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A B S T R A C T   

Stream drying patterns – including duration, timing, and dry-down rates – affect aquatic ecosystems and nutrient 
exports in non-perennial streams. Because hydrologic processes are often nonlinear, changes in drying may also 
be nonlinear, but analyses of historical changes in stream drying to date have not characterized the frequency or 
functional forms of nonlinear change. Understanding the extent of nonlinear change in non-perennial streams is 
essential for advancing our fundamental knowledge of hydrological processes, aquatic ecosystems, and water-
shed functioning under a warming climate. This paper uses a polynomial-based trend detection technique 
(PolyTrend) to analyze the linear and nonlinear trend behaviors of three intermittency signatures (annual no-flow 
days specifying longer or shorter drying duration, day of first no-flow occurrence specifying timing of stream 
drying, and days from peak to no-flow specifying dry-down rates) at 540 non-perennial gage stations over 38 years 
(1980–2017) across the continental United States (CONUS). Additionally, we carried out a breakpoint analysis to 
characterize the discontinuities in the time series of each intermittency signature. Analysis of annual no-flow days 
shows that about 37 % of the total streamflow stations are drying for longer each year, whereas about 22 % are 
wetter for longer than in the past. The day of first no-flow occurrence analysis shows that 10 % of the streams are 
drying earlier, and 19 % are drying later. On the other hand, analysis of days from peak to no-flow shows that 14 % 
of streams are drying faster, and 17 % are drying more slowly. For all these metrics, among the significant trends, 
at least half of the relationships were nonlinear. For annual no-flow days, the breakpoint analysis shows more 
discontinuities in the second half of the analysis period (1999 to 2017) than in the first half, with more dis-
continuities in the Southern Great Plains than in other regions. The other two signatures demonstrate less 
frequent discontinuities in the second half of the analysis period, suggesting decreased nonlinear dynamics in 
recent years. Nonlinear no-flow duration trends are common in Mediterranean California, and the dry-down rate 
has increased in recent decades. Our findings indicate that nonlinear change in stream drying is widespread and 
must be accounted for in watershed planning and management.   

1. Introduction 

Most global waterways (e.g., rivers and streams) are non-perennial, 
meaning continuous surface flows do not occur year-round (Messager 
et al., 2021; Busch et al., 2020). In recent years, non-perennial streams 
have been gaining attention due to their importance to ecosystems and 
society through groundwater recharge for agriculture (Steward et al., 
2012; Leigh and Datry, 2017; Datry et al., 2018), debris material storage 
and downstream sediment transport (Jaeger et al., 2017), habitat 
segregation as riparian vegetation and biotic components (Schilling 
et al., 2021), downstream dam management (Smakhtin, 2001; Zimmer 

et al., 2020), and biogeochemical cycles (G!omez-Gener et al., 2016; 
Shumilova et al., 2019; Von Schiller et al., 2019). Previously, several 
studies considered climatic, physiographic, and anthropogenic drivers 
of the spatial patterns of non-perennial streams (Hammond et al., 2021; 
Kampf et al., 2021). Since relationships between aridity and stream 
drying trends have been found in many regions, including the U.S.A., 
Europe, and Australia (Datry et al., 2023; Zipper et al., 2021; Sauquet 
et al., 2021), changes in aridity due to climate change threaten to alter 
stream drying dynamics. 

Streamflow trend analyses have been conducted for both perennial 
(e.g., Rice et al., 2015; Sagarika et al., 2014; Dollan et al., 2022; Dixon 
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et al., 2006; Zhang et al., 2001; Birsan et al., 2005) and non-perennial (e. 
g., Zipper et al., 2021; Sauquet et al., 2021; Tramblay et al., 2021) 
streams at local, regional, and global scales. Understanding stream 
processes can be enhanced by investigating hydrologic signatures, 
which describe streamflow characteristics and hydrograph properties 
and can effectively indicate hydrological processes (Olden and Poff, 
2003; McMillan, 2020). Here we focus on hydrological signatures 
related to stream drying, referred to as “intermittency signatures”, to 
represent the streamflow and stream drying response of multiple inter-
acting processes and the presence of streamflow thresholds. For 
example, no-flow is a commonly used hydrological signature for classi-
fying non-perennial streams because it affects hydrological drought and 
in-stream biogeochemistry and ecosystem processes (Ludlam and 
Magoulick, 2009). Trend analyses of different intermittency signatures 
have been conducted across the United States (e.g., Zipper et al., 2021), 
Europe (Rutkowska et al., 2023; Tramblay et al., 2021; Snelder et al., 
2013), and Australia (Morden et al., 2023; Sauquet et al., 2021). How-
ever, these past studies have focused only on linear and/or monotonic 
trends and are not well suited to characterize potential nonlinear hy-
drologic changes. Several studies implemented nonlinear trend analysis 
in streamflow (Shao and Li, 2011; Nalley et al., 2012; Zhang et al., 
2014), rainfall (Falayi et al., 2023; Kazemzadeh et al., 2021), and 
vegetation cover (Jamali et al., 2015; Jamali et al., 2014) time series 
data. Nonlinear hydrologic changes can include threshold-type re-
sponses to changing drivers in a complex system or responses to 
nonlinear changes in driver variables. Applying linear models to 
nonlinear behavior can negatively affect the prediction accuracy and the 
depth of our understanding of the system drivers. Nonlinear behavior 
can create unexpected changes in streamflow and occur at different 
magnitudes across spatiotemporal scales (Shao and Li, 2011; Nalley 
et al., 2012; Zhang et al., 2014), and abrupt shifts in stream drying 
dynamics have been observed in site-based studies (Zipper et al., 2022), 
suggesting the potential for breakpoints and nonlinear changes at larger 
spatial scales. However, the extent and types of nonlinear changes in 
non-perennial streamflow have not previously been characterized at 
large spatial scales. Furthermore, nonlinear changes observed for low 
flows may have different characteristics in perennial versus non-
perennial streams. Therefore, this research aims to characterize 
nonlinear changes in non-perennial streamflow across the continental 
United States (CONUS). First, we use a polynomial fitting-based trend 
detection technique (PolyTrend) on the time series of the annual inter-
mittency signatures to detect the presence and types of linear and 
nonlinear trends. We then implement breakpoint analysis on the same 
time series to detect discontinuities in the streamflow signatures. 

