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Abstract—We introduce FinSTS, a novel dataset for financial
semantic textual similarity (STS), comprising 4,000 sentence pairs
from earnings calls and SEC filings. To improve models for
the Financial STS task, we propose an active learning (AL)
algorithm that efficiently selects informative sentence pairs for
annotation by GPT-4 and creates high-quality training data.
Using this approach, we train FinSentenceBERT, a model that
generates semantic embeddings specifically for financial text.
FinSentenceBERT establishes a new performance benchmark on
FinSTS, outperforming models that use basic pooling strategies
or are fine-tuned on general datasets. Surprisingly, a general
SBERT model trained using our AL approach surpasses even
models based on FinBERT, a language model pre-trained on
financial text. Our research contributes a specialized dataset,
model, and methodology that advance semantic understanding
in the financial domain, with potential applications to other
specialized domains.

Index Terms—BERT, Representation learning, Active learning,
Text similarity

I. INTRODUCTION

Semantic Textual Similarity (STS) is a fundamental task
in natural language understanding that assesses the degree
of semantic equivalence between sentence pairs [1]. In the
financial domain, STS techniques enable the semantic com-
parison and understanding of vast amounts of textual data,
including regulatory filings, news articles, analyst reports, and
social media content [2]. Recent studies have demonstrated
the value of STS in various financial applications, for ex-
ample, generating industry classifications based on product
descriptions [3], quantifying corporate cultural values [4], and
analyzing the effects of horizontal acquisitions on market
power [5]. These diverse applications highlight the importance
of accurate, scalable measurement of text similarity in financial
texts to transform research and decision-making.

Traditional methods for computing financial text similar-
ity often rely on lexical semantics based on bag-of-words
representations [6] and fail to capture the semantic meaning
and context of words. Advancements in pre-trained language
models (PLMs), such as BERT [7], show promise in capturing
semantic relationships between sentences by pre-training the
encoder using masked language modeling and next sentence
prediction objectives, which enable the model to learn contex-
tual representations of words and sentences.

Researchers have adapted the BERT model to the financial
domain by training the model from domain-specific corpora,
resulting in models like FinBERT [8]. Compared to general-
domain PLMs, FinBERT excels at text classification tasks,
including tone classification and Environmental, Social, and
Governance (ESG) classification. However, its capacity for
STS remains unexplored. To measure the similarity between
sentences, it may seem logical to directly compute the co-
sine similarity between the mean-pooled token embeddings
generated by a BERT model. Yet this method often produces
less accurate results than simpler techniques like averaging
GloVe vectors [9]. To address these limitations, Reimers and
Gurevych [9] propose Sentence-BERT (SBERT), a fine-tuned
version of BERT using siamese networks to derive semanti-
cally meaningful sentence embeddings. SBERT significantly
enhances PLMs’ performance on STS tasks such as clustering
and information retrieval. The success of SBERT in general-
domain STS tasks highlights the potential for developing a
similar approach tailored to the financial domain. Can we
leverage the power of domain-adapted PLMs like FinBERT
to generate semantically rich sentence representations for
financial texts?

To address this research question, we aim to construct
a financial STS (FinSTS1) dataset and develop a FinSen-
tenceBERT2 model. Constructing a high-quality dataset for
FinSTS tasks is non-trivial due to the requirement of capturing
gradations of meaning overlap between sentence pairs. Unlike
binary classification, STS datasets need to reflect the degree
of semantic similarity [1]. The examples are typically scored
on an ordinal scale ranging from no meaning overlap (0)
to complete semantic equivalence (5). Annotating financial
sentence pairs requires careful consideration of both pragmatic
and world knowledge. A diverse set of sentence pairs are also
needed to represent the subtleties of semantic similarity in
different contexts. In addition, we need to carefully consider
which pairs of sentences to annotate. Annotating a large
number of randomly selected sentence pairs could result in
examples that are either highly similar or dissimilar, which
provide little value for training and evaluation.

1https://huggingface.co/datasets/syang687/FinSTS
2https://huggingface.co/syang687/FinSentenceBERT
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We propose a two-stage solution. In the first stage, which
occurs before model training, we construct a large pool of
unlabeled sentence pairs from financial reports and earnings
calls. We then employ various sampling strategies to ensure
a diverse representation of semantic patterns. We develop a
financial STS gold set consisting of 4,000 sentence pairs.
This gold set serves as a benchmark for model evaluation and
testing.

In the second stage, we introduce an Active Learning (AL)
algorithm to strategically select the most informative sentence
pairs for annotation during model training. AL is a promising
approach to address the challenges of dataset construction by
focusing labeling the most valuable instances [10], [11]. While
recent studies have demonstrated the value of AL for various
classification tasks [10], the potential of AL combined with
BERT for the STS task remains unexplored. Our AL algorithm
integrates sentence pair selection with model training, itera-
tively selecting pairs that the model is most uncertain about
and updating the training set accordingly. To efficiently label
the selected pairs, we leverage the GPT-4 model, which offers
high-quality annotations at a lower cost and time compared to
traditional human labeling. We validate the quality of GPT-4
labels against human annotations on a subset of the gold set,
which confirms its reliability for the AL process. This process
results in a FinSentenceBERT model built upon the siamese
network structure of the SBERT model [9].

