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Abstract. Atmospheric rivers (ARs) are synoptic-scale fea-
tures that transport moisture poleward and may cause short-
duration, high-volume melt events on the Greenland ice sheet
(GrIS). In contrast with traditional climate modeling studies
that rely on coarse (1 to 2°) grids, this project investigates
the effectiveness of variable-resolution (VR) grids in model-
ing ARs and their subsequent precipitation using refined grid
spacing (0.25 and 0.125°) around the GrIS and 1° grid spac-
ing for the rest of the globe in a coupled land–atmosphere
model simulation. VR simulations from the Community
Earth System Model version 2.2 (CESM2.2) bridge the gap
between the limitations of global and regional climate mod-
els while maximizing computational efficiency. ARs from
CESM2.2 simulations using three grid types (VR, latitude–
longitude, and quasi-uniform) with varying resolutions are
compared to outputs from two observation-based reanalysis
products, ERA5 and the Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2), using
a study period of 1 January 1979 to 31 December 1998.

The VR grids produce ARs with smaller areal extents and
lower area-integrated precipitation over the GrIS compared
to latitude–longitude and quasi-uniform grids. We hypothe-
size that the smaller areal AR extents in VR grids are due
to the refined topography resolved in these grids. In con-
trast, topographic smoothing in coarser-resolution latitude–
longitude and quasi-uniform grids allows ARs to penetrate
further inland on the GrIS. Precipitation rates are simi-
lar for the VR, latitude–longitude, and quasi-uniform grids;
thus the reduced areal extent in VR grids produces lower
area-integrated precipitation. The VR grids most closely
match the AR overlap extent and precipitation in ERA5 and

MERRA-2, suggesting the most realistic behavior among the
three configurations.

1 Introduction

Atmospheric rivers (ARs) are large filamentary structures
within the atmosphere that contain concentrated amounts of
water vapor. ARs originate in the low to middle latitudes
from synoptic-scale systems and subsequently travel pole-
ward. Nearly 90 % of total annual polar moisture transport is
attributed to ARs (Payne et al., 2020). While there is exten-
sive observation and modeling of ARs over the Pacific and
California coast (Huang et al., 2016, 2020; Rhoades et al.,
2020b), studies have only recently focused on ARs that reach
Greenland (Mattingly et al., 2018, 2020, 2023; Box et al.,
2022, 2023; Kirbus et al., 2023). In addition to bringing large
amounts of water vapor to the poles, ARs often bring warm
temperatures and contribute to snowmelt and ice melt (Bonne
et al., 2015; Mattingly et al., 2018, 2020, 2023; Box et al.,
2022). Polar regions are already sensitive to feedbacks and
warming-induced melting, and ARs can exacerbate extreme
melting events (Payne et al., 2020). For example, in July
2012 the Greenland ice sheet (GrIS) experienced a short-
duration, high-volume melt event in association with an AR
that caused substantial mass loss. Bonne et al. (2015) found
that during this event, surface mass balance fell 3 standard
deviations below the average value during this time of year
and surface melt covered 97 % of the GrIS. Before the 2012
event, the most recent instance of melt covering nearly the
entire GrIS was 1889 (Neff et al., 2014).
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Researchers have predicted and observed an increase in
both the frequency and the intensity of ARs as climate
change progresses (Lavers et al., 2015; Hagos et al., 2016;
Gershunov et al., 2017; Espinoza et al., 2018; Curry et al.,
2019; Huang et al., 2020; Zhang et al., 2021, 2023). This
trend suggests that ARs impacting the GrIS surface mass bal-
ance, such as the July 2012 event, will increase in frequency.
The GrIS has experienced multiple major melt events in re-
cent years, including one in August 2021 that was associated
with rainfall at Summit Station (Box et al., 2022) and one in
September 2022 when at least 23 % of the GrIS experienced
surface melt (C3S, 2023).

As climate models can help us understand AR dynamics,
it is important to determine the model configurations that
lead to the most accurate projections. Historically, latitude–
longitude grids have been used in climate modeling, but
they are highly anisotropic, with grid lines converging at
the poles (Fig. 1a–b). This convergence results in the “po-
lar problem”, which requires additional filters to stabilize
the numerics but which also degrades model throughput in
massively parallel systems (Herrington et al., 2022). In ad-
dition to this numerical instability, the “stretched” shape of
latitude–longitude grids leads to high resolution in the zonal
direction but lower resolution in the meridional direction.
For improved computational performance, many models use
quasi-uniform unstructured grids, e.g., the spectral-element
dynamical core (Lauritzen et al., 2018) (Fig. 1c–d). These
grids use a series of functions to produce grids cells that
are roughly equal in size throughout the entire modeling ex-
tent, in this case the globe. While these grids eliminate the
need for a polar filter and allow for increased computing ef-
ficiency, they have coarser spatial resolution in polar regions
compared to latitude–longitude grids. Another alternative to
traditional latitude–longitude grids common in weather pro-
jections (Copernicus, 2019; ECMWF, 2023) is the reduced
Gaussian grid, which employs quasi-uniformly spaced lati-
tude points and unevenly spaced longitude points to approxi-
mate uniform grid size across the globe, thus eliminating the
need for a polar filter. Variable-resolution (VR) grids, con-
figurations that have increased resolution (0.25 and 0.125°
in Fig. 1e and f, respectively) in an area of interest, may
alleviate some of the negative effects of latitude–longitude
schemes, such as the polar problem, while enabling high spa-
tial resolution in polar regions, though this comes at a higher
computational cost compared to coarse uniform grids.

Previous studies have shown the effects of grid configu-
ration choice on AR modeling (Hagos et al., 2015), though
questions remain, especially regarding high-latitude areas.
Other studies have found that increasing grid resolution
produces more accurate surface mass balance estimates on
the GrIS (Noël et al., 2018; Herrington et al., 2022). This
work will help the atmospheric community determine when
the more computationally expensive (relative to coarse uni-
form grid spacing) but finer-spatial-resolution VR grids are
most useful, especially given the limited in situ observa-

tions available for quantifying the effects of ARs over Green-
land on precipitation and surface mass balance. Models like
the Regional Atmospheric Climate Model (RACMO2) (Noël
et al., 2018) and other limited-area models also provide high
spatial resolution but may be limited by regional bound-
ary conditions and in their ability to simulate climate feed-
backs over multi-decadal timescales. In contrast, variable-
resolution grids provide an intermediate solution between
coarse-resolution coupled land–atmosphere models, such as
the Community Earth System Model version 2.2 (CESM2.2),
and fine-scale regional climate models that use observation-
based forcing data. This paper also details a replicable
method for tracking ARs in the Atlantic Arctic region over
a multi-decadal simulation, providing insight into and guid-
ance for the objective detection of ARs from model data.

