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ON p-ADIC L-FUNCTIONS FOR GSp4 × GL2

DAVID LOEFFLER AND ÓSCAR RIVERO

We use higher Coleman theory to construct a new p-adic L-function for
GSp4 ×GL2. While Loeffler et al. (2021) had considered the p-adic variation
of classes in the H2 of Shimura varieties for GSp4, here we explore the
interpolation of classes in the H1, which detect critical values for a different
range of weights, disjoint from the range covered by this earlier construction.
Using the algebraicity result established in our earlier work (Loeffler and
Rivero 2024) we further show an interpolation property in terms of complex
L-values.

1. Introduction

Let π and σ be cuspidal automorphic representations of GSp4 /Q and GL2 /Q
respectively. Then we have a degree 8 L-function L(π × σ, s), associated to the
tensor product of the natural degree 4 (spin) and degree 2 (standard) representations
of the L-groups of GSp4 and GL2. If π and σ are algebraic, then this L-function is
expected to correspond to a motive, and we can ask whether it has critical values.

We suppose that π (or, more precisely, its L-packet) corresponds to a holomorphic
Siegel modular eigenform of weight (k1, k2) for k1 ⩾ k2 ⩾ 2 integers, and that σ

corresponds to a holomorphic elliptic modular form of weight ℓ⩾1. For L(π×σ, s)
to be a critical value, we must have s =−1

2(k1+ k2+ ℓ− 4)+ j for j ∈ Z, so that
L(π × σ, s)= L(Vp(π)⊗ Vp(σ ), j) where Vp(−) are the Galois representations
corresponding to π and σ ; and the tuple (k1, k2, ℓ, j) has to satisfy one of three
different sets of (mutually exclusive) inequalities, which we have outlined in more
detail in the companion paper [Loeffler and Rivero 2024], corresponding to the
cases (A), (D), (F) in Table 1 of the same reference. In this paper, we focus on
region (D), which is given by the inequalities

(1) k1−k2+3⩽ ℓ⩽ k1+k2−3, max(k1, ℓ)⩽ j ⩽min(k2+ℓ+3, k1+k2−3).
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The corresponding values of s and ℓ are illustrated in the diagram below. (The
“off-centre” regions (B), (E), and the two grey diagonal lines, will be explained
shortly.)

ℓ

s

(A)

(D)

(F)

1
2

(E)

(B)

We shall now consider the case when π and σ vary through p-adic families. We
consider Coleman families π for GSp4 (over some 2-dimensional affinoid space
U ⊂W ×W , where W is the space of characters of Z×p ), and similarly σ for GL2,
over a 1-dimensional affinoid U ′ ⊂W .

Following [Loeffler and Zerbes 2021c] and [Loeffler and Rivero 2024], we may
conjecture that there exist three different p-adic L-functions in O(U ×U ′×W),
denoted by L♤(π × σ ,−) for ♤ ∈ {(A), (D), (F)}, whose values at integer points
(k1, k2, ℓ, j) satisfying the inequalities (1) interpolate the corresponding complex
L-values. (These depend on various auxiliary data, which we suppress for now.)

In [Loeffler and Zerbes 2021b], building on the earlier work [Loeffler et al. 2021],
we proved a weakened form of this conjecture for region (F): we constructed a p-
adic L-function over a codimension-1 subspace of the parameter space U×U ′×W ,
interpolating L-values in region (F) and lying at the “right-hand edge” of the critical
strip. Thus, for each (k1, k2, ℓ) such that ℓ ⩽ k1− k2+ 1, our p-adic L-function
captures just one among the (possibly) many critical values of the L-function of
the weight (k1, k2, ℓ) specialisation of π × σ . This corresponds to the solid grey
diagonal line in the above figure. We also showed that certain (noncritical) values of
this p-adic L-function, corresponding to the elongation of the diagonal line to meet
region (E), were related to syntomic regulators of Euler system classes constructed
in [Hsu et al. 2020]; the region (E) in the above diagram is precisely the range of
weights in which the geometric Euler system classes of the same work are defined.

Note 1.1. We would also expect a second Euler system construction for weights in
region (B), but this is only conjectural at present.
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The goal of this paper is to prove the analogue for region (D) of the first main
result proved for region (F) in [Loeffler and Zerbes 2021b]. That is, we define a
p-adic L-function interpolating L-values along the “lower right edge” of region (D),
i.e., for (k1, k2, ℓ, j) satisfying the conditions

k1− k2+ 3 ⩽ ℓ ⩽ k1, j = k2+ ℓ− 3,

where s = 1
2(ℓ − k1 + k2 − 2). So this p-adic L-function again lives over a

codimension-1 subspace of the 4-dimensional parameter space, but a different
one from that of [Loeffler and Zerbes 2021b]: it is indicated by the dotted grey line
in the figure. We conjecture, but do not prove here, a relation between this new
p-adic L-function and syntomic regulators in region (E); we hope to return to this
in a subsequent work.

Remark 1.2. Both in the present paper and in [Loeffler and Zerbes 2021b], the
reason why we lose one variable in the construction is that we do not know how
to work with nearly holomorphic modular forms in the framework of higher Cole-
man theory. More precisely, L-values anywhere in region (F), and in the “lower
half” of region (D), can be interpreted algebraically via cup products in coherent
cohomology; but the Eisenstein series appearing in these expressions are only
holomorphic if s lies at the upper or lower limit of the allowed range — otherwise,
they are nearly holomorphic but not holomorphic. We are optimistic that future
developments in higher Hida/Coleman theory may circumvent this barrier, allowing
the construction of p-adic L-functions over the full 4-dimensional parameter space
with interpolating properties in region (F) or region (D).

The main result. It is convenient to reindex the weights by setting (r1, r2) =

(k1− 3, k2− 3); for region (D) to be nonempty we need r1 ⩾ r2 ⩾ 0, and in this
case, (r1, r2) is the highest weight of the algebraic representation of GSp4 for which
π is cohomological. Let χπ (resp. χσ ) the central character of π (resp. σ ).

To define the (imprimitive) p-adic L-function, we need to consider the following
objects. Here, P denotes a point in U and Q a point in U ′.

• A set of local conditions encoded in terms of the local data γS , introduced in
Sections 5.1 and 5.4, and appearing in the factor ZS(πP × σQ, γS).

• A degree 8 Euler factor E (D)(πP × σQ), where πP (resp. σQ) stands for the
specialization of π (resp. σ ) at the point P (resp. Q). This is consistent with the
predictions of [Loeffler and Zerbes 2021c, Section 4.3] and the fact that the Galois
representation is 8-dimensional. The precise computation and description of the
Euler factor is done in [Loeffler and Rivero 2024, Section 7].

• The completed (complex) L-function 3(πP × σQ, s).
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• A basis ξ ⊗ η of the space S1(π)⊗ S1(σ ), as introduced in [Loeffler and Zerbes
2021b, Definition 10.4.1]. The p-adic L-function does depend on that choice.
• The complex (resp. p-adic) period �∞(πP , σQ) (resp. �p(πP , σQ)), introduced
in Definition 5.7 and depending also on the specialization ξP ⊗ηQ of the canonical
differential ξ ⊗ η at (P, Q).

• The Gauss sum attached to χ−1
σ , denoted by G(χ−1

σ ).

Further, we need to introduce the notion of nice critical point. We say a point
(P, Q) of U ×U ′ is nice if P = (r1, r2) and Q = (ℓ) are integer points, with P
nice for π and Q nice for σ , according to the definitions of Section 5. Further, we
say (P, Q) is nice critical if we also have r1− r2+ 3≤ ℓ≤ r1+ 3.

The main theorem we prove in this note, using in a crucial way the algebraicity
result of [Loeffler and Rivero 2024], is the following.

Theorem 1.3. There exists a p-adic L-function Limp
p,γS (π × σ) satisfying the follow-

ing interpolation property: if (P, Q) is nice critical, then

Limp
p,γS (π × σ)(P, Q)

�p(πP , σQ)

= ZS(πP × σQ, γS) · E (D)(πP × σQ) ·
G(χ−1

σ )3
(
πP × σQ, 1

2(ℓ− k1+ k2− 2)
)

�∞(πP , σQ)
,

where (k1, k2, ℓ) are such that πP has weight (k1, k2) and σQ has weight ℓ.