Using the FinSTS dataset, we compare the performance
of various embedding techniques in the financial domain, in-
cluding mean-pooling of vanilla BERT/FinBERT, well-trained
general-domain SBERT models, BERT/FinBERT models fine-
tuned on the general-domain STS benchmark (STSb) dataset,
as well as the improvement brought by AL. We find that: 1)
mean pooling of vanilla FinBERT outperforms those of the
general BERT models; 2) fine-tuning BERT and FinBERT on
the STSb dataset improves upon the mean pooling approach
and results in the fine-tuned BERT surpassing the fine-tuned
FinBERT; and 3) our AL algorithm can further enhance model
performance and narrow 95% confidence interval of model
test performance, which suggests that the model is better-
performed and more stable due to the AL. Surprisingly, the
best-performing model is a general-domain SBERT model
combined with AL, which outperforms the FinBERT model
fine-tuned on STSb and then enhanced with AL.

The main contributions of this paper are as follows:
• We construct the FinSTS dataset, a benchmark dataset for

financial semantic textual similarity.
• We develop a FinSentenceBERT model for generating

semantically meaningful sentence embeddings in the fi-
nancial domain.

• We introduce an AL algorithm to optimize sentence pair
selection for annotation during STS model training, and
demonstrate its value for the FinSTS task.

• We compare the performance of various sentence embed-
ding models in finance.

Overall, the FinSTS dataset offers a new benchmark for
evaluating financial semantic textual similarity, while the

FinSentenceBERT model empowers finance researchers to
explore novel applications and derive insights from financial
text data. For example, it has the potential to enhance firm-
based similarities across various dimensions, including product
markets and innovation, and enables text-based measurement.
These resources provide a foundation for future research and
innovation in financial text analysis.

II. RELATED WORK

Our work is primarily related to adapting and evaluating
STS to various specialized domains, e.g., healthcare [12], [13],
academic literature [14], and legal studies [15]. The accurate
measurement of semantic similarity between text pairs is es-
sential for tasks like information retrieval, summarization, and
QA. The STS benchmark (STSb) dataset [1], a general-domain
dataset constructed by selecting labeled English pairs from
SemEval and SEM STS shared tasks, provides a foundation for
comparable assessments across different research efforts and
improved tracking of the state-of-the-art in semantic textual
similarity. However, each domain presents unique challenges
due to its specific terminology, complex concepts, and dif-
ferences in semantics, which can hinder the effectiveness of
general-purpose STS models.

Various domain-specific STS datasets, as listed in Table I,
have been developed to address these challenges and facilitate
research on domain-adapted STS models. For instance, the
SPICED dataset [16] is a collection of scientific finding
pairs annotated for information change to analyze scientific
communication, including pairs from original papers and their
corresponding news articles and tweets. The MedSTS dataset
[12] is curated from clinical sentences de-identified from
multiple patient records, with similarity scores computed using
surface lexical similarity metrics. The CORD19-STS dataset
[13] is generated from the CORD19 Open Research Dataset
(CORD19) challenge, with sentence pairs scored for similarity
using a SCI-BERT model fine-tuned with CORD-19 text.
Despite the growing interest in domain-specific STS, there
remains a paucity of datasets and models tailored to the fi-
nancial domain, which is characterized by its unique language
and semantic structures. The FinSTS dataset introduced in this
paper aims to bridge this gap.

TABLE I
EXAMPLES OF DOMAIN-SPECIFIC STS RESEARCH

Dataset # Pairs Domain Annotators Labels
SPICED
[16]

6,000 Scientific
Findings

Experts Information Match-
ing Scores (1-5)

CORD19-
STS [13]

13,710 COVID-
19

AMT users Related, Somewhat-
related, Not-related

MedSTS
[12]

1,068 Clinical Medical
experts

Similarity Scores
(0-5)

STSb [1] 8,628 General AMT users Similarity Scores
(0-5)

While these domain-specific datasets have advanced STS
research, general-purpose language models like BERT still
face challenges in accurately capturing semantic similarity in
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Fig. 1. Flow Chart of Analysis

specialized domains. PLMs, such as BERT [7], have signif-
icantly advanced the state-of-the-art in various NLP tasks.
BERT learns contextual representations of words by pre-
training on large corpora using masked language modeling
and next sentence prediction objectives. However, BERT has
limitations when generating well-performing embeddings for
single sentences [9]. Common practices for converting BERT
outputs to sentence embeddings, such as averaging contextual
token embeddings or using the [CLS] token embedding, often
yield suboptimal results compared to simpler methods like
GloVe embeddings [17].

To address this limitation, several unsupervised methods
have been proposed to tune PLMs for better sentence embed-
dings. Recent work include SimCSE [18], BERT-Whitening
[19], and TSDAE [20]. These methods utilize contrastive
learning, isotropy enhancement, and sequential denoising auto-
encoders to improve sentence embeddings without the need
for labeled data. Supervised learning methods, on the other
hand, tend to achieve better results. Sentence-BERT (SBERT)
[9] adapts the BERT model using siamese networks and fine-
tunes it on the STS benchmark (STSb) dataset [1] and Natural
Language Inference (NLI) datasets for improved sentence-
level comparisons. This approach of training on annotated
datasets leads to a large improvement in performance. How-
ever, a large amount of labeled training data is required,
which can be expensive and time-consuming to obtain espe-
cially in domain-specific settings like finance. Striking a bal-
ance between supervised and unsupervised methods is crucial
for developing effective domain-specific STS models. Active
learning techniques strategically select the most informative
instances for labeling. As such, they can potentially bridge
this gap by reducing the annotation effort while maintaining
high performance [10], [11].