This study takes advantage of pre-existing model output
from multi-decadal simulations and compares AR charac-
teristics and precipitation produced by six grid configura-
tions using CESM2.2 (Herrington et al., 2022): two latitude–
longitude grids, two quasi-uniform unstructured grids, and
two VR grids (Zarzycki and Jablonowski, 2015; Zarzycki
et al., 2015). The VR grids used in CESM2.2 employ grid
refinement to yield enhanced resolution around Greenland.
We hypothesize that the VR grids will simulate ARs more
accurately than the coarser-resolution grids through the bet-
ter resolution of fine-scale physical processes and topogra-
phy, as has been seen in other studies investigating mois-
ture intrusions in the Arctic (Ettema et al., 2009; Noël et al.,
2018; Bresson et al., 2022). Accurately modeling precipita-
tion from ARs is important because it has been suggested that
during early summer nearly 40 % of precipitation in Green-
land is due to ARs (Lauer et al., 2023). In our study, the
model output is compared to the climatology of ARs de-
tected by ERA5 and the Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2), two
observation-based meteorological reanalysis datasets, as in
other studies involving simulated ARs (Bresson et al., 2022;
Viceto et al., 2022; Zhou et al., 2022; Mattingly et al., 2023).
Section 2 describes the model grids, remapping workflow,
AR detection method, precipitation counting method, and
validation datasets used in this study. Section 3 contains the
main results and analyses performed in this project. Section 4
discusses the implications of these results. Section 5 summa-
rizes the main conclusions from our work and provides di-
rection for future research.

2 Methods

2.1 Model simulations

This study uses model output from the CESM2.2 simu-
lations described in Herrington et al. (2022). CESM2.2
contains multiple components, including the Community
Atmosphere Model version 6 (CAM6) (Craig et al., 2021;
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Gettelman et al., 2019), the Community Land Model ver-
sion 5 (CLM5) (Lawrence et al., 2019), a sea-ice model,
the CESM Community Ice Sheet Model (CISM) (Lipscomb
et al., 2019), and an ocean model. The simulations were con-
figured with the Atmospheric Model Intercomparison Project
protocols, which prescribe monthly sea-surface temperature
and sea ice following Hurrell et al. (2008), instead of using
fully coupled ocean and sea-ice models. CISM is not active
in the simulations.

CESM2.2 used CAM6 for its physics and atmosphere
components. The integrated vapor transport (IVT) fields
from the CAM6 simulations were used in AR detection
(uIVT, vIVT). CAM6 provided convective precipitation rates
and large-scale precipitation rates, which were summed to
reach the total atmospheric precipitation, at the lowest at-
mospheric level. All CAM6 data used in this study were
recorded at 6-hourly (instantaneous) output intervals. The
ERA5 and MERRA-2 precipitation variables are also total
precipitation; however they are recorded as 6-hourly aver-
ages, as opposed to instantaneous snapshots.

CESM2.2 used CLM5 for its land component. We used
the areal extent of ice based on CLM5 land units to define
the GrIS. For Greenland, land unit types include primarily
“glacier” and “vegetated/bare ground”. In our analyses, only
ARs touching glacier land unit types were considered.

Herrington et al. (2022) ran CESM2.2 simulations us-
ing six different grid resolutions (Table 1, Fig. 1) from
1 January 1979 to 31 December 1998. These include a 2°
latitude–longitude (LL) grid, LL_2° (Fig. 1a); a 1° LL grid,
LL_1° (Fig. 1b); a 1° quasi-uniform unstructured (QU) grid,
QU_1.0° (Fig. 1c); and another 1° QU grid but with the
physical parameterizations evaluated on a coarser 1.5° grid
(Herrington et al., 2019). We refer to this grid as QU_1.5°
(Fig. 1d), but note the dynamics are still evaluated on the
1° grid. Finally, we use two variable-resolution (VR) grids,
VR_0.25° (Fig. 1e) and VR_0.125° (Fig. 1f), with global
spacing of 1° and increased spacing of 0.25 and 0.125°, re-
spectively, around Greenland.

Earth’s topography is a boundary condition for CAM6 and
is based on a 1 km resolution dataset (Danielson and Gesch,
2011). Software for processing this topography into CAM6
boundary conditions is described in Lauritzen et al. (2015).
Figure 2 shows the impact of grid configuration on the res-
olution of the topography in Greenland. In the coarser grid
configurations, LL (Fig. 1a–b) and QU (Fig. 1c–d), the ele-
vation gradient from the coastal regions to the summit is not
well represented. Additionally, high elevations in the center
of the GrIS are smoothed in the coarser grids, resulting in a
flatter ice sheet. In comparison, the high-resolution VR con-
figurations (Fig. 1e–f) resolve gradients that are more similar
to the reanalyses.

2.2 Remapping

To control for the sensitivity of the algorithm of atmo-
spheric feature detection to grid structure and resolution, we
remapped the output from each simulation to the coarsest
LL grid (LL_2°) and the coarsest QU grid (QU_1.5°) us-
ing two remapping methods, thus resulting in four ensem-
ble members plus the two original coarsest grids (LL_2° and
QU_1.5°) for a total of six grid configurations. This was a
cautious choice as mapping to higher-resolution grids is in-
accurate for first-order methods. The two remapping methods
were ESMF (Balaji et al., 2021) and TempestRemap (Ullrich
and Taylor, 2015), both of which use conservative formula-
tions. For each simulation, the algorithm to identify and track
ARs described in Sect. 2.3 was run six times, once for each of
the four remapped ensemble members and the two coarsest
(LL_2° and QU_1.5°) grids.

2.3 Detecting atmospheric rivers

Synoptic storms were tracked using TempestExtremes v2.1
software for atmospheric feature detection (Ullrich et al.,
2021). This algorithm was chosen to detect ARs due to its
usage of the Laplacian of the IVT rather than the IVT alone.
The IVT is defined by

IVT =
p

uIVT2 + vIVT2, (1)

where uIVT and vIVT are pointwise vertically integrated
zonal and meridional vapor transport, respectively.

