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Quantifying the use and potential benefits of 
artificial intelligence in scientific research

Jian Gao    1,2,3,4 & Dashun Wang    1,2,3,5 

The rapid advancement of artificial intelligence (AI) is poised to 
reshape almost every line of work. Despite enormous efforts devoted to 
understanding AI’s economic impacts, we lack a systematic understanding 
of the benefits to scientific research associated with the use of AI. Here we 
develop a measurement framework to estimate the direct use of AI and 
associated benefits in science. We find that the use and benefits of AI appear 
widespread throughout the sciences, growing especially rapidly since 2015. 
However, there is a substantial gap between AI education and its application 
in research, highlighting a misalignment between AI expertise supply and 
demand. Our analysis also reveals demographic disparities, with disciplines 
with higher proportions of women or Black scientists reaping fewer benefits 
from AI, potentially exacerbating existing inequalities in science.  
These findings have implications for the equity and sustainability of 
the research enterprise, especially as the integration of AI with science 
continues to deepen.

The rapid advances in artificial intelligence (AI) may lead to massive 
value creation and capture across many facets of human society1–5, cre-
ating a wealth of social and economic opportunities6–8, and just as many 
challenges9–17. While extensive efforts have been devoted to under-
standing the impact of AI on the labour market and the economy18–22, 
the impact of AI on the growing research enterprise remains unclear. 
Indeed, recent AI advances have shown promise to achieve and, in 
some cases, exceed expert-level performance across many economi-
cally valuable tasks23–30. As society prepares for the moment when AI 
may outperform or even replace human recruiters, bankers, doctors, 
lawyers, composers and drivers, an important question arises: what 
are the benefits associated with the use of AI in advancing scientific 
research across different disciplines and fields?

A better understanding of the extent of AI use in science and its 
potential benefits may not only help guide AI development, bridging 
AI innovations more closely with scientific research, but also hold 
implications for science and innovation policy. Understanding the links 
between AI use and scientific advances is both timely and important 
given AI’s recent remarkable success in advancing research frontiers 
across several fields31–44, from predicting the structure of proteins 

in biology45–47 to designing new drug candidates in medicine48–51, 
from discovering natural laws in physics52–54 to solving complicated 
equations and discovering new conjectures in mathematics55–57, from 
controlling nuclear fusion58 to predicting new material properties59–62, 
from designing taxation policy63 to suggesting democratic social 
mechanisms64, and many more65–70. These advances raise the possibility 
that as AI continues to improve in accuracy, robustness and reach71–76, 
it may bring meaningful benefits to science, propelling scientific pro-
gress across a range of research areas while substantially augmenting 
researchers’ innovation capabilities.

Yet, despite the rapid progress of AI and its broad applications in 
several domains, there is substantial scepticism about whether today’s 
AI is capable or substantial enough to advance scientific research in 
every discipline and field. Indeed, most current AI applications belong 
to the category of ‘narrow AI’77–79, which tackles specifically defined 
problems, and hence may not be suitable to fulfil the broad range of 
tasks that scientific research demands2,18,80. Further, to the extent that 
AI may provide automated solutions to an existing problem, science 
is about not only solving well-defined problems but also spotting 
new frontiers and generating novel hypotheses81. These views paint a 
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of papers is larger than 1 in 18 out of 19 disciplines; mean ratio = 1.816, 
standard error (s.e.) = 0.138 and 95% confidence interval (CI) = (1.547, 
2.086); Fig. 1e), and they also receive more citations from other disci-
plines compared with papers that do not mention AI n-grams (the ratio 
of AI over non-AI regarding the share of outside-field citations is larger 
than 1 in 11 out of 19 disciplines; mean ratio = 1.069, s.e. = 0.028 and 
95% CI = (1.015, 1.124); Fig. 1f; see Supplementary Note 2.4 for details). 
This citation premium of papers that mention AI n-grams appears to 
be stronger in disciplines with a lower propensity to use AI (two-sided 
Pearson’s correlation test for the negative relationship between the 
hit rate of papers that mention AI n-grams and the direct AI use score 
at the field level, Pearson’s r = –0.378, P < 0.001 and 95% CI = (–0.472, 
–0.275); two-sided Pearson’s correlation test for the negative relation-
ship between the outside-citation-ratio for papers that mention AI 
n-grams and the direct AI use score at the field level, Pearson’s r = –0.215, 
P < 0.001 and 95% CI = (–0.322, –0.102); see detailed correlation analy-
sis in Supplementary Note 2.4 and Supplementary Fig. 4). These results 
suggest that disciplines that seem distant from AI may see substantial 
benefits from using AI to advance their research.

The dynamic AI landscape also prompts us to explore changes 
in the direct use of AI in scientific research over time. Specifically, we 
calculate the direct AI use score using the ‘AI n-gram framework’ for 
each discipline between 2000 and 2019 (see Supplementary Fig. 3 
for the results for 1960–2019), extracting AI n-grams from the titles 
and abstracts of AI publications and calculating their frequency of 
occurrence in the publications in each discipline (see Methods and 
Supplementary Note 2 for details). We find that disciplines overall 
used more AI in their research over the past two decades (for example, 
the direct AI use score for computer science (CS) increased from 0.5% 
in 2000 to 1.3% in 2019; statistical test for the increasing trend, slope 
b = 0.00031, P < 0.001 and 95% CI = (0.00025, 0.00037); Fig. 1g, solid 
lines). This increase occurs not only in CS but also in a wide range of 
other disciplines (Fig. 1h), including, for example, physics, biology 
and economics. Moreover, this increase has not been linear; there has 
been a notably sharp increase in the use of AI since 2015 across many 
disciplines (Fig. 1g).

To better understand whether the recent rise in the direct use of AI 
on science is associated with changes in AI capabilities or field-specific 
shifts in research direction, we calculate an alternative measure for 
AI use scores by keeping AI capabilities fixed in 2015 and apply this 
alternative measure to each discipline and year between 2015 and 
2019 (see Supplementary Note 4.2). More specifically, we use (1) AI 
n-grams extracted from AI publications before 2015 without changing 
either their terms or their frequency for 2015–2019, and (2) AI n-grams 
extracted from publications in each discipline and year during the 
period 2015–2019 (see dashed lines in Fig. 1g). We find that the new 
scores deviate substantially from the original scores (for example, the 
original score for CS is 37% larger than the new score; discipline level 
statistics, mean = 22%, s.e. = 1.9% and 95% CI = (18%, 26%); see solid 
lines in Fig. 1g and Supplementary Fig. 7), which indicates that across 
disciplines, sciences benefit more from cutting-edge AI advances. 
Overall, these results suggest that new AI capabilities are associated 
with the recent, sharp increase in the use of AI across disciplines (see 
Supplementary Note 4 for results related to AI’s growing use in science).

Potential benefits associated with AI use
While explicit mentions of AI n-grams by publications signal the direct 
use of AI in research, AI may also be associated with other benefits in 
scientific research beyond these direct uses. In particular, the growing 
AI capabilities may help perform some core tasks that a research field 
demands. Here we build on the future of work literature, which suggests 
that AI capabilities and field tasks can be captured by verb–noun pairs 
(for example, ‘learn representation’)82–84, prompting us to develop an 
‘AI capability–field task framework’ to quantify the potential benefits 
associated with AI use in scientific research (Fig. 2a). We apply NLP 

more nuanced picture of AI’s applicability to advancing science, sug-
gesting that AI may be better suited to perform some research tasks 
than others2,10,82.

Building on the growing literature on the future of work83–87 and 
the science of science88–96, here we develop a quantitative framework 
for estimating the direct use of AI in science, as well as the potential 
benefits to science that are associated with the use of AI in scientific 
research (see Methods for details). Our primary dataset contains 74.6 
million publications from 1960 to 2019 from the Microsoft Academic 
Graph (MAG) dataset97, spanning 19 disciplines and 292 fields (see 
Supplementary Note 1.1 for details). We integrate this dataset with 7.1 
million patents granted between 1976 and 2019 by the US Patent and 
Trademark Office (USPTO) (Supplementary Note 1.2). We then follow 
previous studies to identify AI publications and AI patents using a 
keyword-based approach (see Supplementary Notes 2.1 and 3.1 for 
details)91,97,98, allowing us to measure AI use in scientific research and its 
potential associated benefits at two levels. First, we quantify the direct 
use of AI using an ‘AI n-gram framework’ (Fig. 1a), which estimates the 
relative frequency of the use of AI in a field (Supplementary Note 2.3). 
Specifically, we extract AI n-grams (bigrams and trigrams; for exam-
ple, ‘deep learning’ and ‘convolutional neural network’) from both the 
titles and abstracts of AI publications and calculate the frequency of 
their occurrences to approximate AI advances91,96. We then repeat this 
n-gram measurement for publications in each field and year, allow-
ing us to calculate the weighted frequency of AI n-grams appearing 
in a paper to approximate the direct use of AI in each field and year. 
Second, motivated by the future of work literature82–84, we use an ‘AI 
capability–field task framework’ (Fig. 2a) to measure the alignment 
between AI capabilities and the tasks of a field (see Supplementary 
Note 3.3). In particular, we infer the capabilities of AI (that is, what AI 
can do) by extracting verb–noun pairs (for example, ‘learn represen-
tation’) from the titles of AI publications and AI patents using natural 
language processing (NLP) techniques and calculating their relative 
frequency99–101. Here, following previous work82, we rely only on titles 
as they have a higher signal-to-noise ratio than abstracts. We then 
estimate the tasks of each field (that is, what a field does) by calculating 
the relative frequency of verb–noun pairs extracted from the titles of 
publications in each field and year. Calculating the overlap between 
the prevalent tasks in a field and the inferred AI capabilities allows us 
to approximate the potential benefits associated with AI use in each 
field and year (see Methods for more details).

