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Therapid advancement of artificial intelligence (Al) is poised to
reshape almost every line of work. Despite enormous efforts devoted to
understanding Al's economic impacts, we lack a systematic understanding

of the benefits to scientific research associated with the use of Al. Here we
develop ameasurement framework to estimate the direct use of Aland
associated benefits in science. We find that the use and benefits of Alappear
widespread throughout the sciences, growing especially rapidly since 2015.
However, thereis a substantial gap between Al education and its application
inresearch, highlighting a misalignment between Al expertise supply and
demand. Our analysis also reveals demographic disparities, with disciplines
with higher proportions of women or Black scientists reaping fewer benefits
from Al, potentially exacerbating existing inequalities in science.

These findings have implications for the equity and sustainability of
theresearch enterprise, especially as the integration of Al with science
continues to deepen.

The rapid advances in artificial intelligence (Al) may lead to massive
value creation and capture across many facets of humansociety' >, cre-
ating awealth of social and economic opportunities®®, and just as many
challenges’". While extensive efforts have been devoted to under-
standing the impact of Al on the labour market and the economy'®*,
the impact of Al on the growing research enterprise remains unclear.
Indeed, recent Al advances have shown promise to achieve and, in
some cases, exceed expert-level performance across many economi-
cally valuable tasks*°. As society prepares for the moment when Al
may outperform or even replace humanrecruiters, bankers, doctors,
lawyers, composers and drivers, an important question arises: what
are the benefits associated with the use of Al in advancing scientific
research across different disciplines and fields?

A better understanding of the extent of Al use in science and its
potential benefits may not only help guide Al development, bridging
Al innovations more closely with scientific research, but also hold
implications for science and innovation policy. Understanding the links
between Al use and scientific advances is both timely and important
given Al's recent remarkable success in advancing research frontiers
across several fields***, from predicting the structure of proteins

in biology** to designing new drug candidates in medicine**™,
from discovering natural laws in physics®* to solving complicated
equations and discovering new conjectures in mathematics® >, from
controlling nuclear fusion®® to predicting new material properties™?,
from designing taxation policy® to suggesting democratic social
mechanisms®*, and many more® 7. These advances raise the possibility
that as Al continues toimprove in accuracy, robustness and reach’ ",
itmay bring meaningful benefits to science, propelling scientific pro-
gress across arange of research areas while substantially augmenting
researchers’ innovation capabilities.

Yet, despite the rapid progress of Al and its broad applicationsin
several domains, thereis substantial scepticism about whether today’s
Al is capable or substantial enough to advance scientific research in
every discipline and field. Indeed, most current Al applications belong
to the category of ‘narrow Al"”7"°, which tackles specifically defined
problems, and hence may not be suitable to fulfil the broad range of
tasks thatscientific research demands*>'*%. Further, to the extent that
Al may provide automated solutions to an existing problem, science
is about not only solving well-defined problems but also spotting
new frontiers and generating novel hypotheses®’. These views paint a
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more nuanced picture of Al's applicability to advancing science, sug-
gesting that Al may be better suited to perform some research tasks
than others>'%%2,

Building on the growing literature on the future of work®*” and
the science of science® ¢, here we develop a quantitative framework
for estimating the direct use of Al in science, as well as the potential
benefits to science that are associated with the use of Al in scientific
research (see Methods for details). Our primary dataset contains 74.6
million publications from 1960 to 2019 from the Microsoft Academic
Graph (MAG) dataset”, spanning 19 disciplines and 292 fields (see
Supplementary Note 1.1for details). We integrate this dataset with 7.1
million patents granted between 1976 and 2019 by the US Patent and
Trademark Office (USPTO) (Supplementary Note 1.2). We then follow
previous studies to identify Al publications and Al patents using a
keyword-based approach (see Supplementary Notes 2.1 and 3.1 for
details)®?"%%, allowing us to measure Al use in scientific research and its
potential associated benefits at two levels. First, we quantify the direct
use of Al using an ‘Al n-gram framework’ (Fig. 1a), which estimates the
relative frequency of the use of Alin afield (Supplementary Note 2.3).
Specifically, we extract Al n-grams (bigrams and trigrams; for exam-
ple,‘deep learning’and ‘convolutional neural network’) fromboth the
titles and abstracts of Al publications and calculate the frequency of
their occurrences to approximate Aladvances’°. We then repeat this
n-gram measurement for publications in each field and year, allow-
ing us to calculate the weighted frequency of Al n-grams appearing
in a paper to approximate the direct use of Al in each field and year.
Second, motivated by the future of work literature®3*, we use an ‘Al
capability-field task framework’ (Fig. 2a) to measure the alignment
between Al capabilities and the tasks of a field (see Supplementary
Note 3.3). In particular, we infer the capabilities of Al (that is, what Al
can do) by extracting verb-noun pairs (for example, ‘learn represen-
tation’) from the titles of Al publications and Al patents using natural
language processing (NLP) techniques and calculating their relative
frequency® . Here, following previous work®, we rely only on titles
as they have a higher signal-to-noise ratio than abstracts. We then
estimate the tasks of eachfield (thatis, what afield does) by calculating
the relative frequency of verb-noun pairs extracted from the titles of
publications in each field and year. Calculating the overlap between
the prevalent tasks in a field and the inferred Al capabilities allows us
to approximate the potential benefits associated with Al use in each
field and year (see Methods for more details).

