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We report the first lattice QCD computation of pion and kaon electromagnetic form factors,
Fr(Q?), at large momentum transfer up to 10 and 28 GeV?, respectively. Utilizing physical masses
and two fine lattices, we achieve good agreement with JLab experimental results at Q% < 4 GeV2.
For Q > 4 GeV?, our results provide ab-initio QCD benchmarks for the forthcoming experiments

at JLab 12 GeV and future electron-ion colliders.

We also test the QCD collinear factorization

framework utilizing our high-Q? form factors at next-to-next-to-leading order in perturbation theory,
which relates the form factors to the leading Fock-state meson distribution amplitudes. Comparisons
with independent lattice QCD calculations using the same framework demonstrate, within estimated
uncertainties, the universality of these nonperturbative quantities.

Introduction. Elastic electron hadron scattering can
be described in terms of electromagnetic form factors
(EMFF), which characterize the charge distribution in-
side hadrons [1]. The EMFF of the nucleon has been
studied experimentally for many decades and provided
the first glimpse of the complex internal structure of the
nucleon [2], while the EMFF of pion and kaon, the Gold-
stone bosons of QCD, are much less known. On the other
hand, the study of the pion and kaon EMFF is impor-
tant for at least two reasons. It has been argued that
the pion and kaon form factors are important for under-
standing the dynamical generation of hadron masses in
QCD [3, 4], and they are closely related to the light-front
wave functions of the pseudo-scalar mesons, see, e.g.,
Ref. [5]. Studies of the pion and kaon electromagnetic
form factors at large momentum transfer, Q2, and, more
generally, of the hard exclusive processes are needed for
a more complete understanding of the partonic structure
of the hadrons. The partonic picture of hadrons is well
established through the study of inclusive processes, but
we need to see that this picture also works in exclusive
processes for an unambiguous interpretation of partons
as the right degrees of freedom at short distances, see dis-
cussions in Refs. [6, 7]. The QCD factorization for hard
exclusive processes was proposed a long time ago [8, 9],
but it is difficult to be tested experimentally due to the
lack of experimental data. One clean exclusive process
provided in recent years is the pion transition form fac-
tors, where large momentum transfer up to 40 GeV? is
available [10, 11], allowing its factorization into the dis-
tribution amplitudes [12, 13]. The EMFF, on the other
hand, offer another valuable opportunity of testing the
QCD factorization and is crucial for examining the uni-
versality of the factorization.

Direct experimental measurements of the pion EMFF
are available only for very small @2, well below
1 GeV? [14-17]. Tt is possible to determine the pion form
factor at higher Q2 through pion electro-production off
nucleons, but such determination comes with some model
dependence [7]. However, also the measurements using
this method do not extend to high enough values of Q2.
Measuring the kaon EMFF is even more challenging [18—
21]. Studies of the EMFF of the pion and kaon with
high Q2 up to ~ 6 GeV? are underway at the ongoing
JLAB 12 GeV program [22, 23], and their measurements
in an extended range of Q2 ~ 9—40 GeV? are planned at
the future Electron-Ion Collider (EIC) facility [24] and
Electron-ion collider in China (EicC) [25].

At present, lattice QCD is the only nonperturbative
method that can directly predict EMFF without any
model dependence, and the results can also be system-
atically improved. Therefore, first-principle calculations
on a lattice can provide benchmark QCD predictions for
comparison with experiments. Existing lattice calcula-
tions of the pion [26-35] and kaon [36, 37) EMFF are
restricted to the low Q2 region. Calculations of pion
EMFF with Q2 up to 6 GeV? were performed in Ref. [38]
using the Feynman-Hellmann method, albeit with large
uncertainties. There also exist lattice QCD calculations
of the EMFF at large momentum transfer for pseudo-
scalar mesons with strange-antistrange quark and charm-
anticharm quarks [39, 40]. In this work, we study the
pion and kaon EMFF with large momentum transfers
Q? up to 10 GeV? and 28 GeV?, respectively, using op-
timized boosted sources for large momenta in both the
initial and final states. The calculations are performed
directly at the physical point. Moreover, with indepen-
dent lattice QCD calculations of the pion and kaon light-



cone distribution amplitudes [41-46], as well as the state-
of-the-art perturbative input at next-to-next-to-leading
order (NNLO) [47], we are able to verify the collinear
leading-twist QCD factorization of the EMFF at such
high Q2 [8, 9] for the first time, thus demonstrating the
universality within these nonperturbative quantities.

