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Abstract

In this paper, we establish some finiteness results about the multiplicative dependence of
rational values modulo sets which are ‘close’ (with respect to the Weil height) to division
groups of finitely generated multiplicative groups of a number field K. For example, we show

that under some conditions on rational functions fi, .. ., f; € K(X), there are only finitely
many elements « € K such that fi(«), . . ., f,(«) are multiplicatively dependent modulo such
sets.
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150 A. BERCZES et al.

1. Introduction
1.1. Motivation

Given non-zero complex numbers oy, . . ., o, € C*, we say that they are multiplicatively
dependent if there exist integers k1, . . . , k, € Z, not all zero, such that
ki kn 1.
al P an1 =1;

and we say that they are multiplicatively dependent modulo G, where G is a subset of C*, if
there exist integers ki, . . ., k,, € Z, not all zero, such that

oellCl ok e G

Multiplicative dependence of algebraic numbers has been studied for a long time and still
very actively; see, for instance, [4, 5, 12, 14, 19, 22, 27, 28, 31, 35, 41] and the references
therein. The authors in [28] have studied the multiplicative dependenc of elements in an
orbit of an algebraic dynamical system, and recently in [9] this has been extended to the
more general setting of multiplicative dependence modulo a finitely generated multiplicative
group.

In this paper, we want to study multiplicative dependence among values of rational func-
tions modulo sets which can be roughly described as approximate division groups of finitely
generated groups I', denoted by ngv (which is defined in the next section), that is, sets which
are not far with respect to the Weil height from the division group of a finitely generated
multiplicative group of a number field.

The motivation also partly comes from the study of points on subvarieties of tori. Let
G be the multiplicative algebraic group over the complex numbers C, that is G, = C*
endowed with the multiplicative group law. Intersection of varieties in Gp," with sets of
the type I3 falls within two conjectures, the Mordell-Lang conjecture on intersection of
varieties with finitely generated subgroups and the Bogomolov conjecture which is about
the discreteness of the set of points of bounded height in a variety. This direction has been
extensively studied over several decades, see [1, 3, 8, 10, 13, 16, 20, 21, 23, 26, 32, 33,
36, 39] and references therein, which in particular give precise quantitative results about the
intersection of varieties with I'd1Y,

Here, in some sense, instead of assuming each coordinate of a point is from I"
impose that the coordinates of a point multiplicatively generate an element in ngv.

div
e, We
1.2. Notation

Throughout the paper, we use the following notation:

(i) K is a number field;
(i) K is an algebraic closure of K;
(iii) S is a finite set of places of K containing all the infinite places;
(iv) Oy is the ring of S-integers of K;
(v) R* is the unit group of aring R;
(vi) T is a finitely generated subgroup of K*;
(vii) For A C K*,

AW = {4 e K : ™ € A for some integer m > 1}.
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Multiplicative dependence of rational values 151

For ¢ > 0,
.= (¢p:a eI, K" with h(B) < e}.

Here h( - ) stands for the absolute logarithmic Weil height function. The set I'4" is called
the division group of I".

In addition, let Mg be the set of places of K, M,%O the set of infinite places of K, and
MY =My \ M.

1.3. Main results

In this section we state the main results proved in this paper. Informally, our results can be
summarised as follows: given f1, f>, . . . , fn € K[X] satisfying some natural conditions (some
results hold for rational functions as well), we prove finiteness of the sets of:

o o € K such that fi (@), . . ., fu(cr) are multiplicatively dependent modulo ngv;
s € ngv such that fi(®), . . ., f(v) are multiplicatively dependent modulo ngv.

We would like to unify these results and have a finiteness result for the set of @ € K (divy
satisfying the conclusion above, and thus we conclude this section with an open problem in
this direction.

We now formally state our results.

THEOREM 1-1. Let fi,/>,...,fx € K[X] be pairwise coprime polynomials. Assume that
each of them has at least two distinct roots. Then, for every € > 0 there are only finitely many
elements a € K such that fi(a), . . ., fu(a) are multiplicatively dependent modulo Ff“’.

We first remark that in Theorem 1-1, since o € K and the polynomials f, . . ., f, are in
K[X], by Lemma 2-1 below we know that “modulo ngv” can be reduced to modulo a subset
of K* which is somehow “close” to I.