The approach we follow to establish the theorem is the following:

(1) Use results of Harris and Su (see [Loeffler and Rivero 2024, Section 3]) to
express the automorphic period to be computed as a cup product in the coherent
cohomology of a Shimura variety associated with GL2×GL2.

(2) Use higher Coleman theory to reinterpret the cup product in terms of a pairing
in coherent cohomology over certain strata in the adic Shimura varieties.

(3) Use the families of automorphic forms π and σ in order to define the p-adic
L-function Limp

p,γS (π × σ ; ξ).

(4) Derive an interpolation formula at critical points using the compatibility of the
cup product with specialisation.

Remark 1.4. For s = 1
2(ℓ− k1+ k2− 2), we can write L(πP × σQ, s)= L(V, 0),

where V is the Galois representation V (πP)⊗ V (σQ)(k2 + ℓ− 3). This Galois
representation always has one of its Hodge–Tate weights equal to 0, which gives an
intuitive explanation of why it should be “easier” to interpolate L-values along this
subspace of the parameter space rather than over the entire 4-dimensional parameter
space incorporating arbitrary cyclotomic twists.
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If we specialise at a fixed P , giving a one-variable p-adic L-function L imp
p,γS (π×σ)

associated to a fixed π and a GL2 family σ , and we choose this σ to be a family
of ordinary CM forms (arising from an imaginary quadratic field K in which p
is split), then L-values interpolated by Limp

p,γS (π × σ) can be interpreted as values
of the L-function of π twisted by Grössencharacters of K ; and the restriction on
the value of s implies that the Grössencharacters arising have infinity-types of
the form (n, 0). We expect that this L-function should have an interpretation as a
“p-adic L-function”, interpolating twists by characters of the ray class group of K
modulo p∞, for a specific choice of prime p above p; this will be pursued in more
detail elsewhere.

Connection with other works. In [Loeffler and Zerbes 2021c], the authors work in
the setting of cusp forms for the larger group GSp4×GL2×GL2 and conjecture
the existence of 6 different p-adic L-functions interpolating Gross–Prasad periods,
corresponding to the “sign +1” regions (a), (a′), (c), (d), (d ′) and ( f ) in the
diagrams of the same work. The case of region ( f ) was covered in [Loeffler et al.
2021] (see also [Loeffler and Zerbes 2021b]) using higher Hida and Coleman theory,
and the p-adic L-function for region (c) was announced by Bertolini, Seveso and
Venerucci, also using tools from coherent cohomology. Note however that the
works cited only cover the case when one of the GL2-forms is an Eisenstein series.

If one formally replaces one of the two cusp forms by an Eisenstein series,
then the Gross–Prasad period becomes Novodvorsky’s integral computing the
degree 8 L-function for GSp4×GL2; and regions (a), (b), (d), (e), ( f ) correspond
to the regions (A), (B), (D), (E), (F) of the GSp4×GL2 figure above (while
the arithmetic meaning of the remaining regions (a′), (b′), (d ′), (c) is less clear
in this case). The methods we develop in the present work for region (D) can be
straightforwardly modified to interpolate GSp4×GL2×GL2 Gross–Prasad periods
along one edge of region (d) (and its mirror-image (d ′)).

For weights in the “off-centre” regions (B) and (E), the complex L-value
L(π × σ, s) vanishes to order precisely 1, due to the shape of the archimedean
0-factors. Beilinson’s conjecture predicts the existence of canonical motivic coho-
mology classes whose complex regulators are related to L ′(π×σ, s); and we expect
the images of these classes in p-adic étale cohomology to form Euler systems. For
weights in region (E), an Euler system has been obtained in a recent work of Hsu,
Jin and Sakamoto [Hsu et al. 2020]; and Loeffler and Zerbes [2021a] showed that
the syntomic regulators of these classes are related to values (outside its domain of
interpolation) of the p-adic L-function interpolating critical values in region (F). In
the last section of this article, we discuss the kind of reciprocity law one can expect
relating the cohomology classes of Hsu et al. [2020] with the p-adic L-function of
this article. We hope to come back to this question in a forthcoming work.



378 DAVID LOEFFLER AND ÓSCAR RIVERO

Another prior work which treats p-adic interpolation of GSp4×GL2 L-values is
the Ph.D. thesis of M. Agarwal [2007]. Agarwal’s construction gives a one-variable
p-adic L-function, which appears to correspond to the restriction of our 3-variable
function to the line where k1=k2=ℓ=k for a parameter k, although his methods are
very different from ours (using an Eisenstein series on the unitary group U (3, 3)).

After the release of the preprint version of this article, Z. Liu [2023] gave a
construction of a new p-adic L-function in the case of GSp4×GL2, using the
same integral representation as in [Agarwal 2007]; Liu’s construction includes the
cyclotomic variable and proceeds in a different way than ours, using the Klingen
Eisenstein series on GU(2, 2) with Bessel models of representations of GSp4. Also,
Graham et al. [2023] have developed tools which are likely to allow the construction
of a four variable p-adic L-function for regions (D) and (F).

One of the differences among the present paper and most of the works discussed
above is that here we interpret Siegel modular forms in the H 1 of the Siegel modular
variety, and not in the H 2 as in [Loeffler et al. 2021]; further, the GL2-form is
naturally seen as an element in the H 1 of the modular curve. These choices are a
direct reflection of the different weight regions considered in this setting.

2. Setup: groups and Hecke parameters

2.1. Groups. We denote by G the group scheme GSp4 (over Z), defined with
respect to the antidiagonal matrix

J =

 1
1

−1
−1

 ,

and we let ν be the multiplier map G→ Gm . We define H =GL2×GL1 GL2, which
we embed into G via the embedding

ι :

[(
a b
c d

)
,

(
a′ b′

c′ d ′

)]
7→

a b
a′ b′

c′ d ′
c d

 .

We sometimes write hi for the i-th GL2 factor of H . We write T for the diagonal
torus of G, which is contained in H and is a maximal torus in either H or G.

2.2. Parabolics. We write BG for the upper-triangular Borel subgroup of G, and
PSi and PKl for the standard Siegel and Klingen parabolics containing B, so

PSi =

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆
⋆ ⋆

 , PKl =

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆

 .
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We write BH = ι−1(BG)= ι−1(PSi) for the upper-triangular Borel of H .
We have a Levi decomposition PSi = MSi NSi, with MSi ∼=GL2×GL1, identified

as a subgroup of G via

(A, u) 7→

(
A

u A′

)
, A′ :=

(
1

1

)
tA−1

(
1

1

)
.

In this paper PSi and MSi will be much more important than PKl and MKl (in contrast
to [Loeffler et al. 2021]) so we shall often denote them simply by P and M . The
intersection BM := M ∩ BG is the standard Borel of M ; its Levi factor is T .

2.3. Coefficient sheaves. We retain the conventions about algebraic weights and
roots as in [Loeffler and Zerbes 2021b]. In particular, we identify characters of T
with triples of integers (r1, r2; c), with r1 + r2 = c modulo 2 corresponding to
diag(st1, st2, st−1

2 , st−1
1 ) 7→ tr1

1 tr2
2 sc. With our present choices of Borel subgroups,

a weight (r1, r2; c) is dominant for H if r1, r2 ≥ 0, dominant for MG if r1 ≥ r2, and
dominant for G if both of these conditions hold. (We frequently omit the central
character c if it is not important in the context.)

For our further use, we briefly recall the conventions of [Loeffler and Zerbes
2021b] about sheaves. The Weyl group acts on the group of characters X∗(T ) via
(w·λ)(t)=λ(w−1tw). As discussed in the same work, we can define explicitly wmax

G ,
the longest element of the Weyl group, as well as ρ = (2, 1; 0), which is half the
sum of the positive roots for G. There is a functor from representations of PG

to vector bundles on the compactified Siegel Shimura variety; and we let Vκ , for
κ ∈ X •(T ) that is MG-dominant, be the image of the irreducible MG-representation
of highest weight κ . Given an integral weight ν ∈ X •(T ) such that ν+ρ is dominant,
we define

κi (ν)= wi (ν+ ρ)− ρ, 0≤ i ≤ 3,

here, as usual, ρ is half the sum of the positive roots and the wi stand for the Kostant
representatives of the Weyl group. These are the weights κ such that representations
of infinitesimal character ν∨+ρ contribute to R0(SG,tor

K ,Vκ), where ν∨ is the dual
weight of ν and the superscript “tor” stands for the toroidal compactification (for
some choice of a projective cone decomposition). If ν is dominant (i.e., r1 ⩾ r2 ⩾ 0),
they are the weights which appear in the dual BGG complex computing de Rham
cohomology with coefficients in the algebraic G-representation of highest weight ν.