Lattice QCD calculations of the form factors. We ex-
tract the bare meson form factors from meson two-point
and meson-current three-point correlation functions. We
use two lattice QCD gauge ensembles generated by the
HotQCD collaboration [48] with 2+1 flavors of highly im-
proved staggered quarks (HISQ) [49]. These ensembles
are defined on L? x L; = 64% x 64 lattices with spacings
a = 0.076 fm and 0.04 fm. The strange quark mass mg
for these ensembles is set to the physical value while the
light quark masses are set to m;/27 and m,/20, respec-
tively. The light quark masses correspond to the pion
masses of 140 MeV and 160 MeV for the coarser and the
finer lattice, respectively. For the valence quarks, we use
the Wilson-clover action with 1-step hypercubic (HYP)
smeared [50] gauge links and with tree-level tadpole im-
proved coefficients c¢;,, = 1.0372 and 1.02868 [51, 52] for
the coarser and the finer lattices, respectively, which were
determined from the smeared plaquette averages. The
valence quark masses are tuned so that the pion/kaon
masses are 140(1)/498(1) MeV for the a = 0.076 fm en-
semble and 134(3)/497(4) MeV for the a = 0.04 fm en-
semble. We use the QUDA multigrid algorithm [53-56]
for the Wilson-Dirac operator inversions to calculate the
quark propagators. All Mode Averaging (AMA) tech-
nique [57] is employed to increase the statistics.

In order to obtain the bare matrix elements of the
ground state, we need to compute the two-point func-
tions to extract the energy spectra and get the overlap
amplitudes,

Cope(P, 1) = ([Is(P, t,)][[s(P, 0)]"). (1)

Here, IIs = mg, Kg denote the pion and kaon interpo-
lating operators, respectively, which can be written as
follows

ms(P,t) = Z dg(x, t)ysus(x,t)e T

* 2
Kg(P,t) = Z 55(x,t)ysus(x, t)e P, )

These interpolating operators are constructed from
Gaussian-smeared quark sources (sinks) in Coulomb
gauge [58], which are also boosted with momentum k*
(k7) [58, 59]. Hence, we use the subscript S in the above
equations. The Gaussian radii of the light and strange
quarks used in this work are 7& = 0.59 fm and r¢ = 0.83
fm for the a = 0.076 fm lattice, and rlG = 0.59 fm and
r% = 0.86 fm for the a = 0.04 fm lattice.

The three-point functions for EMFF can be written as,

CBpt (va Pla 7, ts)
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with P* = Pf — q. Here, the electro-magnetic current is
Or = %Tryﬂu — %cﬁud and %ﬂ%ﬂt — %§7H8 for pion and
kaon, respectively. The time component of the vector
current v, = 7o is used. With degenerate light quark
masses, there are no disconnected diagrams for the pion,
while their contribution to the kaon, which is expected
to be small, is neglected in this work. To achieve high
momentum transfer Q? = —(p/ — p’)? as the main tar-
get of this work, we make use of the Breit frame with
P/ = (0,0,—P3) and q = (0,0, —2P5), when calculating
the three-point functions. Here P3 = 27ns/(Lsa) with
n3 being an integer. To optimize the signal, we use the
same quark boost parameter ¢ for the hadron states mov-
ing back-to-back, meaning that for the quark momentum
boost, we choose k/ = —k' to ensure ( = k'/P* = k/ /P/f
[51, 52]. Given that the hadron states with slight mo-
mentum variation share the same propagator [51], it is
possible to reliably calculate the three-point functions at
multiple momentum transfers with small deviations from
the Breit frame, requiring minimal additional computa-
tional costs. For instance, in the case of the kaon, apart
from the Breit frame scenario with P¥ = (0,0, —2.42)
GeV and P? = (0,0,2.42) GeV, we can also consider the
non-Breit frame setup with P/ = (0,0, —2.42) GeV and
P = (0,0,2.91) GeV, which allows us to reach Q2 up to
28 GeV?. In this study, we used 350 gauge configurations
for the a = 0.076 fm lattice and 280 gauge configurations
for the a = 0.04 fm lattice. The number of AMA samples
ranged from 32 to 256, depending on the lattice spacing
and the momentum considered, with more samples used
for larger momenta. More detailed information on our
choice of momenta and the number of AMA samples can
be found in the Supplemental Material.
To take advantage of the correlation between the two-
point and three-point functions, we construct the ratio

2 EgEé Cgpt(Pf,Pi; T, ts)
Eg + Eé Cth(szts)

C2pt (P’L7 ts - T)C2pt(Pf7 T)Cth (Pfa ts):| 1/2
C2pt (Pf; ts - T)Cth (sz T)CZpt (Pla ts)

RIVPT PYi7 ty)

(4)