We also remark that in Theorem 1-1 the two conditions of the polynomials being “pairwise
coprime” and “each of them has at least two distinct roots” somehow cannot be removed.
For example, choosing fj = X(X + 2), o =X + 1)(X 4+ 2), and f3, . . ., f; arbitrary, for any
a=1/(B—1)withgel and B8 #1,1/2 and f3(«) - - - f(a) # 0, we have

i@ @) () - fu@)? =g eT.

In addition, choosing pairwise coprime polynomials f1, f2, . . . , f» € K[X] with fj =X — a for
some a € K, for any « € I satisfying fo(o + a) - - - fu( + a) # 0, we have

file +a)(fala+a) - - - fula +a))O =ael.

Using Theorem 1-1, we establish the following result, which holds for rational functions.

For this, we say that non-zero rational functions f1, . . . , f;, € K(X) are multiplicatively inde-
pendent modulo constants if they are multiplicatively independent modulo K*, that is, there
is no non-zero integer vector (ki, . . . , k,) such that

lkl fr];n c K*.
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152 A. BERCZES et al.

In addition, for any rational function f € K(X), the numerator and denominator of f are meant
to be two polynomials g, & € K[X], respectively, such that f = g/h and ged (g, h) = 1.

THEOREM 1-2. Letfi,f>,...,fn € K(X) be non-constant rational functions such that they
are multiplicatively independent modulo constants. Assume that for each f;,i=1,2,...,n,
its numerator either has no linear factor or has at least two distinct linear factors over K,
and so does its denominator. Assume further that fi,f>, . .., [, have distinct linear factors
over K (if they have). Then, for every € > O there are only finitely many elements o € K such
that fi(@), . . ., fu(at) are multiplicatively dependent modulo Ffiv.

Remark 1-3. If f1,f5, ... ,fn € K(X) in Theorem 1-2 are all monic (that is, both numerator
and denominator are monic), then the assumption “they are multiplicatively independent
modulo constants” can be replaced by “they are multiplicatively independent”.

The following corollary is about multiplicative dependence in orbits of a rational function,
which somehow can be viewed as an extension of [9, theorem 1-7]. For a rational function
f € K(X) and a positive integer n > 1, let " be the nth compositional iterate of f. In addition,
for any rational function f € K(X), if both its numerator and denominator have no linear
factor over K, we say that f has no linear factor.

COROLLARY 1:4. Let f € K(X) be a non-constant rational function satisfying one of the
following two conditions:

(i) f € K[X], f has at least two distinct roots, and 0 is not a periodic point of f,

(ii) f has no linear factor.

Then, for any € > 0 and any integer n > 1, there are only finitely many elements « € K
such that f™ (), ..., f" () are multiplicatively dependent modulo ng" for some
integer m > Q.

When n = 2 in Theorem 1-1, we can relax the condition of coprimality on the polynomials

J1 and f3.
We say that f1, . . ., f, € C(X) multiplicatively generate a rational function g if there exist
integers k1, . . ., k, € Z, not all zero, such that

k
fll "'fr]f"=g-
We have the following result:

THEOREM 1-5. Letfi,f>» € K[X] be polynomials of degree at least 2, each having at least
two distinct roots. Assume that they cannot multiplicatively generate a power of a linear
fractional function. Then, for any € > 0 there are only finitely many elements a € K such
that fi(«) and f>(a) are multiplicatively dependent modulo Ffiv.

In Theorem 1-5, the condition related to linear fractional function cannot be removed.
See the example below Theorem 1-1. Here, we view non-zero constants as linear fractional
functions.

We remark that in Theorem 1-5 we can replace the condition related to linear fractional
function with the total number of distinct roots of f; and f>, which are not common roots
being at least three.
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We also remark that the results in Theorems 1-1 and 1-5 are both not effective, due to
Lemma 2-2.

As a direct consequence of Maurin’s theorem [24, théoreme 1-2] (see [11] for an effective
version), if f1,/2, . . ., [, € K(X) are such that X, fi, ..., f, are multiplicatively independent
modulo I', then the set

{a eI fi(a), . .., fu(c) multiplicatively dependent mod Fdiv} (1-1)

is finite (see [30, lemma 3-2] for more details). This is an effective generalisation of Liardet’s
theorem [21, théoreme 1] on division points on curves; see also [8, theorem 2-2] for an
effective version of Liardet’s result.