The gradients identified by the Laplacian method can de-
tect ARs more accurately because there will still be a steep
gradient between the AR itself and any surrounding moist
area, thus better constraining the geometry of the AR (Mc-
Clenny et al., 2020). Additionally, the use of IVT gradients
rather than IVT values themselves generalizes the detection
algorithm for use in climates with different amounts of atmo-
spheric water vapor.

While this Laplacian threshold detects AR geometry well,
it also allows non-AR features at high latitudes with similar
geometries to be classified as ARs (see Sect. 3.1). Previous
studies have noted the challenges of detecting polar atmo-
spheric rivers due to the eastward–westward wind patterns
that emerge (Rutz et al., 2019). There are many AR tracking
algorithms that exhibit different behaviors and are suited to
tracking ARs in specific locations (Shields et al., 2018). For
example, when detecting Antarctic ARs, trackers that em-
phasize zonal IVT produce more accurate ARs than other
algorithms (Shields et al., 2022). As our study focuses on the
impact of resolution on ARs, including a limited number of
high-latitude regions of moisture transport in the AR analysis
does not affect the results.

Two algorithms from the TempestExtremes v2.1 pack-
age were used to detect and track ARs: one for detect-
ing ARs (DetectBlobs) and one for stitching ARs to-
gether through multiple time steps (StitchBlobs). The de-
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Table 1. Description of grid configurations.

Grid name Grid typea Grid spacingb (°) 1xrefine
c (°) Ensemble membersd

LL_2° LL 2 – ESMF-QU_1.5°, TR-QU_1.5°, native
LL_1° LL 1 – ESMF-LL_2°, ESMF-QU_1.5°, TR-LL_2°, TR-QU_1.5°
QU_1.5° QU 1e – ESMF-LL_2°, TR-LL_2°, native
QU_1° QU 1 – ESMF-LL_2°, ESMF-QU_1.5°, TR-LL_2°, TR-QU_1.5°
VR_0.25° VR 1 0.25 ESMF-LL_2°, ESMF-QU_1.5°, TR-LL_2°, TR-QU_1.5°
VR_0.125° VR 1 0.125 ESMF-LL_2°, ESMF-QU_1.5°, TR-LL_2°, TR-QU_1.5°
ERA5 – 0.25 – ESMF-LL_2°, ESMF-QU_1.5°, TR-LL_2°, TR-QU_1.5°
MERRA-2 – 0.5 ⇥ 0.625 – ESMF-LL_2°, ESMF-QU_1.5°, TR-LL_2°, TR-QU_1.5°

a LL, latitude–longitude; QU, quasi-uniform; VR, variable resolution. b Average equatorial grid spacing. c Grid refinement for variable-resolution grids.
d Remapped configurations performed that were included in the final ensemble. ESMF-LL_2°/TR-LL_2° and ESMF-QU_1.5°/TR-QU_1.5° refer to
ESMF/TempestRemap methods which transformed native grids to LL_2° and QU_1.5°, respectively. Note that LL_2° and QU_1.5° grids were not remapped to
themselves; their native grid configurations were used. e While QU_1.5° has the same 1° spacing as QU_1°, QU_1.5° has reduced-physics resolution, therefore
degrading this 1° resolution.

Figure 1. Grids used in this study. (a–b) Latitude–longitude (LL) (a – LL_2°, b – LL_1°) grids with higher resolution in polar regions.
(c–d) Quasi-uniform (QU) (c – QU_1.5°, d – QU_1°) grids with more consistent resolution across the globe. (e–f) Variable-resolution (VR)
(e – VR_0.25°, f – VR_0.125°) grids with insets emphasizing the higher resolution in the Arctic and Greenland. Lower-resolution grids are
shown on the top row and high-resolution ones on the bottom row. Adapted from Herrington et al. (2022).

tection algorithm searches the global extent for ARs that
meet the following parameters: Laplacian of the IVT
< �30 000 kg m�2 s�1 rad�2, > 20° latitude, and areal ex-
tent � 566 666 km2. The Laplacian IVT threshold was cho-
sen based on Rhoades et al. (2020a), Patricola et al. (2020),
and Ullrich et al. (2021). Rhoades et al. (2020a) and Patricola
et al. (2020) chose an IVT of �50 000 kg m�2 s�1 rad�2, and
Ullrich et al. (2021) used �20 000 kg m�2 s�1 rad�2. The
stricter threshold (�50 000 kg m�2 s�1 rad�2) resulted in too
few ARs that made landfall in Greenland, but we still wanted
to exclude smaller ARs that may not be of consequence in the
GrIS. Thus, our threshold is in the middle of those used by
others. The areal extent was chosen conservatively as two-
thirds of the area of an average AR, which is 850 000 km2

(Alan Rhoades, personal communication, 2022).

The output of the detection algorithm is a binary mask
outlining candidate ARs, and the stitching algorithm is used
to connect the blobs in time, providing each AR with its
own unique identification number. The stitching algorithm
links the ARs detected at each time step by the detection
algorithm, rejecting candidate blobs that are not continu-
ous in time. Using these two algorithms together, we track
a single AR across its entire lifespan, from its origin in the
mid-latitude regions through poleward transport to eventual
dissipation. We chose to run the stitching algorithm using
standard default settings based on optimizations from Alan
Rhoades (personal communication, 2022). The number of
ARs varied based on whether the native grid was remapped
to LL_2° or QU_1.5° and the remapping method (Table 2). In
addition to this AR tracking, we inventoried the origin points
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Figure 2. Native topography of each CESM2.2 grid configuration and reanalysis dataset used in this study. (a, b) Latitude–longitude (LL)
(a – LL_2°, b – LL_1°) grids, (c, d) quasi-uniform (QU) (c – QU_1.5°, d – QU_1°), (e, f) variable-resolution (VR) (e – VR_0.25°, f –
VR_0.125°) grids, (g) ERA5, and (h) MERRA-2.

for each detected AR using the maximum IVT for that AR
when first detected.

2.4 Compositing variables

To analyze the effects of ARs on precipitation over the GrIS,
we first identified all ARs that overlap the GrIS at some point
in their lifetimes. We counted all ARs touching the glacier
land units of Greenland in CLM5, determined the overlap-
ping area of these ARs at each time step, and calculated inte-
grated precipitation from CAM6 output within these areas.