Results
Widespread use of AI across the sciences
Overall, AI research presents a dynamically evolving landscape 
(Fig. 1b,c). While the frequency of certain dominant AI n-grams in 2019 
(for example, ‘machine learning’, ‘convolutional neural network’, ‘deep 
learning’, ‘deep neural network’ and ‘artificial intelligence’) shows an 
overall upward trend (Fig. 1b), some AI n-grams emerged only recently 
(for example, ‘generative adversarial network’), some rose to promi-
nence after a long period of dormancy (for example, ‘deep learning’), 
and some were popular a decade ago but have become less prevalent 
in recent years (for example, ‘support vector machine’; Fig. 1c). Amidst 
this rapidly evolving AI research landscape, there has been a precipitous 
rise in the use of AI by many disciplines, as proxied by the mention of 
AI n-grams in the titles and abstracts of publications (Fig. 1d; see Sup-
plementary Fig. 2 for details).

This increase in the use of AI by different disciplines raises an inter-
esting question: how do the citations of papers that use AI compare to 
those of other papers in the same field? To answer this question, we 
define hit papers as those in the top 5% by total citations in the same 
field and year and calculate the likelihood that a paper is a hit paper. We 
find that for a majority of disciplines, papers that mention AI n-grams 
tend to be associated with a higher probability of being hit papers 
within their disciplines (the ratio of AI over non-AI regarding the hit rate 
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algorithms to extract verb–noun pairs from the titles of AI papers and AI 
patents to estimate AI capabilities99–101 (Fig. 2b; see Methods for details 
and Supplementary Note 8.3 for validations of the approach). Applied 
systematically to all disciplines and fields, this framework allows us to 
estimate which subfields within a discipline may benefit most from AI. 
For instance, we find that the subfield of biology that features large 
potential AI benefits is ‘biological system’ (Fig. 2c, curve in red), as 
many of its basic tasks appear aligned with inferred AI capabilities (for 
example, ‘extract feature’, ‘detect object’ and ‘improve prediction’). 
Interestingly, the ‘biological system’ field, ranked seventh among all 
non-CS fields by the potential AI benefit score (Fig. 2d), also happens 
to be the field for the AlphaFold paper45, which Science called the 2021 
Breakthrough of the Year102.

While there are considerable differences in the direct use of AI 
across scientific disciplines (Fig. 1h), the differences in the potential AI 
benefit scores are relatively small across disciplines (Supplementary 
Fig. 7), suggesting the potentially widespread applicability of AI in sci-
ence. We further study within-discipline heterogeneity by examining 
the percentiles of direct AI use scores and potential AI benefit scores 
for each discipline’s subfields (see Supplementary Note 4.1 for details). 
We find that the two percentiles in each field are highly correlated with 
each other (Fig. 2e; two-sided Pearson’s correlation test, Pearson’s 
r = 0.891, P < 0.001 and 95% CI = (0.865, 0.913)). Moreover, the top three 
subfields within each discipline according to the two percentiles are 
entirely overlapped in almost half of the 19 disciplines (Fig. 2f), indicat-
ing that the two measurements are consistent in identifying fields most 
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Fig. 1 | Measuring the direct use of AI in scientific research. a, The ‘AI n-gram 
framework’ for estimating the direct use of AI. First, AI-related publications are 
identified by the MAG five AI fields. Then, n-grams are extracted from the titles 
and abstracts of AI publications. Next, the frequency of AI n-grams per paper is 
calculated after normalization. Similarly, n-grams are extracted for publications 
in each field, and the frequency of n-grams per paper (n-gram p.p.) is calculated. 
Finally, a field’s direct AI use score for a year is calculated by the dot product of 
the frequency of AI n-grams cumulated up to the year and the field’s n-grams at 
the year. b, The frequency of ten AI n-grams in 2019 and the trend in use of these 
n-grams over the past two decades. c, Temporal changes in the rankings of the 
top 30 AI n-grams in 2019. AI n-grams are presented in rainbow colour order, 
according to their ranking in 2019. d, The frequency over the 2000–2019 period 
of the top five AI n-grams in biology and economics in 2019. e, The ratio of the 

hit rate of AI-using papers over non-AI-using papers. Here AI-using papers are 
identified as those that mention at least one AI n-gram, and the hit rate of papers 
(Hit) is defined as the likelihood that a paper is in the top 5% by total citations 
among papers in the same field and year. f, The ratio of the share of outside- 
field citations (SOC) for AI-using papers over that for non-AI-using papers.  
g, Temporal trends in the direct AI use scores of disciplines as shown by solid 
colour lines. The dashed colour line shows the score calculated using each 
discipline’s yearly n-grams and AI n-grams fixed in 2015. The percentage change 
comparing the two scores in 2019 is shown. Each plot uses its y-axis scale to 
illustrate the relative change best. h, The direct AI use scores of disciplines  
using the same y-axis scale. Coloured lines correspond to disciplines in g, and 
grey dotted lines represent other disciplines (see Supplementary Fig. 7 for 
detailed results).
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benefit from AI (see Supplementary Table 1 for the list of three subfields 
within each discipline that have the highest direct AI use score and the 
highest potential AI benefit score, respectively). Nevertheless, almost 
every discipline has some subfields with substantial AI use, which holds 
robust even for disciplines with low AI use overall, such as sociology 
and economics (Fig. 2g; see Supplementary Fig. 8 for the results for all 
disciplines). Taken together, these results suggest that the direct use of 
AI in research is pervasive across disciplines and fields, and its potential 
benefits to research may extend beyond its current uses in science.

Growing knowledge demands for AI
The rapidly expanding AI frontier and its increasing use in science may 
lead to growing demands for AI expertise from domain experts, raising 
the question of whether the current education and training on AI skills 
are commensurate with AI use. To answer this question, we analyse 4.2 
million university course syllabi from the Open Syllabus Project (OSP) 

database103 and estimate the level of AI education in each discipline (see 
Methods and Supplementary Note 5 for details). We find that, exclud-
ing the top three computational disciplines (that is, CS, mathematics 
and engineering), the correlation between the AI education level in 
a discipline and the use of AI in the discipline decreases, as well as its 
significance (Fig. 3a,b; two-sided Pearson’s correlation test, Pearson’s 
r = 0.493, P = 0.074 and 95% CI = (–0.051, 0.811) for the direct AI use 
score and Pearson’s r = 0.263, P = 0.363 and 95% CI = (–0.310, 0.697) 
for the potential AI benefit score). The results suggest that the supply 
of AI talent and knowledge in most disciplines appears to be incom-
mensurate with the benefits that these disciplines may extract from 
AI capabilities, highlighting a substantial AI use–AI training gap. This 
result is robust under some alternative measures of AI education levels 
(Supplementary Fig. 10).