2.4. Hecke parameters. With the notation of the introduction, let π be a cuspidal
automorphic representation of G, and let p be a prime. If πf is unramified at p,
we write α, β, γ , δ for the Hecke parameters of πp, and Pp(X) for the polynomial
(1−αX) . . . (1− δX). The Hecke parameters are algebraic integers over a number
field E , and are well defined up to the action of the Weyl group. If π is non-CAP,
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which we shall assume,1 then the Hecke parameters all have complex absolute
value pw/2, where w := r1+ r2+ 3, and they satisfy αδ = βγ = pwχπ (p), where
χπ (p) is a root of unity.

Let IwG(p) denote the Iwahori subgroup. We shall consider the following
operators in the Hecke algebra of level IwG(p), acting on the cohomology of any
of the sheaves introduced before:

• The Siegel operator USi = [diag(p, p, 1, 1)], its dual U ′Si = [diag(1, 1, p, p)].

• The Klingen operator UKl = p−r2 · [diag(p2, p, p, 1)], as well as its dual
U ′Kl = p−r2 · [diag(1, p, p, p2)].

• The Borel operator UB = USi ·UKl, as well as its dual U ′B = U ′Si ·U
′

Kl.

3. Flag varieties and orbits

The key technical input into our interpolation results is a detailed study of certain
loci in flag varieties for G and H , making explicit the theory of Boxer and Pilloni
[2021] for the groups G and H , and studying how it interacts with restriction
from G to H .

We use the usual Roman letters X, Y, . . . for algebraic varieties or schemes, while
calligraphic letters X ,Y, . . . or typewriter letters X, Y, . . . denote adic spaces.

3.1. Kostant representatives. We write FLG for the Siegel flag variety P\G, with
its natural right G-action. There are four orbits for the Borel BG acting on FLG ,
represented by a subset of the Weyl group of G, the Kostant representatives (a
distinguished set of representatives for the quotient WMG\WG where MG is the
Levi of P). We denote these by w0, . . . , w3; see [Loeffler and Zerbes 2021b] for
explicit matrices.

Definition 3.1. As in [Boxer and Pilloni 2021, Section 3.1], we write CG
wi

for the
orbit P\Pwi BG , a locally closed subvariety of FLG of dimension i .

Remark 3.2. For g ∈ G, we can determine which cell CG
wi

contains the point
Pg ∈ FLG via a criterion in terms of the span of the rows of the bottom left 2× 2
submatrix of g, as in Remark 5.1.2 of [Loeffler and Zerbes 2021b].

Remark 3.3. Note that CG
w0

and CG
w3

are stable under P , while CG
w1
⊔CG

w2
forms a

single P-orbit.

1Equivalently (given our conditions on the weight), we require that π is not a Saito–Kurokawa lift;
for lifts of this type, the ratio of two among the Hecke parameters is p, so they cannot all have the
same absolute value. Including Saito–Kurokawa lifts would add extra technical complications in our
theory; and excluding them is no loss anyway, since if π is such a lift, then L(π × σ, s) factors as a
product of L-functions of GL2 and GL2×GL2, whose p-adic interpolation is well understood.
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Analogously, for the H -flag variety FL H = BH\H , we have 4 Kostant rep-
resentatives w00 = id, w10 =

(( 0
−1

1
0

)
, id

)
, similarly w01, w11 (with the cell C H

wi j

having dimension i + j ). (This is the whole of the Weyl group of H , since the Levi
subgroup of MH = T is trivial.)

Remark 3.4. Either for G or for H , each cell will determine a subspace of the
Iwahori-level Shimura variety (as an adic space), via pullback along the Hodge–Tate
period map. This is the locus where the relative position of the Hodge filtration and
level structure on the p-divisible group lies in the given Bruhat cell. In particular,
the “smallest” cell (w0 or w00) corresponds to the multiplicative locus, and the
“largest” one to the étale locus.

3.2. A twisted embedding of flag varieties. Consider the elements

τ =


1
1 1

1
−1 1

 ∈ M(Zp), τ ♯
= ι(w01)

−1τw2 ∈ G(Zp).

Note that τ was denoted γ in [Loeffler et al. 2021], but γ was also used for a
Satake parameter, so we use a different letter here. The element τ represents the
unique open T -orbit for the M-flag variety BM\M .

We will consider the translated embedding ι♯ : H → G given by h 7→ ι(h)τ ♯.
The map FL H → FLG induced by ι♯ by construction sends [w01] to [w2]. We
also have projection maps πi : FL H → FLGL2

∼= P1, and the product (ι♯, π1, π2)

evidently sends w01 to ([w2], [id], [w]) (where the unlabelled w is the GL2 long
Weyl element).

If we equate (x : y) ∈ P1 with the orbit Bg ∈ B\G, where g is any invertible
matrix of the form

(
⋆
x

⋆
y

)
, then ι♯ sends ((x : y), (X : Y )) to

PSi ·


⋆ . . . . . . ⋆

⋆ . . . . . . ⋆

−X Y ⋆ ⋆

−y x ⋆ ⋆

 .

Using this and the explicit description of the Bruhat cells in terms of the bottom
left corner of the matrix, we see that:

• The preimage of CG
w0

is empty.

• The preimage of CG
w1

is the point ((1 : 0), (0 : 1)) (the image of [w10] ∈ FL H ).

• The preimage of CG
w2

is a copy of the affine line, corresponding to points of
the form

BH

((
1
x 1

)
,

(
1
−x 1

))
w01.
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Proof. The condition for the above matrix to lie in X G
w2

is that
(
−X
−y

Y
x

)
be singular,

that is, X x = Y y; and the condition for it to lie in CG
w2

is that the span of the
rows not be (0 : 1), so X ̸= 0 and y ̸= 0. So, without loss of generality we
can take X = 1 and y = 1, leaving the equation Y = x ; that is, our point was
BH

((
⋆
x

⋆
1

)
,
(

⋆
1

⋆
x

))
= BH

((
⋆
x

⋆
1

)
,
(

⋆
−x

⋆
1

))
w01. □

Notation. We write X G
w =

⋃
w′⩽w CG

w′ (closed subvariety), and Y G
w =

⋃
w′⩾w CG

w′

(open subvariety).

Proposition 3.5. We have

(ι♯)−1(X G
w2

)∩π−1
2 (Y GL2

w )= (ι♯)−1(CG
w2

)∩π−1
1 (CGL2

w ·w−1)∩π−1
2 (CGL2

w ).

(Note that the translate CGL2
w ·w−1 is the “big cell at the origin”, B\B B.)

Proof. Since the single point (ι♯)−1(CG
w0
∪ CG

w1
) = [w10] does not map to Y GL2

w

under π2, we conclude that (ι♯)−1(X G
w2

)∩π−1
2 (Y GL2

w ) is equal to (ι♯)−1(CG
w2

). We
saw above that this subvariety is a copy of the affine line, and its image under the πi

is as stated. □

3.3. Some tubes. Let FLG denote the analytification of FLG , as an adic space
over Q p, and similarly for H and for G× H , so FL(G×H) = FLG × P1,an

× P1,an.
Now we define loci inside these spaces, using the tubes of various subvarieties of

the special fibres. As usual XG
w denotes the tube of X G

w,Fp
in FLG , etc. We shall set

Z0 = XG
w2
× P1,an

×YGL2
w and U0 = YG

w2
×XGL2

id × P1,an.

Then we have that Z0 is closed, U0 is open, and both are stable under the action
of IwG × IwGL2 × IwGL2 ; and U0 ∩ Z0 is a partial closure of the (w2, id, w) Bruhat
cell for G×GL2×GL2.

We need to allow smaller “overconvergence radii”, for which we use the action
of the element ηG = diag(p3, p2, p, 1) and its cousin η =

( p
1

)
.

Definition 3.6. Let us set Zm = ZG
m × ZH

m , where

ZG
m = XG

w2
· ηm

G, ZH
m = P1,an

×

(
YGL2

w · η−m
(

1 Zp

0 1

))
.

