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Abstract

In this paper, we establish some finiteness results about the multiplicative dependence of
rational values modulo sets which are ‘close’ (with respect to the Weil height) to division
groups of finitely generated multiplicative groups of a number field K. For example, we show
that under some conditions on rational functions f1, . . . , fn ∈ K(X), there are only finitely
many elements α ∈ K such that f1(α), . . . , fn(α) are multiplicatively dependent modulo such
sets.
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1. Introduction

1.1. Motivation

Given non-zero complex numbers α1, . . . , αn ∈C∗, we say that they are multiplicatively

dependent if there exist integers k1, . . . , kn ∈Z, not all zero, such that

α
k1
1 · · · αkn

n = 1;

and we say that they are multiplicatively dependent modulo G, where G is a subset of C∗, if
there exist integers k1, . . . , kn ∈Z, not all zero, such that

α
k1
1 · · · αkn

n ∈ G.

Multiplicative dependence of algebraic numbers has been studied for a long time and still
very actively; see, for instance, [4, 5, 12, 14, 19, 22, 27, 28, 31, 35, 41] and the references
therein. The authors in [28] have studied the multiplicative dependenc of elements in an
orbit of an algebraic dynamical system, and recently in [9] this has been extended to the
more general setting of multiplicative dependence modulo a finitely generated multiplicative
group.

In this paper, we want to study multiplicative dependence among values of rational func-
tions modulo sets which can be roughly described as approximate division groups of finitely
generated groups �, denoted by �div

ε (which is defined in the next section), that is, sets which
are not far with respect to the Weil height from the division group of a finitely generated
multiplicative group of a number field.

The motivation also partly comes from the study of points on subvarieties of tori. Let
Gm be the multiplicative algebraic group over the complex numbers C, that is Gm =C∗

endowed with the multiplicative group law. Intersection of varieties in Gm
n with sets of

the type �div
ε falls within two conjectures, the Mordell–Lang conjecture on intersection of

varieties with finitely generated subgroups and the Bogomolov conjecture which is about
the discreteness of the set of points of bounded height in a variety. This direction has been
extensively studied over several decades, see [1, 3, 8, 10, 13, 16, 20, 21, 23, 26, 32, 33,
36, 39] and references therein, which in particular give precise quantitative results about the
intersection of varieties with �div

ε .
Here, in some sense, instead of assuming each coordinate of a point is from �div

ε , we
impose that the coordinates of a point multiplicatively generate an element in �div

ε .

1.2. Notation

Throughout the paper, we use the following notation:

(i) K is a number field;

(ii) K is an algebraic closure of K;

(iii) S is a finite set of places of K containing all the infinite places;

(iv) OS is the ring of S-integers of K;

(v) R∗ is the unit group of a ring R;

(vi) � is a finitely generated subgroup of K∗;

(vii) For A ⊆ K∗,

Adiv := {α ∈ K : αm ∈ A for some integer m ≥ 1}.
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Multiplicative dependence of rational values 151

For ε > 0,

�div
ε := {αβ : α ∈ �div, β ∈ K

∗
with h(β) ≤ ε}.

Here h( · ) stands for the absolute logarithmic Weil height function. The set �div is called
the division group of �.

In addition, let MK be the set of places of K, M∞
K the set of infinite places of K, and

M0
K = MK \ M∞

K .

1.3. Main results

In this section we state the main results proved in this paper. Informally, our results can be
summarised as follows: given f1, f2, . . . , fn ∈ K[X] satisfying some natural conditions (some
results hold for rational functions as well), we prove finiteness of the sets of:

• α ∈ K such that f1(α), . . . , fn(α) are multiplicatively dependent modulo �div
ε ;

• α ∈ �div
ε such that f1(α), . . . , fn(α) are multiplicatively dependent modulo �div

ε .

We would like to unify these results and have a finiteness result for the set of α ∈ K(�div)
satisfying the conclusion above, and thus we conclude this section with an open problem in
this direction.

We now formally state our results.

THEOREM 1·1. Let f1, f2, . . . , fn ∈ K[X] be pairwise coprime polynomials. Assume that

each of them has at least two distinct roots. Then, for every ε > 0 there are only finitely many

elements α ∈ K such that f1(α), . . . , fn(α) are multiplicatively dependent modulo �div
ε .

We first remark that in Theorem 1·1, since α ∈ K and the polynomials f1, . . . , fn are in
K[X], by Lemma 2·1 below we know that “modulo �div

ε ” can be reduced to modulo a subset
of K∗ which is somehow “close” to �.

We also remark that in Theorem 1·1 the two conditions of the polynomials being “pairwise
coprime” and “each of them has at least two distinct roots” somehow cannot be removed.
For example, choosing f1 = X(X + 2), f2 = (X + 1)(X + 2), and f3, . . . , fn arbitrary, for any
α = 1/(β − 1) with β ∈ � and β 	= 1, 1/2 and f3(α) · · · fn(α) 	= 0, we have

f1(α)−1f2(α) (f3(α) · · · fn(α))0 = β ∈ �.