In the ts — oo limit, this ratio approaches the ground-
state bare matrix elements Rf*(P/ P';7 — oo,t, —
) = FB(Q?) (M = n* or K*). Taking the results of
the energy levels and overlap amplitudes from the anal-
ysis of the two-point functions, we use the two-state fit
on the lattice data to extract the bare matrix elements
from the ratios. Details of the analysis can be found
in the Supplemental Material. We show examples in
the Breit frame of the ratio R/* in Fig. 1 for the pion
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FIG. 1. Upper panel: ratios Rf*(t,, ) for the pion with Q% =
9.4 GeV? from the a = 0.076 fm lattice. Lower panel: ratios
Rfi(ts, 7) for the kaon with Q2 = 23.4 GeV? from the a = 0.04
fm lattice. The colored bands denote the two-state fit results
of the corresponding colored lattice data, and the grey bands
display the bare matrix elements of the ground state.

at Q% = 9.4 GeV? on the a = 0.076 fm lattice (upper
panel) and the kaon at Q% = 23.4 GeV? on the a = 0.04
fm lattice (lower panel). Despite the very large momen-
tum transfer, reasonable signals can be obtained by using
the optimized boosted sources and large statistics. The
bands in the figure show the results of the two-state fit
with the corresponding statistical errors obtained from
the bootstrap analysis. As one can see from the figure,
the fit results describe the data very well. The grey bands
display the results at the limits of infinite source-sink sep-
aration, giving the bare matrix elements of the pion and
kaon ground states, that is, the bare form factors. These
bare matrix elements Fﬁ (Q?) are then converted to phys-
ical form factor values Fis(Q?) = Zy FZ(Q?) using the
vector current renormalization factors Zy. We use the
values of Zy calculated in our previous studies [33, 52]
employing the same lattice setups, specifically 1/Zy =
1.048(2) and 1.024(1) for the a = 0.076 fm and 0.04 fm
lattices, respectively.

Form factors from low to high Q*. Our results of the
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FIG. 2. The renormalized EMFF of the pion (upper panel)
and kaon (lower panel) are shown as Q*Fir(Q?)/ fa;. For the
case of pion, we include the low Q2 results (filled square sym-
bols) from Ref. [33] that uses the same lattice setup, as well as
the results from F collaboration [60] extracted from the ex-
perimental data (open triangle symbols). For the case of kaon,
we show the results from two different lattices with a = 0.076
fm (filled circle symbols) and a = 0.04 fm (open circle sym-
bols). The blue bands represent the twist two (tw2) pQCD
results using the collinear factorization at NNLO. The purple
bands denote the pQCD results obtained within the k7 fac-
torization theorem, which includes higher-twist contributions
from Refs. [61-63]; see text. The width of the band presents
the perturbative uncertainty. In the case of the NNLO twist
two results, it corresponds to the scale variation from p = Q/2
to p = 2@ and also includes the uncertainties of the confor-
mal moments of the pion and kaon DA; see text. The green
bands show the predictions with the VMD model by the fit
on the lattice data at the low Q? region; see text. The dashed
lines display the predictions from the DSE [64], BSE21 [65]
and BSE24 [66]; see text.

renormalized EMFF for the pion and the kaon are shown
in Fig. 2 as the combination Q?Fy;(Q?)/f3;, where fu
is the meson decay constant for M = 7T or KT, the rea-
son for this combination will become clear below. We use
the following values of the pion and kaon decay constant
from FLAG21 [67-70]: f. = 130.2 MeV and fx = 155.7
MeV. For the pion, we also show the lattice results at
low Q% (BNL21) from Ref. [33] obtained using the same
lattice setup with ¢ = 0.076 fm. Furthermore, in the



upper panel of the figure, we compare the lattice results
on F+(Q?) to the experimental results from F collab-
oration [60]. Impressively, the lattice determination ex-
hibits excellent agreement with the experimental data.
This agreement is reassuring for the model-based extrac-
tion of meson EMFF from experimental data, further
bolstering the anticipation for their future experimental
determination at JLAB [22, 23], EIC [24], and EicC [25].
For the kaon, we have results from two different lattice
ensembles with a = 0.076 fm (filled circle symbols) and
a = 0.04 fm (open circle symbols), which appear to be
consistent at the overlap range. This suggests that the
lattice artifacts are small compared to the statistical er-
rors. Overall, one can observe that both Q?F,+(Q?) and
Q?Fr+(Q?) exhibit a rapid rise at low @2, transitioning
into a plateau-like region at high Q? > 5 GeV? within
the errors.

At high Q?, the asymptotic nature of QCD allows the
factorization of the electromagnetic form factors into the
convolutions of the meson DA and a hard-scattering ker-
nel, as has been pointed out in the past [8, 9, 71]. There-
fore, our lattice QCD results can be utilized to test this
factorization. At the leading twist, the collinear factor-
ization formula of the form factor reads

1 1
FM(Q2)=/O /O dzdy O3 (y, uF)

X TH(.%', Y, QQa /ﬁi’,v M%‘)q)M(x7 M%‘)?