We remark that by definition, multiplicative dependence modulo I' is equivalent to
multiplicative dependence modulo I'4Y,

Using [25, théoreme 1-10], which improves [24, théoreme 1-7], we are able to extend this
conclusion by enlarging ' to ng" for certain & > 0 (but in a non-effective manner).

THEOREM 1-6. Let fi1,f2,...,fn € K(X) be such that X, fi,...,f, are multiplicatively
independent modulo T'. Then, there exists a real number € > 0 for which there are only

finitely many elements o € Ffiv such that fi(a), ..., fq.(a) are multiplicatively dependent
modulo T4,

We end this section with an open problem. We would like to combine Theorem 1-1 with
the finiteness of the set (1-1), and ask the following question:

Problem 1-7. Letfi,...,f, € K(X) be non-zero rational functions. Under what conditions is
the following set

{a ek (I‘div) 2fi(@), . .., fo(o) multiplicatively dependent mod Fdiv} (1-2)

finite?

When I' = {1}, then I'%" is the set of all roots of unity, and K(I'"") is the cyclotomic
closure of K. In this case, it has been proven in [28, theorem 4-2] that if fi, ..., f; do not
multiplicatively generate a power of a linear fractional function, then the set (1-2) is finite
(in fact, the result holds more generally for the abelian closure of K).

When n =1, Problem 1-7 becomes that for a non-zero rational function f € K(X), under
which condition the set {o € K(I'): f(a) € T4V} is finite. This would extend the cyclo-
tomic version of the Hilbert Irreducibility Theorem proved by Dvornicich and Zannier [15,
corollary 1] in the case when I' = {1}. Recall also that a special case of a general con-
jecture of Rémond (see [37, conjecture 3-4]) asserts that there exists a constant cr such
that for any o € K(TIN\ T h(w) > cr (see [34, conjecture 1-1 (¢)], and see [2, theo-
rem 1-3] for a non-trivial example). Clearly, under this conjecture, the finiteness of the set
{o € K(I4vy fla)e rdivy implies the finiteness of the set {o € K(I'"): h(f(«)) < &} for
any € < cr.
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2. Preliminaries
2.1. On some intersections with approximate groups and algebraic subgroups

We define the set AK, H) as the set of nonzero elements in the algebraic number field K
of height at most H, that is,

AK,H)={o € K* :h(a) <H}.

We note that by Northcott’s Theorem the set @A K, H) is a finite set.
We need the following result from [29, theorem 2-1].

LEMMA 2-1. Let {g1,...,8r} be a set of generators of T", which minimises H =
» h(gi). Then, for every ¢ > 0, we have

=1,...,

K*nr®c{pn:(B.n) el x AK,e+rH)}.

As usual, for any non-constant rational function f € K(X), the degree of f is defined to be
the maximum of the degrees of its numerator and denominator.
The following result is [9, theorem 1-2 (a)].

LEMMA 2-2. Let f € K(X) be a rational function of degree d > 2. Assume that f is not
of the form a(X — b)? or a(X — b)? /(X — ¢)? with a,b,c € K, a(b — ¢) #0, and d € 7. Then,
the set {a € K : f(a) € T'} is finite.

We remark that the result in Lemma 2-2 is not effective, due to the use of the Faltings
theorem [17] about finiteness of rational points on a curve. See also [29, corollary 2-2] and
references therein.

We conclude this section with a result of Maurin [25, théoreme 1-10], which we present
in our setting of parametric curves by noticing [25, remarque 1-3].

For this we introduce the following notation: we define #!?! to be the union of all alge-
braic subgroups in G,"* of codimension at least 2. For ¢ > 0, we let H£2] be defined similarly
as in Section 1.2, that is,

HP = (u-v:ueH?, veGy" withh(v) <e).
We have the following result, which is a special case of [25, thareme 1-10].
LEMMA 2-3. Letgy,...,gr€ K*andfi,...,f, € KX)be suchthatfi,...,fn, &1,...,8r

are multiplicatively independent. Let

C={fi(@),....fo@),g1,...,8): €K} CG, "

Then there exists a real number & > 0 such that C N ’HLZ] is finite.
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2.2. On some functional properties of rational functions

We need the following special case of the result of Young [42, corollary 1-2], which
generalises the previous result of Gao [18, theorem 1-4] to multiplicative independence of
consecutive iterations of rational functions over fields of characteristic zero.