For each ensemble member, the tracker produces a binary
mask array, Bi

n(t), which contains 1s for times t and grid
columns n where blob number i is active and 0s elsewhere.
Note that there is only one horizontal dimension n, which
is the convention for unstructured grids; a second horizontal
dimension needs to be added when applying these equations
to LL grids, e.g., Bi

x,y(t).
We seek to find the time of maximum overlap for each

blob, t ic , which we define as the time index in which the blob
is maximally overlapping the GrIS. The area of the GrIS cov-
ered by blob i for time t is

ai(t) =
Xncol

n=1
1ai

n(t), (2)

where 1ai
n(t) is the overlap area between the GrIS and blob

i for each grid cell n,

1ai
n(t) = fn1AnB

i
n(t). (3)

Here 1An is area of each grid cell and fn is the fraction of
each grid cell covered by the GrIS. The time of maximum
overlap t ic is the time index t for each blob i where ai(t) is
a maximum. Of course, not all blobs descend upon the GrIS
throughout their lifetimes. We therefore redefine i to denote
the subset of blobs that overlap the GrIS at some point during
their lifetime.

The integration of any arbitrary horizontal variable (e.g.,
precipitation), xn(t), over the entire GrIS overlap area, co-
inciding with blob i in the vicinity of the time of maximum
overlap t ic + �t , is performed as

Xi(t ic + �t) =
ncolX

n=1
xn(t

i
c + �t)1ai

n(t
i
c + �t), (4)

whereas the area-average value of the variable xn for blob i

is

X
i
(t ic + �t) =

Pncol
n=1xn(t

i
c + �t)1ai

n(t
i
c + �t)

Pncol
n=11ai

n(t
i
c + �t)

. (5)

The time of maximum overlap t ic is used to provide a com-
mon reference time for averaging the integrated quantities Xi

over all blobs.
We ran this AR characterization process over each of the

four ensemble members (ESMF-LL_2°, ESMF-QU_1.5°,
TempestRemap-LL_2°, TempestRemap-QU_1.5°) and took
the average of each variable over the entire ensemble.

2.5 Validation

Reanalysis data from ERA5 and MERRA-2 were used to
validate the ensemble-generated AR variables. The same
remapping and compositing workflow that was applied to
CESM2.2 simulations was applied to reanalyses. Meteoro-
logical reanalysis datasets combine observational data with
a numerical atmosphere model to interpolate spatially and
temporally onto a global grid. ERA5 is the fifth reanalysis
dataset produced by the European Centre for Medium-Range
Weather Forecasts (Hersbach et al., 2020). ERA5 data have a
horizontal spatial resolution of roughly 27 km, and the vari-
ables chosen for this study have an hourly resolution, though
we reprocessed this to a 6-hourly resolution to match the time
steps in the CESM2.2 model outputs.

MERRA-2 uses available satellite data, observational data,
and the Goddard Earth Observing System (GEOS) model
to provide users with a spatially and temporally complete
dataset (Gelaro et al., 2017). MERRA-2 has a horizontal res-
olution of 56 km (latitude) ⇥ 69 km (longitude) and 3-hourly
temporal spacing, which we also reprocessed to a 6-hourly
resolution.

These two reanalysis datasets were cho-
sen for validation due to their frequent ap-
plication in prior studies (Bresson et al., 2022;
Marquardt Collow et al., 2022; Viceto et al., 2022;
Zhou et al., 2022; Mattingly et al., 2023). The CESM2.2
model data and ERA5 share an overlapping study period of
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Table 2. The number of ARs overlapping the GrIS.

ESMF TempestRemap

Grid name LL_2° QU_1.5° 1a LL_2° QU_1.5° 1a Averageb

LL_2° 381 339 42 381 281 100 346
LL_1° 431 420 11 510 356 154 429
QU_1.5° 474 485 11 632 485 227 499
QU_1° 483 447 36 596 458 138 496
VR_0.25° 441 404 37 572 405 167 456
VR_0.125° 397 359 38 520 359 161 409
ERA5 426 374 52 425 376 49 400
MERRA-2 517 467 50 519 472 47 494

a Difference (1) between LL_2°-detected and QU_1.5°-detected ARs overlapping the GrIS for each
remapping method. b The average takes into account ESMF-LL_2°, ESMF-QU_1.5°, TempestRemap-LL_2°,
and TempestRemap-QU_1.5°.

1979–1998. Given that the available MERRA-2 data begin
in 1980, we chose to include data available from 1980–1999
in order to maintain the same number of years in our study
period (1979–1998).

It is important to emphasize that CESM2.2 simulations are
free-running, coupled land–atmosphere climate simulations
constrained by monthly sea-surface temperature and sea-ice
extent but not by meteorological observations or reanaly-
sis. We therefore present climatological comparisons among
model configurations rather than historical observation-
based case studies.

3 Results

3.1 Frequency, seasonality, and origin locations of

atmospheric rivers

Between 7500 and 10 100 ARs were detected in the Northern
Hemisphere across the six model configurations and the two
reanalysis products between the years 1979–1998 (1980–
1999 for MERRA-2) (Fig. 3). As MERRA-2 includes a dif-
ferent year (1999) than the modeled outputs and ERA5, we
ensured that this year experienced a number of ARs that did
not vary greatly from 1979–1998 before including it in our
analysis. MERRA-2 resolved the highest number of ARs at
10 094, and the LL_2° detected the lowest number at 7514.
We used the number of ARs overlapping the GrIS (Table 2)
and ARs detected globally to calculate the percentage of ARs
overlapping the ice sheet. This metric only varied from 4.0 %
to 5.4 %, with ERA5 showing the lowest percentage of ARs
reaching the GrIS.

The seasonal distribution of ARs reaching Greenland indi-
cates that winter and spring generally have fewer ARs than
summer and fall (Fig. 4). One or both VR grids produce the
same median values as the reanalyses in every season. The
QU grids produce the largest number of outliers of the grid
configurations. When summed across the seasons, the num-

Figure 3. Average number of ARs in the Northern Hemisphere
among the ensemble (left axis, blue). The average percentage of
ARs overlapping the GrIS among the ensemble (right axis, green)
normalized by total ARs, calculated using data available in Table 2.

ber of ARs overlapping the Greenland ice sheet on an annual
basis ranged from 10–37 per year depending on the grid con-
figuration and specific year. There are large variations from
year to year among the grid configurations, as is expected.
The reanalyses produce annual variations that are similar to
the spread of modeled simulations, therefore suggesting that
the models produce ARs within or close to the bounds of re-
analysis products.