()

where Ty is the hard-process kernel calculated in per-
turbative QCD (pQCD). The hard kernel depends on
the momentum transfer Q2, the factorization scale yp,
as well as the renormalization scale pur at a fixed or-
der of perturbation theory. It has been known up to
the next-to-leading order (NLO) [72-75] for some time.
Very recently, the NNLO correction has become avail-
able [47]. The nonperturbative physics is encoded in the
meson DA @ (x, p%). Its dependence on pip comes from
its anomalous dimension, which is compensated by the
pp-dependence of the hard kernel in the factorization
formula above. The limit of very large Q? also implies
that purp — 0o, and in this limit, one can use the asymp-
totic limit of DA, given by ®%; = 3fmz(1 — x)/v2N,
(N. = 3 for QCD). Therefore, at asymptotically large
Q?, where the leading order (LO) result for Ty is jus-
tified, we have Fi/(Q? — 00) = 8mas(Q?)f3,/Q>. This
means that Q% Fy(Q?)/ f3; should be approximately con-
stant and small at sufficiently large Q2, explaining our
normalization process. This LO asymptotic result gives
a very small EMFF in comparison to the experimental
results. For example, for the largest Q% = 2.45 GeV?
accessible experimentally, the LO asymptotic result pre-
dicts Q?F+(Q?)/f2? ~ 8.6, which is almost three times
smaller than the experimental value, as shown in Fig. 2.

The pion and kaon EMFF have also been calculated
using the kr factorization approach [61, 62, 76-78]. For

Q > kr, the pion and kaon EMFF can also be re-
lated to the meson DA in this approach. Furthermore,
it has long been suggested that higher-twist contribu-
tions to the EMFF factorization could be numerically
large even for Q% < 100 GeV? despite being formally
suppressed [61, 62, 78-84]. The state-of-the-art studies
that consider higher-twist contributions are performed
within the kr factorization approach and include all
two- and three-particle (parton) contributions up to twist
four [61, 62]. We note, however, that it has been known
since long that there are infrared sensitive double logs in
the hard kernel at twist three and beyond [79, 81], and
it is not completely clear that these are properly treated
in the kp factorization. In Fig. 2, we compare our lat-
tice results with the state-of-the-art perturbative calcula-
tions, including the higher-twist contributions under the
kr factorization framework [61-63], as well as the pQCD
predictions up to NNLO within the collinear factoriza-
tion framework [47]. For the latter, we use the NNLO
perturbative results written in terms of Gegenbauer ex-
pansion of the pion and kaon DA. The DAs can be calcu-
lated from lattice QCD [41-44]. In this work, we utilize
results obtained from the same lattice setup using the a
= 0.076 fm gauge ensemble [46], where we derived up to
the sixth conformal moment with minimal model depen-
dence. We use the conformal moments at up = 2 GeV:
as = 0.196(32), a4 = 0.085(26), ag = 0.056(15) for the
pion and ay = 0.114(20), a4 = 0.037(11), ag = 0.019(5)
for the kaon. We set up = ur = @ and evolve the con-
formal moments consistently using their anomalous di-
mensions up to 3 loops [85]. We vary the scales between
Q/2 and 2Q) to estimate the theoretical uncertainties.

We see from Fig. 2 that for Q2 > 5 GeV? lattice QCD
results for pion and kaon EMFF mostly agree with the
collinear NNLO pQCD results within the estimated er-
rors. Note that the same values of DAs used to pro-
duce the EMFF also lead to prediction for pion tran-
sition form factors [46] that are consistent with experi-
mental data from the Belle collaboration [11]. For the
first time, the perturbative factorization and universality
of DAs are tested in two exclusive processes, thanks to
the large momentum transfer achieved in this work. For
the pion, we also find agreement with NLO results from
the kr factorization that includes higher-twist contribu-
tions [61, 62]. However, for the kaon case, the kr factor-
ization approach with higher-twist contributions overes-
timates the lattice QCD results and also leads to much
stronger Q%-dependence of Q?Fx (Q?) compared to our
lattice results.

The fact that LO asymptotic pQCD prediction results
in small EMFF at large Q? in comparison to the exper-
imental results, motivated the development of partonic
approaches that incorporate some nonperturbative infor-
mation. These approaches include those based on the
Dyson-Schwinger equation (DSE) [64, 86] and the Bethe-
Salpeter equation (BSE) [65, 66]. The former approach



is related to the idea of dynamical mass generation in
QCD. We also compare our lattice results against these
theoretical predictions in Fig. 2. For the pion EMFF,
there is a reasonable agreement between the lattice QCD
results and the DSE calculations [64, 86], whereas the
BSE calculations [65, 66] fall below the lattice results for
Q? > 3 GeV2. In the case of the kaon EMFF, there
is some tension between the DSE calculations and the
lattice results during the intermediate Q? range.