2. Data and methods 

2.1. Selection of study sites and data 

Data used in this study was collected from the United States 
Geological Survey (USGS) GAGES-II dataset (Falcone, 2011) and con-
tains 540 non-perennial streams with at least 30 climate years (April 1 to 
March 31) of daily streamflow data from 1980 to 2017. Moreover, the 
selected gages have an average of at least five days and at most 360 days 
of no-flow reported yearly. These gages are categorized into six ecor-
egions based on the United States Environmental Protection Agency 
(EPA) Level 1 ecoregion (Fig. 1): (1) Eastern Forests (136 gages), (2) 
Mediterranean California (87 gages), (3) North Great Plains (56 gages), 
(4) South Great Plains (157 gages), (5) Western Deserts (40 gages), and 
(6) Western Mountains (64 gages). 

Prior research (e.g., Hammond et al., 2021; Price et al., 2021; Zipper 
et al., 2021) used three intermittency signatures that characterize no- 
flow regimes for each year and each gage: 

a. Annual no-flow days: The number of days measuring no stream-
flow, indicating the overall duration of no-flow conditions at a 
stream gage.  

b. Day of first no-flow occurrence: The first day without any surface 
flow in a climate year, which indicates the timing of dry conditions 
within the year.  

c. Days from peak to no-flow: The number of days from a local peak in 
daily flow to the immediate next occurrence of no-flow, indicating 
the dry-down rate. Here, the local peak indicates a streamflow value 
exceeding the 25th percentile, and any secondary peaks during a 
recession that are below the 25th percentile flow are ignored. Peak to 
no-flow calculations were able to span climate years, with the drying 
event classified based on the year in which the peak occurred (Price 
et al., 2021). 

For each gage station, these three signatures were calculated annu-
ally for each climate year (April 1 to March 31). When multiple drying 
events occurred within a climate year, the days from peak to no-flow 
were averaged to produce a single mean number for this signature for 
that climate year. The climate year was used to minimize the number of 
stations with zero flow at the beginning of the calendar year, which 
could have biased the day of first no-flow metric. For details on these 
calculations, please see the supplemental information of Price et al. 
(2021). 

2.2. Trend type classification 

Trend analysis of intermittency signatures is essential because it 

Fig. 1. Gage locations of 540 non-perennial stream gages from six ecoregions across CONUS.  
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provides a holistic picture of the watershed’s vulnerability to climate 
change, but different trend detection approaches can provide different 
insights into the hydrological behavior. Zipper et al. (2021) used non- 
parametric Mann-Kendall tests (Mann, 1945; Kendall, 1948) for trend 
detection in the intermittency signatures. Although the Mann-Kendall 
test is robust and sensitive to outliers or data distribution, it can only 
detect monotonic trends (increasing or decreasing). Due to the influence 
of variables, such as land use, water use, and climate variability, stream 
intermittency can change non-monotonically, but it is unknown how 
common nonlinear changes are in stream intermittency. Therefore, we 
employ an automated trend classification approach developed by Jamali 
et al. (2014, 2015), known as “PolyTrend”, which detects linear and 
nonlinear trends on our intermittency signatures. Even though other 
methods, such as wavelet-based (Partal, 2010; Nalley et al., 2012), 
polynomial-based (Korup et al., 2021), and Breaks For Additive Seasonal 
and Trend (BFAST) (Verbesselt et al., 2010), etc., exist for nonlinear 
trend analyses, we chose PolyTrend for its more straightforward poly-
nomial functions to analyze long-term time series data, computational 
efficiency, and accuracy (Jamali et al., 2014, 2015). 