To meet the growing knowledge demands on AI, domain experts 
may rely on cross-discipline collaborations to access AI capabilities. 
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(error bands) is shown. f, A large overlap between the top three subfields for each 
discipline according to direct AI use score and potential AI benefit score. Most 
disciplines exhibit three overlapped subfields (see Supplementary Table 1 for 
details). g, The substantial heterogeneity of AI’s use and potential benefits within 
scientific disciplines. As illustrated by the legend on the left, each plot shows the 
percentiles of a discipline’s subfields, where the percentiles based on the direct 
AI use score are in the upper row and those based on the potential AI benefit score 
are in the lower row. Eight disciplines are presented for illustration; all other 
disciplines are shown in Supplementary Fig. 8.
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We analyse collaboration patterns for AI publications in domains other 
than CS that are co-authored by domain experts and/or computer sci-
entists (as a proxy for AI researchers; see Methods and Supplementary 
Notes 6.1 and 6.2 for detailed methods and alternative proxies for AI 
researchers). We find that, in aggregate, about 40% of AI publications 
are published by domain experts and about one-third are collaborative 
works (Fig. 3c). In disciplines where AI has more direct uses and poten-
tial benefits, we see a larger propensity for domain experts to collabo-
rate with computer scientists (Fig. 3d,e; two-sided Pearson’s correlation 
test, Pearson’s r = 0.841, P < 0.001 and 95% CI = (0.616, 0.939) for direct 
AI use; Pearson’s r = 0.802, P < 0.001 and 95% CI = (0.535, 0.923) for 
potential AI benefits), and the share of collaborative AI publications is 
increasing over time (for example, the share for engineering increased 
from 0.21 in 1990 to 0.44 in 2019; statistical test for the increasing trend, 
slope b = 0.0057, P < 0.001 and 95% CI = (0.0047, 0.0068); Fig. 3f; see 
Supplementary Fig. 12 for the results for other disciplines), suggest-
ing that domain experts’ reliance on AI expertise is growing. These 
results are robust when we use an alternative method of determining 
AI researchers (see Supplementary Note 6.3 for detailed methods and 
results). Taken together, these findings highlight the importance of 

teamwork and cross-domain collaborations amidst AI’s potentially 
increasing use and benefits for scientific research and the narrowing 
of individual domain expertise across the sciences104–106.

Demographic disparities
As the connection between AI and scientific research deepens, it is 
important to understand who benefits from AI, which has implica-
tions for the equity and sustainability of the research enterprise. Here 
we study the gender and racial/ethnic composition of each discipline 
and further examine potential differences in the distribution of AI use 
and benefits across demographic groups. Specifically, we leverage 
the de-identified Survey of Doctorate Recipients (SDR) data to solicit 
demographic information on US-trained doctoral scientists and engi-
neers by the discipline of doctorate, sex and race/ethnicity. We then 
crosswalk the SDR disciplines of doctorate to the disciplines in the MAG 
data to estimate the share of women scientists and underrepresented 
minorities (URM) scientists in each discipline (see Methods and Sup-
plementary Note 7 for details).

We find a negative correlation between the share of women sci-
entists within each discipline and its AI scores for both direct use 
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Fig. 3 | Misalignment between AI education and AI use and benefits, but 
growing knowledge demand for AI. a, The correlation between the direct AI 
use score and the AI education level that is estimated by the share of syllabus 
references to AI publications. Linear fits (centre lines) with 95% confidence 
intervals (error bands) are shown. The red line shows that the correlation loses 
significance when excluding the three disciplines with the largest AI use scores: 
CS, engineering and mathematics. b, The correlation between the potential 
AI benefit score and the AI education level. Linear fits (centre lines) with 95% 
confidence intervals are shown. c, The treemap chart shows the share of AI 
publications by four co-authorship types, where ‘domain & CS’ represents 
collaborative AI publications by domain experts and computer scientists, 
‘domain sole’ represents AI publications by domain experts only, ‘CS sole’ 
represents AI publications by computer scientists only, and ‘others’ represents 

AI publications that are neither by domain experts nor by computer scientists. 
Here only AI publications in disciplines other than CS with at least two authors are 
considered. d, The positive correlation between the direct AI use score and the 
share of collaborative (‘domain & CS’) AI publications in each discipline. Linear fit 
(centre line) with 95% confidence intervals (error bands) is shown. e, The positive 
correlation between the potential AI benefit score and the share of collaborative 
(‘domain & CS’) AI publications in each discipline. Linear fit (centre line) with 
95% confidence intervals (error bands) is shown. f, The share of collaborative 
AI publications (‘domain & CS’) in five disciplines across the period 1990–2019. 
Curves are smoothed by taking a 3-year moving average. Results for other 
disciplines are shown in Supplementary Fig. 12. All correlations were determined 
using a two-sided Pearson’s correlation test.
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(two-sided Pearson’s correlation test, Pearson’s r = –0.555, P = 0.032 
and 95% CI = (–0.831, –0.059); Fig. 4a) and potential benefits 
(two-sided Pearson’s correlation test, Pearson’s r = –0.593, P = 0.020 
and 95% CI = (–0.848, –0.116); Fig. 4b). Aggregating the AI scores of all 
disciplines by their gender composition (see Methods for details), we 
find that women scientists tend to be associated with a smaller score 
and thus less benefits from AI (Fig. 4c,d). Studying the racial and ethnic 
composition across disciplines, we find another negative relationship 
between the share of URM scientists in each discipline and its AI scores, 
a pattern that is again robust for both direct use (two-sided Pearson’s 
correlation test, Pearson’s r = –0.734, P = 0.002 and 95% CI = (–0.906, 
–0.355); Fig. 4e) and potential benefits (two-sided Pearson’s correla-
tion test, Pearson’s r = –0.711, P = 0.003 and 95% CI = (–0.897, –0.312); 
Fig. 4f). This pattern appears strong for Black scientists within the URM 
group, where the score of Black is 78% and 86% less than that of white 
for direct AI use and potential AI benefits, respectively (Fig. 4g,h). 
On average, women and URM researchers benefit less from AI. We 
further performed career-level analysis, looking at what happens 
when one starts to engage in AI research (see Supplementary Note 
9 for details). We find that while the average hit rate of a researcher’s 
papers tends to increase immediately after engaging in AI research, 
this citation premium is less concentrated among underrepresented 
groups, with women and URM researchers appearing to profit less 
from AI engagement compared with their counterparts. Together, 

these results suggest that while AI has the potential to bring benefits 
to all disciplines, the benefits may be distributed unequally across 
demographic groups. Hence, as the use of AI in science continues 
to grow, these unequal career effects may further amplify existing 
disparities in science107,108.

Discussion
In this study, we develop a measurement framework to estimate the 
direct use and potential benefits of AI across a range of scientific 
disciplines and research fields. We find that scientific disciplines are 
increasingly using AI, as proxied by the mention of AI-related terms in 
publication titles and abstracts, with especially sharp growth in recent 
years. Publications that use AI tend to see a citation premium, as they 
are more likely to be cited both within and outside their disciplines. 
While there is substantial heterogeneity in the direct use and poten-
tial benefits of AI across different disciplines, almost every discipline 
includes some subfields that see great benefits from AI. For example, 
the medicine discipline as a whole is not ranked among the highest in 
terms of AI benefits, but some of its subfields (for example, ‘nuclear 
medicine’, ‘optometry’ and ‘medical physics’) show substantial AI 
benefits (Supplementary Fig. 8). Overall, these results suggest that 
the benefits that AI may bring to scientific research are widespread 
across a range of disciplines and fields, potentially extending beyond 
the current uses of AI in science.
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Fig. 4 | Gender and racial disparities in the use and benefits of AI across 
disciplines. a, The negative correlation between the direct AI use score and the 
share of women scientists in each discipline. Linear fit (centre line) with 95% 
confidence intervals (error bands) is shown. b, The negative correlation between 
the potential AI benefit score and the share of women scientists in each discipline. 
Linear fit (centre line) with 95% confidence intervals (error bands) is shown. c, The 
average direct AI use scores for women and men scientists. The average score for 
men/women is calculated by weighting the direct AI use score of each discipline 
by the share of men/women in the discipline. d, The average potential AI benefit 
scores for women and men scientists. e, The negative correlation between the 
direct AI use score and the share of URM scientists. The URM category includes 

‘African American or Black’, ‘American Indian or Alaska Native’, ‘Hispanic or Latino’ 
and ‘Native Hawaiians or other Pacific Islanders’. Linear fit (centre line) with 95% 
confidence intervals (error bands) is shown. f, The negative correlation between 
the potential AI benefit score and the share of URM scientists. Linear fit (centre 
line) with 95% confidence intervals (error bands) is shown. g, The average direct 
AI use score for each racial and ethnic group. The average score for each group 
is calculated by weighting the direct AI use score of each discipline by its share 
of the particular racial and ethnic group in the discipline. The average score for 
each racial and ethnic group under the URM category is shown separately on the 
right. h, The average potential AI benefit score for each racial and ethnic group. All 
correlations were determined using a two-sided Pearson’s correlation test.
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A systematic understanding of the use and potential benefits of 
AI for scientific research may better inform science and education 
policy. Our research suggests that the use of AI in scientific disciplines 
has raced ahead across science, facilitated in part by cross-discipline 
collaborations, while the educational focus on AI to upskill future sci-
entists within each discipline has lagged. This misalignment between AI 
use and AI education (that is, the AI use–AI training gap) has important 
implications for best practices in preparing next-generation scientists 
to fully leverage AI advances. While these analyses are correlational 
by nature, they support the hypothesis that collaboration between 
domain experts and AI researchers may represent an important way 
to facilitate the use of AI across science. They also suggest a further 
benefit of increasing AI training across disciplines, which would likely 
help the disciplines to develop domain-specific AI expertise, allowing 
them to enjoy greater and timelier benefits from AI advances.