At low @2, the form factors could be understood by
low-energy models such as the Vector Meson Dominance
(VMD) model [87, 88]. Based on the lowest-lying vector
resonances, the kaon form factors can be parameterized
as [88-90],

Cy

Fr+(Q%) = Zma (6)

v

with m,, being the mass of vector mesons. In this work,
we take v = p, §,w with their mass from PDG [91] and
fit ¢, using the lattice results at low Q? < 0.4 GeVZ2.
Using this parameterization, the charge radius of K+
can be determined by the slope at Fg+(0), which gives
(r2) = 0.360(2) fm2. This value is consistent with a
recent dispersive analysis of the experimental data that
gives (rZ) = 0.359(3) fm? [90]. As for the pion, the
form factors at low Q2 can be parameterized by a single
term in Eq. (6) using the VMD form, which is a one-
parameter fit as discussed in Ref. [33]. The fit results
from the VMD model extended to a high Q? region are
also shown in Fig. 2. Surprisingly, the VMD fits from the
low @Q? region give a fairly good description of the lattice
results for the pion and kaon EMFF, even for relatively
large Q2 values, up to Q2 = 5 GeV2.

Since we have information on the pion and kaon form
factors up to high Q2, we can extract the charge or
flavor distribution of hadrons in the impact parameter
plane [92] using a model-independent way. There is no
need to model the high Q2 behavior of the form fac-
tors. We find that the form factors as well as the impact
parameter (b)) distributions of the u quark inside the
pion and the kaon are identical, contradicting to the pre-
diction from NJL model [93]. The distribution of the
heavier s anti-quark, on the other hand, is considerably
narrower. The details of these calculations are presented
in the Supplemental Material.

Summary. In this work, we calculated the electromag-
netic form factors of the pion and kaon with large Q2 up
to 10 GeV? and 28 GeV?, respectively, on the lattice for
the first time. For the kaon EMFF, we employ two lat-
tice ensembles and find that the lattice artifacts are minor
compared to the statistical uncertainties. Future stuties
targeting precision at percent level should be more careful
with the systematics including the excited state contam-
ination and discretization effect. Our results can serve as
benchmark QCD predictions for model-based studies and
for the forthcoming experimental measurements planned

at JLab and the future EIC and EicC. We find that for
Q? > 5 GeV? the lattice results on the pion and kaon
EMFF agree with the leading-twist collinear factoriza-
tion if the NNLO hard kernel is used together with the
most recent lattice QCD results on the DA. For smaller
values of Q?, our lattice QCD results can be understood
in terms of the VMD model, suggesting that the tran-
sition from hadronic description to partonic description
does not lead to abrupt changes in the Q2-dependence
of the pion and kaon EMFF. Finally, our results for the
form factors provide a model-independent picture of the
spatial distribution in the transverse plane of the up and
strange quarks inside the pion and the kaon.
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FIG. 3. The EMFF of pion (left panel) and kaon (right panel) are shown as a function of Q2. For the case of pion, we also
include the results from BNL21 [33] using the same lattice setup of the a = 0.076 fm ensemble. For the case of kaon, we have
two different ensembles. The bands are from spline interpolation of the first order.

SUPPLEMENTAL MATERIALS

THE ELECTROMAGNETIC FORM FACTORS OF PION AND KAON

The values of the momenta of the initial and final meson states used in this study are summarized in Table I. On
a finite lattice, the initial and final momenta are given as P/ = 27T/(L5a)l’li:’.f7 with a being the lattice spacing and
L, being the spatial grid size. The different choices of n®/ are listed in Table I. For each choice of n®/ | we list the
corresponding quark boost momentum along the z direction kg’f =27/ (Lsa)nzgf for the initial and final states, as

well as the momentum transfer Q2. Additionally, we give the number of the exact and sloppy AMA samples.

The lattice results of the pion and kaon EMFF derived in this work are summarized in Table IT and Table III,
respectively, which are also shown in Fig. 3 as a function of Q2. For the case of pion, we also include the results from
BNL21 [33] using the same lattice setup of the a = 0.076 fm ensemble. For the case of kaon, we have two different
lattice ensembles. Moreover, we also calculated the form factors of the valence quark. The results are shown in Fig. 4
along with the corresponding first-order spline interpolations. Using the spline interpolations, we can perform the
numerical Fourier transformation of the valence quark form factors and obtain the distribution of u quark inside the
pion and kaon, as well as the distribution of s anti-quark inside kaon in the transverse plane, i.e., distribution of
valence quark in b, . Here b, is the conjugate variable to Q [92], and we used Q2 up to 10 GeV? for both pion and
kaon for consistency. These distributions in the transverse plane are shown in the right panel of Fig. 4. We see that
the valence u quark b, distributions in pion and kaon are about the same, while the distribution of s anti-quark is
narrower.