LEMMA 2-4. Let F be an arbitrary field of characteristic zero, and let f € F(X) be a
rational function of degree d > 2 which is not of the form aX*®. Then, for any integer n> 1,
the iterates fV(X), . . ., f"(X) are multiplicatively independent modulo constants.

We also need the following simple lemma.

LEMMA 2-5. Let f € K(X) be a rational function such that it has no linear factor. Then,
for any non-constant rational function g € K(X), the rational function f o g has no linear
factor.

Proof. First, we note that it suffices to prove that for any monic irreducible factor, say
p(X), of either the numerator or the denominator of f, the rational function p o g has no
linear factor.

By contradiction, suppose that the rational function p o g has a linear factor. Then, there
is an element, say «, in K such that p o g(a) =0.

If g(«) is well-defined, then g(«) € K, which means that the polynomial p has a root (that
is, g(o)) in K. However, by assumption p is an irreducible polynomial over K of degree at
least 2. So, we get a contradiction.

Now, if g() is not well-defined, then « is a pole of g. Write p=X¢ +a; X4 1 + ... +
ag—1X +ag and g=u/w with u,w e K[X] and gecd (u, w)=1. Since « is a pole of g,
we have w(a) =0. Note that po g=p(u/w) = l/wd(ud +au w4 agquw® 4+
agw?). Then, since pog(a)=0 and w(e) =0, we obtain u(«) = 0. So, « is a common root
of u and w, which contradicts with ged (u, w) = 1.

Therefore, the rational function f o g has no linear factor.

2.3. Generalised Schinzel-Tijdeman theorem

Another important tool for our results is the following general version, established in [6],
of the Schinzel-Tijdeman theorem [38], which extends [7, theorem 2-3] and [9, lemma 2-8].
We present it in a simplified form, which is sufficient for our purposes.

Let K be a number field and S a finite subset of Mk containing all the infinite places. The
following theorem is proved in [6, theorem 2-2].

LEMMA 2-6. Let f(X) = aoX" + - - - + a, € Os[X] be a polynomial of degree n and with
at least two distinct roots. There is an effectively computable constant C(f,K,S), depending
only on f, K and S, so that the following holds: if b € O and if the equation

fxX)=by" in x,yeOs, meZ,m>3, 21
has a solution (x, y) with y # 0 and y ¢ O%, then
m<C(,K,S).

https://doi.org/10.1017/5S0305004124000173 Published online by Cambridge University Press



156 A. BERCZES et al.

We remark that, when f has only simple roots, the result in Lemma 2-6 has been estab-
lished in [9, lemma 2-8], In addition, when S only consists of infinite places, the result in
Lemma 2-6 has been given in [40, theorem 10-3] (choosing Tt =0,z=1, y = 1, e = b there).

3. Proofs of the main results
3.1 Preliminary discussion

Let Sr be the following set of places of K:
Sr:= Mg U {veM,O(:v(y);éOforsomey EF},

where, as usual, v(y) means the additive valuation of v at . Note that the set St is finite,
since I is finitely generated.
As usual, we say that a polynomial

FX)=aoX?+ - +ag_1X +aq € K[X]

has bad reduction at v € MIO( if either v(a;) < 0 for some i > 1 or v(ag) # 0; otherwise we say
it has good reduction at v.
Let

f=(fi,....fn) e KIX]"
be a vector of non-constant polynomials
X)) =aioX% + - +ajg1X +aiq €KX, i=1,...,n,
and we define
Ssr=SrU{ve M,O( :at least one of f1, . . ., f;; has bad reduction at v}.

Note that S - is a finite set. Moreover, each f; € Og; .[X], and in fact for any v ¢ Sg - we have

v(aip)=0 and waij)=0, i=1,...,n,j=1,...,d. 31
If

f=(1,....fn) e KX)"

is a vector of non-constant rational functions, we will use the same notation Sgr for the
set including St and all the places VEM{I)( such that at least one of the numerators or
denominators of f1, . . ., f, has bad reduction at v.

By definition, we have

Osy € Os; - and I CO;. < 0§”.