We have Z0 ⊇ Z1 ⊇ Z2 . . . by [Boxer and Pilloni 2021, Lemma 3.4.1], and Zm is
stable under Iw(pt) for t ⩾ 3m+ 1.

On the other hand, we can define Un = UG
n × UH

n , where

UG
n = YG

w2
· η−m

G NBG (Zp), UH
n = (XGL2

id · ηn)× P1,an.

Again, we have U0 ⊇ U1 ⊇ . . . , and Un is stable under Iw(pt) for t ⩾ n+ 1.
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3.4. Explicit coordinates. For m ∈ Q, we define the subsets of the adic projective
line given by

Bm ={|·| : |z| ≤ pm
}, Bm =

⋂
m′<m

Bm′, B◦m =
⋃

m′>m

Bm′, B◦m ={|·| : |z|< |p|
m
},

that satisfy the inclusions B◦m ⊂ B◦m ⊂ Bm ⊂ Bm .
We can identify the Zariski-open neighbourhood Uw2 = P\P Pw2 of [w2] ∈ FLG

with A3, via the map

P\P


1

1
x y 1
z x 1

w2.

Then one computes that

XG
w2
∩U an

w2
= {(x, y, z) : x /∈ B0 or y /∈ B0 or z ∈ B◦0},

and ηG preserves U an
w2

and acts in these coordinates via (x, y, z) 7→(p−1x, p−3 y, pz).
Thus

ZG
m ∩U an

w2
= {(x, y, z) : x /∈ B−m or y /∈ B−3m or z ∈ B◦m},

and a similar computation identifies YGL2
w with B0, and YGL2

w · η−m
( 1

0
Zp
1

)
with

Bm + Zp.
We can compute UG

n in coordinates as

UG
n ∩U an

w2
= {(x, y, z) : x ∈ Bn + Zp, y ∈ B3n + Zp},

with no condition on z; and the projection to the first GL2 coordinate is just B◦n .

Lemma 3.7. The intersection ZG
m ∩ UG

n is contained in U an
w2

for all m, n ⩾ 0.

Proof. It suffices to check this for (m, n)= (0, 0); see Lemma 3.3.21 of [Boxer and
Pilloni 2021]. □

3.5. Pullback to H. Guided by the zeta-integral computations in [Loeffler and
Rivero 2024], we shall consider the map

ι♯♯ : FL H → FLG × FL H , h 7→
(

ι♯(h), h1

(
pt

1

)
, h2

)
for some t ⩾ 1.

Proposition 3.8. If m > 3n ⩾ 0, then

(ι♯♯)−1(Zm ∩ Un)= (ι♯♯)−1(Zm),

and in particular this preimage is closed in FL H .
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Proof. We know that the pullback of Z0 is contained in the big cell, so we can
compute it in coordinates. We find that the inequalities on (z1, z2) for it to land
in Zm are

z1+ z2 ∈ B◦m, z2 ∈ Bm + Zp.

For Zm ∩ Un we add the extra inequalities

z2 ∈ B3n + Zp, pt z1 ∈ B◦n.

If m > 3n, then the latter equations are a consequence of the former. □

3.6. Period maps and overconvergent cohomology. We consider the analytifica-
tions SG,K = (SK ×Spec( Q p))

an and S tor
G,K = (Stor

G,K ×Spec( Q p))
an, and similarly

for H and G × H (denoted always by calligraphic letters). Write S tor
G,K p for the

perfectoid space lim
←−−K p

S tor
G,K p K p

, which allows us to consider the Hodge–Tate period
map

π tor
HT,G : S

tor
G,K p → FLG,

which for every open compact K p ⊂ G( Q p) descends to a map of topological
spaces (see [Boxer and Pilloni 2021, Section 4.5])

π tor
HT,G,K p

: S tor
G,K p K p

→ FLG/K p.

There are also analogous maps for H and G × H , for which we use the same
notation.

The Hodge–Tate period maps for G and H are related by a compatibility property
analogous to Theorem 6.2.1 of [Loeffler and Zerbes 2021b]. To formulate this we
need to introduce an auxiliary level structure K H

⋄
, defined as follows.

Definition 3.9. Let K H
△

(pt)= K H
Iw(pt)∩ τ ♯K G

Iw(pt)(τ ♯)−1, concretely given by

K H
△

(pt)=

{
h ∈ H(Zp)

∣∣∣∣ h =
((

x 0
0 z

)
,

(
z 0
0 x

))
mod pt for some x, z

}
.

We just put S tor
H,△ for S tor

G,K to represent the choice of K H
△

(pt).

Proposition 3.10. There is a commutative diagram of Hodge–Tate period maps:

S tor
H,Iw(pt)

π H
Iw

// FLH/K H,Iw(pt)

S tor
H,△(pt)

pr△

OO

ι♯

��

π H
△

// FLH/K H
△

(pt)

pr△

OO

ι♯

��

S tor
G,Iw(pt)

πG
Iw

// FLG/KG,Iw(pt)
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The choices of neighbourhoods we have made are sufficient to get the maps
working, including the compatibility with the classical cohomology via compact-
support cohomology of Zm . Let UG

n ⊂ SG×H,Iw(pt) and ZH
m ⊂ UH

n ⊂ SH,△(pt)

denote the preimages of the subsets UG
n ⊂ FLG and ZH

m ⊂ UH
n ⊂ FLH under the

Hodge–Tate period maps π tor
HT,G×H,Iw and π tor

HT,H,△. Then we have the following
commutative diagram:

R0(UG
0 ,V) // R0(S tor

H,△(pt), (ι♯)∗(V)

R0Zm (UG
0 ,V)

OO

��

// R0ZH
m
(S tor

H,△(pt), (ι♯)∗(V))

OO

R0Zm (UG
n ,V)

55

Here, the horizontal maps correspond to (ι♯)∗, while the vertical ones are the
usual restriction and corestriction maps.

4. Branching laws and sheaves of distributions

In this section, we introduce the necessary tools to p-adically interpolate the
automorphic vector bundles associated to representations of the Levi subgroups
MG and MH , which are the coefficient systems for the cohomology we study. We
keep the notation of [Loeffler and Zerbes 2021b, Section 8] and review some of the
more relevant results of the same work, focusing on the changes we need in our
setting. Note in particular that the discussions and results of [Loeffler and Zerbes
2021b, Section 6] hold verbatim, with the obvious changes in Proposition 6.4.1.

Along this section, we will frequently consider the projections of the embed-
ding ι♯♯ on each factor: the first component corresponds to ι♯ : FL H → FLG , and
the second, referred to as ιp, is the map

ιp : FL H → FL H , (h1, h2) 7→

(
h1

(
pt

1

)
, h2

)
.

We also write υ = υ(pt)=
(( pt

1

)
, 1
)
∈ M(Zp).

4.1. Torsors. We begin this section recalling a general procedure for Tate-twisting
proétale torsors, referring the reader to [Graham 2024, Section 4.2] for a more
extensive discussion on the main properties of this operation. Let L/Qp be a finite
extension and X/L a smooth adic space. Let T ×→X denote the proétale Z×p -torsor
parametrising isomorphisms (of proétale sheaves) Zp −→

∼ Zp(1). The action of Z×p
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is given as follows: for λ ∈ Z×p and φ : Zp −→
∼ Zp(1), we set

φ · λ= φ(λ · −).

Let M be a smooth adic group over Spa L and suppose that we have a homomor-
phism µ : Z×p → M whose image is contained in the centre of M .

Definition 4.1. Let M→ X be a (right) proétale M-torsor. We define the twist
of M along µ to be

µM :=M×[Z
×
p ,µ] T ×,

where the right-hand side is the quotient of M×X T × by the equivalence relation

(m ·µ(λ), φ)∼ (m, φ · λ−1) for all m ∈M, φ ∈ T ×, λ ∈ Z×p .

This defines a proétale M-torsor µM→ X via the action (m, φ) ·n = (m ·n, φ) for
m ∈M, φ ∈ T × and n ∈ M .

The map x 7→ x−1
: G → FLG allows us to regard G as a right PG-torsor

over FLG , and similarly to regard G/NG → FLG as a right MG-torsor. We
consider their analytifications

PG
: G→ FLG and MG

: G/NG→ FLG,

which are torsors over FLG under the analytic groups PG and MG respectively. We
similarly define torsors over the flag varieties H , H1 and H2.