Figure 5 shows the origin locations for each AR that even-
tually overlaps the GrIS during summer months. The origin
locations are determined by searching for the grid cell with
the maximum IVT inside the AR at the first time that the AR
is detected. Note that the location at which an AR forms is
sensitive to the Laplacian of the IVT threshold used to iden-
tify ARs; a lower threshold means weaker IVT gradients and
therefore designates AR origin points at lower latitudes ear-
lier in the lifespan of an AR. Most ARs overlapping the GrIS
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Figure 4. The number of ARs overlapping the Greenland ice sheet by season. Winter was defined as December through February, spring
as March through May, summer as June through August, and fall as September through November. Seasonal distributions include 20 years
of data (1979–1998) using values from each of the four remapped ensemble members (N = 80). The orange line in the center of each box
signifies the median value, and box lower and upper boundaries describe the 25 % and 75 % quartiles, respectively. The whiskers extend from
the box to the 1st and 99th percentiles. Outliers outside these percentiles are indicated as open circles.

during these months formed over the central United States
from around 30–45° latitude. The next most frequent location
for AR formation is over the western Atlantic at similar lati-
tudes. While ARs are defined as originating in low to middle
latitudes and transporting water vapor poleward, the detec-
tion algorithm identifies a small number of air masses with
IVT characteristics above our detection threshold that orig-
inate at high latitudes. If these persist between time steps,
the combination of the detection algorithm and the stitch-
ing algorithm categorizes them as ARs and they are retained
in our analysis. Despite these outliers occurring at high lati-
tudes, the majority of identified source regions are consistent
with atmospheric rivers developing along mid-latitude storm
tracks in relation to the baroclinic instability of extratropical
cyclones. The reanalyses have more ARs that originate in the
equatorial Atlantic compared to the model simulations.

3.2 Areal extent of atmospheric rivers

The areal extent describes the union of regions on the GrIS
that overlap an AR for a particular grid configuration in this
study. The VR simulations have the smallest footprints and
are most similar to the reanalyses (Table 3). In nearly all
cases, remapping to the QU_1.5° grid yields smaller foot-
prints than remapping to LL_2°.

The variation in footprint size is mainly due to the spatial
distribution of ARs across the GrIS (Fig. 6). ARs most fre-
quently make landfall with the southwestern and southeast-
ern margins of the GrIS, and the number of ARs per grid cell
rapidly declines moving inland for all configurations. ARs
modeled with LL and QU grid configurations travel further
inland than in the VR grids and reanalyses. It should also be
noted that fewer ARs make landfall in the northern portions

of the GrIS in ERA5 than in any of the other configurations.
This lack of northern ARs (Fig. 6) explains why ERA5 has
the lowest areal extent in Table 3.

3.3 Number and size of atmospheric rivers

Figure 7a shows the number of ARs that eventually overlap
the GrIS relative to the time of maximum overlap. Roughly
20 %–25 % of the ARs that make landfall have already
formed 5 d before the time of maximum overlap (Fig. A1).
This number of ARs increases until the time of maximum
overlap, with the largest increase from 5 d to 2 d before the
time of maximum overlap. This increase up to 1 d before the
time of maximum overlap is likely due to ARs forming at
high latitudes (Fig. 5). After the time of maximum overlap
(i.e., Day 0; Fig. 7a), the number of ARs decreases for all grid
configurations and reanalyses. The number of ARs 1 d after
the time of maximum overlap is 25 %–50 % lower than the
number of ARs during the time of maximum overlap. This
means that many ARs rapidly dissipate, suggesting a large
moisture transfer from the ARs to the GrIS, although some
ARs do continue evolving until around 5 d past the time of
maximum overlap.

Figure 7b describes the number of ARs overlapping the
GrIS relative to the time of maximum overlap. The peak
storm count at the time of maximum overlap in Fig. 7b is
equal to the ensemble average of storm counts in Table 2.
The QU grids produce more ARs than the rest, with LL,
VR, and MERRA-2 in the middle and ERA5 producing the
least. Figure 7b also shows that the majority of ARs pass
over Greenland in 2 d, which is supported by previous re-
search (Mattingly et al., 2020; Box et al., 2023). However,
it seems that outside of the ± 1 d window from maximum
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Figure 5. Origin of summer ARs that overlap the GrIS in JJA. The size and color of the dots indicate the number of ARs originating at a
given location and the ensemble member represented, respectively.

Table 3. Area of ARs overlapping the GrIS.

Grid name LL_2° areal extent QU_1.5° areal Average areal
(km2)a extent (km2)b extent (105 km2)c

LL_2° 1.09 ⇥ 106 9.37 ⇥ 105 10.1
LL_1° 1.25 ⇥ 106 1.17 ⇥ 106 12.1
QU_1.5° 1.33 ⇥ 106 1.18 ⇥ 106 12.5
QU_1° 1.05 ⇥ 106 9.82 ⇥ 105 10.2
VR_0.25° 8.55 ⇥ 105 8.67 ⇥ 105 8.6
VR_0.125° 9.80 ⇥ 105 8.46 ⇥ 105 9.1
ERA5 6.07 ⇥ 105 5.11 ⇥ 105 5.6
MERRA-2 7.11 ⇥ 105 6.29 ⇥ 105 6.7

a Values are the average of each of the LL_2° ensemble members (ESMF-LL_2°,
TempestRemap-LL_2°). b Values are the average of each of the QU_1.5° ensemble members
(ESMF-QU_1.5°, TempestRemap-QU_1.5°). c Values are the average of each of the four
ensemble members (ESMF-LL_2°, ESMF-QU_1.5°, TempestRemap-LL_2°,
TempestRemap-QU_1.5°).
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Figure 6. Spatial distribution of ARs over the GrIS using grid configurations remapped to LL_2° and QU_1.5°.

overlap, the agreement between outputs degrades. Addition-
ally, outside of that 1 d window, few ARs actually overlap the
GrIS (< 10 ARs). Thus, needing a larger sample size to cal-
culate meaningful statistics later on, we chose to analyze the
ARs over the course of 2 d, centered by the time of maximum
overlap.