Finally, our work is inspired by FinBERT [8], a finance
domain-specific adaptation of BERT. FinBERT is developed
using a large corpus of financial texts, including corporate
annual and quarterly filings, financial analyst reports, and
earnings conference call transcripts. This domain-specific pre-
training allows FinBERT to better capture contextual informa-
tion and incorporate finance knowledge compared to general-
purpose language models. Huang et al. [8] demonstrate Fin-
BERT’s superior performance in sentiment classification tasks
using analyst report sentences labeled by researchers as the
primary benchmark. FinBERT achieves substantially higher
out-of-sample accuracy than other popular approaches in fi-
nance and accounting research, such as dictionary-based, naı̈ve
Bayes, support vector machines, random forests, convolutional
neural networks, and LSTMs. The advantage of FinBERT over
other algorithms, including Google’s original BERT model, is
especially prominent when the training sample size is small
and in texts containing financial words not frequently used
in general texts. Additionally, FinBERT outperforms other
models in identifying discussions related to ESG issues.

Despite the promising results of FinBERT in domain-
specific classification tasks, its potential for STS tasks remains
unknown. Combining the domain-specific pre-training of Fin-
BERT with fine-tuning techniques like the ones for SBERT
could potentially yield powerful models for domain-specific
STS tasks in the financial domain. However, the effectiveness
of this combination is not guaranteed and may depend on
various factors such as the quality and quantity of the training
data and the specific characteristics of the financial STS task.

III. DATA AND METHODOLOGY

In this section, we detail our approach to constructing the
FinSTS dataset and developing the FinSentenceBERT model.
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We propose a multi-stage approach (see Figure 1). The cor-
nerstone of our method is an Active Learning (AL) algorithm
that strategically selects the most informative sentence pairs
for annotation, while iteratively refining the FinSentenceBERT
model to capture subtle semantic differences in financial texts.

We prepare three key components before employing the AL
algorithm. First, we compile a diverse pool of over 1 million
unlabeled financial sentence pairs, sourced from earnings call
transcripts and 10-K filings spanning 2011 to 2022. Second,
we curate a gold FinSTS dataset of 4,000 labeled sentence
pairs that serve as a benchmark for model evaluation. Third,
we select a small initial training set of sentence pairs based
on the uncertainty of predictions from an ensemble of general-
domain Sentence-BERT models to kick-start the FinSentence-
BERT model fine-tuning process. The following subsections
provide a detailed description of each stage.

A. Financial Text Sources

We focus on two primary sources of financial texts: earnings
call transcripts and three key sections of 10-K filings from
2011 to 2022. The selected 10-K sections include Item 1
(Business Description), Item 1A (Risk Factors), and Item 7
(Management’s Discussion and Analysis). These sections are
chosen for their informational value to investors [21]. By
incorporating both formal writing and conversational language,
our dataset captures a comprehensive view of financial dis-
course. We extract individual sentences from these sources
using the NLTK sentence tokenizer [22], resulting in a corpus
of approximately 119.7 million financial sentences from 10-K
filings and earnings call transcripts.

The extracted 119.7 million financial sentences are prepro-
cessed and filtered to include only those with more than five
tokens, excluding sentences consisting of meaningless tokens
such as page or line breakers. From this filtered set, 24 million
sentences are randomly sampled, with each set of 1 million
sentences drawn equally from the 12 years (2011-2022) and
the two financial text sources. This approach balances compu-
tational efficiency with comprehensive coverage across time
and text sources.

B. Construction of FinSTS Dataset

To capture the diversity and complexity of financial lan-
guage, we construct the FinSTS dataset in a multi-step process.
First, we select 3,600 anchor sentences to capture a wide range
of semantic patterns and topics in financial texts. Then, we
pair anchor sentences with selected sentences from the large
corpus, yielding a pool of 1.044 million candidate sentence
pairs. Finally, we generate the FinSTS Gold Set by labeling a
subset of the candidate pairs, including randomly selected pairs
and pairs with high semantic similarity but low lexical overlap,
so that the dataset contains an even distribution of various
degrees of semantic similarities. The following subsections
discuss these steps in detail.

1) Anchor Sentences Selection: We select a total of 3,600
diverse anchor sentences from the 24 million sentences (150
anchor sentences from each set of 1 million sentences). To

accommodate the strategy of pairing anchor sentences with
their consecutive sentences, we exclude the beginning and end-
ing sentences of each 10-K filing and earnings call transcript.
The selection process involves iterating through each sentence
in each set of 1 million sentences, computing the following
two selection metrics for each sentence based on the already
selected anchor sentences, and selecting the sentence as an
anchor if both metrics meet their threshold conditions.