Results

Widespread use of Al across the sciences

Overall, Al research presents a dynamically evolving landscape
(Fig.1b,c). While the frequency of certain dominant Aln-grams in 2019
(forexample, ‘machine learning’, ‘convolutional neural network’, ‘deep
learning’, ‘deep neural network’ and ‘artificial intelligence’) shows an
overallupward trend (Fig. 1b), some Al n-grams emerged only recently
(for example, ‘generative adversarial network’), some rose to promi-
nence after along period of dormancy (for example, ‘deep learning’),
and some were popular a decade ago but have become less prevalent
inrecentyears (forexample, ‘support vector machine’; Fig. 1c). Amidst
thisrapidly evolving Al research landscape, there has been a precipitous
rise in the use of Al by many disciplines, as proxied by the mention of
Aln-gramsinthetitles and abstracts of publications (Fig. 1d; see Sup-
plementary Fig. 2 for details).

Thisincreasein the use of Al by different disciplines raises aninter-
esting question: how do the citations of papers that use Al compare to
those of other papers in the same field? To answer this question, we
define hit papers as those in the top 5% by total citations in the same
field and year and calculate the likelihood that a paperis a hit paper. We
find that for amajority of disciplines, papers that mention Al n-grams
tend to be associated with a higher probability of being hit papers
withintheir disciplines (the ratio of Alover non-Al regarding the hit rate

of papersis larger than1in 18 out of 19 disciplines; mean ratio = 1.816,
standard error (s.e.) = 0.138 and 95% confidence interval (CI) = (1.547,
2.086); Fig.1e), and they also receive more citations from other disci-
plines compared with papers that do not mention Al n-grams (the ratio
of Alover non-Alregarding the share of outside-field citationsis larger
than1in 11 out of 19 disciplines; mean ratio =1.069, s.e. = 0.028 and
95% Cl = (1.015,1.124); Fig. 1f; see Supplementary Note 2.4 for details).
This citation premium of papers that mention Al n-grams appears to
bestrongerindisciplines with alower propensity to use Al (two-sided
Pearson’s correlation test for the negative relationship between the
hit rate of papers that mention Al n-grams and the direct Al use score
at the field level, Pearson’s r=-0.378, P < 0.001 and 95% Cl = (-0.472,
-0.275); two-sided Pearson’s correlation test for the negative relation-
ship between the outside-citation-ratio for papers that mention Al
n-gramsand thedirect Aluse score atthe field level, Pearson’s r=-0.215,
P<0.001and 95% ClI = (-0.322,-0.102); see detailed correlation analy-
sisinSupplementary Note 2.4 and Supplementary Fig. 4). These results
suggest that disciplines that seem distant from Al may see substantial
benefits from using Al to advance their research.

The dynamic Al landscape also prompts us to explore changes
inthe direct use of Al in scientific research over time. Specifically, we
calculate the direct Al use score using the ‘Al n-gram framework’ for
each discipline between 2000 and 2019 (see Supplementary Fig. 3
for the results for 1960-2019), extracting Al n-grams from the titles
and abstracts of Al publications and calculating their frequency of
occurrence in the publications in each discipline (see Methods and
Supplementary Note 2 for details). We find that disciplines overall
used more Alintheir research over the past two decades (for example,
the direct Al use score for computer science (CS) increased from 0.5%
in 2000 to 1.3% in 2019; statistical test for the increasing trend, slope
b=0.00031, P<0.001and 95% CI=(0.00025, 0.00037); Fig. 1g, solid
lines). This increase occurs not only in CS but also in a wide range of
other disciplines (Fig. 1h), including, for example, physics, biology
and economics. Moreover, thisincrease hasnotbeen linear; there has
been a notably sharp increase in the use of Al since 2015 across many
disciplines (Fig.1g).

Tobetter understand whether therecentrise inthe direct use of Al
onscienceisassociated withchangesin Al capabilities or field-specific
shifts in research direction, we calculate an alternative measure for
Al use scores by keeping Al capabilities fixed in 2015 and apply this
alternative measure to each discipline and year between 2015 and
2019 (see Supplementary Note 4.2). More specifically, we use (1) Al
n-grams extracted from Al publications before 2015 without changing
either their terms or their frequency for 2015-2019, and (2) AIn-grams
extracted from publications in each discipline and year during the
period 2015-2019 (see dashed lines in Fig. 1g). We find that the new
scores deviate substantially from the original scores (for example, the
original score for CS is 37% larger than the new score; discipline level
statistics, mean = 22%, s.e. =1.9% and 95% CI = (18%, 26%); see solid
lines in Fig. 1g and Supplementary Fig. 7), which indicates that across
disciplines, sciences benefit more from cutting-edge Al advances.
Overall, these results suggest that new Al capabilities are associated
with the recent, sharp increase in the use of Al across disciplines (see
Supplementary Note 4 for results related to Al's growing use in science).