Note that 0§” is also a finitely generated subgroup of K*. Hence, it suffices to prove the
main results by replacing I' with OF, . Then, in the sequel we will prove the main results

by replacing ngv with 0§fr5, where Sgr ¢ 1S some finite set of places containing S¢r and
depending also on &. .
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Multiplicative dependence of rational values 157
3.2. Proof of Theorem 1-1

Let o € K be such that there exist integers ki, . . . , k,, not all zero such that

filf - fu(a)fr e TV,

By Lemma 2-1 there exists 8 € Oﬁfr and n € K* with h(n) <, r 1 such that

Sl fu(e) = B

Since n € K* is of bounded height depending only on ¢ and I", by Northcott’s theorem there
are only finitely many such 5. Thus we can enlarge the set Sgr to include all prime ideals
that divide the finitely many elements n. We also include in this larger set the prime ideals
outside St that divide the product l_[ Res(f;, f;) of all the resultants of f; and f; for i # j
I<i#j<n
(we recall that all Res(f;, f;) are Sf,r—inzgers), which are only finitely many. We denote the
new set by S¢r . and we note that Sgr . is still a finite set.
By the construction of the set S¢r ., we have

* div *
K'Nry QOS”’S.

Thus, it suffices to prove the desired result by replacing 4" with 0§f[‘ .
Now, we write .

[@Y - fu@ =y, y=pne0y, . (32)

If n =1, since f] is a polynomial having at least two distinct roots and 0* 1s a finitely
generated subgroup, we see that applying Lemma 2-2 to f; and 0* glves the desired
finiteness result. We thus suppose that n > 2, and that the result is Vahd f(8)r n — 1, in order to
apply an induction.

We note that if some k; = 0, then the desired finiteness of o € K satisfying (3-2) follows
directly from the induction hypothesis. Hence, we can assume from now on that kq - - -
kn #0.

We now complete the proof case by case.

Case I: a € O, ]
In this case, since o € Og; ., and f; € O, [X] forany i=1,...,n, we have
fi(@), .. fu@) € Oy,
We note that if fj(«) € O* for some i € {1, ..., n}, then Lemma 2-2 implies the finiteness

of such & € K satisfying (3 2)

Thus, we now assume that fi(«),...,fu(@) € O% . This implies that there exists a

Str.e
prime ideal p & S¢r . in K such that vy, (fl (@) > 0. Moreover since fi(a) € Og; ., we have
vp(filar)) > 0 for each i = M.
If kikj >0 for each i = 2, ...,n, without loss of generality we can assume that

ki,ka, ..., k, > 0. Then, equation (3-2) implies

kivp(fi(e) + - - - + kyvp (fa(a)) = 0.

Since vp(fi(a)) > 0 and vy (fi()) > 0 for each i =2, . . ., n, we obtain a contradiction.
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We now assume k1k; < O for some i € {2, ..., n}. In this case, without loss of generality,
we assume k; >0,...,k, >0 and k41 <O0,...,k, <O for some positive integer m. So,
equation (3-2) becomes

f@f @) =y (@) et f () TR

Then, since vy (fi(a)) > 0 and vy (fi(a)) > 0 for each i =2, ..., n, there must exist some j €
{m+1,...,n} such that vy(fj(ar)) > 0. In other words, we have

file)=fi(@)=0 (mod p).

This allows us to conclude that vy (Res(f1, fj)) > 0 (notice that, since fi, fj € Os; . [X] and fi
and f; do not have common roots, we have Res(f1, fj) € Os; ., and Res(f1, fj) # 0). By our
construction of the set Sgr ¢, this implies that p € S¢r ¢, which is a contradiction with the
choice of p above. This completes the proof of Case I.

Casell: o« ¢ Os; . ... -
In this case, there exists a prime ideal p of the ring of integers of K such that
p&Stre and vy(a) <O.

Let d; =degf;,i=1,...,n. Then, using the ultrametric inequality of non-Archimedean
valuations and noticing (3.1), we directly have

vp(fil@)) =djvp(a) fori=1,...,n. (3-3)
Considering valuations in (3-2) and using (3-3) we obtain (since vp(y)=0 due to
V < 0§f,r‘,e)
kidy + kady 4 - - - + knd, = 0. (3-4)
We view the above identity as a linear Diophantine equation with unknowns ki, . . ., k; in
Z. Then, we have a basis of the integer solutions (ky, k2, . . ., k,) of the equation (3-4), say,
tinstin, -5 tin), i=1,...,n—1
Therefore, k1, k2, . . . , k, can be expressed as
n—1
kj=25iti,ja j=1,...,n,
i=1
for some integers sy, . . ., S,—1. Substituting this into the equation (3-2), we obtain
N Sn—1
n n
Hﬁ(a)[u .. l_[ﬁ(ot)’”*'*" =y. (3-3)
j=1 j=1
Now, we let
n
F) =] [H0m,
j=1
where the exponent vector (#1,1, . . ., 1 ) iS non-zero by its choice above.
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Multiplicative dependence of rational values 159