It is also important to recognize that as AI becomes increasingly 
capable of performing research tasks, it may have an unequal impact 
on the research workforce. There are long-standing concerns about 
demographic disparities in science109–111. Our results suggest that the 
groups that have been historically underrepresented in science are also 
the groups that may benefit less from AI in scientific research. These 
results are somewhat expected, given that gender disparities tend to 
correlate with technical fields, which tend to be dominated by men112,113. 
Nevertheless, our analysis highlights that as AI plays more important 
roles in accelerating science, it may exacerbate existing disparities in 
science, with implications for building a diverse, equitable and inclusive 
research workforce. It thus underscores the importance of expanding the 
AI-related professoriate by broadening participation and opportunities in 
AI research and increasing funding and educational programmes targeted 
towards women and underrepresented groups in AI-related fields114.

While this study takes an initial step towards quantifying the use 
and potential benefits of AI for scientific research, it has several limita-
tions that are important to consider when interpreting the results. First, 
our analyses build on the future of work literature and rely on publica-
tion and patent data. Given its multidimensional nature, however, the 
potential benefits of AI for science may go beyond the advantages that 
can be estimated from such datasets. These frameworks, in fact, may 
underestimate the full range of benefits that AI may bring to scientific 
research. AI may, for example, optimize the research process by power-
ing new tools and systems that improve the efficiency of doing science, 
including improving access to information, reducing the knowledge 
burden, guiding human intuition, automating routine research tasks 
and more115,116. Second, AI research evolves rapidly, suggesting the 
need for continuous monitoring and updates to the estimates of its 
benefits to science. As our datasets trace publications and patents to 
the end of 2019, they cannot capture newer developments, such as the 
recent rise of foundation models in AI research117–120. Given that these 
foundation models, such as large language models, can be adapted to 
a wide range of downstream tasks through fine-tuning, they may play 
an important role in augmenting research. Third, as a general-purpose 
technology71,121, AI may generate downstream spillover effects, with 
indirect impacts on various domains. For example, by discovering 
faster matrix multiplication algorithms122, AI may have indirect impact 
on disciplines that would benefit from such advances. Fourth, although 
the direct mention of AI n-grams in publication titles and abstracts is 
suggestive of the use of AI in research, the same n-gram may have dif-
ferent meanings in different contexts. Also, the same AI capability may 
bring different benefits to different fields, amidst alternative ways to 
define AI terms63 (see Supplementary Note 8.1 for details), suggest-
ing fruitful future directions to further improve our frameworks for 
understanding AI capabilities and their uses in scientific research. 
Lastly, as AI’s capabilities and its benefits to science continue to grow, 
it will become ever more crucial to understand the impact of AI on 
fairness and equity in research16,123. Equally important is to understand 
how AI may introduce potential biases or otherwise create unintended 

consequences in the genesis of scientific knowledge, especially given 
the ‘black box’ nature of many leading AI tools124–127.

Overall, these findings based on large-scale quantitative analyses 
may prove useful to the AI research community, helping us better 
understand the AI capabilities that may be most fruitful for scientific 
research. At the same time, the misalignment between the level of AI 
education and its use in research suggests that collaborations between 
domain experts and AI researchers may be especially productive, bridg-
ing deep domain expertise and new AI advances. Given that tomorrow’s 
technological developments often begin upstream from basic scientific 
research128–130, a more robust understanding of the impact of AI on sci-
ence may further inform a range of important policy considerations 
for the future of education, research and innovation2–4.

Methods
The study protocol was reviewed by the Institutional Review Board 
(IRB) of Northwestern University. The study was determined as Not 
Human Research and exempt from formal ethics review (IRB no. 
STU00221828).

Data sources
To estimate the use and potential benefits of AI for science, we use a 
variety of datasets that include information regarding scientific pub-
lications, patents, course syllabi and the demographics of researchers 
(see Supplementary Note 1 for details). We introduce two primary 
datasets. (1) We use the MAG database for publication data. We collect 
information on 74.6 million publications between 1960 and 2019 of 
various types (‘journal’, ‘conference’, ‘book’ or ‘book chapter’). These 
publications are categorized into 19 disciplines (for example, ‘com-
puter science’) and 292 fields (for example, ‘machine learning’) under 
the MAG ‘field of study’ taxonomy, in which one discipline contains 
several child fields (see Supplementary Note 1.1 for details). For each 
publication, we collect the title, abstract, year, discipline and field  
information. (2) We use PatentsView for patent data. We collect infor-
mation on 7.1 million patents granted between 1976 and 2019 from 
PatentsView, a data platform based on bulk data from the USPTO. 
Each patent is associated with a list of patent classification codes and 
keywords. Using these codes and keywords, we identify AI-related 
patents (see Supplementary Note 1.2 for details). Together, the MAG 
publication data and USPTO patent data allow us to estimate the direct 
use and potential benefits of AI for each discipline and field.

We supplement the analysis with two more datasets to examine the 
alignment of AI use and benefits with the level of AI education and to 
study the gender, racial and ethnic composition in science. (1) We use 
syllabus data that are sourced from the OSP, the world’s first large-scale 
database of university course syllabus documents. Our syllabus dataset 
contains 4.2 million English-language syllabi published between 2000 
and 2018 (see Supplementary Note 1.3 for details). Each syllabus is 
associated with a list of Classification of Instructional Programs (CIP) 
codes representing its academic fields and a list of referenced publica-
tions103. We manually crosswalk CIP codes to MAG fields, and we link 
syllabus references to MAG publications (see Supplementary Note 5.1 
for details). (2) We use the SDR for de-identified demographic data 
regarding individuals with a US research doctoral degree in a science, 
engineering or health field. We use the 2017 SDR data on scientists and 
engineers, including the discipline of their doctorate, their sex, and 
their race and ethnicity. We manually crosswalk the SDR doctorate dis-
ciplines to the MAG disciplines (see Supplementary Note 7.1 for details).

Calculation of AI use and benefit scores
We estimate the direct use of AI by implementing the ‘AI n-gram frame-
work’. Specifically, following previous studies91, we identify AI-related 
publications using the five MAG field categories (‘machine learning’, 
‘artificial intelligence’, ‘computer vision’, ‘natural language process-
ing’ and ‘pattern recognition’). Because MAG used a topic modelling 
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approach to label each paper’s field categories, the AI-related publi-
cations identified here go beyond the explicit mention of these five 
keywords. Identifying AI research from large-scale publication data-
bases remains a challenging task, but the simple approach that we use 
balances precision and recall in determining AI publications (see Sup-
plementary Note 8.1 for details). There are also other ways to identify 
AI research (see Supplementary Note 2.1 for details), and our results 
are robust under these alternative approaches (see Supplementary 
Note 8 for details).

From the titles and abstracts of AI publications, we extract n-grams 
(bigrams and trigrams; for example, ‘deep learning’ and ‘deep neural 
network’) and normalize them by standardizing words. From these 
normalized n-grams, we filter AI n-grams using a list of topics under 
the five AI field categories in the MAG ‘field of study’ taxonomy. This 
taxonomy is constructed primarily based on Wikipedia topics (see 
Supplementary Note 1.1 for details). We calculate the frequency of AI 
n-grams per paper to approximate cumulative AI advances. Formally, 
the AI n-gram frequency vector at year t  is ̂G

t
AI = Gt

AI/N
t
AI, where Gt

AI is the 
vector that summarizes the counts of AI n-grams extracted from AI 
publications before year t, and Nt

AI is the number of AI publications. We 
repeat this process for publications in each field to extract n-grams 
(both AI n-grams and non-AI n-grams), and we calculate their frequency 
to approximate current field development. For example, the biology 
n-gram frequency vector at year t  is ̂G

t
B = Gt

B/N
t
B, where Gt

B is the vector 
that summarizes the count of n-grams extracted from biology publica-
tions at year t, and Nt

B is the number of these biology publications. The 
coordinate of the same AI n-gram in the biology frequency vector and 
the AI frequency vector is the same. In other words, each coordinate 
of ̂G

t
B represents one n-gram, where AI n-grams have the same coordi-

nates as those in ̂G
t
AI. Finally, we calculate the direct AI use score for 

biology at year t  based on the frequency of AI n-grams:

StD = ∑ ̂G
t
B• ̂G

t
AI (1)

where the symbol ‘∑•’ represents the dot product of the biology fre-
quency vector and the AI frequency vector of the same AI n-grams. In 
this calculation, only their common n-grams in these two vectors are 
considered, and the same n-gram has the same coordinate in these two 
vectors. There are other ways to calculate the direct AI use score, and 
our results are largely robust under some alternative calculations  
(see Supplementary Note 8.2 for details). A larger direct AI use score 
indicates that AI is being used more extensively in the field.