Potential benefits associated with Al use

While explicit mentions of Al n-grams by publications signal the direct
use of Alin research, Al may also be associated with other benefits in
scientificresearch beyond these direct uses. In particular, the growing
Al capabilities may help perform some core tasks that aresearch field
demands. Here we build on the future of work literature, which suggests
that Al capabilities and field tasks can be captured by verb—noun pairs
(for example, ‘learn representation’)® %, prompting us to develop an
‘Al capability-field task framework’ to quantify the potential benefits
associated with Al use in scientific research (Fig. 2a). We apply NLP
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Fig.1|Measuring the direct use of Alinscientific research. a, The ‘Al n-gram
framework’ for estimating the direct use of Al. First, Al-related publications are
identified by the MAG five Al fields. Then, n-grams are extracted from the titles
and abstracts of Al publications. Next, the frequency of Al n-grams per paper is
calculated after normalization. Similarly, n-grams are extracted for publications
ineach field, and the frequency of n-grams per paper (n-gram p.p.) is calculated.
Finally, afield’s direct Al use score for a year is calculated by the dot product of
the frequency of Al n-grams cumulated up to the year and the field’s n-grams at
theyear. b, The frequency of ten Al n-grams in 2019 and the trend in use of these
n-grams over the past two decades. ¢, Temporal changes in the rankings of the
top 30 Aln-gramsin2019. Al n-grams are presented in rainbow colour order,
according to their ranking in 2019. d, The frequency over the 2000-2019 period
ofthe top five Al n-grams in biology and economics in2019. e, The ratio of the

Ratio (SOC_AI/SOC_non_Al)

Publication year Publication year

hit rate of Al-using papers over non-Al-using papers. Here Al-using papers are
identified as those that mention at least one Al n-gram, and the hit rate of papers
(Hit) is defined as the likelihood that a paper isin the top 5% by total citations
among papers in the same field and year. f, The ratio of the share of outside-
field citations (SOC) for Al-using papers over that for non-Al-using papers.

g, Temporal trends in the direct Al use scores of disciplines as shown by solid
colour lines. The dashed colour line shows the score calculated using each
discipline’s yearly n-grams and Al n-grams fixed in 2015. The percentage change
comparing the two scores in 2019 is shown. Each plot uses its y-axis scale to
illustrate the relative change best. h, The direct Al use scores of disciplines
using the same y-axis scale. Coloured lines correspond to disciplinesin g, and
grey dotted lines represent other disciplines (see Supplementary Fig. 7 for
detailed results).

algorithms to extract verb—noun pairs from the titles of Al papers and Al
patents to estimate Al capabilities”'”' (Fig. 2b; see Methods for details
and Supplementary Note 8.3 for validations of the approach). Applied
systematically to all disciplines and fields, this framework allows us to
estimate which subfields within a discipline may benefit most from Al.
For instance, we find that the subfield of biology that features large
potential Al benefits is ‘biological system’ (Fig. 2c, curve inred), as
many of its basic tasks appear aligned withiinferred Al capabilities (for
example, ‘extract feature’, ‘detect object’ and ‘improve prediction’).
Interestingly, the ‘biological system’ field, ranked seventh among all
non-CS fields by the potential Al benefit score (Fig. 2d), also happens
tobe thefield for the AlphaFold paper®, which Science called the 2021
Breakthrough of the Year'®,

While there are considerable differences in the direct use of Al
across scientific disciplines (Fig. 1h), the differencesin the potential Al
benefit scores are relatively small across disciplines (Supplementary
Fig.7), suggesting the potentially widespread applicability of Alin sci-
ence. We further study within-discipline heterogeneity by examining
the percentiles of direct Al use scores and potential Al benefit scores
foreachdiscipline’s subfields (see Supplementary Note 4.1 for details).
Wefind that the two percentilesineachfield are highly correlated with
each other (Fig. 2e; two-sided Pearson’s correlation test, Pearson’s
r=0.891,P<0.001and 95% CI = (0.865,0.913)). Moreover, the top three
subfields within each discipline according to the two percentiles are
entirely overlapped inalmost half of the 19 disciplines (Fig. 2f), indicat-
ing that the two measurements are consistent in identifying fields most
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Fig.2|Measuring the potential benefits of Al and discipline heterogeneity.
a, The ‘Al capability-field task framework’ for estimating the potential benefits
of Al First, Al capabilities are inferred by extracting verb—noun pairs from the
titles of Al publications and Al patents using a dependency parsing algorithm.
Then, field tasks are inferred from publications in each field using the same
method. Next, the potential Al benefit score is determined by calculating the
overlap between field tasks and Al capabilities, after discounting the frequency
of commonly appearing verb-noun pairs. b, The frequency of ten Al verb-noun
pairsin 2019 and their temporal trends over the past two decades. ¢, The top
ten subfields of biology according to the potential Al benefit score in 2019 and
their temporal trend over the past two decades. The ‘biological system’ field is
consistently ranked first among all subfields. d, The top 100 fields according

to the potential Al benefit score in 2019 are shown with colour-coded lines. The
top 20 fields are listed on the left, with the five Al fields in orange, CS fields in