There is a consistent and smooth increase in AR size for
all grid configurations and the reanalyses 2 d before maxi-
mum overlap (Fig. 7c). This increase continues until 1 d be-
fore maximum overlap, when all configurations produce a
sharp decrease in AR size due to a rapid reduction in mois-
ture and/or winds. The QU configurations produce the largest
ARs for almost the entire study period. After the time of max-
imum overlap, all of the simulations and reanalyses indicate
changes in IVT that result in the AR area increasing in size
again.

The area of an AR overlapping the GrIS also varies during
its lifespan (Fig. 7d). In general, only a very small portion
of each AR overlaps the GrIS. Average AR areas range from
140–200 ⇥ 1010 m2 but less than 5.0 ⇥ 1010 m2 of any AR
overlaps the GrIS even during its time of maximum overlap.
The LL_2° simulations have the largest overlap area during
the time of maximum overlap and onward despite not having
the largest AR area (Fig. 7c). Though the QU grids produce
the largest ARs (Fig. 7c), they do not have the largest area of
overlap with the GrIS. Reanalyses and the VR grids consis-
tently produce smaller overlap areas.

3.4 Precipitation

When we plot the annual mean precipitation rate for all
model grids and reanalyses on their native grids (Fig. 8), the
lower-resolution grids tend to produce higher precipitation in
the interior of the ice sheet, most notably over the southern
dome of the GrIS. While the climatological mean precipita-
tion rate is not exclusively from ARs, it exhibits a similar res-
olution sensitivity to our AR composite precipitation (Fig. 7).

ARs affecting Greenland make landfall on the coasts and
travel inland. At this point, much of the moisture is deposited
as precipitation and the storm dissipates. Figure 9 shows the
composite precipitation map of all ARs as they travel over
their storm path for one particular grid configuration and
remapping scenario. The precipitation rates are largest at the
time of maximum overlap with the GrIS, when the storms are
at their most inland extent.

We used a 2 d window centered on the day of maximum
AR overlap (Fig. 10a) to composite the area-average cumu-
lative AR precipitation (hereafter, precipitation rate), using
Eq. (5). At the end of the 2 d window, there is a difference
of around 30 mm between the highest and lowest precipita-
tion rates from the grid configurations and reanalyses. The
configuration LL_1° produces the highest rate of precipita-
tion, while MERRA-2 and LL_2° produce the lowest. ERA5
also produces magnitudes and trends of precipitation that are
similar to the six modeled outputs.

Figure 10b compares the 95th-percentile AR precipitation
rates. At the end of the study period, the 95th-percentile AR
precipitation rates differ by about 40 mm, which is similar to
the mean precipitation rates. Aside from the scales, the main
difference between the mean and extreme rates is the order-
ing of the model grid configuration. VR_0.125°, VR_0.25°,
and LL_1° produce higher precipitation rates than MERRA-
2 and ERA5. This could be related to the model outputs being
calculated using 6-hourly instantaneous output, whereas the
observation-based data use 6-hourly averages.

Figure 10c compares the average area-integrated cumu-
lative precipitation (hereafter, area-integrated precipitation)
(Eq. 4), showing variation among model outputs and the two
reanalyses. Area-integrated precipitation varies from around
0.7 Gt in ERA5 to 2.5 Gt in LL_2°. The two QU grids pro-
duce precipitation at the higher end of the spread, followed
by LL_1°. The two VR grids simulate lower area-integrated
precipitation than the other model grids. Both reanalyses

https://doi.org/10.5194/wcd-5-1117-2024 Weather Clim. Dynam., 5, 1117–1135, 2024



1126 A. Waling et al.: Using variable-resolution grids to model precipitation from atmospheric rivers

Figure 7. (a) The number of ARs that eventually overlap the GrIS
as a function of time, normalized as days relative to the time of
maximum overlap with the GrIS, and (b) the number of ARs over-
lapping the GrIS. (c) The area (m2) of ARs that eventually overlaps
the GrIS and (d) the area (m2) of ARs that overlaps the GrIS.

produce less precipitation compared to the CESM2.2 model
grids, though MERRA-2 produces similar precipitation mag-
nitudes to VR_0.125°. There is a difference of about 0.1 Gt
between VR_0.125° and MERRA-2 and about 0.4 Gt be-
tween VR_0.125° and ERA5. The trends in the rate of in-
crease in the area-integrated precipitation are different than
those seen in the precipitation rate (Fig. 10a); the highest rate
of increase is during the day preceding the maximum over-
lap for all grid configurations except for LL_2°, after which
it begins to slow.

Figure 10d compares the 95th-percentile area-integrated
precipitation. VR_0.125° and VR_0.25° are the most sim-
ilar model outputs to MERRA-2 and ERA5. In particular,
VR_0.125° and MERRA-2 only differ by around 0.5 Gt in
the extreme ARs.

A shortcoming of our approach is that we only composite
the precipitation inside the tracked feature; however precipi-
tation associated with an AR may include regions outside the
tracked feature. Figures 11 and 12 show snapshots from the
models and reanalyses, respectively, of the 95th-percentile
ARs near the time of their maximum overlap with Greenland,
and the outline of the detected feature is in magenta. The de-
tected feature represents the moist core of the AR, which,
unlike the larger synoptic system, does not overlap a large
portion of land at any point throughout its life cycle (Fig. 7d).
The snapshots indicate that the warm front out ahead of the
AR core contributes a substantial amount of the storm’s pre-
cipitation, which has been neglected from our precipitation
composites thus far.

Figure 13a quantifies the impact of including regions out-
side the core of the AR on compositing precipitation due to
that AR. It shows the precipitation rates over the 2 d window
with respect to the radius of the expanded composite area. If
a GrIS grid point lies within a radial great-circle distance to
any point in the detected feature, it is included in the com-
posite. From around 200 to 500 km, the precipitation rates
steadily decrease, as regions are incorporated with smaller-
magnitude precipitation rates in the composite. From 500 km
onward, the precipitation rates decrease at a slower rate, sug-
gesting a transition to the marginal outer regions of the syn-
optic system which may not be exclusively associated with
the storm itself. All model outputs and reanalyses exhibit
similar behavior, mainly differing in their maximum precip-
itation rates, with LL_1° having the largest and MERRA-2
the smallest.