In addition, choosing pairwise coprime polynomials f1, f2, . . . , fn ∈ K[X] with f1 = X − a for
some a ∈ K, for any α ∈ � satisfying f2(α + a) · · · fn(α + a) 	= 0, we have

f1(α + a)
(

f2(α + a) · · · fn(α + a)
)0

= α ∈ �.

Using Theorem 1·1, we establish the following result, which holds for rational functions.
For this, we say that non-zero rational functions f1, . . . , fn ∈ K(X) are multiplicatively inde-

pendent modulo constants if they are multiplicatively independent modulo K∗, that is, there
is no non-zero integer vector (k1, . . . , kn) such that

f
k1
1 · · · f kn

n ∈ K∗.
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152 A. BÉRCZES et al.

In addition, for any rational function f ∈ K(X), the numerator and denominator of f are meant
to be two polynomials g, h ∈ K[X], respectively, such that f = g/h and gcd (g, h) = 1.

THEOREM 1·2. Let f1, f2, . . . , fn ∈ K(X) be non-constant rational functions such that they

are multiplicatively independent modulo constants. Assume that for each fi, i = 1, 2, . . . , n,

its numerator either has no linear factor or has at least two distinct linear factors over K,

and so does its denominator. Assume further that f1, f2, . . . , fn have distinct linear factors

over K (if they have). Then, for every ε > 0 there are only finitely many elements α ∈ K such

that f1(α), . . . , fn(α) are multiplicatively dependent modulo �div
ε .

Remark 1·3. If f1, f2, . . . , fn ∈ K(X) in Theorem 1·2 are all monic (that is, both numerator
and denominator are monic), then the assumption “they are multiplicatively independent
modulo constants” can be replaced by “they are multiplicatively independent”.

The following corollary is about multiplicative dependence in orbits of a rational function,
which somehow can be viewed as an extension of [9, theorem 1·7]. For a rational function
f ∈ K(X) and a positive integer n ≥ 1, let f (n) be the nth compositional iterate of f . In addition,
for any rational function f ∈ K(X), if both its numerator and denominator have no linear
factor over K, we say that f has no linear factor.

COROLLARY 1·4. Let f ∈ K(X) be a non-constant rational function satisfying one of the

following two conditions:

(i) f ∈ K[X], f has at least two distinct roots, and 0 is not a periodic point of f;

(ii) f has no linear factor.

Then, for any ε > 0 and any integer n ≥ 1, there are only finitely many elements α ∈ K

such that f (m+1)(α), . . . , f (m+n)(α) are multiplicatively dependent modulo �div
ε for some

integer m ≥ 0.

When n = 2 in Theorem 1·1, we can relax the condition of coprimality on the polynomials
f1 and f2.

We say that f1, . . . , fn ∈C(X) multiplicatively generate a rational function g if there exist
integers k1, . . . , kn ∈Z, not all zero, such that

f
k1
1 · · · f kn

n = g.

We have the following result:

THEOREM 1·5. Let f1, f2 ∈ K[X] be polynomials of degree at least 2, each having at least

two distinct roots. Assume that they cannot multiplicatively generate a power of a linear

fractional function. Then, for any ε > 0 there are only finitely many elements α ∈ K such

that f1(α) and f2(α) are multiplicatively dependent modulo �div
ε .

In Theorem 1·5, the condition related to linear fractional function cannot be removed.
See the example below Theorem 1·1. Here, we view non-zero constants as linear fractional
functions.

We remark that in Theorem 1·5 we can replace the condition related to linear fractional
function with the total number of distinct roots of f1 and f2 which are not common roots
being at least three.
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We also remark that the results in Theorems 1·1 and 1·5 are both not effective, due to
Lemma 2·2.

As a direct consequence of Maurin’s theorem [24, théorème 1·2] (see [11] for an effective
version), if f1, f2, . . . , fn ∈ K(X) are such that X, f1, . . . , fn are multiplicatively independent
modulo �, then the set

{

α ∈ �div : f1(α), . . . , fn(α) multiplicatively dependent mod �div
}

(1·1)

is finite (see [30, lemma 3·2] for more details). This is an effective generalisation of Liardet’s
theorem [21, théorème 1] on division points on curves; see also [8, theorem 2·2] for an
effective version of Liardet’s result.

We remark that by definition, multiplicative dependence modulo � is equivalent to
multiplicative dependence modulo �div.

Using [25, théorème 1·10], which improves [24, théorème 1·7], we are able to extend this
conclusion by enlarging �div to �div

ε for certain ε > 0 (but in a non-effective manner).

THEOREM 1·6. Let f1, f2, . . . , fn ∈ K(X) be such that X, f1, . . . , fn are multiplicatively

independent modulo �. Then, there exists a real number ε > 0 for which there are only

finitely many elements α ∈ �div
ε such that f1(α), . . . , fn(α) are multiplicatively dependent

modulo �div
ε .