Ranking percentile

Ranking percentile Ranking percentile

darkblue and othersingrey. The top 20 non-CS fields are listed on the right,

with ‘biological system’in red and ranked seventh. e, The strong correlation
between direct Al use scores and potential Al benefit scores of research fields
based on their percentiles. The correlation was determined using a two-sided
Pearson’s correlation test. Linear fit (centre line) with 95% confidence intervals
(error bands) isshown. f, A large overlap between the top three subfields for each
discipline according to direct Al use score and potential Al benefit score. Most
disciplines exhibit three overlapped subfields (see Supplementary Table 1 for
details). g, The substantial heterogeneity of AlI's use and potential benefits within
scientific disciplines. Asillustrated by the legend on the left, each plot shows the
percentiles of a discipline’s subfields, where the percentiles based on the direct
Aluse score are in the upper row and those based on the potential Al benefit score
arein the lower row. Eight disciplines are presented for illustration; all other
disciplines are shown in Supplementary Fig. 8.

benefit from Al (see Supplementary Table 1for thelist of three subfields
within each discipline that have the highest direct Aluse score and the
highest potential Albenefit score, respectively). Nevertheless, almost
every discipline has some subfields with substantial Aluse, which holds
robust even for disciplines with low Al use overall, such as sociology
and economics (Fig. 2g; see Supplementary Fig. 8 for the results for all
disciplines). Taken together, these results suggest that the direct use of
Alinresearchis pervasive across disciplines and fields, and its potential
benefits to research may extend beyond its current usesin science.

Growing knowledge demands for Al

Therapidly expanding Al frontier and its increasing use in science may
lead to growing demands for Al expertise from domain experts, raising
the question of whether the current education and training on Al skills
are commensurate with Aluse. To answer this question, we analyse 4.2
million university course syllabi from the Open Syllabus Project (OSP)

database'®and estimate the level of Aleducation in each discipline (see

Methods and Supplementary Note 5 for details). We find that, exclud-
ing the top three computational disciplines (that is, CS, mathematics
and engineering), the correlation between the Al education level in
adiscipline and the use of Al in the discipline decreases, as well as its
significance (Fig. 3a,b; two-sided Pearson’s correlation test, Pearson’s
r=0.493, P=0.074 and 95% CI = (-0.051, 0.811) for the direct Al use
score and Pearson’sr=0.263, P=0.363 and 95% CI = (-0.310, 0.697)
for the potential Al benefit score). The results suggest that the supply
of Al talent and knowledge in most disciplines appears to be incom-
mensurate with the benefits that these disciplines may extract from
Al capabilities, highlighting a substantial Al use-Al training gap. This
resultisrobust under some alternative measures of Aleducation levels
(Supplementary Fig.10).

To meet the growing knowledge demands on Al, domain experts
may rely on cross-discipline collaborations to access Al capabilities.
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Fig. 3| Misalignment between Al education and Al use and benefits, but
growing knowledge demand for Al. a, The correlation between the direct Al
use score and the Al education level that is estimated by the share of syllabus
references to Al publications. Linear fits (centre lines) with 95% confidence
intervals (error bands) are shown. The red line shows that the correlation loses
significance when excluding the three disciplines with the largest Al use scores:
CS, engineering and mathematics. b, The correlation between the potential

Al benefit score and the Al education level. Linear fits (centre lines) with 95%
confidenceintervals are shown. ¢, The treemap chart shows the share of Al
publications by four co-authorship types, where ‘domain & CS’ represents
collaborative Al publications by domain experts and computer scientists,
‘domain sole’ represents Al publications by domain experts only, ‘CS sole’
represents Al publications by computer scientists only, and ‘others’ represents

Al publications that are neither by domain experts nor by computer scientists.
Here only Al publications in disciplines other than CS with at least two authors are
considered.d, The positive correlation between the direct Aluse score and the
share of collaborative (‘domain & CS’) Al publications in each discipline. Linear fit
(centre line) with 95% confidence intervals (error bands) is shown. e, The positive
correlation between the potential Al benefit score and the share of collaborative
(‘domain & CS’) Al publications in each discipline. Linear fit (centre line) with

95% confidence intervals (error bands) is shown. f, The share of collaborative

Al publications (‘domain & CS’) in five disciplines across the period 1990-2019.
Curves are smoothed by taking a 3-year moving average. Results for other
disciplines are shown in Supplementary Fig.12. All correlations were determined
using a two-sided Pearson’s correlation test.

We analyse collaboration patterns for Al publications in domains other
than CSthatare co-authored by domain experts and/or computer sci-
entists (asaproxy for Alresearchers; see Methods and Supplementary
Notes 6.1and 6.2 for detailed methods and alternative proxies for Al
researchers). We find that, in aggregate, about 40% of Al publications
are published by domainexperts and about one-third are collaborative
works (Fig.3c). Indisciplines where Alhas more direct uses and poten-
tial benefits, we see alarger propensity for domain experts to collabo-
rate with computer scientists (Fig. 3d,e; two-sided Pearson’s correlation
test, Pearson’sr=0.841, P < 0.001and 95% CI = (0.616, 0.939) for direct
Al use; Pearson’s r=0.802, P<0.001 and 95% CI = (0.535, 0.923) for
potential Al benefits), and the share of collaborative Al publicationsis
increasing over time (for example, the share for engineering increased
from0.21in1990t0 0.44in 2019; statistical test for theincreasing trend,
slope b=0.0057, P<0.001 and 95% Cl=(0.0047,0.0068); Fig. 3f; see
Supplementary Fig. 12 for the results for other disciplines), suggest-
ing that domain experts’ reliance on Al expertise is growing. These
results are robust when we use an alternative method of determining
Alresearchers (see Supplementary Note 6.3 for detailed methods and
results). Taken together, these findings highlight the importance of

teamwork and cross-domain collaborations amidst Al’s potentially
increasing use and benefits for scientific research and the narrowing
of individual domain expertise across the sciences'** %,