To ensure semantic diversity among the selected anchor
sentences, we employ a weighted n-gram diversity metric, ex-
tending the diversity metric of the Density Weighted Diversity
Ensemble (DWDS) [23]:

β(sa,S, n) =
∑

x∈n-gram(sa)
I(x /∈ n-gram(S))

|n-gram(sa)|
, (1)

Weighted-β(sa,S,WN=3) =
N∑

n=1,wn∈WN

wnβ(sa,S, n),

(2)

where
N∑

n=1,wn∈WN

wn = 1.

In these equations, sa is a given sentence, S is the set of
currently selected anchor sentences, n-gram(·) generates a set
of n-grams for the given text, I(·) is an indicator function, and
wn ∈ WN is the weight for the n-gram diversity value. We
set N to 3 and define WN=3 as {0.6, 0.3, 0.1}, the weights
for unigram, bigram, and trigram diversity values. Equation (1)
calculates the proportion of unique n-grams in sa compared to
the n-grams in S . Equation (2) computes the weighted average
of each n-gram diversity value, computed with equation (1),
for n ∈ {1, . . . , N}. We select financial sentences as anchor
sentences if their weighted diversity exceeds 0.6.

However, n-gram diversity alone does not guarantee seman-
tic diversity, as it does not consider the semantic meaning
of sentences. Therefore, we incorporate a cosine similarity
metric based on the average FinBERT embeddings of given
sentences:

yFinBERT =
z1 · z2
∥z1∥∥z2∥

(3)

where zi = FinBERT(si) is the average FinBERT embedding
of a sentence si.

We compute the similarities of sa with sentences in S and
take the maximum similarity score. We set different cosine
similarity thresholds for 10-K filings (0.65) and earnings con-
ference calls (0.7) to account for the varying levels of semantic
richness in these documents. Financial sentences are selected
as anchor sentences if their maximum similarity score is
below the threshold and they meet the n-gram diversity metric
condition. This similarity-based selection criterion ensures that
the highest inter-similarity among selected anchor sentences is
lower than the threshold, promoting semantic diversity.

A sentence is selected as an anchor if its weighted n-gram
diversity exceeds 0.6 and its maximum cosine similarity score
is below the respective threshold. This process continues until
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150 sentences are selected from each set of 1 million sentences
sampled from a specific year’s 10-K filings or earnings call
transcripts. If 150 sentences cannot be collected with the set
thresholds, we adjust either the diversity metric threshold to
0.57 or the cosine similarity metric threshold to 0.715. As a
result, a total of 3,600 anchor sentences are selected from the
24 million sentences.

2) Candidate Sentences Pairs Selection: After selecting
3,600 anchor sentences, we pair them with other sentences
to form a semantically rich pool of 1.044 million sentence
pairs. We employ two strategies in the pairing process, aiming
to maximize semantic pattern diversity. One strategy pairs
each anchor sentence with the consecutive sentences before
and after it [13]. Another strategy focuses on two dimensions:
temporal & source diversity, and semantic diversity. For tem-
poral & source diversity, we pair sentences from the same or
different years and sources relative to the anchor sentences.
For semantic diversity, we use cosine similarities of average
FinBERT embeddings to construct pairs with various similarity
ranges. We consider incorporating an n-gram overlap metric
based on the n-gram diversity metric but decide against it due
to computational time constraints.

The second sampling strategy involves constructing two
sentence pairs within the same similarity range for each anchor
sentence using the 24 sets of 1 million sentences from each
year’s 10-K filings or earnings call transcripts. We set six
similarity bins, each corresponding to one-sixth of the interval
between 0 and 1. These bins match the 0-5 similarity scores
in our FinSTS dataset. The cosine similarity function outputs
scores between -1 and 1, but most of the resulting scores are
between 0 and 1. We interpret scores below 1

6 as indicating
no similarity. This process results in 1.044 million sentence
pairs, with 7,200 based on the first strategy and 1,036,800
(3, 600 × 2 × 6 × 24) based on the second strategy. Overall,
this approach ensures the diversity of candidate sentence pairs.

3) Construction of the FinSTS Dataset: We construct a
FinSTS gold set containing 4,000 annotated sentence pairs.
Initially, we randomly select sentence pairs from the pool of
unlabeled candidate sentence pairs for annotation. However, an
inspection of these pairs reveals an unbalanced distribution of
similarity levels, with most pairs concentrated at the lower end
of the 0-5 scale. To investigate the source of this imbalance,
we evaluate the similarity distributions of pairs based on the
cosine similarity scores from average FinBERT embeddings.
We sample four sets of 100 pairs with extreme ranges of these
similarity scores: less than 0.05, less than 0.1, greater than
0.9, and greater than 0.95. The analysis shows that pairs with
scores above 0.95 have more diverse similarity levels, while
pairs in other ranges are predominantly at the lower end of
the scale, aligning with the overall distribution of the initial
inspection.

To balance the dataset, we focus on the 12,076 pairs with
scores above 0.95 among the candidate sentence pairs. We
aim to include pairs with less lexical overlap to diversify
the patterns of sentence pairs in the gold set. To determine
lexical overlap levels, we compute cosine similarity scores of

term frequency-inverse document frequency (TF-IDF) repre-
sentations (abbreviated as TF-IDF scores). For each anchor
sentence, we select the two pairs with the lowest TF-IDF
scores. We then include more pairs with less lexical overlap
by choosing those with TF-IDF scores less than 0.3, set after
examining actual lexical overlap levels and TF-IDF scores
of many pairs. In fact, pairs constructed with many anchor
sentences have TF-IDF scores higher than 0.3. This selection
strategy results in 2,771 pairs.