Definition 4.2. Define PG
HT and MG

HT to be the pullbacks via πG
HT of the torsors PG

and MG ; there are right torsors over SG,Iw(pt) for the groups PG and MG . We
similarly define PH

HT and MH
HT, PHi

HT and MHi
HT for i = 1, 2.

Using Definition 4.1 we can define µPG
HT, µMG

HT and the analogous twisted
objects for the torsors corresponding to H and Hi .

Definition 4.3. For n > 0, let M1
G,n be the group of elements which reduce to the

identity modulo pn . Define

M□
G,n =M1

G,n · BMG (Zp),

which is an affinoid analytic subgroup containing IwMG (pn). A similar definition
applies to MH = T ; we write the group as T □

n = T (Zp)T 1
n .

Consider in the same way

T ⋄n = {diag(t1, t2, νt−1
2 , νt−1

1 ) ∈ T □
n : t1− t2 ∈ Bn}.

As in [Loeffler and Zerbes 2021b, Proposition 7.2.5], we also consider the étale
torsors µMG

HT,n , µMG
HT,n,Iw and µMH

HT,n,⋄ arising as the reduction of structure of
the torsors µMG

HT over UG
n , µMH

HT over UH
Iw,n and µMH

HT over UH
n , respectively.
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The following proposition is the key statement allowing for p-adic variation, and it
mainly follows from the theory developed in [Boxer and Pilloni 2021, Section 4.6].

Proposition 4.4. We have an equality of M□
G,n-torsors over UH

n,⋄:

(ι♯)∗(µMG
HT,n,Iw)= µMH

HT,n,⋄×
[T ⋄n ,τ ]M□

G,n,

where we regard T ⋄n as a subgroup of IwMG (pt)M1
G,n via conjugation by τ .

Proof. This follows by checking the analogous statement on the flag variety, noting
that there is a commutative diagram of adic space:

K H
△

(pt)H1
n

//

��

K G
Iw(pt)G1

n

��

BH
\BHw01K H

△
(pt)H1

n
// PG
\PGw2K G

Iw(pt)G1
n

Here, the vertical maps are h 7→ BH
\BH h−1 (on the left) and g 7→ PG

\PGw2 g−1

(on the right); the lower horizontal map is ι♯ is BH h 7→ PGhτw2, and the map
along the top making the diagram commute is h 7→ (τ ♯)−1hτ ♯.

Then we may conclude as in [Loeffler and Zerbes 2021b, Proposition 7.2.7]. □

A straightforward adaptation of these techniques can be applied to the second
factor ιp, yielding to an equality of M□

H,n-torsors over UH
n,⋄,

(ιp)
∗(µMH

HT,n,Iw)= µMH
HT,n,⋄×

[T ⋄n ,υ]M□
H,n,

where we regard T ⋄n as a subgroup of IwMH (pt)M1
H,n via conjugation by υ. Observe

that the conjugation by υ does not introduce denominators in any element of MH ,
and hence the previous objects are well defined.

4.2. Analytic characters and analytic inductions.

Definition 4.5. Let n ∈ Q>0. We say that a continuous character κ : Z×p → A×, for
(A, A+) a complete Tate algebra, is n-analytic if it extends to an analytic A-valued
function on the affinoid adic space

Z×p ·Bn ⊂ Gad
m .

This definition extends to characters T (Zp)→ A×: the n-analytic characters are
exactly those which extend to T □

n .

Let n0 > 0 and assume that κA : T (Zp)→ A× is an n0-analytic character. For
? ∈ {G, H} and n ≥ n0, let M1

?,n be the affinoid subgroup of M? defined above,
and let BMG be the Borel of M?.
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Definition 4.6. For n ≥ n0, define

V n−an
G,κA
= anInd

(M□
G,n)

(M□
G,n∩BG)

(w0,M?κA)

= { f ∈O(M□
G,n)⊗̂A : f (mb)= (w0,MκA)(b−1) f (m)}

for all m ∈M□
G,n and for all b ∈M□

G,n ∩BG .
We define a left action of M□

G,n on V n−an
G,κA

by (h · f )(m)= f (h−1m).
Write Dn−an

G,κA
for the dual space, and ⟨ · , · ⟩ for the pairing between these; we

equip Dn−an
G,κA

with a left action of the same group M□
G,n such that ⟨hµ, h f ⟩= ⟨µ, f ⟩.

4.3. Branching laws in families. Recall that for a Tate algebra A endowed with an
n0-analytic character κA : T (Zp)→ A× as above, and additionally with a character
λ : (1+Bn)

×
→ A×, we may define a special vector in V n−an

G,κA
(referred to as the

“krakenfish” in [Loeffler and Zerbes 2021b]) by the formula Kλ(z)= λ(1+ z).
The following lemma is analogous to [Loeffler and Zerbes 2021b, Lemma 8.3.2],

but recall that now the objects involved in the definition of T ⋄n are different.

Lemma 4.7. The function Kλ is an eigenvector for (τ ♯)−1T ⋄n τ ♯, with eigencharacter
w0,M κA+ (λ,−λ; 0).

Proof. This follows from the same argument that has been done in [Loeffler and
Zerbes 2021b, Section 8.3] once we note that the element τ lies in the Siegel
parabolic subgroup, and that only the projection to the Levi subgroup matters for
the purpose of this computation. □

The following result is a straightforward consequence of the previous lemma.

Proposition 4.8. Pairing with Kλ defines a homomorphism of T ⋄n -representations

(ι♯)∗(Dn−an
G,κA

)→ Dn−an
H,w01,MκA+(λ,−λ;0).

4.4. Labelling of weights. As above, let (A, A+) be a Tate algebra over ( Q p, Zp).
Given a weight νA : T (Zp)→ A× for some coefficient ring A, we may define
κA : T (Zp)→ A× by

κA =−w0,M w2(ν+ ρ)− ρ.

If νA is (ν1, ν2;ω) for some νi , ω : Z×p → A×, then κA = (ν1,−2− ν2;ω). Its
Serre dual is κ ′A = (κA + 2ρnc)

∨. This can be written as (ν2 − 1,−3− ν1; c) =
w2(νA+ ρ)− ρ.

4.5. Sheaves on G. Let 1≤ n < t be integers.

Definition 4.9 [Loeffler and Zerbes 2021b, Definition 9.2.1]. The sheaf Vn−an
G,νA

over UG
n is given by the product

Vn−an
G,νA
=

µMG
HT,n,Iw×

M□
G,n V n−an

G,κA
.
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We define similarly another sheaf Dn−an
G,νA

by

Dn−an
G,νA
=

µMG
HT,n,Iw×

M□
G,n Dn−an

G,(κA+2ρnc)
.

As discussed in [Loeffler and Zerbes 2021b, Definition 9.2.1], the sheaves Vn−an
G,νA

and Dn−an
G,νA

are sheaves of A-modules compatible with base-change in A. If A= Q p

and νA = (r1, r2; c) for integers r1 ≥ r2 ≥−1, we have classical comparison maps

VG,κ1 ↪→ Vn−an
G,νA

, Dn−an
G,νA

↠ VG,(κA+2ρnc)∨ = VG,κ2 .

4.6. Sheaves on H. We mimic the same definitions for H , using w01 ∈ WH in
place of w2. Given an n-analytic character τA, we define κ H

A =−τA−2ρH , and set

Vn−an
H,⋄,νA

=
µMH

HT,n,⋄×
T ⋄n V n−an

H,κ H
A

and Dn−an
H,⋄,τA

=
µMH

HT,n,Iw×
T ⋄n Dn−an

H,(κ H
A +2ρH )

.

4.7. Branching for sheaves.

Definition 4.10. We say that A-valued, n-analytic characters νA and τA of T (Zp)

are compatible if νA = (ν1, ν2; ν1+ ν2), τA = (τ1, τ2; ν1+ ν2) for some characters
νi , τi of Z×p , and we have the relation

τ1− τ2 = ν1− ν2− 2.

If νA, τA are compatible, then taking λ = ν1 − τ1 = ν2 − τ2 + 2, we obtain a
homomorphism of T ⋄n -representations

Dn−an
G,(κA+2ρnc)

→ Dn−an
H,−τA

.