PolyTrend classifies the time series data using linear and nonlinear 
(quadratic and cubic) trends. We evaluate three potential functional 
forms (linear, quadratic, and cubic; Table 1) for each intermittent 
signature to evaluate which best fits each time series. We also consider 
two additional trend categories: 1) concealed trend and 2) no-trend. If 
there is no net change in the streamflow signature time series over the 
study period within a nonlinear trend (quadratic or cubic), they are 
considered concealed trends. In simpler terms, concealed trends 
demonstrate statistically significant nonlinear trends accompanied by 
statistically insignificant linear trends (Jamali et al., 2014). If the time 
series shows no significant trends over any timescales, it represents a no- 
trend scenario. 

Trend analysis follows a consistent procedure (Fig. 2) that begins 
with fitting a cubic polynomial and determining its statistical signifi-
cance level (i.e., whether the cubic equation fits the data). If the model is 
significant, then the model confirms the existence of both local maxima 
(upward and then downward change) and local minima (downward and 
then upward change) in the polynomial (Fig. 3a). After that, the model is 
fitted with a linear model, and if the linear coefficient is significant, the 
time series has a cubic trend; otherwise, it has a concealed (cubic) trend. 
If the fit parameters are not significant or if PolyTrend fails to detect 
both the local maxima and minima, a lower-order polynomial is 
considered (i.e., the quadratic model→. In the next step, the significance 
of the quadratic coefficient is estimated, and PolyTrend again assesses 
whether the model coefficients are significant and whether the model 
has captured the local maxima or minima points. If this model can 
capture the maxima or minima and has a statistically significant linear 
trend, then it is categorized as a quadratic trend; otherwise, if the linear 
trend is not statistically significant, it follows the concealed (quadratic) 
trend type. Finally, if both high-order polynomial criteria are not met, 
but the regression coefficient is significant (that is, it fits the linear 
model) it is classified as a linear trend; otherwise, it is classified as a no- 
trend. On a related note, if a large linear trend is present on top of a 
quadratic or cubic trend, the algorithm detects the linear trend instead 
of quadratic or cubic (see Fig. S1 in Supplementary Materials). In this 
study, we will present slope results from this analysis which will 
consistently show the linear slope value ↑a1→ and the slope direction, 
which can be either increasing (↓1) or decreasing (-1). 

2.3. Detecting the locations of discontinuities 

Identifying significant shifts or changes in the time series of inter-
mittency signatures is crucial to understanding the behavior of stream 
drying characteristics. These shifts can encompass transitions from wet 
to dry conditions, affecting the timing, duration, and rate of low-flow or 
no-flow events. We are not aware of past studies characterizing break-
points for intermittency signatures of streamflow. A few studies have 
investigated this problem from the context of low-flow. For example, 
Raczy!nski and Dyer (2022) applied breakpoint analysis for low-flow 
identification using the Fisher-Jenks algorithm, which identifies one 
breakpoint in a time series. For non-perennial streams, this is a limita-
tion since these streams are characterized by periodic shifts between wet 
and dry states. In this study, we use the High Order Polynomial Seg-
menter (HOPS) algorithm (Duan et al., 2021), which overcomes the 
abovementioned issue and can detect multiple discontinuities in time 
series data. HOPS simplifies linearity and nonlinearity in the trend 
components by segmentation and curve fitting (Fig. 3b). Thus, sudden 
structural shifts can be identified by the location of the discontinuities. 

The algorithm uses l0-penalized least-square regression (Duan et al., 
2019; Duan et al., 2021), where breakpoint analysis follows the seg-
mentation and curve fitting, as per Eq. (1). This equation can be viewed 
as a least-square regression penalized by a l0 norm, whose value is 
influenced by the penalty (λ) of each piece (non-negative scalar) and 
segmentation (K), where K-1 is defined by the number of discontinuities. 
The HOPS algorithm uses dynamic programming to find the segmenta-
tion pattern (Bellman, 1961; Jackson et al., 2005), pruning strategy 
(Killick et al., 2012), and matrix factorization to accelerate the execution 
speed. 

The polynomial segmentation is expressed as: 

min
T

)
[K

k↔1
ε↑vk↗1 ↓ 1ω vk→↓ λK

]
(1) 

Here T is the segmentation pattern. A larger penalty will identify 
fewer segmentations/breakpoints, and a smaller penalty will allow more 
segmentation. We selected the penalty value of 10,000 in our study, 
which set the maximum limit of segmentations to six (i.e., five break-
points) across all basins. The penalty value was chosen based on the time 
series length since we are interested in understanding the significant 
change patterns in the data. ε↑vk↗1 ↓1ω vk→ is the least-squares fitting 
error at the k-th segmentation, which fits error from the data point vk↗1 

to vk with the selected P-th order polynomial (e.g., 1: linear, 2: 
quadratic, 3: cubic, etc.) based on the process outlined in Section 2.2. 

After quantifying the number and location of discontinuities, we also 
calculated two more metrics to provide additional information on 
temporal patterns in changes to the intermittency signatures: (1) most 
recent discontinuity occurrence, which provided information on how 
recently (which year) the last discontinuity was identified; and (2) 
temporal proximity of the three most recent discontinuities, calculated as the 
average of the distances of the three most recent discontinuity events 
from the end of the data record (i.e., 2017 in our case). 