THE BARE MATRIX ELEMENTS OF KAON FORM FACTORS

The analysis of the two-point and three-point function of the pion and kaon, and the extraction of the bare matrix
elements follows the strategy laid out in Ref. [33, 51]. Here, we will discuss the case of the kaon as an example. The
case of the pion is completely analogous.



.
. ke
. K

06 —04 —02 00 02 04 06
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FIG. 4. Left: The form factors of valence quarks in pion and kaon are shown as a function of Q?. The bands are from spline
interpolation of the first order. Right: The flavor distributions of the valence quarks in pion and kaon in the impact-parameter
plane are shown as a function of transverse distance b, .
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Dispersion relation [0)
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FIG. 5. The ground-state energy FEy extracted from the two-point functions on the a = 0.076 fm (squared symbols) and 0.04

fm (circled symbols) lattices are shown. The red line is calculated from the dispersion relation E = y/m% + |P|? with mg =
0.497 GeV.

Two-point function analysis

The two-point functions of kaon can be decomposed as

Nstate—1
Capt (P, 1) = Z |Ap |2 (e~ Ents +67En(aLt7ts)). (7)

n=0

Here, E,, represents the energy levels, A, = (2|Kg|n; P) is the kaon overlap amplitude, and |2) denotes the vacuum
state. By truncating the spectrum decomposition up to N-state, we can extract the first few energy levels and overlap
amplitudes by fitting the two-point function data. Here, we choose Ngtate = 2 to obtain the energy levels and the
overlap amplitudes. The results on the ground-state energy of the kaon for different momenta are shown in Fig. 5.
As one can see from the figure, the results on the ground-state energy Fy as a function of |P| agree very well with
the line given by the dispersion relation \/m% + |P|? with mg = 0.497 GeV. We will use the values of E,, and A4,
determined here for the following analysis of three-point functions.
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TABLE I. The values of the meson initial and final momenta used in this work and the numbers of the samples used in the
AMA method are shown. The initial and final momenta and their corresponding boost parameters in the z-direction in units
of 2w /(Lsa) are denoted by n;‘f and n;;, respectively. The values of the momentum transfer Q2 are given in physical units.
Additionally, we provide the exact counts for both exact (#ex) and sloppy (#sl) inversion samples per configuration.

Meson a[fm] nJ;, = (n?l,né,nfpg) n£3 np = (np,,np,, np,) Ny Q*[GeV?) (#ex, #sl)

(0,0,2) 1.56

(0.0, -3) 5 (0,0,3) ) 2.34 3, 96)
(0,0,4) 3.12
(2,0,3) 2.58
(0,0,3) 3.90
(0,0,4) 5.20

Pion 0.076 (0, 0, -5) -4 (0,0,5) 4 6.50 (7, 224)
(2,0,4) 5.50
(2,0,5) 6.75
(0,0,5) 7.80

(0, 0, -6) -5 (0.06) 5 935 (18, 576)
(2,0,5) 8.10
(2,0,6) 9.61
(0,0,1) 0.26
(1,0,-1) 0.062

(0, 0, -1) 0 (1,00) 0 0-13 (1, 32)
(1,0,1) 0.32
(1,1,0) 0.19
(1,1,1) 0.38
(0,0,-2) 0.025
(0,0,1) 0.91

(0, 0, -3) -2 (002) 2 1.58 (5, 160)
(0,0,3) 2.34
0.076 (1,1,3) 2.46
Kaon (2,2,3) 2.80
(0,0,3) 3.95
(0,0,4) 5.21

(0,0,-5) -4 (0,0,5) 4 6.50 (8, 256)
(1,1,5) 6.62
(2,2,5) 6.98
(0,0,5) 7.80

(0, 0, -6) -6 (0.0.6) 6 935 (8, 256)
(1,1,6) 9.48
(2,2,6) 9.84
(0,0,2) 5.66

(0, 0, -3) -2 0,0,3) 2 844 (4, 128)
(0,0,4) 11.27
0.04 (0,0,5) 14.13
(0,0,4) 18.77

(0, 0,-5) -4 (0,0,5) 4 23.45 (8, 256)
(0,0,6) 28.15
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Q? [GeV?]  1.56 2.34 2.58 3.12 3.90 5.20
F.+  0252(5) 0.176(8) 0.169(6) 0.142(22) 0.120(9) 0.096(11)
5.50 6.50 6.75 7.80 8.10 9.35 9.61

0.098(9) 0.073(11) 0.068(11) 0.068(11) 0.061(8) 0.056(10) 0.053(9)

TABLE II. Pion electromagnetic form factors in this work from the a = 0.076 fm lattice are shown.