We end this section with an open problem. We would like to combine Theorem 1·1 with
the finiteness of the set (1·1), and ask the following question:

Problem 1·7. Let f1, . . . , fn ∈ K(X) be non-zero rational functions. Under what conditions is
the following set

{

α ∈ K(�div) : f1(α), . . . , fn(α) multiplicatively dependent mod �div
}

(1·2)

finite?

When � = {1}, then �div is the set of all roots of unity, and K(�div) is the cyclotomic
closure of K. In this case, it has been proven in [28, theorem 4·2] that if f1, . . . , fn do not
multiplicatively generate a power of a linear fractional function, then the set (1·2) is finite
(in fact, the result holds more generally for the abelian closure of K).

When n = 1, Problem 1·7 becomes that for a non-zero rational function f ∈ K(X), under
which condition the set {α ∈ K(�div) : f (α) ∈ �div} is finite. This would extend the cyclo-
tomic version of the Hilbert Irreducibility Theorem proved by Dvornicich and Zannier [15,
corollary 1] in the case when � = {1}. Recall also that a special case of a general con-
jecture of Rémond (see [37, conjecture 3·4]) asserts that there exists a constant c� such
that for any α ∈ K(�div) \ �div, h(α) ≥ c� (see [34, conjecture 1·1 (c)], and see [2, theo-
rem 1·3] for a non-trivial example). Clearly, under this conjecture, the finiteness of the set
{α ∈ K(�div) : f (α) ∈ �div} implies the finiteness of the set {α ∈ K(�div) : h(f (α)) < ε} for
any ε < c� .
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2. Preliminaries

2.1. On some intersections with approximate groups and algebraic subgroups

We define the set A(K, H) as the set of nonzero elements in the algebraic number field K

of height at most H, that is,

A(K, H) =
{

α ∈ K∗ : h(α) ≤ H
}

.

We note that by Northcott’s Theorem the set A(K, H) is a finite set.
We need the following result from [29, theorem 2·1].

LEMMA 2·1. Let {g1, . . . , gr} be a set of generators of �, which minimises H =

maxi=1,...,r h(gi). Then, for every ε > 0, we have

K∗ ∩ �div
ε ⊆

{

βη : (β, η) ∈ � × A(K, ε + rH)
}

.

As usual, for any non-constant rational function f ∈ K(X), the degree of f is defined to be
the maximum of the degrees of its numerator and denominator.

The following result is [9, theorem 1·2 (a)].

LEMMA 2·2. Let f ∈ K(X) be a rational function of degree d ≥ 2. Assume that f is not

of the form a(X − b)d or a(X − b)d/(X − c)d with a, b, c ∈ K, a(b − c) 	= 0, and d ∈Z. Then,

the set {α ∈ K : f (α) ∈ �} is finite.

We remark that the result in Lemma 2·2 is not effective, due to the use of the Faltings
theorem [17] about finiteness of rational points on a curve. See also [29, corollary 2·2] and
references therein.

We conclude this section with a result of Maurin [25, théorème 1·10], which we present
in our setting of parametric curves by noticing [25, remarque 1·3].

For this we introduce the following notation: we define H[2] to be the union of all alge-
braic subgroups in Gm

n of codimension at least 2. For ε > 0, we let H[2]
ε be defined similarly

as in Section 1.2, that is,

H
[2]
ε = {u · v : u ∈H

[2], v ∈Gm
n with h(v) ≤ ε}.

We have the following result, which is a special case of [25, thàreme 1·10].

LEMMA 2·3. Let g1, . . . , gr ∈ K∗ and f1, . . . , fn ∈ K(X) be such that f1, . . . , fn, g1, . . . , gr

are multiplicatively independent. Let

C = {(f1(α), . . . , fn(α), g1, . . . , gr) : α ∈ K} ⊂Gm
n+r.

Then there exists a real number ε > 0 such that C ∩H
[2]
ε is finite.
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2.2. On some functional properties of rational functions

We need the following special case of the result of Young [42, corollary 1·2], which
generalises the previous result of Gao [18, theorem 1·4] to multiplicative independence of
consecutive iterations of rational functions over fields of characteristic zero.

LEMMA 2·4. Let F be an arbitrary field of characteristic zero, and let f ∈ F(X) be a

rational function of degree d ≥ 2 which is not of the form aX±d. Then, for any integer n ≥ 1,

the iterates f (1)(X), . . . , f (n)(X) are multiplicatively independent modulo constants.

We also need the following simple lemma.

LEMMA 2·5. Let f ∈ K(X) be a rational function such that it has no linear factor. Then,

for any non-constant rational function g ∈ K(X), the rational function f ◦ g has no linear

factor.