We estimate the potential benefits of AI by implementing the ‘AI 
capability–field task framework’, which is built on the future of work 
literature82–84. It assumes that research fields may potentially benefit 
from AI if their basic tasks are aligned with AI capabilities (see Sup-
plementary Note 3 for details on the underlying assumptions). We 
predict the capabilities of AI (that is, what AI can do) by extracting 
verb–noun pairs (for example, ‘learn representation’) from the titles 
of AI publications and AI patents using a dependency parsing algorithm 
developed in NLP99–101 (see Supplementary Note 3.2 for details). Here, 
following the previous work82, we only use titles because they have a 
higher signal-to-noise ratio than the other text fields. After normalizing 
verb–noun pairs through standardization, we calculate their relative 
frequency to approximate AI capabilities. Specifically, the AI capability 
frequency vector for AI papers at year t  is Paper( ̂C

t
AI) = Ct

AI/∑Ct
AI, where 

Ct
AI is the vector that summarizes the counts of verb–noun pairs 

extracted from AI publications before year t. We repeat this process 
for AI patents and calculate the vector Patent( ̂C

t
AI). By taking an average 

of common verb–noun pairs in these two vectors, we calculate the AI 
capability frequency vector ̂C

t
AI to approximate cumulative AI capabili-

ties at year t:

̂C
t
AI = [Paper ( ̂C

t
AI) + Patent ( ̂C

t
AI)] /2 (2)

where the symbol ‘+’ represents summing up the frequencies of the 
same verb–noun pair in the two vectors. Analogously, we predict the 
basic tasks of a research field (that is, what the field does) by extracting 
verb–noun pairs from the titles of publications in the field. Taking the 
biology field as an example, the field task frequency vector at year t  is 
given by ̂T

t
B = Tt

B/∑Tt
B, where Tt

B is the vector that summarizes the counts 
of verb–noun pairs extracted from biology publications at year t .  
In the calculation, we apply the term frequency-inverse document 
frequency (tf-idf) to discount the weight of commonly appearing 
verb–noun pairs in both AI capability and field task vectors (see Sup-
plementary Note 3.3 for details). Finally, we calculate the potential AI 
benefit score of biology at year t  based on the alignment between its 
tasks and AI capabilities:

StP =
∑ ̂T

t
B • ̂C

t
AI

∑ ̂C
t
AI • ̂C

t
AI

(3)

where the symbol ‘∑•’ represents the dot product of the AI vector and 
the biology vector, and the denominator is applied to normalize the 
score for comparison across time. In the calculation, only common 
verb–noun pairs in the AI vector and the biology vector are considered, 
and the same verb–noun pair has the same coordinate in the two vec-
tors. A larger potential AI benefit score means that AI is predicted to 
have greater benefits for the field. There are other ways to calculate 
the potential AI benefit score, and our findings are largely robust under 
some alternative calculations (see Supplementary Note 8.3 for details).

Estimation of AI education levels
We measure the level of AI education in each discipline by leveraging 
OSP syllabus data and MAG publication data. This measure assumes 
that a discipline has a higher AI education level if a larger fraction of 
publications referenced by syllabi in the discipline are AI publications. 
The OSP dataset categorizes course syllabi by educational fields and 
provides a link from syllabi to their referenced publications. As syl-
labi with more references more likely correspond to graduate-level 
or research-oriented courses, we only use syllabi with at least five 
references and those in the recent period 2014–2018. First, we cross-
walk the taxonomies of educational disciplines and academic dis-
ciplines by mapping OSP fields to MAG disciplines, and we match 
syllabi-referenced publications to MAG publications using the digital 
object identifier (DOI), title and year (see Supplementary Note 5.1 
for details). From these publications, we identify AI publications 
based on the MAG five AI field categories (see Supplementary Note 2.1  
for details). We then estimate a discipline’s AI education level by cal-
culating the fraction of citations in the discipline’s syllabi that are 
citations to AI publications (see Supplementary Note 5.2 for details). 
As robustness checks, we also use syllabi with at least ten references, 
calculate an alternative measure for the level of AI education defined 
as the fraction of a discipline’s syllabi that cites at least one AI pub-
lication, and repeat the analysis for different time periods between 
2000 and 2018 (see Supplementary Note 5.2 for detailed methods 
and additional results).

Calculation of cross-discipline collaborations on AI
We estimate the level of cross-discipline collaborations on AI research 
between domain experts and AI researchers using AI publications in 
each discipline other than CS. Specifically, we first assign a primary 
discipline to each researcher based on the discipline in which they 
published most frequently in the period 1960–2019 and treat authors 
whose primary discipline is CS as AI researchers (see Supplementary 
Note 6 for more details). We then categorize each AI publication in a 
discipline into one of the four co-authorship types based on its authors’ 
primary disciplines: (1) ‘domain & CS’, which involves both domain 
experts and computer scientists; (2) ‘domain sole’, which involves only 
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domain experts; (3) ‘CS sole’, which involves only computer scientists; 
and (4) ‘others’, which involves neither domain experts nor computer 
scientists. Next, we calculate the share of collaborative AI publications 
(that is, those in the ‘domain & CS’ type) for each discipline (see Sup-
plementary Note 6.1 for detailed methods). Here the calculation only 
considers AI publications with at least two authors that were published 
in the period 1980–2019. As robustness checks, we also use an alterna-
tive approach to identify primary AI researchers (see Supplementary 
Note 6.3 for detailed methods and results).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The MAG data are available at https://doi.org/10.5281/zenodo.6511057 
(ref. 131) and ref. 132. The USPTO patent data are available at https://
patentsview.org. The OSP dataset is available from the paper at 
https://doi.org/10.1073/pnas.1804247115. The SDR data are available  
at https://www.nsf.gov/statistics/srvydoctoratework, and the datasets 
used in this study are de-identified, containing only summary statistics 
for each discipline. The data met the assumption of tests in the analysis. 
The data necessary to reproduce all main plots in this paper are avail-
able at https://kellogg-cssi.github.io/ai4science.

Code availability
Data are linked and analysed with customized code in Python 3 using 
standard software packages within these programmes, including pan-
das 1.3.5, numpy 1.21.5, scipy 1.7.3, matplotlib 3.5.1, seaborn 0.11.2, spacy 
3.7.2, nomquamgender 0.1.0, demographicx 0.0.1 and others. The 
code necessary to reproduce all main plots and statistical analyses is 
available at https://kellogg-cssi.github.io/ai4science.

References
1.	 Herbert, A. S. The Sciences of the Artificial (MIT Press, 1969).
2.	 Brynjolfsson, E. & Mitchell, T. What can machine learning do? 

Workforce implications. Science 358, 1530–1534 (2017).
3.	 Agrawal, A., Gans, J. & Goldfarb, A. The Economics of Artificial 

Intelligence: An Agenda (Univ. Chicago Press, 2019).
4.	 Autor, D., Mindell, D. A. & Reynolds, E. B. The Work of the Future: 

Shaping Technology and Institutions (MIT Task Force, 2019).
5.	 Acemoglu, D., Autor, D., Hazell, J. & Restrepo, P. Artificial 

intelligence and jobs: evidence from online vacancies.  
J. Labor Econ. 40, S293–S340 (2022).

6.	 Aghion, P., Jones, B. F. & Jones, C. I. in The Economics of Artificial 
Intelligence: An Agenda Ch. 9, 237–290 (Univ. Chicago Press, 
2019).

7.	 Cockburn, I. M., Henderson, R. & Stern, S. in The Economics of 
Artificial Intelligence: An Agenda Ch. 4, 115–148 (Univ. Chicago 
Press, 2019).

8.	 Tomasev, N. et al. AI for social good: unlocking the opportunity for 
positive impact. Nat. Commun. 11, 2468 (2020).

9.	 Dwivedi, Y. K. et al. Artificial intelligence (AI): multidisciplinary 
perspectives on emerging challenges, opportunities, and agenda 
for research, practice and policy. Int. J. Inf. Manag. 57, 101994 
(2021).

10.	 Frey, C. B. & Osborne, M. A. The future of employment:  
how susceptible are jobs to computerisation? Technol. Forecast. 
Soc. Change 114, 254–280 (2017).