The 2,771 pairs are combined with a subset of those
randomly selected 4,000 pairs to construct the final gold set.
The gold set consists of 4,000 pairs, labeled with GPT-4 model
and later validated by four finance experts (see section III-D).
The gold set is split into a development set of 2,001 pairs
and a test set of 1,999 pairs. The distribution of labels in the
development and test sets is shown in Table II.

TABLE II
DISTRIBUTION OF LABELED SENTENCE PAIRS IN FINSTS

Label # Pairs in Dev Gold Set # Pairs in Test Gold Set
0 655 687
1 221 167
2 43 72
3 178 362
4 696 385
5 208 326

Total 2,001 1,999

C. Active Learning Algorithm

The active learning (AL) algorithm strategically selects the
most informative sentence pairs for labeling and iteratively
refines a FinSentenceBERT model. This section describes the
construction of the initial training set and the AL algorithm
framework.

1) Initial AL Training Set Construction: The AL algorithm
starts with an initial training set. This initial training set should
be diverse, informative, and representative of the challenges
posed by the financial domain. We leverage the knowledge
of 10 SBERT models that have the best performance on both
general-domain STS and FinSTS (see Table IV). As noted
earlier, these SBERT models are pre-trained language models
(PLMs) fine-tuned on a combination of STS and Natural
Language Inference (NLI) datasets, which enable them to
produce high-quality sentence embeddings.

For each of the 1.04 million unlabeled candidate sentence
pairs, we compute 10 cosine similarity scores using the
sentence embeddings generated by these top SBERT models.
We then select pairs for labeling using two criteria based
on the ensemble of SBERT models: the top 4,000 variances
and the top 4,000 prediction ranges of the 10 similarity
scores. Variance quantifies the level of disagreement among
the 10 similarity scores. A high variance indicates that the
SBERT models, despite their strong performance on general-
domain STS tasks, are uncertain about the predicted sentence
embeddings and similarity level for a given financial pair. This
uncertainty suggests that the pair contains informative signals
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that can potentially improve the FinSentenceBERT model’s
understanding of financial language semantics. Similarly, a
wide prediction range of the 10 similarity scores signifies
a high level of deviation and uncertainty in the models’

Algorithm 1 Active Learning for Sentence Embedding

1: Input: unlabeled sentence pair set U ← {(su1 , su2 )}
|U|
u=1,

initial train STS set L0
train ← {(si1, si2, yi)}

|L0
train|

i=1 , gold
development STS set Ldev, gold test STS set Ltest, 10
SBERT similarity matrix Ŷ10 SBERTs ∈ R10×|U|, selection
strategy ϕ(·), max number of pairs to select N , max
iterations T , number of training epochs E, batch size B,
weight decay λ, learning rate η, Convergence threshold ϵ.

2: Output: Train STS set Ltrain, FinSentenceBERT M∗

3: Initialize: a PLM (e.g., FinBERT) with mean pooling
layer M∗(0), Best validation score ρ

∗(0)
dev ← 0, Index set

of unlabeled sentence pairs I ← {1, 2, . . . , |U|}
4: for each iteration t = 1 to T do
5: K ← ⌈ |L

t−1
train |
B ⌉ ▷ Number of training steps per epoch

6: V ← K
10 ▷ Evaluation step

7: ρ
∗(t)
dev ← 0 ▷ Record the current best validation score

8: M(t,0,0) ←M∗(t−1) ▷ Align model notations
9: for each epoch e = 1 to E do

10: for batch B ⊂ L(t−1)
train of size B and k = 1:K do

11: j ← K(e− 1) + k ▷ Training steps per iter
12: M(t,e,k) ← Train(M(t,e−1,k−1),B(t,e)k , η, λ)
13: if j mod V = 0 then ▷ For every V th step
14: ρdev ← Evaluate(M(t,e,k),Ldev)
15: end if
16: if ρdev exists and ρdev > ρ

∗(t)
dev then

17: ρ
∗(t)
dev ← ρdev

18: M∗(t) ←M(t,e,k) ▷ Save the best model
19: end if
20: end for
21: end for
22: ρdev ← Evaluate(M(t,E,K),Ldev)

23: if ρdev > ρ
∗(t)
dev then

24: ρ
∗(t)
dev ← ρdev

25: M∗(t) ←M(t,E,K)

26: end if
27: ρ

∗(t)
test ← Evaluate(M∗(t),Ltest) ▷ Evaluate on test set

28: ŷM∗(t) ← CosineSimilarity(M∗(t),U) ∈ R1×|U| ▷
Compute cosine similarity scores of unlabeled pairs

29: Utop, Itop ← SelectTopN(ϕ(Ŷ10 SBERTs, ŷM∗(t)), N) ▷
Select top N pairs

30: Ltop ← GPTLabel(Utop) ▷ Label new pairs
31: Lt

train ← L
t−1
train ∪ Ltop ▷ Update training set

32: U ← U \ Utop ▷ Update unlabeled pair pool
33: Ŷ10 SBERTs ← Ŷ10 SBERTs[:,I\Itop] ▷ Update the matrix
34: if |ρ∗(t)dev − ρ

∗(t−1)
dev | < ϵ then break▷ Convergence test

35: end if
36: end for
predictions, and the potential value of the corresponding
sentence pairs for the AL process. These informative sentence

pairs constitute the initial AL training set. Next, we introduce
the AL algorithm that iteratively refines the model while
minimizing the required annotation effort.