Figure 13c shows the 2 d area-integrated precipitation
with respect to the radial great-circle distance. Similarly to
the precipitation rates, the integrated precipitation does not
change from 0 to 100 km, as we are analyzing model and re-
analysis output mapped to the two coarsest-resolution grids.
From 200 to 500 km, the area-integrated precipitation in-
creases due to incorporating a larger area of the GrIS, which
has, however, smaller precipitation rates (Fig. 13a). In com-
bining Fig. 13a and c, we can estimate that most GrIS precip-
itation which is associated with an AR occurs within around
500 km of the tracked feature. At this 500 km mark, the re-
analyses produce between 4.0 and 4.5 Gt of precipitation
with both VR outputs well within these bounds. The LL and
QU produce between 4.5 and 5.5 Gt, and the differences be-
tween VR and LL/QU are even larger at the 1200 km dis-
tance. While the coarser grids overestimate GrIS precipita-
tion from ARs, LL_1.0° is by far the most skillful (Figs. 10c
and d and 13c). This is due to the approximate 0.5° repre-
sentation of the GrIS on the LL_1.0° grid (Herrington et al.,
2022).

The 95th-percentile AR precipitation rate (Fig. 13b) and
area-integrated precipitation (Fig. 13d) exhibit a similar de-
pendence on the great-circle distance to the mean ARs,
although with larger magnitudes. At a radial distance of
500 km, the reanalyses produce roughly 13 Gt of precipita-

Weather Clim. Dynam., 5, 1117–1135, 2024 https://doi.org/10.5194/wcd-5-1117-2024



A. Waling et al.: Using variable-resolution grids to model precipitation from atmospheric rivers 1127

Figure 8. Annual mean precipitation rates (mm d�1) for grids and reanalyses used in this study, plotted on their native grids.

Figure 9. Average precipitation rates (mm d�1) over the GrIS during ARs that make landfall in an example from VR_0.125° remapped to
LL_2° using ESMF (n = 520 ARs). Time t indicates the time of maximum overlap for the AR over the GrIS.

tion, which is extremely well captured with VR outputs. At
500 km, the LL and QU grids produce between 15–17 Gt
of precipitation. However, unlike the mean ARs, there is
no reduction in the precipitation rate from 0 to 200 km in
both reanalysis products. As was suggested for the smaller-
magnitude precipitation rates in the reanalysis (Fig. 10b), this
might be due to differences in tracking features and com-
positing precipitation using 6-hourly average reanalysis out-
put instead of 6-hourly instantaneous output.

The time averaging smooths the precipitation and IVT
fields over a length scale determined by the storm’s motion
and overall evolution, as well as length of time. This averag-
ing degrades the representation of individual features, which
is consistent with only small variations in precipitation in the
vicinity of the AR boundary in the reanalyses (Fig. 13b). We
estimate the impact of time averaging on the VR_0.25° run
(Fig. 13b). The dashed purple line shows the 95th-percentile
precipitation rate after two-point-averaging the 6-hourly in-
stantaneous output for tracking the AR and compositing pre-
cipitation in the VR_0.25° run. The averaging reduces the
magnitude of the precipitation rate and also reduces the vari-
ation across the inner 200 km radial distance (Fig. 13b). The
reanalysis precipitation rates at the scale of the detected fea-
tures are smoothed by the time averaging and cannot serve
as a reliable model target for area averages over the detected
features (Eq. 5; Fig. 10). That is, we do not conclude that the

VR precipitation rates are overestimated in Fig. 10 but rather
suggest that the reanalysis precipitation rates and (related)
area-integrated precipitation are underestimated.

The 6-hourly time averaging does not impact the precipi-
tation rates when averaged over larger areas. The VR_0.25°
precipitation rates are insensitive to two-point averaging
when integrated out to the 500 km radial AR boundary
(Fig. 13b). We conclude, based on Fig. 13c–d, that the VR
grids are able to reproduce the reanalysis and are therefore
skillful at simulating precipitation on the GrIS due to ARs.

4 Discussion

We hypothesize that the higher and steeper topography re-
solved in VR grids and the reanalyses prevents ARs from
penetrating as far inland as the ARs do in the LL and QU
grids. The finer-resolution VR grids and reanalyses produce
smaller ARs (Fig. 7c), consistent with more precise track-
ing of atmospheric moisture. However, the large GrIS over-
lap of ARs in LL_2° (Fig. 7d) is not related to the size of
ARs prior to landfall (Fig. 7c), supporting the hypothesis that
topographic smoothing explains the variations in AR areal
overlap with the GrIS.
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Figure 10. Cumulative precipitation metrics centered around the time of maximum AR overlap with the GrIS, including the (a) mean area-
average precipitation rate, (b) 95th-percentile precipitation rate, (c) mean area-integrated cumulative precipitation, and (d) 95th-percentile
cumulative precipitation over the GrIS. Time t indicates the time of maximum overlap for ARs over the GrIS. Precipitation is derived from
6-hourly average samples for ERA5 (PRECT), the 6-hourly average for MERRA-2 (PRECTOT), and 6-hourly instantaneous output for all
model simulations (PRECC + PRECL).

Coarser grids require more topographic smoothing to pre-
vent the excitation of inaccurate grid-scale modes in the dy-
namical core (Lauritzen et al., 2015). In the LL and QU grids,
topographic smoothing is ubiquitous across the GrIS (Fig. 2)
and allows moisture to penetrate further into the interior of
the ice sheet, reducing orographic lifting that would other-
wise drain ARs of their moisture and cause them to dissipate
(Pollard, 2000; Box et al., 2023). For example, the LL_2°
grid has the lowest maximum elevation for the GrIS and the
largest AR areal extent. In contrast, the VR grids and reanal-
ysis datasets all have similar topography, capturing high ele-
vations and steep elevational gradients across the GrIS.

The differences in area-integrated precipitation among
grid configurations (Figs. 10c–d, 13c–d) reflect the areal ex-
tents of ARs over the GrIS (Table 3, Fig. 7d). As the pre-
cipitation rates are similar across all grids, simulated ARs
that cover a larger areal extent of the GrIS deposit more total
precipitation. ERA5 produces the lowest area-integrated pre-
cipitation, followed by MERRA-2 and both VR grids, with
the LL and QU grids producing the most precipitation. These
findings are consistent with the sensitivity of the mean an-
nual precipitation and mass balance across grid resolutions in
prior VR CESM studies (Herrington et al., 2022; van Kamp-
enhout et al., 2020).