Q% [GeV?] 0.025 0062 013  0.19 0.26 0.32 038 091 158
Frr  0.967(14) 0.906(2) 0.828(1) 0.767(1) 0.710(1) 0.666(1) 0.628(1) 0.414(1) 0.283(1)
2.34 2.46 280  3.95 521 5.60 650  6.62 698  7.80

0.207(3)  0.200(1) 0.184(2) 0.135(2) 0.105(1) 0.103(4) 0.088(1) 0.086(1) 0.082(2) 0.072(4)
8.44 9.35 948 985 1126 1413 1863 2345 28.12

0.075(4) 0.063(3) 0.062(3) 0.056(4) 0.053(4) 0.038(13) 0.033(13) 0.025(4) 0.019(3)

TABLE III. Kaon electromagnetic form factors from the a = 0.076 fm and a = 0.04 fm lattices are shown.
The ground-state bare matrix elements from three-point function
Similar to the two-point functions, the three-point functions have the spectral decomposition,

Cape(PT P 7, 8) = 3 Ay A (my P |Op[n; PY)e™ (0D B =B

m,n

(8)

where the overlap amplitudes A,, as well the energy levels F,, are the same as for the two-point functions, and the
ground-state bare matrix element F'Z = (0; P/|Or|0; P?) is the bare form factor. We construct a ratio defined as

f i i i 1/2
Rfl(Pf7PZ,T, ts) — 2 EO EO CSpt(PfaP 3T, ts) « |:02pt(P ats - T)Cth(vaT)C2pt(Pfats)

- - - 9
Eg + E(z) CZpt (Pf7 ts) CZpt (Pf7 ts - 7—)Cv2pt (Pl7 T)Cth (Pz’ ts) ( )
to take advantage of the correlation between two-point and three-point functions. In the t; — oo limit, the ratios

give the bare matrix elements of the ground state Rf*(Pf, P’ 7 — co,ts — 00) = F5(Q?). Based on the spectral
decomposition formula, several methods can be considered to perform the 7 — oo, t; — oo extrapolation of the ratios:

1. Two-state fit. We truncate the spectral decomposition formula of the two-point functions as well as the three-
point functions up to two states (m,n can be 0 and 1), insert them into the ratios, and finally get the formula

below.
, , At AS F_AEY —AES Al _ ot f
RfZ(Pf7PZ;T7tS) = |Opo + |A:| | ;|0116(AE AE )7'e AE7tg + ‘A11|001 AET+ ‘ f|0106 (ts—7)AE
|Abl 1AL | Ap| 1AL
+ :ﬁlz :1‘:;}2 —(ts—T)AEi o—AEfT | |A Ize (ts—T)AET 4 :jflze—AEfT
10)
AP (AP (o) ART g Amir |A o —amir o AR —G-mams (
1+ 14517 [af)2 € taEe + ek
o 1
|AL2 [AT2 _(ABS+AE), L AE _AB, |AT12 _AETt, .
\/1 EHEAVTIES taee talEe
In the Breit frame limit, we can use a simplified form for this ratio:
2
OOO+ [Aq] OlleftsAE+mO efrAE+@Oloef(tsf‘r)AE
firpf Di. _ [Ao|? [ Ao [ Ao
R (P, P 7,ts) [ AP,z , (11)

[Aol?
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with AE = E; — Ej being the energy difference and O,,,,, = (m; Pf|Or|n; P?) representing the matrix elements,
in which Qg is the bare form factor. We perform the fit using the above expressions by fixing AFE as well as
|A1]/]Ao| to the values obtained from the analysis of the two-point functions, treating O,,,, as fit parameters, and
skipping ng, data points in 7 on the two sides of the source-sink separation to avoid excited-state contamination.
In general, this implies a four-parameter fit. In the case of the Breit frame, we have Oy = O1q, so we deal
with a three-parameter fit. We will refer to this fit method as Fit(ng). Alternatively, instead of fixing AFE
and |A;|/|Ag|, we could impose priors into the x? by utilizing their central values and corresponding 1-o errors
derived from the two-point functions, and perform a constrained five-parameter fit, with Ogg, Og1, O11, AE and
|A1]/]Ao| being fit parameters. We refer to this fit method as 2-prior Fit(ng).