For any prime q & Sgr e, if vq(a) < 0, then (3-3) holds and we have

va(F(a) =Y 11 jvq(fi(e))

J=1

=(t1,1d1 +t1pdo + - - -+ 11 pdy)vg(a) =0, (3-6)
since (1,1,%1.2, - - -, t1,n) 1s a solution to (3-4).
For any prime q & Sgr ¢, if vq(a) > 0, then by (3-1) we have vq(fi()) > 0 for each i =

1,...,n.

If there exists some prime q ¢ Sgr . such that vq() > 0 and moreover v4(fi(a)) > 0,
vq(fj(a)) > 0 for some i #j, then by the same discussion as in the last part of Case I we
arrive to a contradiction.

If there exists some prime q & Sgr ¢ such that vq(a) > 0 and moreover vq(fi(a)) > 0 for
exactly one i fori=1,...,n, say vq(fi(a)) > 0 and v4(fi(a)) =0 foreach i =2, .. ., n, then
by (3-5) we obtain

sit)+ -+ Sp—1tp—1,1 =0,

which however contradicts with k1 # 0 because k1 = s1t1,1 + - - - + Sp—1tp—1,1-

Hence, we may assume that for any prime q & Sgr ¢, if vq(a) > 0, then v4(fi(a)) = O for
eachi=1,...,n. In this case, we have vq(F(a)) =0. Combining this with (3-6), we have
vg(F(a)) = 0 for any prime q & St ¢, and thus F(a) € 0* Sere . Now, the desired result follows
directly from Lemma 2-2 (which we can apply, since f;, i =1, . . ., n, has at least two distinct
roots and they are pairwise coprime, and therefore, F has at least two distinct roots or two
distinct poles). This completes the proof.

3.3. Proof of Theorem 1-2

First, we assume that the rational functions fi, f2, . . . , f all have no linear factor.

Let g1,...,gmn be all the distinct monic irreducible factors (over K) in the numerators
and denominators of the rational functions fi, f2, . . ., f;- So, by assumption, the irreducible
polynomials g1, ..., g, are all of degree at least two. Then, for each f;, 1 <i <n, we can
write

m
ﬁ:ail_[gji", a; € K*, (3-7)
j=1
for some integers e;1, . . . , €in.
Let o € K be such that there exist integers ki, . . . , k,, not all zero such that

filft - fu(@)r e TV,

As in (3-2), we can write

f@ - fu@fr =y, ye0f, (3-8)

where the set St ¢ is defined as in the proof of Theorem 1-1, however without including the

prime ideals outside Sgr that divide the product 1_[ Res(f;, f;) of all the resultants of f;
1<i#j<n
and f; for i # j, because f; and f; might not be polynomials.
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By the discussion in Section 3.1, we know that a; € 0§fﬁ foreachi=1,...,n. Hence,
combining (3-8) with (3-7), we get that for some y’ € 0}‘” g
k kn k kn nm —
gi()renttnen g, (gt Hnem — 7, 39
If for each 1 <j <m, kjejj+ - - -+ kye,; =0, then this means that flk1 e ,’f" is a con-
stant, which contradicts with the assumption that f1, . . . , f, are multiplicatively independent

modulo constants.
So, we must have that kyey; + - - - + kpey; # O for some 1 <j < m. Then, in view of (3-9)

and noticing that g1, . . ., g, are pairwise distinct irreducible polynomials of degree at least
2, we obtain directly the desired finiteness result by applying Theorem 1-1 to the polyno-
mials g1, ..., gn. This completes the proof of the case when fi, f3, . . . , f;; all have no linear
factor.

Now, without loss of generality, we assume that for each f;,i=1,2,...,n, both its
numerator and denominator have linear factors.