3. Results 

3.1. Nonlinear changes in intermittency signatures across all ecoregions 

Overall, our findings indicate that significant trends in no-flow 
duration signatures are common (39 %) across our study gages; however, 
significant trends are less common for the dry-down duration (17 %) and 
no-flow timing (16 %) signatures. Of those gages with significant trends, 
we find that nonlinear changes are widespread across our study sites: 
over half of those gages are best described by a nonlinear functional 
form for each of the three intermittency signatures (Fig. 4). The 
nonlinear trend proportion varies among intermittency signatures and 
ecoregions, with 71 % of the significant trends in annual no-flow duration 

Table 1 
Functions that are applied to describe the trend in the signatures.  

Functions Mathematical Expressions Parameters 
Linear Y ↔ a1x ↓ a0 a1ωa0 

Quadratic Y ↔ a2x2 ↓ a1x ↓ a0 a2ωa1ω a0 

Cubic Y ↔ a3x3 ↓ a2x2 ↓ a1x ↓ a0 a3ωa2ω a1ωa0  
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being nonlinear in the Mediterranean California ecoregion. In compar-
ison, 60 % of the trends on the day of first no-flow occurrence in the 
Northern Great Plains are nonlinear, and 68 % of the trends in days from 
peak to no-flow in Mediterranean California are nonlinear. 

Among the nonlinear trend types, the cubic and concealed cubic 
trends dominate the no-flow duration signature, while two other signa-
tures (i.e., day of first no-flow and days from peak to no-flow) are domi-
nated by the concealed quadratic and concealed cubic trends, 
respectively (Fig. 4). Note that the patterns of trend (positive or nega-
tive) in the intermittency signatures found in Zipper et al. (2021) 
generally support our results from linear trend analysis, suggesting that 
the large-scale patterns are robust. Some variations were evident, pri-
marily attributable to the difference in the methods used (Mann-Kendall 
vs PolyTrend). 

Regardless of whether the trends are linear or not, nearly all reveal 
drier conditions, with a few notable exceptions. The annual no-flow days 
(duration) signature shows more prolonged drying in the Western 
Desert, Mediterranean California, Western Mountain, and South Great 
Plains regions (Fig. 5a). In contrast, the Northern Great Plains region 
shows a shorter no-flow pattern at all gage stations. Indeed, the day of 
first no-flow occurrence (timing) occurs earlier across all regions except 
the Northern Great Plains, consistent with widespread drying conditions 
(Fig. 5b). Finally, the number of days from peak to no-flow (dry-down rate) 
shows a slower drying rate in the Northern Great Plains and Eastern 

Forests regions and a faster drying rate in the other regions, although 
there are some individual exceptions (Fig. 5c). 

3.2. Evaluation of trend direction 

Nonlinear drying trends were as common or more common than 
linear drying trends across all regions and signatures. Table 2 summa-
rizes the trends (increasing or decreasing) for the linear and nonlinear 
polynomials for all three intermittency signatures. Comparing linear and 
nonlinear trends for the annual no-flow days signature reveals that 
assessing only linear trends may underestimate the number of sites that 
are experiencing both longer and shorter dry conditions (Table 2). For 
example, only the Western Deserts and Western Mountains ecoregions 
have more sites that exhibit a linear drying trend than those that exhibit 
a nonlinear drying trend. Similarly, only the North Great Plains region 
exhibits more linear than nonlinear wetting trends. For the regions with 
more nonlinear trends, the differences range from a 4 % (Eastern Forests 
drying trends) to a 16 % increase (Mediterranean California wetting 
trends) in the number of gages with nonlinear trends relative to linear 
trends. 

The second intermittency signature (day of first no-flow occurrence) 
shows a significant nonlinear trend that follows the earlier and delayed 
drying pattern. Only the Eastern Forests, Mediterranean California, and 
Western Mountains region have sites with more linear earlier drying 

Fig. 2. Flowchart of the PolyTrend classification (). 
adapted from Jamali et al., 2014 

Fig. 3. Time series of the number of days from peak to no-flow intermittency signature (red circles) at an example site in New Mexico (USGS station ID: 09386900) 
showing (a) a nonlinear (cubic) trend and (b) the identification of one discontinuity based on the HOPS algorithm. The best-fit segments are blue for the cubic 
polynomial fit, and discontinuities are shown with a black line. Other examples are illustrated in Fig. S2. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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trends than a nonlinear earlier no-flow trend. The North Great Plains 
region exhibits no differences in later drying trends. For the regions with 
more nonlinear trends, the differences range from a 1 % (South Great 
Plains later drying trends) to a 10 % increase (Western Deserts earlier 
drying trends) in the number of gages with nonlinear trends relative to 
linear trends. 