Previous studies support our hypothesis. Huang et al.
(2016) and Rhoades et al. (2020b) have shown that the ability
of VR grids to better resolve ARs in regions of complex to-
pography leads to improved simulated climate and snowpack
in California. Ikeda et al. (2010, 2021) have found similar
results describing the high resolution needed to resolve pre-
cipitation and flow around steep topography in the western

United States. Regional modeling studies from Ettema et al.
(2009) and Franco et al. (2012) have also found that reduced
topographic smoothing for higher-resolution simulations im-
proves storm precipitation in Greenland.

The origin locations and behavior of modeled ARs aligned
with observations. We found that many ARs overlapping
the GrIS initially form over the mid-latitude central United
States (Fig. 5), consistent with Neff et al. (2014). Our track-
ing algorithm also identified a subset of ARs at unchar-
acteristically high latitudes, suggesting that a more polar-
optimized tracking algorithm should be used around Green-
land (Shields et al., 2023). Alternatively, these high-latitude
ARs might challenge the typical definition of ARs – does an
AR need to form at low to middle latitudes, or are there ac-
tually ARs forming at such high latitudes, as Komatsu et al.
(2018) and Mattingly et al. (2023) suggest?

ERA5 and MERRA-2 differ in their geographic distribu-
tion of ARs over the GrIS, suggesting the need to consider
multiple reanalyses when studying precipitation from ARs
in Greenland. While VR grids and MERRA-2 produce many
ARs making landfall in the northern regions of the GrIS,
ERA5 shows very few. Recent studies investigating ARs im-
pacting the northern GrIS support the finding that ARs do
occur at such high latitudes in this region (Mattingly et al.,
2023).

5 Conclusions

This study uses CESM2.2 simulations from Herrington et al.
(2022) to compare six grids in modeling ARs and related pre-
cipitation over the GrIS. The 1–2° LL grid configurations
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Figure 11. The 95th-percentile ARs and precipitation rates produced by LL, QU, and VR configurations on four different dates. ARs are
outlined in magenta. Black contours are sea level pressure anomalies with 5 hPa intervals. Dates are not specified as model runs are freely
evolving and do not reflect historical conditions.

provide enhanced resolution over polar regions with some
reduction in resolution caused by a polar filter to prevent nu-
merical instability. Two QU grids maintain roughly 1–1.5°
uniform resolution across the globe. To study the impact
of resolution on ARs around the GrIS, we compare simu-
lations using these four coarser grids to two VR grids using
a spectral-element dynamical core (dycore), VR_0.25° and
VR_0.125°.

We developed a method that maps all output to the two
coarsest model grids using two different remapping meth-
ods to account for uncertainty in comparing AR statistics in
model simulations and reanalysis products across vastly dif-
ferent grids. We use the overlap area of an AR and the GrIS

to determine how AR characteristics and precipitation vary
based on grid configuration. This method identifies precipi-
tation from regions of the GrIS that an AR is directly overlap-
ping at a point in time and sums the precipitation in each of
these regions by grid configuration. This allows for a robust
comparison of precipitation across grids with realistic uncer-
tainty. We also employ a method that expands on the area
directly below an AR to better estimate precipitation derived
from these events. Ideally this method can also be applied
to other variables relevant to ARs and the GrIS, including
snowmelt and radiative fluxes (Mattingly et al., 2020; Kirbus
et al., 2023).
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Figure 12. The 95th-percentile ARs and precipitation rates produced by MERRA-2 and ERA5 reanalyses on four different dates. ARs are
outlined in magenta. Black contours are sea level pressure anomalies with 5 hPa intervals. Dates are not specified for the model AR example
figure (Fig. 11) and therefore are also not given for this comparison reanalysis figure.

Figure 13. (a) Mean precipitation rates, (b) 95th-percentile precipitation rates, (c) mean area-integrated precipitation, and (d) 95th-percentile
area-integrated precipitation over the GrIS compared to the radial great-circle distance of GrIS grid points to ARs. The radial great-circle
distance (km) describes the distance of each grid point on the GrIS to an AR. Precipitation is derived from 6-hourly instantaneous output
in the model runs, whereas the reanalyses use 6-hourly averaged precipitation. The dashed purple line in (b) is the VR_0.25° run but using
two-point averaging to estimate the impact of using averaged variables in the reanalyses.

We find that the topographic resolution of the grid
likely constrains AR penetration into the GrIS. In coarser-
resolution grids, there is greater topographic smoothing of
the GrIS and ARs can travel further inland. As precipita-
tion rates do not vary greatly across grid configurations, the
overlap extent of ARs largely determines the simulated pre-
cipitation falling onto the GrIS. Additionally, we see con-
sistent patterns that characterize AR behavior and lifespan
around the GrIS. In the CESM2.2 simulations and reanaly-
ses, most ARs only overlap the GrIS for around 1 to 2 d. ARs
increase in intensity prior to landfall, and immediately before

the time of maximum overlap, ARs experience a “draining
period” and decrease in size, likely due to orographic uplift
that drains the ARs of their moisture. The role of smoothed
topography could be further explored by running the model
with the VR grid but using the same lower-resolution topog-
raphy as the coarser grids.

Finally, we find that the VR grids produce AR areal ex-
tents, area-integrated precipitation, and AR sizes that are
most similar to the reanalysis datasets ERA5 and MERRA-
2. All CESM2.2 simulations produce higher values for all
three AR metrics than the reanalyses. Although VR grids de-
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viate somewhat from the reanalyses, VR grids outperform
the LL and QU grids used in our study and have resolutions
approaching regional climate models but at lower computa-
tional costs. We therefore recommend that modeling studies
of ARs around Greenland consider using CESM2.2 VR grid
configurations as an alternative to uniform grids.

Appendix A: The 10 d atmospheric river size and

Greenland ice sheet intersection simulation

Figure A1. (a) The number of ARs that eventually overlap the GrIS as a function of time, normalized as days relative to the time of maximum
overlap with the GrIS, and (b) the number of ARs overlapping the GrIS. (c) The area (m2) of ARs that eventually overlaps the GrIS and
(d) the area (m2) of ARs that overlaps the GrIS, showing that only a small portion of each AR overlaps the GrIS. As data are noisy at the
beginning and end of the 10 d period, the main text only includes ±2.5 d.
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adamrher/storms-greenland (last access: 9 September 2024,
https://doi.org/10.5281/zenodo.13738307, Waling and Herrington,
2024).
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