Proof. First, we note that it suffices to prove that for any monic irreducible factor, say
p(X), of either the numerator or the denominator of f , the rational function p ◦ g has no
linear factor.

By contradiction, suppose that the rational function p ◦ g has a linear factor. Then, there
is an element, say α, in K such that p ◦ g(α) = 0.

If g(α) is well-defined, then g(α) ∈ K, which means that the polynomial p has a root (that
is, g(α)) in K. However, by assumption p is an irreducible polynomial over K of degree at
least 2. So, we get a contradiction.

Now, if g(α) is not well-defined, then α is a pole of g. Write p = Xd + a1Xd−1 + · · · +

ad−1X + ad and g = u/w with u, w ∈ K[X] and gcd (u, w) = 1. Since α is a pole of g,
we have w(α) = 0. Note that p ◦ g = p(u/w) = 1/wd(ud + a1ud−1w + · · · + ad−1uwd−1 +

adwd). Then, since p ◦ g(α) = 0 and w(α) = 0, we obtain u(α) = 0. So, α is a common root
of u and w, which contradicts with gcd (u, w) = 1.

Therefore, the rational function f ◦ g has no linear factor.

2.3. Generalised Schinzel–Tijdeman theorem

Another important tool for our results is the following general version, established in [6],
of the Schinzel–Tijdeman theorem [38], which extends [7, theorem 2·3] and [9, lemma 2·8].
We present it in a simplified form, which is sufficient for our purposes.

Let K be a number field and S a finite subset of MK containing all the infinite places. The
following theorem is proved in [6, theorem 2·2].

LEMMA 2·6. Let f (X) = a0Xn + · · · + an ∈ OS[X] be a polynomial of degree n and with

at least two distinct roots. There is an effectively computable constant C(f,K,S), depending

only on f, K and S, so that the following holds: if b ∈ O∗
S and if the equation

f (x) = bym in x, y ∈ OS, m ∈Z, m ≥ 3, (2·1)

has a solution (x, y) with y 	= 0 and y /∈ O∗
S, then

m ≤ C(f , K, S).
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We remark that, when f has only simple roots, the result in Lemma 2·6 has been estab-
lished in [9, lemma 2·8], In addition, when S only consists of infinite places, the result in
Lemma 2·6 has been given in [40, theorem 10·3] (choosing τ = 0, z = 1, γ = 1, ε = b there).

3. Proofs of the main results

3.1 Preliminary discussion

Let S� be the following set of places of K:

S� := M∞
K ∪

{

v ∈ M0
K : v(γ ) 	= 0 for some γ ∈ �

}

,

where, as usual, v(γ ) means the additive valuation of v at γ . Note that the set S� is finite,
since � is finitely generated.

As usual, we say that a polynomial

f (X) = a0Xd + · · · + ad−1X + ad ∈ K[X]

has bad reduction at v ∈ M0
K if either v(ai) < 0 for some i ≥ 1 or v(a0) 	= 0; otherwise we say

it has good reduction at v.
Let

f = (f1, . . . , fn) ∈ K[X]n

be a vector of non-constant polynomials

fi(X) = ai,0Xdi + · · · + ai,di−1X + ai,di ∈ K[X], i = 1, . . . , n,

and we define

Sf,� = S� ∪ {v ∈ M0
K : at least one of f1, . . . , fn has bad reduction at v}.

Note that Sf,� is a finite set. Moreover, each fi ∈ OSf,� [X], and in fact for any v 	∈ Sf,� we have

v(ai,0) = 0 and v(ai,j) ≥ 0, i = 1, . . . , n, j = 1, . . . , di. (3·1)

If

f = (f1, . . . , fn) ∈ K(X)n

is a vector of non-constant rational functions, we will use the same notation Sf,� for the
set including S� and all the places v ∈ M0

K such that at least one of the numerators or
denominators of f1, . . . , fn has bad reduction at v.

By definition, we have

OS�
⊆ OSf,� and � ⊆ O∗

S�
⊆ O∗

Sf,�
.

Note that O∗
Sf,�

is also a finitely generated subgroup of K∗. Hence, it suffices to prove the
main results by replacing � with O∗

Sf,�
. Then, in the sequel we will prove the main results

by replacing �div
ε with O∗

Sf,�,ε
, where Sf,�,ε is some finite set of places containing Sf,� and

depending also on ε.
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3.2. Proof of Theorem 1·1

Let α ∈ K be such that there exist integers k1, . . . , kn, not all zero such that

f1(α)k1 · · · fn(α)kn ∈ �div
ε .

By Lemma 2·1 there exists β ∈ O∗
Sf,�

and η ∈ K∗ with h(η) �ε,� 1 such that

f1(α)k1 · · · fn(α)kn = βη.