Demographic disparities
As the connection between Al and scientific research deepens, it is
important to understand who benefits from Al, which has implica-
tions for the equity and sustainability of the research enterprise. Here
we study the gender and racial/ethnic composition of each discipline
and further examine potential differencesin the distribution of Aluse
and benefits across demographic groups. Specifically, we leverage
the de-identified Survey of Doctorate Recipients (SDR) data to solicit
demographicinformation on US-trained doctoral scientists and engi-
neers by the discipline of doctorate, sex and race/ethnicity. We then
crosswalk the SDR disciplines of doctorate to the disciplinesinthe MAG
datato estimate the share of women scientists and underrepresented
minorities (URM) scientists in each discipline (see Methods and Sup-
plementary Note 7 for details).

We find a negative correlation between the share of women sci-
entists within each discipline and its Al scores for both direct use
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Fig.4|Gender and racial disparities in the use and benefits of Al across
disciplines. a, The negative correlation between the direct Aluse score and the
share of women scientists in each discipline. Linear fit (centre line) with 95%
confidence intervals (error bands) is shown. b, The negative correlation between
the potential Al benefit score and the share of women scientists in each discipline.
Linear fit (centre line) with 95% confidence intervals (error bands) is shown. ¢, The
average direct Al use scores for women and men scientists. The average score for
men/women s calculated by weighting the direct Aluse score of each discipline
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‘African American or Black’,’American Indian or Alaska Native’, ‘Hispanic or Latino’
and ‘Native Hawaiians or other Pacific Islanders’. Linear fit (centre line) with 95%
confidenceintervals (error bands) is shown. f, The negative correlation between
the potential Al benefit score and the share of URM scientists. Linear fit (centre
line) with 95% confidence intervals (error bands) is shown. g, The average direct
Aluse score for each racial and ethnic group. The average score for each group

is calculated by weighting the direct Al use score of each discipline by its share
ofthe particular racial and ethnic group in the discipline. The average score for
eachracial and ethnic group under the URM category is shown separately on the
right. h, The average potential Al benefit score for each racial and ethnic group. All
correlations were determined using a two-sided Pearson’s correlation test.

(two-sided Pearson’s correlation test, Pearson’s r = -0.555, P= 0.032
and 95% Cl=(-0.831, -0.059); Fig. 4a) and potential benefits
(two-sided Pearson’s correlation test, Pearson’s r=-0.593, P= 0.020
and 95% Cl = (-0.848,-0.116); Fig. 4b). Aggregating the Al scores of all
disciplines by their gender composition (see Methods for details), we
find that women scientists tend to be associated with a smaller score
and thus less benefits from Al (Fig. 4c,d). Studying the racial and ethnic
compositionacross disciplines, we find another negative relationship
between the share of URM scientistsin each disciplineandits Alscores,
apatternthatisagainrobust for both direct use (two-sided Pearson’s
correlation test, Pearson’sr=-0.734,P=0.002and 95% Cl = (-0.906,
-0.355); Fig. 4e) and potential benefits (two-sided Pearson’s correla-
tion test, Pearson’sr=-0.711, P= 0.003 and 95% Cl = (-0.897,-0.312);
Fig.4f). This pattern appears strong for Black scientists withinthe URM
group, where the score of Black is 78% and 86% less than that of white
for direct Al use and potential Al benefits, respectively (Fig. 4g,h).
On average, women and URM researchers benefit less from Al. We
further performed career-level analysis, looking at what happens
when one starts to engage in Al research (see Supplementary Note
9 for details). We find that while the average hit rate of a researcher’s
papers tends to increase immediately after engaging in Al research,
this citation premiumis less concentrated among underrepresented
groups, with women and URM researchers appearing to profit less
from Al engagement compared with their counterparts. Together,

these results suggest that while Al has the potential to bring benefits
to all disciplines, the benefits may be distributed unequally across
demographic groups. Hence, as the use of Al in science continues
to grow, these unequal career effects may further amplify existing
disparities in science'*"1%%,

Discussion

In this study, we develop a measurement framework to estimate the
direct use and potential benefits of Al across a range of scientific
disciplines and research fields. We find that scientific disciplines are
increasingly using Al, as proxied by the mention of Al-related termsin
publicationtitles and abstracts, with especially sharp growthinrecent
years. Publications that use Al tend to see a citation premium, as they
are more likely to be cited both within and outside their disciplines.
While there is substantial heterogeneity in the direct use and poten-
tial benefits of Al across different disciplines, almost every discipline
includes some subfields that see great benefits from Al. For example,
the medicine discipline as a whole is not ranked among the highest in
terms of Al benefits, but some of its subfields (for example, ‘nuclear
medicine’, ‘optometry’ and ‘medical physics’) show substantial Al
benefits (Supplementary Fig. 8). Overall, these results suggest that
the benefits that Al may bring to scientific research are widespread
across arange of disciplines and fields, potentially extending beyond
the current uses of Alin science.
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A systematic understanding of the use and potential benefits of
Al for scientific research may better inform science and education
policy. Our research suggests that the use of Alin scientific disciplines
has raced ahead across science, facilitated in part by cross-discipline
collaborations, while the educational focus on Al to upskill future sci-
entists within each discipline has lagged. This misalignment between Al
use and Al education (thatis, the Aluse-Al training gap) hasimportant
implications for best practices in preparing next-generation scientists
to fully leverage Al advances. While these analyses are correlational
by nature, they support the hypothesis that collaboration between
domain experts and Al researchers may represent an important way
to facilitate the use of Al across science. They also suggest a further
benefit ofincreasing Al training across disciplines, which would likely
help the disciplines to develop domain-specific Al expertise, allowing
them to enjoy greater and timelier benefits from Al advances.