Proposition 4.11. Pairing with Kλ induces a morphism of sheaves over UH
n :

(ι♯)∗(Dn−an
G,νA

)→ Dan
H,⋄,τA

,

which is compatible with specialisation in A, and if A= Q p and ν= (r1, r2; r1+r2),
τ = (t1, t2; r1+ r2) are algebraic weights with r1− r2 ≥ 0 and ri , ti ≥−1, then this
morphism is compatible with the map of finite dimensional sheaves (ι♯)∗(Vκ2)→VH

τ ,
where Vκ2 is as in [Loeffler and Rivero 2024, Section 3].

Proof. This follows immediately from the results of Section 4.5. □

4.8. Locally analytic overconvergent cohomology. We adopt the same definitions
regarding cuspidal, locally analytic, overconvergent cohomology of [Loeffler and
Zerbes 2021b, Section 9.5]. In particular,

R0G
w,an(νA, cusp)−,fs

= R0IG
mn

(UG
n ,Dn,− an

G,νA
(−DG))−,fs

and similarly for the noncuspidal version. Here, “−, fs” is the finite-slope part for
the dual Hecke operators U ′Si and U ′Kl. This complex is independent of m, n and t ,
and is concentrated in degrees [0, 1, 2].
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Given νA and τA satisfying τ1− τ2 = ν1− ν2− 2, the previous discussion means
that we have a morphism of complexes of A-modules:

(2) (ι♯)∗ : R0G
w,an(νA, cusp)−,fs

→ R0ZH
m
(UH

n ,Dn−an
H,⋄,τA

(−DH )).

The map ιp induces in the same way a morphism of sheaves over UH
n and an

analogous morphism at the level of complexes of A-modules.

4.9. Pairings and duality. We may define

R0w01,an(SH,Iw(pt), τA)+,†
= lim
−−→

R0(ZH
m,Iw(pt),Van

H,Iw,τA
).

The following theorem will be crucially used in the definition of the p-adic L-
function. It can be understood as a statement about cup products of overconvergent
cohomology on SH .

Theorem 4.12. The cup product induces a pairing

H 1
w01,an(SH,Iw(pt), τA, cusp)−,†

× H 1
w01,an(SH,Iw(pt), τA)+,†

→ A,

whose formation is compatible with base-change in A, and it is also compatible
with the Serre duality pairing on classical cohomology when A = Q p and ν, τ are
classical weights.

Proof. The map is defined using the pairing between the cohomology groups
H 1

w01,an(SH,Iw(pt), τA, cusp)−,† and H 1
w01,an(SH,Iw(pt), τA)+,†. The result in the

current form follows from [Boxer and Pilloni 2021, Theorem 6.7.1], from where it
is clear that the pairing is compatible with Serre duality for each classical weight. □

4.10. A Künneth formula for cohomology with support. In order to define the
p-adic L-function, we need to p-adically interpolate the cohomological pairing
between H 0 and H 1. This may be regarded as a Künneth formula for cohomology
with support.

Proposition 4.13. The cup product induces a pairing

(3) H 0
w0,an(SGL2,Iw(pt), τ1)

†
× H 1

w1,an(SGL2,Iw(pt), τ2, cusp)†

→ H 1
w01,an(SH,Iw(pt), τA)−,†,

where τA = (τ1, τ2) is a weight for H.

Proof. This follows from [Loeffler and Zerbes 2021b, Theorem 9.6.2] by the general
theory as in [Boxer and Pilloni 2021, Theorem 6.7.1]. □
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5. The p-adic L-function

In this section we discuss how to use higher Coleman theory to reinterpret the
Harris–Su pairing, as discussed in [Loeffler and Rivero 2024, Section 3], in coherent
cohomology over certain strata in suitable adic Shimura varieties. In particular, this
analysis allows us to perform p-adic interpolation provided that there exist families
of cohomology classes interpolating the different elements involved there. We
implicitly use some of the results discussed in [Loeffler et al. 2021, Sections 9, 10],
as well as Novodvorsky’s formula and its interpretation in coherent cohomology
discussed in [Loeffler and Rivero 2024].

If not specified otherwise, π and σ are cohomological cuspidal automorphic
representations of GSp4 and of GL2, defined over some number field E , both
globally generic and unramified outside a certain finite set. Let L be some p-adic
field with an embedding from E .

5.1. Tame test data. As in [Loeffler and Zerbes 2021b, Section 10.2], we fix the
following data:

• M0, N0 are positive integers coprime to p with M2
0 |N0, and χ0 is a Dirichlet

character of conductor M0 (valued in L).

• M2, N2 are positive integers coprime to p with M2 |N2, and χ2 is a Dirichlet
character of conductor M2 (valued in L).

As usual, we use the hat to denote the adelic counterpart of the characters. We
shall consider automorphic representations π of G with conductor N0 and central
character χ̂0 (up to twists by norm); here “conductor” is the analytic conductor of the
associated degree 4 L-function, which always satisfies the divisibility M2

0 |N0. We
assume similarly that the representation σ of GL2 has conductor N2 and character χ̂2

(up to twists by norm).
Let S denote the set of primes dividing N0 N2. By tame test data we mean a pair

γS = (γ0,S, 8S) such that:

• γ0,S ∈ G( QS), where QS =
∏

ℓ∈S Qℓ.

• 8S ∈ C∞c ( Q2
S, L), lying in the (χ̂0χ̂2)

−1-eigenspace for Z×S , where the action
is as described in [Loeffler et al. 2022, Section 3].

We let KS be the quasiparamodular subgroup (in the sense of [Okazaki 2019])
of G( QS) of level (N0, M0), so that π has one-dimensional invariants under KS;
and we let K̂S be the open compact subgroup of G( QS) defined in [Loeffler and
Zerbes 2021b, Section 10.2]. We also use analogous notation for K p and K̂ p, the
prime-to-p part of the level and its adelic counterpart, respectively.
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5.2. p-adic families. We use the conventions regarding p-adic families of [Loeffler
and Zerbes 2021b, Section 10.4]. In particular, we consider U ⊂W2 an open affinoid
disc, and let r1, r2 : Z×p →O(U )× be the universal characters associated to the two
factors of W2. Let νU be the character (r1, r2; r1+ r2) of T (Zp).

Definition 5.1. A family of automorphic representations π of tame level N0 and
character χ0 over an open affinoid disc U is the data of a finite flat covering Ũ→U
and a homomorphism Ũ → E lifting the inclusion U ↪→W , such that:

(a) Ũ is 2-dimensional and smooth.

(b) The restriction of H k(M•,−, f s
cusp,w j ) to Ũ is zero if j + k ̸= 3, and the sheaves

Sk(π)= H k(M•,−, f s
cusp,w3−k ) are either free over O(Ũ ) of rank 1 for all k (general-

type), or free of rank 1 for k = 1, 2 and zero for k = 0, 3 (Yoshida-type).

(c) The centre of G(Ap
f ) acts on Sk(π) by | · |−(r1+r2)χ̂0.

Assume that the representation π can be interpolated along a finite-slope over-
convergent p-adic family of automorphic representations π over the open affinoid
disc U introduced at the beginning of the section. (Given any cohomological π

with sufficiently small slope at p, the theory of eigenvarieties guarantees that we
can always find a sufficiently small open disc around the weight of π such that
this holds.) Let S1(π) = H 1(M•,−, f s

cusp,w2) be the sheaf [Loeffler and Zerbes 2021b,
Definition 10.4.1], which is free of rank 1 according to the definition we have made.
We shall then choose a basis ξ of that space. Since the spaces of higher Coleman
theory have an action of G(Ap

f ), we can make sense of γ0,S ·ξ as a family of classes
at tame level K̂ p, which is still an eigenfamily for the Hecke operators away from S.

Definition 5.2. A point P ∈U (L) is nice for π if the weight of P is (r1, r2)∈U∩Z2

with r1≥ r2≥ 0 and the specialisation at P of the system of eigenvalues λ−π attached
to the family π is the character of a p-stabilised automorphic representation πP ,
which is cuspidal, globally generic, and has conductor N0 and character χ0.

This implies that the fibre of S1(π) at P maps isomorphically to the πP -
eigenspace in the classical H 1(K p, κ1(ν), cusp); in particular, this eigenspace
is 1-dimensional. By the classicality theorems for higher Coleman theory, given a
family π , all specialisations of integer weight (r1, r2) with r1−r2 and r2 sufficiently
large relative to the slope of π will be nice; and if π is ordinary, it suffices to assume
that r1− r2 ≥ 3 and r2 ≥ 0.