The third intermittency signature (days from peak to no-flow) also 
reveals that nonlinear trends are widespread, particularly for sites 
trending towards a faster dry-down rate (i.e., a decreasing trend). For 
decreasing trends, all ecoregions in CONUS have a greater proportion of 
sites that exhibit nonlinear trends than linear trends, with the largest 
difference (-10 %) in the Western Deserts ecoregion. A few sites exhibit 
slower dry-down; among those, only the South Great Plains and Medi-
terranean California regions have more sites with nonlinear increasing 
trends, while other ecoregions have a slightly greater proportion of 
linear trends than nonlinear trends (from 1 % to 4 %). Overall, no-flow 
days, no-flow timing, and dry-down rate all have more gages with a 
nonlinear trend pattern than linear (37 %, 17 %, and 18 % more, 
respectively). 

3.3. Spatial patterns of trends 

Trends in each intermittency signature vary among locations in 
CONUS (Fig. 6). In particular, there are differences in trend classifica-
tion (left column), trend direction (center column), and magnitude of 
each trend as measured by the slope (right column). Gages throughout 
CONUS demonstrate changes in no-flow duration (Fig. 6a–c). Linear and 
concealed trends are slightly more common in the southern US, where 
they are the dominant significant trends. There are fewer significant 
trends in shorter no-flow duration than in longer no-flow duration 
(Fig. 6b). 

The largest magnitudes of change (i.e., steepest slopes) for the no- 
flow duration signature were detected in the Eastern Forests region 
with an increasing magnitude of 0.36 days/year with a median 
increasing magnitude of 0.01 days/year. The lowest negative magnitude 
was seen in the Western Mountains at 0.28 days/year with a median 
magnitude of 0.04 days/year (Fig. 6 and Fig. S3). More than 55 % or 
more streamflow stations are drying in each ecoregion for longer each 

year, except in the North Great Plains where 91 % (33 stations) of sta-
tions in the North Great Plains exhibited decreasing and negative trends. 
Similarly, ten stations in this region exhibit later no-flow timing. 
Western Mountains had the largest range of no-flow timing trends, with 
the highest increasing (0.24 days/year) and decreasing (0.38 days/year) 
trends for no-flow timing, and a median trend of 0.03 days/year. For 
dry-down rate signature, 27 stations of the South Great Plains region (of 
a total of 53 stations) showed an increasing magnitude of change, and 
the highest slope value was 0.24 days/year. On the other hand, the 
Mediterranean California region showed the lowest decreasing magni-
tude of change (0.09 days/year) within the 31 significant trend stations. 

Fig. S3 shows the distribution of trend slopes for each signature and 
ecoregion. A positive slope suggests an increase in the signature over 
time, while a negative slope indicates a decrease. For no-flow duration, 
apart from the North Great Plains region, the median value for all re-
gions was positive, indicating increasing no-flow duration through time. 
Mediterranean California showed a positive slope for no-flow timing, 
indicating later drying within the year, while other regions showed a 
negative slope, indicating earlier drying. For dry-down duration, the 
strongest positive slopes were in the Mediterranean California and 
Western Desert regions, indicating a longer period of time from peaks to 
no-flow conditions. There was also a variety of distributions across the 
signatures and ecoregions, with the widest distributions for no-flow 
duration in the Eastern Forests and Western Mountains; for no-flow 
timing in the South Great Plains; and for dry-down rate in Mediterra-
nean California. All signatures and ecoregions, however, have both 
positive and negative trends, indicating that stream intermittency is not 
changing homogeneously in these ecoregions, and there is substantial 
local variability in both the direction and magnitude of change. 

The day of first no-flow occurrence shows that most stations with later 
no-flow timing trends are in the northern and eastern US. In contrast, the 
southern and western US trend towards drying stream patterns, though 
most (71 %) streams exhibit no trend at all. Our analysis of the days from 
peak to no-flow signature exhibits a similar pattern, with a significant 
trend in only 30 % of gages and even less spatial clustering in sites 
exhibiting longer or shorter no-flow timing trends. 

Fig. 4. Number of statistically significant and non-significant trends by ecoregion (a-c). All significant trends are then categorized into linear and nonlinear trend 
patterns (d-f). 
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3.4. Spatial patterns of trend discontinuities 

Our breakpoint analysis shows variability in the timing of disconti-
nuities in the different intermittency signature trends of stream gages 
within the 38-year time series (Fig. 7). Discontinuities are most common 
in the annual no-flow duration signature (51 % of gages) and less common 
for the no-flow timing (26 % of gages) and dry-down duration (19 % gages) 
signatures. In general, discontinuities were less common for all inter-
mittency signatures during the first half of the record (1980–1998) and 
more frequent during the study period’s second half (1999–2017). From 
1999 to 2017, discontinuities in the Western Mountains and Mediter-
ranean California ecoregions increased by one or two for the no-flow 
duration and dry-down rate signatures (Fig. 7 and Fig. S4). On the 
other hand, discontinuities for no-flow timing remained relatively stable 
between the two periods. Only 26 gage station discontinuities increased 
while 73 stations decreased, and 51 station discontinuities remained the 
same on those time differences. 