2) Active Learning Algorithm: The AL algorithm is out-
lined in Algorithm 1. The algorithm requires several inputs:
a pool of unlabeled sentence pairs (U), an initial training
set (L0

train), a gold set (Ldev,Ltest) for evaluation and testing,
similarity scores from 10 SBERT models (Ŷ 10 SBERTs) for
each unlabeled pair, a scoring function (ϕ) to assess the
informativeness of each pair, and various hyperparameters
controlling the learning process.

At each iteration (t), the algorithm trains the FinSentence-
BERT model (M(t,e,k)) using the current AL training set
(Lt−1

train) and evaluates its performance on the gold development
set (Ldev) every V steps. The best-performing model (M(t))
and its corresponding validation score (ρ(t)dev) are saved. The
algorithm then uses the fine-tuned model to compute similarity
scores (ŷM∗(t) ) for the unlabeled sentence pairs and selects
the top N pairs (Utop) with the highest selection scores from
the scoring function (ϕ) or the highest mean squared error
(MSE) between the FinSentenceBERT and SBERT scores in
this study. These pairs are considered the most informative and
are labeled using the GPT-4 model (Ltop ← GPTLabel(Utop))
and added to the training set for the next iteration.

The use of the GPT-4 model for labeling in the AL
algorithm offers several advantages over traditional human
annotation. GPT-4 can efficiently handle domain-specific ter-
minology and sentence complexity, and can significantly re-
duce annotation time and cost. Additionally, GPT-4 provides
labeling explanations for verification of label accuracy. To
validate the quality of GPT-4 annotations, we compare them
with human annotations, as detailed in section III-D. The
analysis shows that GPT-4 annotations are highly consistent
with human judgments, and confirms the reliability of using
GPT-4 for labeling.

The algorithm continues the iterative process until one of
two stopping criteria is met: reaching the maximum number
of iterations (T ) or the improvement in the model’s perfor-
mance on the development set falling below the convergence
threshold (ε). The final outputs include an enhanced training
set (Ltrain) that captures various aspects of the unlabeled
sentence pair pool and a fine-tuned FinSentenceBERT model
(M∗) capable of producing semantically meaningful sentence
embeddings in the financial domain.

D. Quality of GPT-4 Labeling for Financial STS Tasks

To validate the quality of GPT-4 labels, we compare GPT-4
annotations with human annotations. We randomly split the
4,000 pairs in FinSTS annotated by GPT-4 into four parts and
have them annotated by four human experts. These experts are
finance students who independently provide similarity scores
for each pair. The analysis shows that GPT-4 annotations
are highly consistent with human judgments. For 92% of
the sentence pairs, the GPT-4 label falls within 1 point of
the human label on the 0-5 similarity scale. The correlation
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coefficient between GPT-4 and human labels is 0.91, demon-
strating that GPT-4 can reliably annotate financial sentence
pairs, comparable to human experts.

Additionally, using GPT-4 for labeling offers significant
efficiency and cost benefits. With the GPT-4 turbo API, anno-
tating a batch of 10 sentence pairs takes less than 30 seconds
and costs approximately $0.025. In contrast, traditional human
annotation methods, such as using Amazon Mechanical Turk
(AMT) workers, can cost around $1 per batch of 20 pairs [1].
Moreover, GPT-4 can provide labeling explanations alongside
the similarity scores, facilitating easy verification of label
accuracy and traceability of the labeling logic. Obtaining such
explanations from human annotators would require significant
additional time and cost.

To ensure the robustness of GPT-4 annotations, we imple-
ment several measures. We adapt the annotation guidelines
from the STS benchmark dataset [1] and incorporate them
into the prompts, along with example sentence pairs and
their expected labels. This guides GPT-4 towards providing
annotations consistent with the desired similarity scale. We
also employ prompt engineering techniques, such as shuffling
the order of sentence pairs and providing clear instructions,
to mitigate potential biases and inconsistencies in GPT-4’s
responses.

IV. EXPERIMENTS AND RESULTS

TABLE III
PERFORMANCE OF MODELS ON FINSTS

Model Spearman Correlation

Mean-Pooling PLMs

BERT 75.58 ± 1.08
distillRoBERTa 74.44 ± 1.01
FinBERT 76.55 ± 0.88

Top General-domain SBERTs

stsb-mpnet-base-v2 82.68 ± 0.67
stsb-roberta-base 82.06 ± 0.67
nli-mpnet-base-v2 81.98 ± 0.66

PLMs Trained on STSb

BERT+STSb 80.79 ± 0.77
FinBERT+STSb 80.59 ± 0.68

Fine-tuned with AL

Before AL After AL

BERT 75.58 ± 1.08 76.59 ± 0.96
distillRoBERTa 74.44 ± 1.01 79.00 ± 0.91
FinBERT 76.55 ± 0.88 79.92 ± 0.83
FinBERT+STSb 80.59 ± 0.68 80.97 ± 0.67
SBERT (stsb-mpnet-base-v2): 82.68 ± 0.67 82.89 ± 0.65