11.	 Acemoglu, D. & Restrepo, P. The race between man and machine: 
implications of technology for growth, factor shares, and 
employment. Am. Econ. Rev. 108, 1488–1542 (2018).

12.	 Khan, H. N., Hounshell, D. A. & Fuchs, E. R. H. Science and 
research policy at the end of Moore’s law. Nat. Electron. 1, 14–21 
(2018).

13.	 Iansiti, M. & Lakhani, K. R. Competing in the Age of AI: Strategy and 
Leadership When Algorithms and Networks Run the World  
(Harvard Business Press, 2020).

14.	 Eshraghian, J. K. Human ownership of artificial creativity.  
Nat. Mach. Intell. 2, 157–160 (2020).

15.	 Marcus, G. & Davis, E. Rebooting AI: Building Artificial Intelligence 
We Can Trust (Pantheon Books, 2019).

16.	 Liang, W. et al. Advances, challenges and opportunities in 
creating data for trustworthy AI. Nat. Mach. Intell. 4, 669–677 
(2022).

17.	 Bengio, Y. et al. Managing extreme AI risks amid rapid progress. 
Science 384, 842–845 (2024).

18.	 Frank, M. R. et al. Toward understanding the impact of artificial 
intelligence on labor. Proc. Natl Acad. Sci. USA 116, 6531–6539 
(2019).

19.	 Agrawal, A., Gans, J. S. & Goldfarb, A. Artificial intelligence: the 
ambiguous labor market impact of automating prediction.  
J. Econ. Perspect. 33, 31–50 (2019).

20.	 Koebis, N., Starke, C. & Rahwan, I. The promise and perils of using 
artificial intelligence to fight corruption. Nat. Mach. Intell. 4, 
418–424 (2022).

21.	 Brynjolfsson, E., Li, D. & Raymond, L. R. Generative AI at Work 
NBER Working Paper No. w31161 (National Bureau of Economic 
Research, 2023).

22.	 Noy, S. & Zhang, W. Experimental evidence on the productivity 
effects of generative artificial intelligence. Science 381, 187–192 
(2023).

23.	 Silver, D. et al. Mastering the game of Go with deep neural 
networks and tree search. Nature 529, 484–489 (2016).

24.	 Geirhos, R. et al. Generalisation in humans and deep neural 
networks. In Proc. Advances in Neural Information Processing 
Systems 7538–7550 (MIT Press, 2018).

25.	 Grace, K., Salvatier, J., Dafoe, A., Zhang, B. & Evans, O. When will 
AI exceed human performance? Evidence from AI experts.  
J. Artif. Intell. Res. 62, 729–754 (2018).

26.	 Liu, X. et al. A comparison of deep learning performance against 
health-care professionals in detecting diseases from medical 
imaging: a systematic review and meta-analysis. Lancet Digit. 
Health 1, e271–e297 (2019).

27.	 Ishowo-Oloko, F. et al. Behavioural evidence for a 
transparency-efficiency tradeoff in human-machine cooperation. 
Nat. Mach. Intell. 1, 517–521 (2019).

28.	 Yang, Y., Youyou, W. & Uzzi, B. Estimating the deep replicability of 
scientific findings using human and artificial intelligence.  
Proc. Natl Acad. Sci. USA 117, 10762–10768 (2020).

29.	 Wurman, P. R. et al. Outracing champion Gran Turismo drivers 
with deep reinforcement learning. Nature 602, 223–228 (2022).

30.	 Maslej, N. et al. The AI Index 2024 Annual Report (AI Index Steering 
Committee, Institute for Human-Centered AI, Stanford Univ., 
2024).

31.	 Gil, Y., Greaves, M., Hendler, J. & Hirsh, H. Amplify scientific 
discovery with artificial intelligence. Science 346, 171–172 (2014).

32.	 Wang, H. et al. Scientific discovery in the age of artificial 
intelligence. Nature 620, 47–60 (2023).

33.	 Carleo, G. et al. Machine learning and the physical sciences.  
Rev. Mod. Phys. 91, 045002 (2019).

34.	 Rahwan, I. et al. Machine behaviour. Nature 568, 477–486  
(2019).

35.	 Jimenez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with 
explainable artificial intelligence. Nat. Mach. Intell. 2, 573–584 
(2020).

36.	 Xu, Y. et al. Artificial intelligence: a powerful paradigm for 
scientific research. Innovation 2, 100179 (2021).

37.	 Davies, A. et al. Advancing mathematics by guiding human 
intuition with AI. Nature 600, 70–74 (2021).

http://www.nature.com/nathumbehav
https://doi.org/10.5281/zenodo.6511057
https://patentsview.org
https://patentsview.org
https://doi.org/10.1073/pnas.1804247115
https://www.nsf.gov/statistics/srvydoctoratework
https://kellogg-cssi.github.io/ai4science
https://kellogg-cssi.github.io/ai4science


Nature Human Behaviour | Volume 8 | December 2024 | 2281–2292 2290

Article https://doi.org/10.1038/s41562-024-02020-5

38.	 Peng, H., Ke, Q., Budak, C., Romero, D. M. & Ahn, Y.-Y. Neural 
embeddings of scholarly periodicals reveal complex disciplinary 
organizations. Sci. Adv. 7, eabb9004 (2021).

39.	 Krenn, M. et al. On scientific understanding with artificial 
intelligence. Nat. Rev. Phys. 4, 761–769 (2022).

40.	 Belikov, A. V., Rzhetsky, A. & Evans, J. A. Prediction of robust 
scientific facts from literature. Nat. Mach. Intell. 4, 445–454 
(2022).

41.	 Grossmann, I. et al. AI and the transformation of social science 
research. Science 380, 1108–1109 (2023).

42.	 Groh, M. et al. Deep learning-aided decision support for diagnosis 
of skin disease across skin tones. Nat. Med. 30, 573–583 (2024).

43.	 Bail, C. A. Can generative AI improve social science? Proc. Natl 
Acad. Sci. USA 121, e2314021121 (2024).

44.	 Alvarez, A. et al. Science communication with generative AI.  
Nat. Hum. Behav. 8, 625–627 (2024).

45.	 Senior, A. W. et al. Improved protein structure prediction using 
potentials from deep learning. Nature 577, 706–710 (2020).

46.	 Jumper, J. et al. Highly accurate protein structure prediction with 
AlphaFold. Nature 596, 583–589 (2021).

47.	 Baek, M. et al. Accurate prediction of protein structures and 
interactions using a three-track neural network. Science 373, 
871–876 (2021).

48.	 Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning 
for de novo drug design. Sci. Adv. 4, aap7885 (2018).

49.	 Zhavoronkov, A. et al. Deep learning enables rapid identification 
of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 
(2019).

50.	 Schneider, P. et al. Rethinking drug design in the artificial 
intelligence era. Nat. Rev. Drug Discov. 19, 353–364 (2020).

51.	 Sadybekov, A. V. & Katritch, V. Computational approaches 
streamlining drug discovery. Nature 616, 673–685 (2023).

52.	 Iten, R., Metger, T., Wilming, H., Del Rio, L. D. & Renner, R. 
Discovering physical concepts with neural networks. Phys. Rev. 
Lett. 124, 010508 (2020).

53.	 Seif, A., Hafezi, M. & Jarzynski, C. Machine learning the 
thermodynamic arrow of time. Nat. Phys. 17, 105–113 (2021).

54.	 Wu, T. & Tegmark, M. Toward an artificial intelligence physicist for 
unsupervised learning. Phys. Rev. E 100, 033311 (2019).

55.	 Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning 
nonlinear operators via DeepONet based on the universal 
approximation theorem of operators. Nat. Mach. Intell. 3,  
218–229 (2021).

56.	 Han, J., Jentzen, A. & Weinan, E. Solving high-dimensional partial 
differential equations using deep learning. Proc. Natl Acad. Sci. 
USA 115, 8505–8510 (2018).

57.	 Raayoni, G. et al. Generating conjectures on fundamental 
constants with the Ramanujan Machine. Nature 590, 67–73 (2021).

58.	 Degrave, J. et al. Magnetic control of tokamak plasmas through 
deep reinforcement learning. Nature 602, 414–419 (2022).

59.	 Tshitoyan, V. et al. Unsupervised word embeddings capture latent 
knowledge from materials science literature. Nature 571, 95–98 
(2019).

60.	 Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular 
design using machine learning: generative models for matter 
engineering. Science 361, 360–365 (2018).

61.	 Chen, C. et al. A critical review of machine learning of energy 
materials. Adv. Energy Mater. 10, 1903242 (2020).

62.	 Merchant, A. et al. Scaling deep learning for materials discovery. 
Nature 624, 80–85 (2023).

63.	 Zheng, S. et al. The AI Economist: taxation policy design via 
two-level deep multiagent reinforcement learning. Sci. Adv. 8, 
eabk2607 (2022).