Since η ∈ K∗ is of bounded height depending only on ε and �, by Northcott’s theorem there
are only finitely many such η. Thus we can enlarge the set Sf,� to include all prime ideals
that divide the finitely many elements η. We also include in this larger set the prime ideals
outside Sf,� that divide the product

∏

1≤i 	=j≤n

Res(fi, fj) of all the resultants of fi and fj for i 	= j

(we recall that all Res(fi, fj) are Sf,�-integers), which are only finitely many. We denote the
new set by Sf,�,ε and we note that Sf,�,ε is still a finite set.

By the construction of the set Sf,�,ε, we have

K∗ ∩ �div
ε ⊆ O∗

Sf,�,ε
.

Thus, it suffices to prove the desired result by replacing �div
ε with O∗

Sf,�,ε
.

Now, we write

f1(α)k1 · · · fn(α)kn = γ , γ = βη ∈ O∗
Sf,�,ε

. (3·2)

If n = 1, since f1 is a polynomial having at least two distinct roots and O∗
Sf,�,ε

is a finitely
generated subgroup, we see that applying Lemma 2·2 to f1 and O∗

Sf,�,ε
gives the desired

finiteness result. We thus suppose that n ≥ 2, and that the result is valid for n − 1, in order to
apply an induction.

We note that if some ki = 0, then the desired finiteness of α ∈ K satisfying (3·2) follows
directly from the induction hypothesis. Hence, we can assume from now on that k1 · · ·

kn 	= 0.
We now complete the proof case by case.

Case I: α ∈ OSf,�,ε . �

In this case, since α ∈ OSf,�,ε and fi ∈ OSf,�,ε [X] for any i = 1, . . . , n, we have

f1(α), . . . , fn(α) ∈ OSf,�,ε .

We note that if fi(α) ∈ O∗
Sf,�,ε

for some i ∈ {1, . . . , n}, then Lemma 2·2 implies the finiteness
of such α ∈ K satisfying (3·2).

Thus, we now assume that f1(α), . . . , fn(α) 	∈ O∗
Sf,�,ε

. This implies that there exists a
prime ideal p 	∈ Sf,�,ε in K such that vp(f1(α)) > 0. Moreover, since fi(α) ∈ OSf,�,ε , we have
vp(fi(α)) ≥ 0 for each i = 2, . . . , n.

If k1ki > 0 for each i = 2, . . . , n, without loss of generality we can assume that
k1, k2, . . . , kn > 0. Then, equation (3·2) implies

k1vp(f1(α)) + · · · + knvp(fn(α)) = 0.

Since vp(f1(α)) > 0 and vp(fi(α)) ≥ 0 for each i = 2, . . . , n, we obtain a contradiction.
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We now assume k1ki < 0 for some i ∈ {2, . . . , n}. In this case, without loss of generality,
we assume k1 > 0, . . . , km > 0 and km+1 < 0, . . . , kn < 0 for some positive integer m. So,
equation (3·2) becomes

f1(α)k1 · · · fm(α)km = γ fm+1(α)−km+1 · · · fn(α)−kn .

Then, since vp(f1(α)) > 0 and vp(fi(α)) ≥ 0 for each i = 2, . . . , n, there must exist some j ∈

{m + 1, . . . , n} such that vp(fj(α)) > 0. In other words, we have

f1(α) ≡ fj(α) ≡ 0 (mod p).

This allows us to conclude that vp(Res(f1, fj)) > 0 (notice that, since f1, fj ∈ OSf,�,ε [X] and f1
and fj do not have common roots, we have Res(f1, fj) ∈ OSf,�,ε and Res(f1, fj) 	= 0). By our
construction of the set Sf,�,ε, this implies that p ∈ Sf,�,ε, which is a contradiction with the
choice of p above. This completes the proof of Case I.

Case II: α 	∈ OSf,�,ε . �

In this case, there exists a prime ideal p of the ring of integers of K such that

p 	∈ Sf,�,ε and vp(α) < 0.

Let di = deg fi, i = 1, . . . , n. Then, using the ultrametric inequality of non-Archimedean
valuations and noticing (3.1), we directly have

vp(fi(α)) = divp(α) for i = 1, . . . , n. (3·3)

Considering valuations in (3·2) and using (3·3) we obtain (since vp(γ ) = 0 due to
γ ∈ O∗

Sf,�,ε
)

k1d1 + k2d2 + · · · + kndn = 0. (3·4)

We view the above identity as a linear Diophantine equation with unknowns k1, . . . , kn in
Z. Then, we have a basis of the integer solutions (k1, k2, . . . , kn) of the equation (3·4), say,

(ti,1, ti,2, . . . , ti,n), i = 1, . . . , n − 1.