Then, for each f;,i=1,2,...,n, we write

fi=aifinfn, ai€K*,

where f;1 € K(X) is monic and only has linear factors, and f;» € K(X) is monic and only has
irredicible factors of degree at least two; and moreover, we write

hi1
fir=—, hi, hp €KI[X], ged (hi1, hip) = 1.

hi>

By assumption, for each i=1,2,...,n, both h;; and h;» have at least two distinct linear
factors and they only have linear factors. Moreover, since we have assumed that f1, f2, . . ., f
have distinct linear factors, we know that &1y, h12, . . ., hn1, hyo are pairwise coprime.

Letgi,...,gn (assume m > 1) be all the distinct monic irreducible factors (over K) in the
numerators and denominators of the rational functions fi, . . ., fi2.

By assumption, the irreducible polynomials g1, . .., g, are all of degree at least two. So,
the polynomials A1, k12, . . ., hnts hu2, 815 - - - , &m are pairwise coprime.

Then, for each f;, 1 <i <n, we can write

m
fi=aihahy' [, aicek*, (3-10)
j=1
for some integers e;q, . . . , €jp-
As in (3-9), combining (3-8) with (3-10) we can get that for some y’ € 0§fr K
n m
[ [ra@ihat@) ™ - [ T gy revt+ham =", (3-11)
i=1 j=1
Then, in view of (3-11) and noticing that the integers ki, ...,k, are not all zero, we

obtain directly the desired finiteness result by applying Theorem 1-1 to the polynomials
hi1, hio, - - . hats by, 815 - - - 8m- This completes the proof.
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3.4. Proof of Corollary 1-4

First, we assume that f € K[X] and 0 is not a periodic point of f. Since 0 is not a periodic
point of f, we have that for any integer n > 1, f° (”)(0) = 0, which means that f ") has non-zero
constant term. So, all the iterates of f are pairwise coprime. In addition, since f has at least
two distinct roots, it is easy to see that each iterate of f also has at least two distinct roots.
Hence, by Theorem 1-1 we know that there are only finitely many elements 8 € K such that
FDPB), . ... f™(B) are multiplicatively dependent modulo ngv.

Now, we assume that f has no linear factor. Then, by Lemma 2.5, the iterates f m f )
all have no linear factor. Moreover, it follows directly from Lemma 2-4 that the iterates
FD. ., f™ are multiplicatively independent modulo constants. So, using Theorem 1.2
we get that there are only finitely many elements 8 € K such that f1(g), ..., " (B) are
multiplicatively dependent modulo ngv.

So, for proving the desired result, it suffices to fix such an element 8 and show that there
are only finitely many o € K such that f" () = B for some integer m > 0. Indeed, this
follows directly from [9, lemma 2-3] and the well-known fact that f has only finitely many
preperiodic points lying in K.

3.5 Proof of Theorem 1-5

The proof follows similar ideas as in the proof of [9, theorem 1-7].
Let o € K be such that there exist integers ki, k2, not both zero, such that

fil@f () e,

As in the proof of Theorem 1-1, we enlarge the set S¢ (in this case f = (f1,f2)) to a larger
set St ¢ such that

h@"'p@ =y ey, . (3-12)

Also, as in the proof of Theorem 1-1 we can assume that k1ky # 0. From (3-12) and the
power saturation of 0§” . in K*, we see that

y = pEd®ik) - for some B € 05, .-

This allows us to take the ged (ky, k2)-root of (3-12), so without loss of generality we can
assume that

ged (ki, k) =1.
We now complete the proof case by case.

Casel: « € Ogy ., . U

In this case, we have fi(a), fa(«) € Os; ... We note that if f1(«) € 03” or fo(a) € 03”,
then Lemma 2.2 implies the finiteness of such « € K satisfying (3-12).