We can consider analogous objects for GL2. In particular, we may choose a disc
U ′ ⊂W and a finite-slope overconvergent p-adic family of modular eigenforms G
over U ′ (of weight ℓ+ 2 where ℓ is the universal character associated to U ′). We
also impose that the corresponding spaces S0(G) and S1(G) are free of rank 1.
Then, we say a point Q ∈U ′ is nice for G if it lies above an integer ℓ ∈U ′ ∩ Z≥0,
and the specialisation of G at Q is a classical form. We further require that the fibre
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of S1(σ ) at Q maps isomorphically to the σQ-eigenspace in the classical H 1 (and
in particular, this eigenspace is 1-dimensional). We write σℓ for the corresponding
automorphic representation, with the normalisations in [Loeffler and Zerbes 2021b,
Definition 10.4.1]. As before, we shall take a basis η of S1(σ ).

Remark 5.3. The inequalities defining region (D) automatically imply that we are
not dealing with noncohomological weights, and hence we do not need to consider
an étale covering, as it was the case for region (F).

5.3. Construction of the imprimitive p-adic L-function. We refer to [Loeffler
et al. 2021, Section 7.4] for the construction of the p-adic family of Eisenstein series
E8(p)

(0, t−1), which depends on a prime-to-p Schwartz function 8(p). According
to [Loeffler and Zerbes 2021b, Proposition 10.1.2], it is an overconvergent cusp
form of weight t which may be understood as an element in the overconvergent H 0

of SGL2,Iw. As discussed at the end of Section 10.2 of the same reference, 8(p)

and 8S agree up to multiplication by the characteristic function of ẐS∪{p}.
Recall the pairing (3). From now on, let A=O(U ×U ′). Next, we can consider

E8(p)

(0, t − 1)⊠G(χ−1
2 )η ∈ H 1

w01,an(SH,Iw(p2), τA)+,†,

where t = r2− r1+ ℓ− 2 and the tame level is taken to be H ∩ K̂ p.

Remark 5.4. The Gauss sum can be normalised away by rescaling η if the co-
efficient field L contains a root of unity of order M2, but we do not assume this here.

Definition 5.5. We let Limp
p,γS (π × σ ; ξ ; η) denote the element of A defined by

⟨(ι♯)∗(γ0,S · ξ), E8(p)

(0, t − 1)⊠G(χ−1
2 )η⟩,

where we are using the pairing of Theorem 4.12.

This is a three-variable p-adic L-function, where we may vary the weights (r1, r2)

and we keep the linear condition in terms of (r1, r2, ℓ, t), namely t = r2− r1+ℓ−2
(alternatively, s = 1

2(ℓ− r1+ r2− 2)).

Definition 5.6. • We say a point (P, Q) of U ×U ′ is nice if P = (r1, r2) and
Q = (ℓ) are integer points, with P nice for π and Q nice for σ .

• We say that (P, Q) is nice critical if we also have ℓ≤ r1− r2+1 (the speciali-
sation t of t at (P, Q) is ≥−1).

• If instead we have r1− r2 ≤ ℓ− 2≤ r1, we say that P is nice geometric.

5.4. The correction term ZS. This section introduces a correction term ZS which
depends on the choice of local data, and which will arise in the interpolation
property of the p-adic L-function. Its definition depends on certain Whittaker
models properly introduced in [Loeffler and Rivero 2024, Section 6]; since this
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will have a minor relevance in this work, we just refer the interested reader to
our previous paper. Following the notation in [Loeffler and Rivero 2024] we may
consider the integral Z(W, 81, W (ℓ)

; s).
We set

ZS(π × σ, γS; s)=
Z(γ0,S ·W new

0 , 8S, W new
2 ; s)

G(χ−1
2 )

∏
ℓ∈S L(πℓ× σℓ, s)

,

and
ZS(π × σ, γS)= ZS

(
π × σ, γS; 1+

t
2

)
,

where t = r2−r1−2+ℓ, as usual, and G(χ−1
2 ) is the Gauss sum of the character χ2.

Note that for any given π and σ , one can choose γS such that ZS(π ×σ, γS; s) ̸= 0
(this follows from the definition of the L-factor as a GCD of local zeta-integrals).

5.5. Interpolation property. We choose a Q-basis ξ of the new subspace of H 1(πf),
where H 1(πf) is the copy of πf appearing in the degree 1 coherent cohomology of
the Siegel Shimura variety. Analogously, we also choose a Q-basis η of the new
subspace of H 1(σf). We write S1(π, L) for the cohomology with L-coefficients,
which is an L-vector space.

The element ξ ⊗η is an explicit multiple of the standard Whittaker function, and
the corresponding multiple defines a complex period �∞(π, σ ) ∈ C×.

Definition 5.7. Given nonzero ξ ∈ S1(π, L) and η ∈ S1(σ , L), we define periods
�p(π, σ )∈ L× and �∞(π, σ )∈C× as in [Loeffler et al. 2021, Section 10.2]. (These
periods do depend on the choices of ξ and η up to multiplication by L×, but we
drop that dependence from the notation). We write �p(πP , σQ) and �∞(πP , σQ)

for the specialization of the periods at (P, Q).

More precisely, the space of Whittaker-E-rational classes is exactly �∞(π, σ ) ·

H 1(πf)⊗ H 1(σf) for a nonzero constant �∞(π, σ ) ∈ C× (the Whittaker period).
Below we establish the interpolation property for the p-adic L-function; observe

that the algebraicity of the right-hand side was the main result of [Loeffler and
Rivero 2024]. Recall the degree-8 Euler factor E (d) of [Loeffler and Zerbes 2021c],
that we call E (D) in the GSp4×GL2 setting of [Loeffler and Rivero 2024].

Theorem 5.8. The p-adic L-function Limp
p,γS (π × σ) has the following interpolation

property: if (P, Q) is nice critical, with P of weight (r1, r2) and Q of weight ℓ, then

Limp
p,γS (π × σ)(P, Q)

�p(πP , σQ)

= ZS(πP × σQ, γS) · E (D)(πP × σQ) ·
G(χ−1

2 )3
(
πP × σQ, 1

2(ℓ− r1+ r2− 2)
)

�∞(πP , σQ)
,

where 3(πP × σQ, s) is the completed (complex) L-function and G(χ−1
2 ) is the

Gauss sum of χ−1
2 .
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Proof. By construction, we have

Limp
p,γS

(π × σ)(P, Q)= G(χ−1
2 )⟨(ι♯)∗(γ0,S · ξP), E8(p)

(0, t − 1)⊠ ηQ⟩.

Along the region given by ℓ− t = r1 − r2 + 2, this expands as the product of
G(χ−1

2 )3
(
πP × σQ, t

2

)
and a product of normalised local zeta-integrals. The local

zeta-integral at p has been evaluated in [Loeffler and Rivero 2024, Section 7] and
gives the desired Euler factor. The product of zeta-integrals at the bad primes is by
definition G(χ−1

2 )ZS( · · · ). □

Remark 5.9. Taking into account the discussions of [Loeffler and Rivero 2024,
Remark 7.14], it is possible to use this same method to get an improved p-adic
L-function where the interpolation property involves a degree seven Euler factor.
Further, following the recent work by Graham et al. [2023], it should be possible to
extend the previous construction to a p-adic L-function in all four variables.

6. A conjectural reciprocity law

6.1. Slope conditions. We now recall various notions of slope associated to au-
tomorphic representations of G and H . Given a cohomological automorphic
representation π of G such that πp has nonzero invariants under IwG (with a
chosen embedding of its coefficient field into Q p), and a simultaneous eigenspace
in (πp)

IwG for the operators U ′Si and U ′Kl, we define the slope of this eigenspace
to be the pair of rational numbers λ(U ′Si), λ(U ′Kl) which are the valuations of the
eigenvalues for these operators. These slopes play a central role in the classicity
criteria as in [Boxer and Pilloni 2021]. (One can use either the usual Hecke operators
USi and UKl, or the dual operators U ′Si and U ′Kl, since the same eigenvalues appear
for both choices.)

If λ(U ′Si)= 0 we say the eigenspace is Siegel-ordinary, and similarly Klingen-
ordinary; and we say that π is Borel-ordinary at p if it is both Siegel- and Klingen-
ordinary. The condition of being Siegel ordinary at p may be rephrased by requiring
that vp(α)= 0, and being Klingen-ordinary is equivalent to vp(αβ)= r2+ 1.