Itis also important to recognize that as Al becomes increasingly
capable of performing research tasks, it may have an unequal impact
on the research workforce. There are long-standing concerns about
demographic disparities in science'®™. Our results suggest that the
groups that have been historically underrepresentedin science are also
the groups that may benefit less from Al in scientific research. These
results are somewhat expected, given that gender disparities tend to
correlate with technical fields, which tend to be dominated by men"*'",
Nevertheless, our analysis highlights that as Al plays more important
roles in accelerating science, it may exacerbate existing disparities in
science, withimplications for buildinga diverse, equitable and inclusive
researchworkforce. It thus underscores the importance of expanding the
Al-related professoriate by broadening participation and opportunitiesin
Alresearchandincreasing fundingand educational programmes targeted
towards women and underrepresented groups in Al-related fields™*.

While this study takes an initial step towards quantifying the use
and potential benefits of Al for scientific research, it has several limita-
tions thatareimportant to consider wheninterpreting the results. First,
ouranalyses build on the future of work literature and rely on publica-
tionand patent data. Given its multidimensional nature, however, the
potential benefits of Al for science may go beyond the advantages that
can be estimated from such datasets. These frameworks, in fact, may
underestimate the full range of benefits that Al may bring to scientific
research. Almay, for example, optimize the research process by power-
ingnew tools and systems that improve the efficiency of doing science,
including improving access to information, reducing the knowledge
burden, guiding human intuition, automating routine research tasks
and more™"°, Second, Al research evolves rapidly, suggesting the
need for continuous monitoring and updates to the estimates of its
benefits to science. As our datasets trace publications and patents to
the end 0f 2019, they cannot capture newer developments, suchasthe
recent rise of foundation models in Al research™'?°, Given that these
foundation models, such aslarge language models, canbe adapted to
awide range of downstream tasks through fine-tuning, they may play
animportantroleinaugmenting research. Third, as ageneral-purpose
technology’'?, Al may generate downstream spillover effects, with
indirect impacts on various domains. For example, by discovering
faster matrix multiplication algorithms'?, Almay have indirectimpact
ondisciplines that would benefit fromsuch advances. Fourth, although
the direct mention of Al n-grams in publication titles and abstracts is
suggestive of the use of Alin research, the same n-gram may have dif-
ferent meanings in different contexts. Also, the same Al capability may
bring different benefits to different fields, amidst alternative ways to
define Al terms®® (see Supplementary Note 8.1 for details), suggest-
ing fruitful future directions to further improve our frameworks for
understanding Al capabilities and their uses in scientific research.
Lastly, as Al's capabilities and its benefits to science continue to grow,
it will become ever more crucial to understand the impact of Al on
fairness and equity in research'®'>. Equally importantis to understand
how Almay introduce potential biases or otherwise create unintended

consequencesin the genesis of scientific knowledge, especially given
the ‘black box’ nature of many leading Al tools'**,

Overall, these findings based on large-scale quantitative analyses
may prove useful to the Al research community, helping us better
understand the Al capabilities that may be most fruitful for scientific
research. At the same time, the misalignment between the level of Al
educationanditsusein research suggests that collaborations between
domain experts and Alresearchers may be especially productive, bridg-
ing deep domain expertise and new Aladvances. Given that tomorrow’s
technological developments often begin upstream from basic scientific
research**°, amore robust understanding of the impact of Al on sci-
ence may further inform a range of important policy considerations
for the future of education, research and innovation®™*.

Methods

The study protocol was reviewed by the Institutional Review Board
(IRB) of Northwestern University. The study was determined as Not
Human Research and exempt from formal ethics review (IRB no.
STU00221828).

Data sources

To estimate the use and potential benefits of Al for science, we use a
variety of datasets that include information regarding scientific pub-
lications, patents, course syllabi and the demographics of researchers
(see Supplementary Note 1 for details). We introduce two primary
datasets. (1) We use the MAG database for publication data. We collect
information on 74.6 million publications between 1960 and 2019 of
various types (‘journal’, ‘conference’, ‘book’ or ‘book chapter’). These
publications are categorized into 19 disciplines (for example, ‘com-
puter science’) and 292 fields (for example, ‘machine learning’) under
the MAG ‘field of study’ taxonomy, in which one discipline contains
several child fields (see Supplementary Note 1.1 for details). For each
publication, we collect the title, abstract, year, discipline and field
information. (2) We use PatentsView for patent data. We collect infor-
mation on 7.1 million patents granted between 1976 and 2019 from
PatentsView, a data platform based on bulk data from the USPTO.
Each patentis associated with a list of patent classification codes and
keywords. Using these codes and keywords, we identify Al-related
patents (see Supplementary Note 1.2 for details). Together, the MAG
publication dataand USPTO patent data allow us to estimate the direct
use and potential benefits of Al for each discipline and field.