2. Summation method. We construct the sum of the ratios over time insertion 7,

ts—nska

REL(t) = > RI(t,7). (12)

T=NskQ

For sufficiently large ¢, the excited-states contribution is suppressed, and the sum can be approximated by a
linear function,

Rt (t) =nFB + By+ O(e”Fr=Folts) =, — (2ng — 1)a. (13)

Therefore, we can do a linear fit of data on R} (ts) to extract the bare form factor, FZ. One can control the
excited-state contamination by choosing different values of ng,. However, for certain cases when t, is too small,
the excited-state contribution cannot be fully ignored. We can include the LO correction term, allowing us to
express the ansatz in the Breit frame as

R

sum

(ts) = nFB 4+ By +nBye~ Fr—Folts, (14)
These two methods will be denoted as Sum(ng) and SumExp(ngy).

3. When the ¢, is large enough, the excited-states contribution is negligible within the statistic error. In this case,
the ratios R/*(t,, 7) would show ¢,- and 7-independent plateaus within the errors. One can simply do a plateau
fit to get F'B. We refer to this method as Plateau(ng).

In this work, we considered the first two methods. One thing to notice is that 7 has a rather limited range, so
the values of ng, must be determined appropriately. Since for a = 0.04 fm ensemble, we have source-sink separations
ts/a = {8,10,12,14,16}, the T-dependence of the three-point correlators can only be studied for 7 < 8a. Based on
our previous experience [33, 51], here we choose ng, > 3. For a = 0.076 fm ensemble, we have t;/a = {6, 8,10, 12}, so
the 7-dependence of the three-point function can only be studied for 7 < 6a. Again, based on past experience, we use
nsk > 2 in this case. The two-state fits to our lattice data are shown in Fig. 6 and Fig. 7. In Fig. 6, we present the
examples of the ratio (Rf?) for the a = 0.04 fm lattice, with P/ = —1.45 GeV varied from P! = {1.45, 1.94} GeV in
the upper panels, and P/ = —2.42 GeV varied from P! = {2.42, 2.91} GeV in the lower panels. While Fig. 7 show
the cases for the @ = 0.076 fm lattice, with P/ = —0.76 GeV, varying P! = {0.51, 0.76} GeV in the upper panels,
and P/ = —1.53 GeV, varying P! = {1.27, 1.53} GeV in the lower panels. In each panel, the colored bands represent
the fit results using the two-state Fit(ng) method, while the grey bands denote the extrapolated bare form factor
results, FB. The color coding of the bands corresponds to the color coding of the lattice data for different source-sink
separations.

In Fig. 8, we show the lattice results for Rf! (t,) together with the correspondings fit results from Sum(ng),
ExpSum(ngk), and Fit(ng) for both a = 0.04 fm lattice (left two panels) and a = 0.076 fm lattice (right two panels).
Furthermore, the values of the bare form factor obtained using these fit methods are summarized in Fig. 9. In this
figure, we also show the corresponding x?/dof and p-value for each method. As one can see, the two-state fits always
give x%/dof < 1 and consistent results for different choices of ngy, suggesting this method is robust for the data under
consideration. For the a = 0.076 fm ensemble and small momenta cases, the summation fits, Sum(ng), have large
values of x?/dof. This is because the statistical errors in these cases are small, and excited-state contamination cannot
be neglected. In this situation, it is necessary to introduce the excited-state corrections to the summation method,
namely ExpSum(ngy). The results from ExpSum(ng) show reasonable x?/dof, but the errors become large since it
is difficult to fit three parameters using only a few data points. On the other hand, the results from ExpSum/(ngy) are
consistent with the two-state fit within errors. For the a = 0.04 fm lattice with larger momenta cases, the excited-state
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FIG. 6. The lattice results of the ratio, R¥*, and the corresponding two-state Fit(nsk, = 4) on a = 0.04 fm lattice are shown.
The left panels show examples from the Breit frame, while the right ones are examples from the non-Breit frames. The colored
bands present the fit results of the corresponding colored lattice data, while the grey bands show the bare form factor results.

contamination is small compared to the statistical errors, so that the results from Sum(ng) method agree with the
corresponding results from the two-state fit. Moreover, a comparison of the Breit frame results between the normal
Fit and prior Fit methods in the upper panels of Fig. 9 reveals that they are in good agreement with the 1-o error.
However, the error magnitude of the prior method can be affected by many factors, like the range of the priors and
the statistics, which will sometimes lead to an unreliable error range. Therefore, for the a = 0.076 fm lattice, we
choose the 2-prior Fit(3) results for the Breit frame case and the general Fit(3) results for the non-Breit frame case.
For the a = 0.04 fm lattice, we select the results from general Fit(4) for all cases.
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FIG. 8. The summation of ratios R{:, (ts) for a = 0.076 fm (left two panels) and a = 0.04 fm lattice (right two panels) are
shown. The curves are reconstructed from the summation fit as well as the two-state fit results.
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FIG. 9. The results and fit quality from the summation fit and two-state fit with different numbers of skipped time insertion
nsk are shown for comparison. Upper: a = 0.076 fm lattice, lower: a = 0.04 fm lattice.
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