For a cuspidal automorphic representation σ of GL2, write a, b for the Hecke
parameters of σp (that is, the parameters corresponding to the action of the dual
Hecke operators). We adopt the convention that vp(a) ≤ vp(b) and say that σ is
Borel-ordinary at p (with respect to v) if vp(a)= 0.

The hypotheses of the classicity theorems in [Boxer and Pilloni 2021] require
two (slightly different) notions of “small slope”, which we make explicit here. We
consider the Hecke operators with the previously discussed normalisations acting
on the cohomology of the sheaves Vκ . Thus each operator is “minimally integrally
normalised” acting on the classical cohomology (slopes are ≥ 0). Write K p for
some fixed choice of open compact away from p. Conjecture 5.9.2 of [Boxer and
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Pilloni 2021] predicts lower bounds for the slopes of the Hecke operators acting on
the overconvergent cohomology complexes R0w(K p, κ)± and R0(K p, κ, cusp)±,
whose precise definitions are given in the same work; there are similar conjectures
for the locally analytic cohomology complexes.

For w ∈WG , we compute the character w−1wmax
G (κ + ρ)− ρ and find out how

it pairs with the antidominant cocharacters diag(1, 1, x, x, ) and diag(1, x, x, x2)

defining the operators U ′Si and U ′Kl. We take κ = κ2 = (r2−1,−r1−3; r1+r2), and
subtract r2 from all entries in the bottom row since this is our normalising constant
for U ′Kl. Following the approach in [Boxer and Pilloni 2021, Section 5.11], below
we summarise the conjectural slope bounds.

id w1 (w2) w3

U ′Si r1+ 2 0 (0) r2+ 1
U ′Kl r1− r2+ 1 r1− r2+ 1 (0) 0

We do not know this conjecture in full, but from [Boxer and Pilloni 2021,
Theorems 5.9.6, 6.8.3], we do know a weaker statement in which we replace
w−1wmax

G (κ2+ ρ)− ρ with w−1wmax
G κ2. This gives the following bounds.

id w1 (w2) w3

U ′Si r1+ 2 −1 (−1) r2− 2
U ′Kl r1− r2+ 1 r1− r2+ 1 (−3) −3

The following proposition discusses the conditions of “small slope” and “strictly
small slope”. The reason for introducing different slope conditions is that the
conditions needed to obtain a vanishing theorem are not the same as those needed
to obtain classicality theorems; further, there are different kinds of control theorems
requiring distinct sets of hypotheses.

Proposition 6.1. For the weight κ2 = (r2− 1,−r1− 3; r1+ r2) with r1 ≥ r2 ≥ 0,
we have:

• The “small slope” condition (−, ssM(κ2)) is

λ(U ′Si) < r1+ 2, λ(U ′Kl) < r1− r2+ 1.

• The “strictly small slope” condition (−, sssM(κ2)) is

λ(U ′Si) < r1+ 2, λ(U ′Kl) < r1− r2− 2.

Proof. This follows from the bounds given previously. □

6.2. Ordinary filtrations at p. Along the rest of this section we assume that π is
both Klingen and Siegel ordinary and that σ is Borel ordinary. This is done just
with the purpose of simplifying notation; similar conjectures can be formulated in
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the more general strictly small-slope setting, but one needs to use the theory of
(ϕ, 0)-modules over the Robba ring (rather than actual subrepresentations of Galois
representations). Further, one expects to be able to formulate integral refinements
in the ordinary setting, using Coleman maps instead of the Perrin–Riou map, and
making Lp a p-adic measure instead of just a distribution. We begin by discussing
the slope conditions.

Associated with the family π we have a family of Galois representations V (π),
which is a rank 4 O(U )-module with an action of Gal( Q/Q), unramified out-
side pN0 and with a prescribed trace for Frob−1

ℓ , when ℓ ∤ pN0. The Galois
representation V (π) has a decreasing filtration by O(U )-submodules stable under
Gal( Q p/Q p). Borrowing the notation from [Loeffler and Zerbes 2021b, Section 11],
we write F i V (π) for the codimension i subspace, and similarly for its dual V (π)∗.
Similarly, there is a 2-step filtration for V (σ ). See, e.g., [Loeffler and Zerbes 2021c,
Section 9.1] for a precise account of the feature of the different filtrations involved
in the picture.

Definition 6.2. We set

V∗ = V (π)∗⊗ V (σ )(−1− r1),

and we let

F (D)V (π × σ)∗ = (F1V (π)∗⊗F1V (σ )∗)+ (F3V (π)∗⊗ V (σ )∗)

and

F (E)V (π × σ)∗ = (F1V (π)∗⊗F1V (σ )∗)+ (F2V (π)∗⊗ V (σ )∗).

For a nice weight (P, Q) we write V∗P,Q for the specialisation of V∗ at (P, Q), so
V∗P,Q = V (πP)∗⊗ V (σQ)∗(−1− r1) if P = (r1, r2).

In particular, F (E) has rank 5, F (D) has rank 4, and the quotient Gr(e/d) is
isomorphic to

Gr(E/D) ∼= (Gr2 V (π)∗)⊗ (Gr0 V (σ )∗)(−1− r1).

While Loeffler and Zerbes [2021b] were interested in the quotient (Gr1 V (π)∗)⊗

(Gr1 V (σ )∗), here we are using a different step of the filtration. This is because
Loeffler and Zerbes [2021b] were comparing the regions (e) and ( f ), while here
the contrast is between (e) and (d), so the filtrations involved in each factor are
different.

6.3. p-adic periods and p-adic Eichler–Shimura isomorphisms. The represen-
tations Gr2 V (π)(−2− r1) and Gr0 V (σ ) are unramified, and hence crystalline as
O(U ) (resp. O(U ′))-linear representations. Since Dcris( Q p(1)) is canonically Q p,
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we can therefore define Dcris(Gr(e/d) V∗) to be an alias for the rank 1 O(U ×U ′)-
module

Dcris(Gr2 V (π)∗(−2− r1)) ⊗̂ Dcris(Gr0 V (σ )∗).

We can then define a Perrin–Riou big logarithm for Gr(e/d) V∗, which is a morphism
of O(U ×U ′)-modules:

LPR
: H 1( Q p, Gr(e/d) V∗)→ Dcris(Gr(e/d) V∗).

For nice geometric weights P , this specialises to the Bloch–Kato logarithm map,
up to an Euler factor; and for nice critical weights is specialises to the Bloch–Kato
dual exponential.

Let P be a nice weight. There is an Eichler–Shimura isomorphism

ES1
πP
: S1(πP , L)∼= Dcris

(
Gr2(V (πP))

)
.

Similarly, for GL2 we have an isomorphism

ES1
σQ
: S1(σQ, L)∼= Dcris(Gr0 V (σQ)).

In this case, the existence of a comparison in families is known after Kings et al.
[2017], that is, there exists an isomorphism of O(U ′)-modules:

ES1
σ : S

1(σ )∼= Dcris(Gr0 V (σ ))

interpolating the isomorphism ES1
σQ

for varying Q, where S1(σ ) is the O(U ′)-
module spanned by η.

6.4. Euler system classes. Suppose that the character χ0χ2 is nontrivial. Then,
by the results in [Hsu et al. 2020], associated to the data γS , we have a family of
cohomology classes

zm(π × σ , γS) ∈ H 1( Q(µm), V∗)

for all square-free integers coprime to some finite set T containing both p and the
ramified primes. The image of zm(π × σ , γS) under localisation at p lands in the
image of the injective map from the cohomology of F (E)V∗ and we can therefore
make sense of

LPR(zm(π × σ), γS) ∈ Dcris(Gr(e/ f ) V∗).

In this setting, we expect the following result.

Conjecture 6.3. Under the running assumptions, the equality〈
LPR(z1(π × σ , γS))(P, Q), ES1

πP
(ξP)⊗ES1

σQ
(ηQ)

〉
= Limp

p,γS
(π × σ)(P, Q)

holds for all (P, Q) in the geometric range.
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The main difficulty for proving the theorem following an analogous strategy to
the case of region (F) is the lack of semistable models for the different Shimura
varieties involved in this picture (Siegel level). We hope that a better understanding
of higher Coleman theory following the new results of Boxer and Pilloni could lead
to a proof of the previous conjecture.
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