Clear spatial patterns exist in the timing of changes in trends 
throughout CONUS. For example, the most recent discontinuity occur-
rence, showing how recently a discontinuity occurred for a given inter-
mittency signature at each gage, shows that changes have occurred more 
recently in the southern US than in the northern US, especially for the 
annual no-flow duration metric (Fig. 8). That same pattern is not clearly 
evident for the other two intermittency signatures. The results show that 
for the annual no-flow duration, 29 % of streams had significant 

discontinuities between 2008 and 2015 (Fig. 8). During that time, only 
16 % of streams showed discontinuities for the no-flow timing and 13 % 
for the dry-down rate. 

The average temporal proximity of the three most recent discontinuities 
reveals whether shifts in intermittency trends have been clustered 
recently or have occurred throughout the record. For the no-flow dura-
tion, only about nine gage stations show tightly clustered discontinuities 
(average temporal distance), while 119 gage stations have an average 
temporal distance between 6 and 15 years. Likewise, the average tem-
poral distance is less than five years for only eight stations for the no-flow 
timing signature. In contrast, the dry-down rate discontinuities are most 
common in the most recent five years (Fig. 8). Not only did no-flow 
duration exhibit discontinuities early during the period of record in the 
Northern Great Plains (top left Fig. 8), but its average temporal distance 
was also high, while the Southern Great Plains was predominantly more 
recent with a range of average temporal distance. 

4. Discussion 

4.1. Implications for water quality and stream ecosystems 

This study explored the spatial patterns and functional forms of non- 
perennial streamflow change throughout CONUS and found that 
nonlinear changes in streamflow are more common in non-perennial 
streams than linear change. We observed that more than half of the 
significant no-flow duration signature trends were nonlinear over the 
last four decades, primarily increasing quadratically. Nonlinear drying 
trends were more prevalent than linear ones in most ecoregions, except 
the Western Deserts and Western Mountains, while nonlinear wetting 
trends dominated, except in the Northern Great Plains. These nonlinear 
changes in streamflow may have significant consequences on water 
quality by reducing dilution capacity (Binkley and Brown, 1993), 
altering stream morphology by sedimentation (Deemy and Rasmussen, 
2017), and changing microbial communities through changes in habitat 
and resource availability (Boulton and Lake, 2008). Similarly, nonlinear 
changes in stream intermittency can significantly affect stream ecosys-
tems and associated ecosystem services, for example, by triggering shifts 
in groundwater recharge dynamics (Zipper et al., 2022) or aquatic 
ecosystem composition (Perkin et al., 2017). 

The no-flow duration trends toward shorter no-flow duration drying 
in the Northern Great Plains and longer drying elsewhere, consistent 
with previous regional drought observations (Hoerling et al., 2014). A 
longer dry period in a stream can have cascading effects on the sur-
rounding ecosystem, including land use, vegetation, and human 
migration (Shanafield et al., 2021). For instance, an extended period of 
no-flow in the stream can result in diminished habitat availability for 
aquatic species, potentially leading to food chain disruption, and 
affecting the ecosystem services that local populations derive from these 
streams (Stubbington et al., 2020). Additionally, where surface water 
supplies become less common, irrigation from streamflow is less reli-
able, potentially leading to a reduction in irrigated agriculture in the 
surrounding area. Furthermore, depending upon conditions during the 
drying period (e.g., shade and brief rainfall events that change moisture 
content, but do not lead to full rewetting), microbial community 
response can strongly affect water quality. For example, during the 
summer months of 2018, longer drying duration led to increasing CO2 
fluxes to the atmosphere in a non-perennial stream (Schreckinger et al., 
2021) due to drastic changes in microbial community and CO2 fluxes 
that started with drying durations as short as 10 days, but changed 
further when drying extended past 30 days. 

Nonlinear trends for the dry-down rate signature were somewhat 
common in all ecoregions except the Western Mountains and the 
Northern Great Plains. Especially in the Western Deserts and Mediter-
ranean California, we observed frequent cubic trend patterns and 
shorter dry-down rates. Both regions also show a decreasing disconti-
nuity pattern. However, discontinuity variability showed a drastic 

Fig. 5. Direction of trends for all statistically significant trends in each ecor-
egion (see Fig. 4). Trend directions indicate (a) whether the no-flow duration is 
getting longer or shorter, (b) if the first day of no-flow is occurring earlier or 
later, and (c) whether the peak-to-no-flow period is getting longer or shorter, 
revealing a slower or faster dry-down rate, respectively. The bars and vertical 
lines represent the mean and 95% confidence interval. 

K.K. Kar et al.                                                                                                                                                                                                                                   



Journal of Hydrology 635 (2024) 131131

7

change after 2000 in the Southern Great Plains (e.g., Texas), with 11 % 
of gages experiencing more rapid dry-down (Fig. 6(h)), potentially 
caused by more intense precipitation (Trenberth, 2005). Shorter dry- 
down rates potentially indicate shorter flushing times after a high volume 
of precipitation. Decreased precipitation inputs can cause declining 
connectivity between the watershed landscape and the stream channels, 
decreasing streamflow permanence (Ward et al., 2020). Therefore, 

enhancing our understanding of changing dry-down rates can provide 
valuable insights into various hydrological processes in a catchment. For 
example, during a dry season, a stream like Rio Grande (USGS station ID: 
08332010) may be completely dry, but a short burst of intense rainfall 
could trigger a flash flood that interrupts the dry period. Predicting how 
long this rewetting persists requires understanding both changes in 
precipitation intensity and dry-down rates, and the nonlinear shifts in 

Table 2 
For each intermittency signature, a summary of the increasing and decreasing trends for each ecoregion and the percentage of gages (%) categorized as linear, 
nonlinear, no-trend, as well as the impact of non-linear trend detection (Δ ↔ linear – nonlinear). Gray shading indicates where nonlinear trends occur more often than 
linear trends. The "total" row for each signature indicates the overall trend change for all regions, collectively.  