We implement the active learning (AL) algorithm with the
following hyper-parameters as specified in Algorithm 1:

1) The maximum number of selected pairs (N) is set to
200 per iteration for diversity in training set updates;

2) The total number of iterations (T ) is set to 15 to balance
convergence speed and stability;

3) The number of epochs (E) is set to 2 to prevent
overfitting and maintain computational efficiency;

4) The batch size (B) is set to 16, the maximum allowed
by our 40GB GPU memory;

5) The weight decay rate (λ) is set to 0.01 to prevent
overfitting;

6) The learning rate (η) is set to 2e-05, a common choice
for fine-tuning general-domain SBERT models, balanc-
ing convergence speed and stability; and

7) The model convergence rate (ϵ) is set to 1e-05.
Table III compares various sentence transformer models on

the FinSTS dataset labeled by GPT-4. The 95% confidence
intervals, computed using 500 bootstrapped samples from the
test set, reflect model variability and ensure robust comparison.

Our initial experiments with the mean-pooled pre-trained
FinBERT model as the FinSentenceBERT model in the AL
algorithm show significant improvement, with the test corre-
lation score increasing from an average of 76.55% to 79.92%.
However, the model encounters a performance plateau around
80%, even after hyper-parameter tuning. We observe that nine
out of ten SBERT models achieve test correlation scores higher
than 80% (see Table IV), with the top three models shown in
Table III for comparison.

TABLE IV
PERFORMANCE OF SBERT MODELS ON STS AND FINSTS

Model Name STSb FinSTS
stsb-mpnet-base-v2 88.57 82.68
stsb-roberta-base-v2 87.21 81.37
nli-mpnet-base-v2 86.53 81.97
stsb-distilroberta-base-v2 86.41 81.35
stsb-roberta-large 86.39 81.55
nli-roberta-base-v2 85.54 79.88
stsb-roberta-base 85.44 82.05
stsb-bert-large 85.29 81.9
stsb-distilbert-base 85.16 80.81
stsb-bert-base 85.14 81.21

To investigate whether this bottleneck is specific to Fin-
BERT, we test two other BERT-family models: the pre-trained
uncased BERT base model [7] and the distilled version of the
case-sensitive RoBERTa base model [24]. While both models
show improvements after running the AL algorithm, they yield
lower test correlation scores than FinBERT.

Observing that eight out of the nine best-performing SBERT
models are fine-tuned using the STS benchmark dataset, we
incorporate this dataset into our training process. We train the
mean-pooled FinBERT (FinBERT+STSb) and uncased BERT
base (BERT+STSb) models for 10 epochs on the STS bench-
mark dataset’s training set, evaluating them with the financial
development gold set during training. Both models surpass the
80% test performance mark, with BERT+STSb slightly out-
performing FinBERT+STSb. Running the AL algorithm with
FinBERT+STSb further improves its test performance from an
average of 80.59% to 80.97%, outperforming BERT+STSb.

Despite these improvements, the fine-tuned models still
underperform compared to the top three SBERTs. To address
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this, we employ the AL algorithm with the best-performing
stsb-mpnet-base-v2 model, which slightly enhances its av-
erage performance from an average of 82.68% to 82.89%,
achieving the best results in our experiments. We denote this
best-performing model as FinSentenceBERT. Table III shows
that AL further enhances model performance and makes the
fine-tuned models more robust as implied by their narrower
confidence intervals after running AL.

V. CONCLUSION

We introduce the FinSTS dataset and FinSentenceBERT
model to advance semantic textual similarity in finance. Fin-
STS captures diverse financial texts and sets a new benchmark
for evaluating STS models in finance. FinSentenceBERT,
developed using an active learning algorithm with GPT-4 an-
notations, is validated against human judgments, confirming its
effectiveness as a cost-efficient alternative to manual labeling.
Experimental results show FinSentenceBERT’s superiority in
capturing financial semantics, outperforming other benchmark
models. Notably, a general-domain SBERT model trained with
the proposed active learning method surpasses FinBERT-based
models. The active learning method consistently improves
model performance and narrows down the 95% confidence
intervals on FinSTS test set, highlighting its effectiveness.

By generating high-quality vector representations for fi-
nancial texts, FinSentenceBERT supports various financial
NLP tasks, including information retrieval, topic modeling,
text regression, classification, and sentiment analysis [25].
In unsupervised learning, the embeddings facilitate clustering
and similarity analysis, such as comparing financial disclo-
sure similarities between firms [26]. In supervised learning,
the embeddings can train models for tasks like bankruptcy
prediction [27], fraud detection, and risk factor prediction.
FinSentenceBERT’s strong performance suggests its potential
to significantly enhance financial text processing and decision-
making.

Our framework for developing domain-specific language
models can be adapted to other specialized domains. Future
research directions include evaluating learned representations
for downstream financial NLP tasks and extending the active
learning approach to other data types.

REFERENCES

[1] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “SemEval-
2017 Task 1: Semantic Textual Similarity - Multilingual and Cross-
lingual Focused Evaluation,” in Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 1–14,
arXiv:1708.00055 [cs].

[2] S. H. Teoh, “The promise and challenges of new datasets for accounting
research,” Accounting, Organizations and Society, vol. 68-69, pp. 109–
117, Jul. 2018.