64.	 Koster, R. et al. Human-centred mechanism design with 
Democratic AI. Nat. Hum. Behav. 6, 1398–1407 (2022).

65.	 Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence 
in the quantum domain: a review of recent progress. Rep. Prog. 
Phys. 81, 074001 (2018).

66.	 Sturm, B. L. et al. Machine learning research that matters for 
music creation: a case study. J. N. Music Res. 48, 36–55 (2019).

67.	 Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. 
N. Engl. J. Med. 380, 1347–1358 (2019).

68.	 Ramesh, A. et al. Zero-shot text-to-image generation. In Proc. 38th 
International Conference on Machine Learning 8821–8831  
(ICML, 2021).

69.	 Epstein, Z., Hertzmann, A. & the Investigators of Human Creativity. 
Art and the science of generative AI. Science 380, 1110–1111 
(2023).

70.	 Swanson, K. et al. Generative AI for designing and validating 
easily synthesizable and structurally novel antibiotics.  
Nat. Mach. Intell. 6, 338–353 (2024).

71.	 Crafts, N. Artificial intelligence as a general-purpose technology: 
an historical perspective. Oxf. Rev. Econ. Policy 37, 521–536 
(2021).

72.	 Bloom, N., Hassan, T. A., Kalyani, A., Lerner, J. & Tahoun, A.  
The Diffusion of New Technologies NBER Working Paper No. 
w28999 (National Bureau of Economic Research, 2021).

73.	 Caselli, F. & Coleman, W. J. Cross-country technology diffusion: 
the case of computers. Am. Econ. Rev. 91, 328–335 (2001).

74.	 Comin, D. & Hobijn, B. An exploration of technology diffusion.  
Am. Econ. Rev. 100, 2031–2059 (2010).

75.	 Zenil, H. et al. The future of fundamental science led by 
generative closed-loop artificial intelligence. Preprint at  
https://arxiv.org/abs/2307.07522 (2023).

76.	 Topol, E. J. High-performance medicine: the convergence of 
human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

77.	 Hidalgo, C. A., Orghian, D., Albo Canals, J., de Almeida, F. &  
Martín Cantero, N. How Humans Judge Machines (MIT Press, 
2021).

78.	 Raisch, S. & Krakowski, S. Artificial intelligence and management: 
the automation–augmentation paradox. Acad. Manag. Rev. 46, 
192–210 (2021).

79.	 Fjelland, R. Why general artificial intelligence will not be realized. 
Humanit. Soc. Sci. Commun. 7, 10 (2020).

80.	 Messeri, L. & Crockett, M. J. Artificial intelligence and illusions of 
understanding in scientific research. Nature 627, 49–58 (2024).

81.	 Kanitscheider, I. & Fiete, I. Training recurrent networks to generate 
hypotheses about how the brain solves hard navigation problems. 
In Proc. Advances in Neural Information Processing Systems 
4529–4538 (MIT Press, 2017).

82.	 Webb, M. The Impact of Artificial Intelligence on the Labor Market 
SSRN 3482150 (Social Science Research Network, 2019).

83.	 Kogan, L., Papanikolaou, D., Schmidt, L. D. & Seegmiller, B.  
Technology, Vintage-Specific Human Capital, and Labor 
Displacement: Evidence from Linking Patents with Occupations 
NBER Working Paper No. w29552 (National Bureau of Economic 
Research, 2022).

84.	 Atalay, E., Phongthiengtham, P., Sotelo, S. & Tannenbaum, D. The 
evolution of work in the United States. Am. Econ. J. Appl. Econ. 12, 
1–34 (2020).

85.	 Felten, E. W., Raj, M. & Seamans, R. A method to link advances in 
artificial intelligence to occupational abilities. AEA Pap. Proc. 108, 
54–57 (2018).

86.	 Wu, L., Hitt, L. & Lou, B. Data analytics, innovation, and firm 
productivity. Manag. Sci. 66, 2017–2039 (2020).

87.	 Brynjolfsson, E., Mitchell, T. & Rock, D. What can machines learn, 
and what does it mean for occupations and the economy?  
AEA Pap. Proc. 108, 43–47 (2018).

88.	 Wang, D. & Barabási, A.-L. The Science of Science  
(Cambridge Univ. Press, 2021).

http://www.nature.com/nathumbehav
https://arxiv.org/abs/2307.07522


Nature Human Behaviour | Volume 8 | December 2024 | 2281–2292 2291

Article https://doi.org/10.1038/s41562-024-02020-5

89.	 Fortunato, S. et al. Science of science. Science 359, eaao0185 
(2018).

90.	 Zeng, A. et al. The science of science: from the perspective of 
complex systems. Phys. Rep. 714, 1–73 (2017).

91.	 Frank, M. R., Wang, D., Cebrian, M. & Rahwan, I. The evolution of 
citation graphs in artificial intelligence research. Nat. Mach. Intell. 
1, 79–85 (2019).

92.	 Miao, L. et al. The latent structure of global scientific 
development. Nat. Hum. Behav. 6, 1206–1217 (2022).

93.	 Liu, L., Jones, B. F., Uzzi, B. & Wang, D. Data, measurement and 
empirical methods in the science of science. Nat. Hum. Behav. 7, 
1046–1058 (2023).

94.	 Sourati, J. & Evans, J. A. Accelerating science with human-aware 
artificial intelligence. Nat. Hum. Behav. 7, 1682–1696 (2023).

95.	 Murray, D. et al. Unsupervised embedding of trajectories captures 
the latent structure of scientific migration. Proc. Natl Acad. Sci. 
USA 120, e2305414120 (2023).

96.	 Krenn, M. et al. Forecasting the future of artificial intelligence 
with machine learning-based link prediction in an exponentially 
growing knowledge network. Nat. Mach. Intell. 5, 1326–1335 
(2023).

97.	 Sinha, A. et al. An overview of Microsoft Academic Service (MAS) 
and applications. In Proc. 24th International Conference on World 
Wide Web 243–246 (WWW, 2015).

98.	 World Intellectual Property Organization (WIPO).  
WIPO Technology Trends 2019—Artificial Intelligence (WIPO, 2019).

99.	 Nivre, J. & Nilsson, J. Pseudo-projective dependency parsing. In 
Proc. 43rd Annual Meeting of the Association for Computational 
Linguistics 99–106 (ACL, 2005).

100.	Honnibal, M. & Johnson, M. An improved non-monotonic 
transition system for dependency parsing. In Proc. 2015 
Conference on Empirical Methods in Natural Language Processing 
1373–1378 (ACL, 2015).

101.	 Benetka, J. R., Krumm, J. & Bennett, P. N. Understanding context 
for tasks and activities. In Proc. 2019 Conference on Human 
Information Interaction and Retrieval 133–142 (ACM, 2019).

102.	Service, R. Science’s 2021 Breakthrough of the Year: protein 
structures for all. Science https://www.science.org/content/
article/breakthrough-2021 (2021).

103.	Börner, K. et al. Skill discrepancies between research,  
education, and jobs reveal the critical need to supply soft skills 
for the data economy. Proc. Natl Acad. Sci. USA 115, 12630–12637 
(2018).

104.	Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of 
teams in production of knowledge. Science 316, 1036–1039 
(2007).

105.	Wu, L., Wang, D. & Evans, J. A. Large teams develop and small 
teams disrupt science and technology. Nature 566, 378–382 
(2019).

106.	Littmann, M. et al. Validity of machine learning in biology and 
medicine increased through collaborations across fields of 
expertise. Nat. Mach. Intell. 2, 18–24 (2020).

107.	 Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. 
A survey on bias and fairness in machine learning. ACM Comput. 
Surv. 54, 1–35 (2021).

108.	Young, E., Wajcman, J. & Sprejer, L. Where Are the Women? 
Mapping the Gender Job Gap in AI (The Alan Turing Institute, 
2021).

109.	Xie, Y. & Shauman, K. A. Women in Science: Career Processes and 
Outcomes (Harvard Univ. Press, 2003).

110.	 Hoppe, T. A. et al. Topic choice contributes to the lower rate of 
NIH awards to African-American/black scientists. Sci. Adv. 5, 
eaaw7238 (2019).

111.	 Ginther, D. K. et al. Race, ethnicity, and NIH research awards. 
Science 333, 1015–1019 (2011).

112.	 Larivière, V., Ni, C., Gingras, Y., Cronin, B. & Sugimoto, C. R. 
Bibliometrics: global gender disparities in science. Nature 504, 
211–213 (2013).