Signature Ecological zone Increasing trend Δ 
(%) 

Decreasing trend Δ 
(%) 

No-trend 
(%) Linear 

(%) 
Nonlinear 
(%) 

Linear 
(%) 

Nonlinear 
(%) 

(a) Annual no-flow days Eastern Forests 10 14 ↗4 5 15 ↗10 56 
Mediterranean California 21 36 ↗15 1 17 ↗16 25 
North Great Plains 0 5 ↗5 29 23 6 43 
South Great Plains 17 23 ↗6 4 13 ↗9 43 
Western Deserts 33 30 1 0 13 ↗13 24 
Western Mountains 22 20 2 3 14 ↗11 41 
Total 16 21 ¡5 6 16 ¡10 41 

(b) Day of first no-flow occurrence Eastern Forests 3 5 ↗2 6 5 1 81 
Mediterranean California 1 9 ↗8 16 13 3 61 
North Great Plains 9 9 0 2 7 ↗5 73 
South Great Plains 3 4 ↗1 9 11 ↗2 73 
Western Deserts 5 8 ↗3 10 20 ↗10 57 
Western Mountains 2 6 ↗4 14 11 3 67 
Total 4 6 ¡2 9 10 ¡1 71 

(c) Days from peak to no-flow Eastern Forests 8 8 0 4 10 ↗6 70 
Mediterranean California 5 14 ↗9 7 10 ↗3 64 
North Great Plains 5 4 1 4 5 ↗1 82 
South Great Plains 6 9 ↗3 8 11 ↗3 66 
Western Deserts 8 5 3 5 15 ↗10 67 
Western Mountains 6 2 4 9 11 ↗2 72 
Total 6 7 ¡1 7 10 ¡3 70  

Fig. 6. Trend type, trend direction, and trend slope (magnitude) at (a-c) for annual no-flow days (no-flow duration), (d-f) for days of first no-flow occurrence (no- 
flow timing), and (g-i) for days from peak to no-flow (dry-down rate) signature. 
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each. 
The widespread nonlinear stream drying dynamics we observe may 

challenge present and future water management efforts. Nonlinear 
stream responses to stressors such as climate change or water with-
drawals could, for instance, cause hard-to-reverse state shifts (Zipper 
et al., 2022) with potentially devastating effects on ecological 

communities (Rosenfeld, 2017; Perkin et al., 2019). As water permitting 
decisions are often carried out by agencies with limited resources 
(Lapides et al., 2022), addressing nonlinearities in management plans 
will require developing clear relationships between management ac-
tions, streamflow change, and ecosystem services of interest. Further 
work characterizing the drivers of nonlinear change in stream drying 

Fig. 7. The total number of discontinuities (left column) and change in the number of discontinuities between the two periods (right column) for the annual no-flow 
duration (no-flow duration), days of first no-flow occurrence (no-flow timing), and days from peak to no-flow (dry-down rate). 

Fig. 8. Recent occurrences of the discontinuities (years) and average temporal distance of the last three events (years) for the no-flow duration, no-flow timing, and 
dry-down rate. 
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will be particularly valuable for helping guide these efforts. 

4.2. Nonlinear changes in stream drying signature can impact stream 
connectivity 

Nonlinear trends are common, comprising over half of the significant 
trends within the CONUS database of intermittent streams. Further-
more, most of these trends are towards drying conditions, with the 
exception of the Northern Great Plains ecoregion. Not only is this 
ecoregion unusual in trending towards wetter conditions, but it also 
stands out because its nonlinear behavior occurred relatively early in the 
period of record over the last four decades. This region may be experi-
encing wetting conditions due to changing winter freeze-ups, which may 
have been more sensitive to climate warming than other regions 
(Archambault et al., 2023). In contrast, nearly all other regions are 
drying with early no-flow timing, and past work has found that – at least 
at the CONUS scale - spatial and temporal variability in stream inter-
mittency is strongly influenced by aridity, or the balance between pre-
cipitation and potential evapotranspiration (Zipper et al., 2021; 
Hammond et al., 2021; example in Fig. S5). 