Therefore, k1, k2, . . . , kn can be expressed as

kj =

n−1
∑

i=1

siti,j, j = 1, . . . , n,

for some integers s1, . . . , sn−1. Substituting this into the equation (3·2), we obtain
⎛

⎝

n
∏

j=1

fj(α)t1,j

⎞

⎠

s1

· · ·

⎛

⎝

n
∏

j=1

fj(α)tn−1,j

⎞

⎠

sn−1

= γ . (3·5)

Now, we let

F(X) =

n
∏

j=1

fj(X)t1,j ,

where the exponent vector (t1,1, . . . , t1,n) is non-zero by its choice above.
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For any prime q 	∈ Sf,�,ε, if vq(α) < 0, then (3·3) holds and we have

vq(F(α)) =

n
∑

j=1

t1,jvq(fj(α))

= (t1,1d1 + t1,2d2 + · · · + t1,ndn)vq(α) = 0, (3·6)

since (t1,1, t1,2, . . . , t1,n) is a solution to (3·4).
For any prime q 	∈ Sf,�,ε, if vq(α) ≥ 0, then by (3·1) we have vq(fi(α)) ≥ 0 for each i =

1, . . . , n.
If there exists some prime q 	∈ Sf,�,ε such that vq(α) ≥ 0 and moreover vq(fi(α)) > 0,

vq(fj(α)) > 0 for some i 	= j, then by the same discussion as in the last part of Case I we
arrive to a contradiction.

If there exists some prime q 	∈ Sf,�,ε such that vq(α) ≥ 0 and moreover vq(fi(α)) > 0 for
exactly one i for i = 1, . . . , n, say vq(f1(α)) > 0 and vq(fi(α)) = 0 for each i = 2, . . . , n, then
by (3·5) we obtain

s1t1,1 + · · · + sn−1tn−1,1 = 0,

which however contradicts with k1 	= 0 because k1 = s1t1,1 + · · · + sn−1tn−1,1.
Hence, we may assume that for any prime q 	∈ Sf,�,ε, if vq(α) ≥ 0, then vq(fi(α)) = 0 for

each i = 1, . . . , n. In this case, we have vq(F(α)) = 0. Combining this with (3·6), we have
vq(F(α)) = 0 for any prime q 	∈ Sf,�,ε, and thus F(α) ∈ O∗

Sf,�,ε
. Now, the desired result follows

directly from Lemma 2·2 (which we can apply, since fi, i = 1, . . . , n, has at least two distinct
roots and they are pairwise coprime, and therefore, F has at least two distinct roots or two
distinct poles). This completes the proof.

3.3. Proof of Theorem 1·2

First, we assume that the rational functions f1, f2, . . . , fn all have no linear factor.
Let g1, . . . , gm be all the distinct monic irreducible factors (over K) in the numerators

and denominators of the rational functions f1, f2, . . . , fn. So, by assumption, the irreducible
polynomials g1, . . . , gm are all of degree at least two. Then, for each fi, 1 ≤ i ≤ n, we can
write

fi = ai

m
∏

j=1

g
eij

j , ai ∈ K∗, (3·7)

for some integers ei1, . . . , eim.
Let α ∈ K be such that there exist integers k1, . . . , kn, not all zero such that

f1(α)k1 · · · fn(α)kn ∈ �div
ε .

As in (3·2), we can write

f1(α)k1 · · · fn(α)kn = γ , γ ∈ O∗
Sf,�,ε

, (3·8)

where the set Sf,�,ε is defined as in the proof of Theorem 1·1, however without including the

prime ideals outside Sf,� that divide the product
∏

1≤i 	=j≤n

Res(fi, fj) of all the resultants of fi

and fj for i 	= j, because fi and fj might not be polynomials.
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By the discussion in Section 3.1, we know that ai ∈ O∗
Sf,�,ε

for each i = 1, . . . , n. Hence,

combining (3·8) with (3·7), we get that for some γ ′ ∈ O∗
Sf,�,ε

,

g1(α)k1e11+···+knen1 · · · gm(α)k1e1m+···+knenm = γ ′. (3·9)

If for each 1 ≤ j ≤ m, k1e1j + · · · + knenj = 0, then this means that f
k1
1 · · · f

kn
n is a con-

stant, which contradicts with the assumption that f1, . . . , fn are multiplicatively independent
modulo constants.

So, we must have that k1e1j + · · · + knenj 	= 0 for some 1 ≤ j ≤ m. Then, in view of (3·9)
and noticing that g1, . . . , gm are pairwise distinct irreducible polynomials of degree at least
2, we obtain directly the desired finiteness result by applying Theorem 1·1 to the polyno-
mials g1, . . . , gm. This completes the proof of the case when f1, f2, . . . , fn all have no linear
factor.

Now, without loss of generality, we assume that for each fi, i = 1, 2, . . . , n, both its
numerator and denominator have linear factors.

Then, for each fi, i = 1, 2, . . . , n, we write

fi = aifi1fi2, ai ∈ K∗,

where fi1 ∈ K(X) is monic and only has linear factors, and fi2 ∈ K(X) is monic and only has
irredicible factors of degree at least two; and moreover, we write

fi1 =
hi1

hi2
, hi1, hi2 ∈ K[X], gcd (hi1, hi2) = 1.