Thus, we can assume that f (@), fo(«) & OEH’S. This implies that there exists a prime ideal
p of K such that the additive valuation vy (f1()) > 0. Moreover, since f2(«) € Os; ., we have

vp(fa(@)) = 0.

https://doi.org/10.1017/5S0305004124000173 Published online by Cambridge University Press



162 A. BERCZES et al.

If k1kp > 0, then we can assume that &k, ko > 0. In this case, since equation (3-12) implies

kivp(fi(e)) + kavp(f2(a)) =0,

we obtain a contradiction by noticing vy (fi(a)) > 0 and vy (f2(a)) > 0.
We now assume k1k> < 0. Moreover, we can assume k| > 0 and k» < O (similar discussion
applies for k1 < 0 and kp > 0). Since ged (k1, k2) = 1, there exist integers s, # such that

sk +thky =1.
Then, using (3-12), we have

fil@) =fi(@) ™ = S (@) " 'h(a)) 7R,
@) =)y 1 = yi(f (@) ). (3-13)

We note that, since fi(«) € Og; ., ¥ € 0§fr . and —k, > 0, we have fi (@) " H (o)’ € Os; .-
If fi(a) "H(a) € 0;5”8, then by (3-13) we obtain that fj(«) € O;f”, which contra-
dicts our assumption above. Thus, fi(a) 'f2(a)* & Oi’;f”. Then, by Lemma 2-6 (with y=

f1(@)7'f2(a)* and noticing y € 0§f,r,g)’ the exponent —k, is bounded above only in terms of
f1,/2, K, and e. Similarly, we obtain that the exponent k; is also bounded above only in
terms of f1, />, K, " and €. Hence, in (3-12) there are only finitely many choices of the two
exponents ky, k». Then, fixing k1, k and applying Lemma 2-2 to the rational function flk ! fzk 2,
we obtain the desired finiteness result, where we need to use the assumption on f; and f, that
they can not multiplicatively generate a power of a linear fractional function. This completes

the proof of Case I.
Casell: « ¢ Og; . ... g

In this case, as in the proof of Theorem 1-1, we can choose a prime ideal p of the ring of
integers of K such that

p&Ser,e and vp(a) <O.

Let d; =degf;,i=1,2. Then, using the ultrametric inequality of non-Archimedean valua-
tions and noticing (3-1), we directly have

vp(fila)) =divp() fori=1,2. (3-14)

Considering valuations in (3-12) and using (3.14) we obtain (since vp(y) =0 due to y €
o5 . )
f.l e

kidy + kody =0.

Since ged (k1, k2) = 1, this implies that k1 | d> and k3 | d1. Thus we can assume that both k
and kp are fixed. Then, as in Case I, the desired finiteness result follows from Lemma 2-2.
This completes the proof.
3.6. Proof of Theorem 1-6

The proof follows directly from Maurin’s result (that is, Lemma 2-3). Indeed, let r be
the rank of I' modulo torsion and let g¢,...,g, € " be its generators, and thus, they are
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multiplicatively independent elements. We define the parametric curve

C= {(Ol,f]((x), s ,fn(Ol), 81, .- ,gr) ‘o GE} C Gmn+r+l.

We choose ¢ to be half qf the size of the real ¢ from Lemma 2-3.
For an element o € I'%Y, assume that fi (), . . . , f,(«) are multiplicatively dependent mod-
ulo Fg“’. Since a € Ff_}‘v, there exist a non-zero vector (ko, . . ., k,) € Z'T!, ko # 0, such that

k
koall gl’fr ,Bko
for some ,3 S K* with h(ﬂ) <e, 1mp1y1ng that

ko

> ki kr

%gl gl =1, (3-15)
Moreover, since fi(«), .. .,f,(a) are multiplicatively dependent modulo ng", there exist
some positive integer ¢ and a non-zero vector ({1, . .., £,1,) € Z"T" such that

e" n+r —
fil@)™ - fu() g gl =y

for some y eK" with h(y) <e, implying that (without loss of generality, we assume
Cr- 0, #0)

f@ fu@) e

Lnvr _
ywl/”lzl yte,,/nlingl gt =1 3-16)

Therefore, the point

o filw) Jn(@)
Es yl/nel’.‘.’ yl/nensgl""3gr

satisfies the multiplicative dependence relations (3.15) and (3.16), which have linearly
independent vectors of exponents. Moreover,

(Ol,f](a), ce ,fn(Ol), 815 - - ’gr)

(o filw) Sule) 1/nt, 1/nty
_<E’m,”‘,)/l/nfn’gl"",gr (IB’J/ s Y ’1""’1)

is a point on C with

h(B, y /"0y L D= h(B) +h(p ) - h(p
<h(B) +h(y) < 2e.
We also note that by assumption, the functions X, f1, ..., f:, g1, - - . , & are multiplicatively

independent. Hence, the desired result follows directly from Lemma 2-3.
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