[3] G. Hoberg and G. Phillips, “Text-based network industries and endoge-
nous product differentiation,” Journal of political economy, vol. 124,
no. 5, pp. 1423–1465, 2016.

[4] K. Li, F. Mai, R. Shen, and X. Yan, “Measuring corporate culture using
machine learning,” The Review of Financial Studies, vol. 34, no. 7, pp.
3265–3315, 2021.

[5] M. Fathollahi, J. Harford, and S. Klasa, “Anticompetitive effects of hor-
izontal acquisitions: The impact of within-industry product similarity,”
Journal of Financial Economics, vol. 144, no. 2, pp. 645–669, 2022.

[6] T. Loughran and B. McDonald, “Textual analysis in finance,” Annual
Review of Financial Economics, vol. 12, pp. 357–375, 2020.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[8] A. H. Huang, H. Wang, and Y. Yang, “FinBERT: A Large Language
Model for Extracting Information from Financial Text*,” Contemporary
Accounting Research, vol. 40, no. 2, pp. 806–841, 2023.

[9] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” Aug. 2019, arXiv:1908.10084 [cs].

[10] L. E. Dor, A. Halfon, A. Gera, E. Shnarch, L. Dankin, L. Choshen,
M. Danilevsky, R. Aharonov, Y. Katz, and N. Slonim, “Active learning
for bert: an empirical study,” in Proceedings of the 2020 conference on
empirical methods in natural language processing (EMNLP), 2020, pp.
7949–7962.

[11] W. Liang, G. A. Tadesse, D. Ho, L. Fei-Fei, M. Zaharia, C. Zhang,
and J. Zou, “Advances, challenges and opportunities in creating data for
trustworthy ai,” Nature Machine Intelligence, vol. 4, no. 8, pp. 669–677,
2022.

[12] Y. Wang, N. Afzal, S. Fu, L. Wang, F. Shen, M. Rastegar-Mojarad, and
H. Liu, “MedSTS: a resource for clinical semantic textual similarity,”
Language Resources and Evaluation, vol. 54, no. 1, pp. 57–72, Mar.
2020.

[13] X. Guo, H. Mirzaalian, E. Sabir, A. Jaiswal, and W. Abd-Almageed,
“CORD19STS: COVID-19 Semantic Textual Similarity Dataset,” Nov.
2020, arXiv:2007.02461 [cs].

[14] N. Evangelopoulos, X. Zhang, and V. R. Prybutok, “Latent Semantic
Analysis: five methodological recommendations,” European Journal of
Information Systems, vol. 21, no. 1, pp. 70–86, Jan. 2012.

[15] I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androut-
sopoulos, “LEGAL-BERT: The Muppets straight out of Law School,”
Oct. 2020, arXiv:2010.02559 [cs].

[16] D. Wright, J. Pei, D. Jurgens, and I. Augenstein, “Modeling infor-
mation change in science communication with semantically matched
paraphrases,” 2022.

[17] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), A. Mos-
chitti, B. Pang, and W. Daelemans, Eds. Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1532–1543.

[18] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning
of sentence embeddings,” in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2021.

[19] J. Su, J. Cao, W. Liu, and Y. Ou, “Whitening sentence representations for
better semantics and faster retrieval,” arXiv preprint arXiv:2103.15316,
2021.

[20] K. Wang, N. Reimers, and I. Gurevych, “Tsdae: Using transformer-based
sequential denoising auto-encoderfor unsupervised sentence embedding
learning,” in Findings of the Association for Computational Linguistics:
EMNLP 2021, 2021, pp. 671–688.

[21] A. H. Huang, R. Lehavy, A. Y. Zang, and R. Zheng, “Analyst Informa-
tion Discovery and Interpretation Roles: A Topic Modeling Approach,”
Management Science, vol. 64, no. 6, pp. 2833–2855, Jun. 2018.

[22] S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly
Media, Inc.”, 2009.

[23] X. Zeng, S. Garg, R. Chatterjee, U. Nallasamy, and M. Paulik, “Em-
pirical Evaluation of Active Learning Techniques for Neural MT,” in
Proceedings of the 2nd Workshop on Deep Learning Approaches for
Low-Resource NLP (DeepLo 2019), C. Cherry, G. Durrett, G. Foster,
R. Haffari, S. Khadivi, N. Peng, X. Ren, and S. Swayamdipta, Eds.
Hong Kong, China: Association for Computational Linguistics, Nov.
2019, pp. 84–93.

[24] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” 2020.

[25] N. Webersinke, “Natural Language Processing meets Accounting and
Finance: Review and Performance Comparison of Textual Analysis
Approaches,” Rochester, NY, Jul. 2023.

[26] G. Hoberg and C. Lewis, “Do fraudulent firms produce abnormal
disclosure?” Journal of Corporate Finance, vol. 43, pp. 58–85, Apr.
2017.

[27] F. Mai, S. Tian, C. Lee, and L. Ma, “Deep learning models for
bankruptcy prediction using textual disclosures,” European Journal of
Operational Research, vol. 274, no. 2, pp. 743–758, Apr. 2019.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 14,2025 at 19:22:06 UTC from IEEE Xplore.  Restrictions apply. 