By assumption, for each i = 1, 2, . . . , n, both hi1 and hi2 have at least two distinct linear
factors and they only have linear factors. Moreover, since we have assumed that f1, f2, . . . , fn
have distinct linear factors, we know that h11, h12, . . . , hn1, hn2 are pairwise coprime.

Let g1, . . . , gm (assume m ≥ 1) be all the distinct monic irreducible factors (over K) in the
numerators and denominators of the rational functions f12, . . . , fn2.

By assumption, the irreducible polynomials g1, . . . , gm are all of degree at least two. So,
the polynomials h11, h12, . . . , hn1, hn2, g1, . . . , gm are pairwise coprime.

Then, for each fi, 1 ≤ i ≤ n, we can write

fi = aihi1h−1
i2

m
∏

j=1

g
eij

j , ai ∈ K∗, (3·10)

for some integers ei1, . . . , eim.
As in (3·9), combining (3·8) with (3·10) we can get that for some γ ′ ∈ O∗

Sf,�,ε
,

n
∏

i=1

hi1(α)kihi2(α)−ki ·

m
∏

j=1

gj(α)k1e1j+···+knenj = γ ′. (3·11)

Then, in view of (3·11) and noticing that the integers k1, . . . , kn are not all zero, we
obtain directly the desired finiteness result by applying Theorem 1·1 to the polynomials
h11, h12, . . . , hn1, hn2, g1, . . . , gm. This completes the proof.
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3.4. Proof of Corollary 1·4

First, we assume that f ∈ K[X] and 0 is not a periodic point of f . Since 0 is not a periodic
point of f , we have that for any integer n ≥ 1, f (n)(0) 	= 0, which means that f (n) has non-zero
constant term. So, all the iterates of f are pairwise coprime. In addition, since f has at least
two distinct roots, it is easy to see that each iterate of f also has at least two distinct roots.
Hence, by Theorem 1·1 we know that there are only finitely many elements β ∈ K such that
f (1)(β), . . . , f (n)(β) are multiplicatively dependent modulo �div

ε .
Now, we assume that f has no linear factor. Then, by Lemma 2·5, the iterates f (1), . . . , f (n)

all have no linear factor. Moreover, it follows directly from Lemma 2·4 that the iterates
f (1), . . . , f (n) are multiplicatively independent modulo constants. So, using Theorem 1·2
we get that there are only finitely many elements β ∈ K such that f (1)(β), . . . , f (n)(β) are
multiplicatively dependent modulo �div

ε .
So, for proving the desired result, it suffices to fix such an element β and show that there

are only finitely many α ∈ K such that f (m)(α) = β for some integer m ≥ 0. Indeed, this
follows directly from [9, lemma 2·3] and the well-known fact that f has only finitely many
preperiodic points lying in K.

3.5 Proof of Theorem 1·5

The proof follows similar ideas as in the proof of [9, theorem 1·7].
Let α ∈ K be such that there exist integers k1, k2, not both zero, such that

f1(α)k1 f2(α)k2 ∈ �div
ε .

As in the proof of Theorem 1·1, we enlarge the set Sf,� (in this case f = (f1, f2)) to a larger
set Sf,�,ε such that

f1(α)k1 f2(α)k2 = γ ∈ O∗
Sf,�,ε

. (3·12)

Also, as in the proof of Theorem 1·1 we can assume that k1k2 	= 0. From (3·12) and the
power saturation of O∗

Sf,�,ε
in K∗, we see that

γ = βgcd (k1,k2) for some β ∈ O∗
Sf,�,ε

.

This allows us to take the gcd (k1, k2)-root of (3·12), so without loss of generality we can
assume that

gcd (k1, k2) = 1.

We now complete the proof case by case.

Case I: α ∈ OSf,�,ε . �

In this case, we have f1(α), f2(α) ∈ OSf,�,ε . We note that if f1(α) ∈ O∗
Sf,�,ε

or f2(α) ∈ O∗
Sf,�,ε

,
then Lemma 2·2 implies the finiteness of such α ∈ K satisfying (3·12).

Thus, we can assume that f1(α), f2(α) 	∈ O∗
Sf,�,ε

. This implies that there exists a prime ideal
p of K such that the additive valuation vp(f1(α)) > 0. Moreover, since f2(α) ∈ OSf,�,ε , we have
vp(f2(α)) ≥ 0.
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If k1k2 > 0, then we can assume that k1, k2 > 0. In this case, since equation (3·12) implies

k1vp(f1(α)) + k2vp(f2(α)) = 0,

we obtain a contradiction by noticing vp(f1(α)) > 0 and vp(f2(α)) ≥ 0.
We now assume k1k2 < 0. Moreover, we can assume k1 > 0 and k2 < 0 (similar discussion

applies for k1 < 0 and k2 > 0). Since gcd (k1, k2) = 1, there exist integers s, t such that

sk1 + tk2 = 1.