However, the balance between these drivers may be distinct in each 
region, potentially leading to a variety of dominant nonlinear functional 
forms of drying. Concealed quadratic and cubic patterns, which show 
substantial variation over short periods without a long-term linear 
trend, comprise approximately a third or more of all significant trends, 
suggesting that short-term variations should not be ignored when 
considering shifting patterns in intermittency. Hydrological processes 
are multiscale, where variation in one scale (e.g., short term) can 
manifest their impact on another scale (e.g., long term). Therefore, it is 
vital to consider short-term variations from the water management 
standpoint. For example, Fovet et al. (2021) and McDonough et al. 
(2011) addressed the short-term fluctuations in water distribution, 
which significantly change stream velocity and flow paths, particularly 
in intermittent streams. These rapid changes can trigger a multiscale 
interaction, e.g., mobilization of stream bed particles and biofilms that 
increase the turbidity, color, and odor in the water as short-term vari-
ation. Over time, mobilized stream bed particles can be transported 
downstream and contribute to a sandbar formation as a part of long- 
term low water variation that can alter the intermittent flow and 
create barriers to fish migration. 

4.3. Future stream connectivity may be difficult to predict, especially 
where controls on dry-down rate differ from other drying signatures 

Nonlinear trends in all of these drying signatures suggest that con-
nectivity changes may also be less predictable than previously thought. 
Because relatively small changes in the timing, duration, and rate of 
drying can drastically affect connectivity in intermittent stream eco-
systems (Malish et al., 2023), nonlinear changes in drying that were 
previously thought to be linear may lead to greater uncertainty in con-
nectivity changes. Furthermore, the abundance of recent discontinuities 
or breakpoints in trends — regardless of whether they are linear or 
nonlinear — suggests that past behavior may be a particularly poor 
predictor of future drying. Because of these discontinuities in the time 
series, predictions of drying and connectivity across CONUS must 
consider nonlinear patterns and threshold behavior. 

Although most sites outside the Northern Great Plains ecoregion 
exhibit earlier no-flow timing and longer duration of drying, all ecor-
egions and signatures have a mixture of positive and negative trends, 
and the stream drying rate has less clear regional patterns. Instead, some 
sites are drying faster, whereas others are drying slower, suggesting 
diverging streamflow recession dynamics across sites. This same vari-
ability was observed in past linear analyses (Zipper et al., 2021), and 
although some sites exhibited nonlinear trends, many sites were simply 
too variable to exhibit a clear trend. Nonetheless, quite a few sites, 
especially in the Southern Great Plains, have experienced recent 

discontinuities in trends, suggesting past dry-down rates would be poor 
predictors of future recession behavior. These shifts in dry-down rates 
can occur at a site when different portions of the landscape contribute 
differently during the streamflow recession (e.g., Shaw et al., 2013). 
Since past work has found that linear trends in dry-down rate may be 
more responsive to land cover than no-flow duration or timing (Zipper 
et al., 2021), it is possible that the nonlinear changes in dry-down rate 
that we observe may also be more closely linked to changes in land or 
water use than climate or physiographic factors. Given that the rate of 
stream drying is hypothesized to have a major effect on ecosystem 
function (Allen et al., 2020) and hyporheic dynamics (DelVecchia et al., 
2022), untangling potential drivers of nonlinear change in drying dy-
namics is a particularly important area for future characterization of 
stream drying regimes. 

5. Conclusions 

Most streamflow trend analyses have focused either on perennial 
flow trends or have detected only linear trend direction (increase or 
decrease) and slope of non-perennial drying signatures. These ap-
proaches implicitly assume that streamflow changes linearly and 
monotonically, even at the lowest of flows and during the transition to 
dry conditions, which may not always be valid. We tested for nonlinear 
trends in streamflow-based intermittency signatures, using the Poly-
Trend algorithm to detect both linear and nonlinear trends in the 
duration, timing, and rate of stream drying across CONUS. Additionally, 
we identified discontinuities in those signatures through breakpoint 
analysis. 

We found that nonlinear trends in intermittency signatures were 
common (50 % or more of the significant trends) with varying degrees of 
nonlinearity depending on the intermittency signature and ecoregion. 
Regionally, the dominant nonlinear changes occurred in Mediterranean 
California for annual no-flow days, Northern Great Plains for days of first 
no-flow occurrence, and Mediterranean California for days from peak to 
no-flow signature. All signatures suggested drying is common at many 
sites: annual no-flow days lengthened and days from peak to no-flow 
shortened while the day of first no-flow occurrence arrived earlier each 
year. 

More discontinuities were detected in the second half of the time 
series than earlier in the record, especially in the Southern Great Plains, 
Western Mountains, and Mediterranean California. The streams’ dry- 
down rate (peak to no-flow period) has increased in the southern US 
in the last two decades (1999–2017). Additionally, the study reveals that 
discontinuities in no-flow duration have reduced in the second half of 
the time series and Mediterranean California and North Great Plains. 
The no-flow timing shows that the discontinuities are reduced in the 
South Great Plains, while the dry-down rate shows a higher level of 
discontinuity in the South Great Plains. 

Overall, our results indicate that it is vital to consider nonlinear 
trends and abrupt changes in streamflow drying signatures. In partic-
ular, it is essential to recognize that nonlinear trends in drying charac-
teristics may mean that streams dry more rapidly than otherwise 
predicted, emphasizing the need for long-term data collection and 
process-based studies to understand how non-perennial streams may 
respond to climate and land-use changes. 
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