner
et al. (2025) can be viewed as applying Poisson P1 !ssion to
a negative binomial random variable. It can therefore be inter-
preted as misspeci!ed P1 !ssion.

Neufeld et al. (2024b) and Neufeld et al. (2023) explore the
possibility of applying Poisson P1 !ssion to data that follows
a negative binomial distribution, but they ignore the resulting
dependence between folds of data, and suggest that this is appro-
priate if the amount of overdispersion in the data is thought to
be mild. Negative binomial P2 !ssion o"ers an alternative path.
However, the conditional distribution of X(2) | X(1) takes a
complicated form, which may pose a challenge in its application
to post-selection inference or model validation. Understanding
how to work with this conditional distribution in practice is a
topic for future work.

It is clear from Table 1 that there are many distributions
beyond the Gaussian and the negative binomial for which the
available P1 !ssion operation requires knowledge of some of the
parameters of the model. Using the strategies presented in this
section, we can see that it is always possible to come up with
a P2 !ssion operation that does not require knowledge of any
parameters: we can just take the P1 recipe and plug in a “guess.”
This strategy will always result in dependent folds, and thus can
always be seen as P2 !ssion. Thus, in this section, we have seen
both a new way to deal with P1 !ssion under misspeci!cation,
as well as a possible future avenue for developing new P2 !ssion
decompositions. For example, one could apply the P1 recipe for
Beta(θ , β) referred to in Table 1 with a guess for β to develop a
valid P2 !ssion strategy for {Beta(θ1, θ2) : θ1, θ2 > 0}, a family
that does not yet appear in the table.

5. Discussion

We applaud Leiner et al. (2025) once again for their important
work. Decompositions of a single random variable have already
proved useful in a variety of applications far beyond those men-
tioned in Leiner et al. (2025) (see e.g., Tian 2020; Chen et al.
2021; Oliveira, Lei, and Tibshirani 2022; Neufeld et al. 2023,
2024b), and we have no doubt that the contributions of Leiner
et al. (2025) will further increase the scope of application.

In Section 3, we saw that in the setting of logistic regression,
operating on the conditional distribution of Y(2) | Y(1) arising
from P2 !ssion is actually quite tractable. This raises the follow-
ing question: while many of the conditional distributions arising
from the P2 !ssion operations proposed in Leiner et al. (2025)
appear to be di#cult to work with, might some of them be sim-
pler than they seem? For instance, Perry et al. (2024) consider
a Gaussian-Laplace setting in which Y(2) | Y(1) is complicated,
but conditioning on additional information (beyond Y(1)) leads
to tractable inference. Similar strategies may prove fruitful for
other P2 !ssion decompositions.

Overall, while we would not choose P2 !ssion over P1 !ssion
in a setting where both are available, we believe that P2 !ssion is
a valuable tool whose potential is far broader than the examples
considered in Leiner et al. (2025). We look forward to seeing
additional applications of P2 !ssion in the future.

Appendix A: Proof of Proposition 1

As noted in Section 2.3 of Leiner et al. (2025), IX(θ) = IX̃(1) (θ) +
EX̃(1) [IX̃(2)|X̃(1) (θ)]. For P1-!ssion, the same logic applies, but with X(1)

and X(2) independent, this reduces to IX(θ) = IX(1) (θ) + IX(2) (θ)

(recovering Proposition 2 of Dharamshi et al. (2024b)). Setting these
two decompositions of IX(θ) equal to each other and recalling the
assumption that the training sets have equal information, IX(1) (θ) =
IX̃(1) (θ), we get that

EX̃(1) [IX̃(2)|X̃(1) (θ)] = IX(2) (θ).

This equality together with Jensen’s inequality then implies the result:

EX̃(1) [{IX̃(2)|X̃(1) (θ)}−1] ≥ {EX̃(1) [IX̃(2)|X̃(1) (θ)]}−1 = IX(2) (θ)−1.
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