Then, using (3·12), we have

f1(α) = f1(α)sk1+tk2 = γ s(f1(α)−tf2(α)s)−k2 ,

f2(α) = f2(α)sk1+tk2 = γ t(f1(α)−tf2(α)s)k1 . (3·13)

We note that, since f1(α) ∈ OSf,�,ε , γ ∈ O∗
Sf,�,ε

and −k2 > 0, we have f1(α)−tf2(α)s ∈ OSf,�,ε .

If f1(α)−tf2(α)s ∈ O∗
Sf,�,ε

, then by (3·13) we obtain that f1(α) ∈ O∗
Sf,�,ε

, which contra-

dicts our assumption above. Thus, f1(α)−tf2(α)s 	∈ O∗
Sf,�,ε

. Then, by Lemma 2·6 (with y =

f1(α)−tf2(α)s and noticing γ ∈ O∗
Sf,�,ε

), the exponent −k2 is bounded above only in terms of
f1, f2, K, � and ε. Similarly, we obtain that the exponent k1 is also bounded above only in
terms of f1, f2, K, � and ε. Hence, in (3·12) there are only finitely many choices of the two
exponents k1, k2. Then, fixing k1, k2 and applying Lemma 2·2 to the rational function f

k1
1 f

k2
2 ,

we obtain the desired finiteness result, where we need to use the assumption on f1 and f2 that
they can not multiplicatively generate a power of a linear fractional function. This completes
the proof of Case I.

Case II: α 	∈ OSf,�,ε . �

In this case, as in the proof of Theorem 1·1, we can choose a prime ideal p of the ring of
integers of K such that

p 	∈ Sf,�,ε and vp(α) < 0.

Let di = deg fi, i = 1, 2. Then, using the ultrametric inequality of non-Archimedean valua-
tions and noticing (3·1), we directly have

vp(fi(α)) = divp(α) for i = 1, 2. (3·14)

Considering valuations in (3·12) and using (3.14) we obtain (since vp(γ ) = 0 due to γ ∈

O∗
Sf,�,ε

)

k1d1 + k2d2 = 0.

Since gcd (k1, k2) = 1, this implies that k1 | d2 and k2 | d1. Thus we can assume that both k1

and k2 are fixed. Then, as in Case I, the desired finiteness result follows from Lemma 2·2.
This completes the proof.

3.6. Proof of Theorem 1·6

The proof follows directly from Maurin’s result (that is, Lemma 2·3). Indeed, let r be
the rank of � modulo torsion and let g1, . . . , gr ∈ � be its generators, and thus, they are
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multiplicatively independent elements. We define the parametric curve

C = {(α, f1(α), . . . , fn(α), g1, . . . , gr) : α ∈ K} ⊂Gm
n+r+1.

We choose ε to be half of the size of the real ε from Lemma 2·3.
For an element α ∈ �div

ε , assume that f1(α), . . . , fn(α) are multiplicatively dependent mod-
ulo �div

ε . Since α ∈ �div
ε , there exist a non-zero vector (k0, . . . , kr) ∈Zr+1, k0 	= 0, such that

αk0g
k1
1 · · · gkr

r = βk0

for some β ∈ K
∗

with h(β) ≤ ε, implying that

αk0

βk0
g

k1
1 · · · gkr

r = 1. (3·15)

Moreover, since f1(α), . . . , fn(α) are multiplicatively dependent modulo �div
ε , there exist

some positive integer t and a non-zero vector (	1, . . . , 	n+r) ∈Zn+r such that

f1(α)t	1 · · · fn(α)t	ng
	n+1
1 · · · g	n+r

r = γ t

for some γ ∈ K
∗

with h(γ ) ≤ ε, implying that (without loss of generality, we assume
	1 · · · 	n 	= 0)

f1(α)t	1

γ t	1/n	1
· · ·

fn(α)t	n

γ t	n/n	n
g
	n+1
1 · · · g	n+r

r = 1. (3·16)

Therefore, the point
(

α

β
,

f1(α)

γ 1/n	1
, . . . ,

fn(α)

γ 1/n	n
, g1, . . . , gr

)

satisfies the multiplicative dependence relations (3.15) and (3.16), which have linearly
independent vectors of exponents. Moreover,

(α, f1(α), . . . , fn(α), g1, . . . , gr)

=

(

α

β
,

f1(α)

γ 1/n	1
, . . . ,

fn(α)

γ 1/n	n
, g1, . . . , gr

)

· (β, γ 1/n	1 , . . . , γ 1/n	n , 1, . . . , 1)

is a point on C with

h(β, γ 1/n	1 , . . . , γ 1/n	n , 1, . . . , 1):= h(β) + h(γ 1/n	1) + · · · + h(γ 1/n	n)

≤ h(β) + h(γ ) ≤ 2ε.

We also note that by assumption, the functions X, f1, . . . , fn, g1, . . . , gr are multiplicatively
independent. Hence, the desired result follows directly from Lemma 2·3.
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