113.	 Huang, J., Gates, A. J., Sinatra, R. & Barabási, A.-L. Historical 
comparison of gender inequality in scientific careers across 
countries and disciplines. Proc. Natl Acad. Sci. USA 117,  
4609–4616 (2020).

114.	 The National Network for Critical Technology Assessment 
(NNCTA). Securing America’s Future: A Framework for Critical 
Technology Assessment (NNCTA, 2023).

115.	 Cachola, I., Lo, K., Cohan, A. & Weld, D. S. TLDR: extreme 
summarization of scientific documents. In Proc. 2020 Conference 
on Empirical Methods in Natural Language Processing 4766–4777 
(ACL, 2020).

116.	 Lew, A., Agrawal, M., Sontag, D. & Mansinghka, V. PClean: 
Bayesian data cleaning at scale with domain-specific probabilistic 
programming. In Proc. 24th International Conference on Artificial 
Intelligence and Statistics 1927–1935 (JMLR, 2021).

117.	 Bommasani, R. et al. On the opportunities and risks of foundation 
models. Preprint at https://arxiv.org/abs/2108.07258 (2021).

118.	 Wei, J. et al. Emergent abilities of large language models. Preprint 
at https://arxiv.org/abs/2206.07682 (2022).

119.	 Moor, M. et al. Foundation models for generalist medical artificial 
intelligence. Nature 616, 259–265 (2023).

120.	Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T. J. & Zou, J. A 
visual-language foundation model for pathology image analysis 
using medical Twitter. Nat. Med. 29, 2307–2316 (2023).

121.	 Goldfarb, A., Taska, B. & Teodoridis, F. Could machine learning 
be a general purpose technology? A comparison of emerging 
technologies using data from online job postings. Res. Policy 52, 
104653 (2023).

122.	 Fawzi, A. et al. Discovering faster matrix multiplication algorithms 
with reinforcement learning. Nature 610, 47–53 (2022).

123.	Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics 
guidelines. Nat. Mach. Intell. 1, 389–399 (2019).

124.	Arrieta, A. B. et al. Explainable artificial intelligence (XAI): 
concepts, taxonomies, opportunities and challenges toward 
responsible AI. Inf. Fusion 58, 82–115 (2020).

125.	 Lenharo, M. An AI revolution is brewing in medicine. What will it 
look like? Nature 622, 686–688 (2023).

126.	Bockting, C. L., van Dis, E. A. M., van Rooij, R., Zuidema, W. & 
Bollen, J. Living guidelines for generative AI—why scientists must 
oversee its use. Nature 622, 693–696 (2023).

127.	 Schwartz, I. S., Link, K. E., Daneshjou, R. & Cortes-Penfield, N. 
Black box warning: large language models and the future of 
infectious diseases consultation. Clin. Infect. Dis. 78, 860–866 
(2024).

128.	Ahmadpoor, M. & Jones, B. F. The dual frontier: patented 
inventions and prior scientific advance. Science 357, 583–587 
(2017).

129.	Mukherjee, S., Romero, D. M., Jones, B. & Uzzi, B. The nearly 
universal link between the age of past knowledge and tomorrow’s 
breakthroughs in science and technology: the hotspot. Sci. Adv. 
3, e1601315 (2017).

130.	Yin, Y., Dong, Y., Wang, K., Wang, D. & Jones, B. F. Public use and 
public funding of science. Nat. Hum. Behav. 6, 1344–1350  
(2022).

131.	 Microsoft Academic. Microsoft Academic Graph. Zenodo  
https://doi.org/10.5281/zenodo.6511057 (2022).

132.	Lin, Z., Yin, Y., Liu, L. & Wang, D. SciSciNet: a large-scale open data 
lake for the science of science research. Sci. Data 10, 315 (2023).

Acknowledgements
We thank Y. Yin, Y. Qian, B. Wang, N. Dehmamy, L. Varshney, L. Miao, 
L. Wu, A. Freilich and all members of the Center for Science of 

http://www.nature.com/nathumbehav
https://www.science.org/content/article/breakthrough-2021
https://www.science.org/content/article/breakthrough-2021
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2206.07682
https://doi.org/10.5281/zenodo.6511057


Nature Human Behaviour | Volume 8 | December 2024 | 2281–2292 2292

Article https://doi.org/10.1038/s41562-024-02020-5

Science and Innovation (CSSI) at Northwestern University for helpful 
discussions. This work is supported by the Air Force Office of Scientific 
Research FA9550-19-1-0354 (D.W.), the National Science Foundation 
SBE 1829344, TIP 1123649-464363//2241237, and TIP 2404035 (D.W.), 
the Alfred P. Sloan Foundation G-2019-12485 (D.W.), and the Peter G. 
Peterson Foundation 21048 (D.W.). The funders had no role in study 
design, data collection and analysis, decision to publish or preparation 
of the paper.

Author contributions
J.G. and D.W. conceived the idea. D.W. supervised the project. J.G. 
collected data and performed analyses. J.G. and D.W. analysed the 
results, interpreted the findings and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains 
supplementary material available at  
https://doi.org/10.1038/s41562-024-02020-5.

Correspondence and requests for materials should be addressed to 
Dashun Wang.

Peer review information Nature Human Behaviour thanks Alexander 
Gates and the other, anonymous, reviewer(s) for their contribution to 
the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2024

http://www.nature.com/nathumbehav
https://doi.org/10.1038/s41562-024-02020-5
http://www.nature.com/reprints


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Dashun Wang

Last updated by author(s): Sep 6, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Publication, patent, and syllabus data was directly downloaded from databases; Researcher demographic summary statistics data was 
downloaded from the National Science Foundation website.

Data analysis Data is analyzed with customized code in Python 3 using standard software packages within these programs, including pandas 1.3.5, numpy 
1.21.5, scipy 1.7.3, matplotlib 3.5.1, seaborn 0.11.2, spacy 3.7.2, nomquamgender 0.1.0, demographicx 0.0.1, and others. The code necessary 
to reproduce all main plots and statistical analyses has been made available at https://kellogg-cssi.github.io/ai4science.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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from the paper at https://www.pnas.org/doi/10.1073/pnas.1804247115. The SDR data are available at https://www.nsf.gov/statistics/srvydoctoratework. The data 
necessary to reproduce all main plots in this paper has been made available at https://kellogg-cssi.github.io/ai4science.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex of researchers was originally collected and reported in the Survey of Doctorate Recipients (SDR), which is sponsored by 
the National Center for Science and Engineering Statistics (NCSES) within the National Science Foundation (NSF) and by the 
National Institutes of Health (NIH). We use the number of female and male researchers in each scientific discipline and 
research field. We report results for both female and male.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Race and ethnicity of researchers were originally collected and reported in the Survey of Doctorate Recipients (SDR). We use 
the number of White, Asian, African American or Black, American Indian or Alaska Native, Hispanic or Latino, and Native 
Hawaiians or other Pacific Islanders researchers in each scientific discipline and field. We report results for all these race and 
ethnicity groups.

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description A study to quantify the use and benefits of artificial intelligence for scientific research

Research sample We use 74.6 million publications from the Microsoft Academic Graph (MAG) database, 7.1 million patents from the USPTO 
PatentsView database, 4.2 million course syllabi from the Open Syllabus Project (OSP), and demographic statistical data of 
researchers from the Survey of Doctorate Recipients (SDR). The data represent the most representative samples of publications, 
patents, syllabi, and researcher composition to date. The study samples were chosen to study all disciplines in science and education.

Sampling strategy We consider MAG publications of various types (“journal,” “conference,” “book,” or “book chapter”) in 1960-2019, USPTO patents 
approved in 1976-2019, OSP syllabus documents published in 2000-2018, and the 2017 SDR data on scientists and engineers. There 
was no sampling produce to select the data, and no sample size calculation was performed. We use all data for each domain, which is 
the most comprehensive sample at the time of analysis.

Data collection Publication data was downloaded from the Microsoft Academic Graph (MAG) database; Patent data was downloaded from 
PatentsView, a data platform based on bulk data from the U.S. Patent and Trademark Office (USPTO); Course syllabus data was 
sourced from the Open Syllabus Project (OSP); Demographic data of researchers was collected from the Survey of Doctorate 
Recipients (SDR), which is public available from the NSF website.

Timing Data was collected in the period of 2019-2021.

Data exclusions We only consider MAG publications with four types (“journal,” “conference,” “book,” or “book chapter”) in 1960-2019, USPTO 
patents approved in 1976-2019, OSP syllabus documents published in 2000-2018, and the 2017 SDR data on scientists and engineers.

Non-participation No participants were involved in this study since all data were from existing public databases.

Randomization Randomization was not applicable, given the observational nature of the study.
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