We supplement the analysis with two more datasetsto examine the
alignment of Al use and benefits with the level of Al education and to
study the gender, racial and ethnic composition in science. (1) We use
syllabus data thatare sourced from the OSP, the world’s first large-scale
database of university course syllabus documents. Our syllabus dataset
contains 4.2 million English-language syllabi published between 2000
and 2018 (see Supplementary Note 1.3 for details). Each syllabus is
associated with alist of Classification of Instructional Programs (CIP)
codesrepresentingits academic fields and alist of referenced publica-
tions'®. We manually crosswalk CIP codes to MAG fields, and we link
syllabus references to MAG publications (see Supplementary Note 5.1
for details). (2) We use the SDR for de-identified demographic data
regardingindividuals with aUS research doctoral degreein ascience,
engineering or health field. We use the 2017 SDR data on scientists and
engineers, including the discipline of their doctorate, their sex, and
theirraceand ethnicity. We manually crosswalk the SDR doctorate dis-
ciplinestothe MAG disciplines (see Supplementary Note 7.1for details).

Calculation of Al use and benefit scores

We estimate the direct use of Alby implementing the ‘Al n-gram frame-
work'. Specifically, following previous studies”, we identify Al-related
publications using the five MAG field categories (‘machine learning’,
‘artificial intelligence’, ‘computer vision’, ‘natural language process-
ing” and ‘pattern recognition’). Because MAG used a topic modelling
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approach to label each paper’s field categories, the Al-related publi-
cations identified here go beyond the explicit mention of these five
keywords. Identifying Al research from large-scale publication data-
bases remains a challenging task, but the simple approach that we use
balances precision and recallin determining Al publications (see Sup-
plementary Note 8.1for details). There are also other ways to identify
Al research (see Supplementary Note 2.1 for details), and our results
are robust under these alternative approaches (see Supplementary
Note 8 for details).

Fromthe titles and abstracts of Al publications, we extract n-grams
(bigrams and trigrams; for example, ‘deep learning’ and ‘deep neural
network’) and normalize them by standardizing words. From these
normalized n-grams, we filter Al n-grams using a list of topics under
the five Al field categories in the MAG ‘field of study’ taxonomy. This
taxonomy is constructed primarily based on Wikipedia topics (see
Supplementary Note 1.1 for details). We calculate the frequency of Al
n-grams per paper to approximate cumulative Aladvances. Formally,
the Aln-gram frequency vector at year ¢ is Gy = G /N, where G| isthe
vector that summarizes the counts of Al n-grams extracted from Al
publications beforeyear ¢,and N, is the number of Al publications. We
repeat this process for publications in each field to extract n-grams
(both Aln-grams and non-Aln-grams), and we calculate their frequency
to approximate current field development. For example, the biology
n-gram frequency vector at year ¢ is G; = G5 /N;, where G} is the vector
that summarizes the count of n-grams extracted from biology publica-
tionsatyear ¢,and N} is the number of these biology publications. The
coordinate of the same Al n-gramin the biology frequency vector and
the Al frequency vector is the same. In other words, each coordinate
of G[B represents one n-gram, where Al n-grams have the same coordi-
nates as those in Cf\,. Finally, we calculate the direct Al use score for
biology at year ¢ based on the frequency of Al n-grams:

S, =3 Cy-Ci W

where the symbol ‘Y’ « represents the dot product of the biology fre-
quency vector and the Al frequency vector of the same Al n-grams. In
this calculation, only their common n-grams in these two vectors are
considered, and the same n-gram has the same coordinate in these two
vectors. There are other ways to calculate the direct Al use score, and
our results are largely robust under some alternative calculations
(see Supplementary Note 8.2 for details). A larger direct Al use score
indicates that Al is being used more extensively in the field.

We estimate the potential benefits of Al by implementing the ‘Al
capability-field task framework’, which is built on the future of work
literature®®*, It assumes that research fields may potentially benefit
from Alif their basic tasks are aligned with Al capabilities (see Sup-
plementary Note 3 for details on the underlying assumptions). We
predict the capabilities of Al (that is, what Al can do) by extracting
verb-noun pairs (for example, ‘learn representation’) from the titles
of Al publications and Al patents using adependency parsing algorithm
developed in NLP**°! (see Supplementary Note 3.2 for details). Here,
following the previous work®, we only use titles because they have a
higher signal-to-noise ratio than the other text fields. After normalizing
verb-noun pairs through standardization, we calculate their relative
frequency to approximate Al capabilities. Speciﬁctally,the Al capability
frequency vector for Al papers atyear ¢ is Paper(Cy) = C, / ¥, C' , where
C., is the vector that summarizes the counts of verb-noun pairs
extracted from Al publications before year ¢. We repeat this process
for Al patents and calculate the vector Patent(C;,). By taking anaverage
of common verb-noun pairs in these two vectors, we calculate the Al
capability frequency vector C,t“ to approximate cumulative Al capabili-
tiesatyear ¢:

Gy = [Paper (C;I) + Patent (C;.)] /2 2)

where the symbol ‘+ represents summing up the frequencies of the
same verb-noun pair in the two vectors. Analogously, we predict the
basictasks of aresearchfield (thatis, what the field does) by extracting
verb-noun pairs fromthetitles of publications in the field. Taking the
biology field as an example, the field task frequency vector at year t is
givenby Ty = T¢/ 3. T, where T' is the vector that summarizes the counts
of verb-noun pairs extracted from biology publications at year ¢.
In the calculation, we apply the term frequency-inverse document
frequency (tf-idf) to discount the weight of commonly appearing
verb-noun pairs in both Al capability and field task vectors (see Sup-
plementary Note 3.3 for details). Finally, we calculate the potential Al
benefit score of biology at year ¢ based on the alignment between its
tasks and Al capabilities:

_ 2Ty Ca

Slt) N At
Z CAI * CAI

where thesymbol ‘Y <’ represents the dot product of the Al vector and
the biology vector, and the denominator is applied to normalize the
score for comparison across time. In the calculation, only common
verb-noun pairsinthe Al vector and the biology vector are considered,
and the same verb-noun pair has the same coordinate in the two vec-
tors. A larger potential Al benefit score means that Al is predicted to
have greater benefits for the field. There are other ways to calculate
the potential Al benefit score, and our findings are largely robust under
some alternative calculations (see Supplementary Note 8.3 for details).

Estimation of Al education levels

We measure the level of Aleducationin each discipline by leveraging
OSP syllabus data and MAG publication data. This measure assumes
that a discipline has a higher Al education level if a larger fraction of
publications referenced by syllabiin the discipline are Al publications.
The OSP dataset categorizes course syllabi by educational fields and
provides a link from syllabi to their referenced publications. As syl-
labi with more references more likely correspond to graduate-level
or research-oriented courses, we only use syllabi with at least five
references and those in the recent period 2014-2018. First, we cross-
walk the taxonomies of educational disciplines and academic dis-
ciplines by mapping OSP fields to MAG disciplines, and we match
syllabi-referenced publications to MAG publications using the digital
object identifier (DOI), title and year (see Supplementary Note 5.1
for details). From these publications, we identify Al publications
based onthe MAG five Al field categories (see Supplementary Note 2.1
for details). We then estimate a discipline’s Al education level by cal-
culating the fraction of citations in the discipline’s syllabi that are
citationsto Al publications (see Supplementary Note 5.2 for details).
Asrobustness checks, we also use syllabi with at least ten references,
calculate an alternative measure for the level of Al education defined
as the fraction of a discipline’s syllabi that cites at least one Al pub-
lication, and repeat the analysis for different time periods between
2000 and 2018 (see Supplementary Note 5.2 for detailed methods
and additional results).

Calculation of cross-discipline collaborations on Al

We estimate the level of cross-discipline collaborations on Al research
between domain experts and Al researchers using Al publications in
each discipline other than CS. Specifically, we first assign a primary
discipline to each researcher based on the discipline in which they
published most frequently in the period 19960-2019 and treat authors
whose primary discipline is CS as Al researchers (see Supplementary
Note 6 for more details). We then categorize each Al publicationina
disciplineinto one of the four co-authorship typesbased onits authors’
primary disciplines: (1) ‘domain & CS’, which involves both domain
experts and computer scientists; (2) ‘domain sole’, whichinvolves only
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domain experts; (3) ‘CS sole’, whichinvolves only computer scientists;
and (4) ‘others’, which involves neither domain experts nor computer
scientists. Next, we calculate the share of collaborative Al publications
(thatis, those in the ‘domain & CS’ type) for each discipline (see Sup-
plementary Note 6.1 for detailed methods). Here the calculation only
considers Al publications with at least two authors that were published
inthe period 1980-2019. Asrobustness checks, we also use an alterna-
tive approach to identify primary Al researchers (see Supplementary
Note 6.3 for detailed methods and results).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The MAG data are available at https://doi.org/10.5281/zenod0.6511057
(ref. 131) and ref. 132. The USPTO patent data are available at https://
patentsview.org. The OSP dataset is available from the paper at
https://doi.org/10.1073/pnas.1804247115. The SDR data are available
athttps://www.nsf.gov/statistics/srvydoctoratework, and the datasets
used inthis study are de-identified, containing only summary statistics
foreachdiscipline. The data met the assumption of testsin the analysis.
The data necessary to reproduce all main plots in this paper are avail-
able at https://kellogg-cssi.github.io/ai4science.

Code availability

Data are linked and analysed with customized code in Python 3 using
standard software packages within these programmes, including pan-
das1.3.5, numpy1.21.5, scipy 1.7.3, matplotlib 3.5.1, seaborn 0.11.2, spacy
3.7.2, nomquamgender 0.1.0, demographicx 0.0.1 and others. The
code necessary to reproduce all main plots and statistical analyses is
available at https://kellogg-cssi.github.io/ai4science.
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Study description A study to quantify the use and benefits of artificial intelligence for scientific research

Research sample We use 74.6 million publications from the Microsoft Academic Graph (MAG) database, 7.1 million patents from the USPTO
PatentsView database, 4.2 million course syllabi from the Open Syllabus Project (OSP), and demographic statistical data of
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