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We report the first lattice QCD computation of pion and kaon electromagnetic form factors,
FM (Q2), at large momentum transfer up to 10 and 28 GeV2, respectively. Utilizing physical masses
and two fine lattices, we achieve good agreement with JLab experimental results at Q2 ≲ 4 GeV2.
For Q2 ≳ 4 GeV2, our results provide ab-initio QCD benchmarks for the forthcoming experiments
at JLab 12 GeV and future electron-ion colliders. We also test the QCD collinear factorization
framework utilizing our high-Q2 form factors at next-to-next-to-leading order in perturbation theory,
which relates the form factors to the leading Fock-state meson distribution amplitudes. Comparisons
with independent lattice QCD calculations using the same framework demonstrate, within estimated
uncertainties, the universality of these nonperturbative quantities.

Introduction. Elastic electron hadron scattering can
be described in terms of electromagnetic form factors
(EMFF), which characterize the charge distribution in-
side hadrons [1]. The EMFF of the nucleon has been
studied experimentally for many decades and provided
the first glimpse of the complex internal structure of the
nucleon [2], while the EMFF of pion and kaon, the Gold-
stone bosons of QCD, are much less known. On the other
hand, the study of the pion and kaon EMFF is impor-
tant for at least two reasons. It has been argued that
the pion and kaon form factors are important for under-
standing the dynamical generation of hadron masses in
QCD [3, 4], and they are closely related to the light-front
wave functions of the pseudo-scalar mesons, see, e.g.,
Ref. [5]. Studies of the pion and kaon electromagnetic
form factors at large momentum transfer, Q2, and, more
generally, of the hard exclusive processes are needed for
a more complete understanding of the partonic structure
of the hadrons. The partonic picture of hadrons is well
established through the study of inclusive processes, but
we need to see that this picture also works in exclusive
processes for an unambiguous interpretation of partons
as the right degrees of freedom at short distances, see dis-
cussions in Refs. [6, 7]. The QCD factorization for hard
exclusive processes was proposed a long time ago [8, 9],
but it is difficult to be tested experimentally due to the
lack of experimental data. One clean exclusive process
provided in recent years is the pion transition form fac-
tors, where large momentum transfer up to 40 GeV2 is
available [10, 11], allowing its factorization into the dis-
tribution amplitudes [12, 13]. The EMFF, on the other
hand, offer another valuable opportunity of testing the
QCD factorization and is crucial for examining the uni-
versality of the factorization.

Direct experimental measurements of the pion EMFF
are available only for very small Q2, well below
1 GeV2 [14–17]. It is possible to determine the pion form
factor at higher Q2 through pion electro-production off
nucleons, but such determination comes with some model
dependence [7]. However, also the measurements using
this method do not extend to high enough values of Q2.
Measuring the kaon EMFF is even more challenging [18–
21]. Studies of the EMFF of the pion and kaon with
high Q2 up to ∼ 6 GeV2 are underway at the ongoing
JLAB 12 GeV program [22, 23], and their measurements
in an extended range of Q2 ∼ 9−40 GeV2 are planned at
the future Electron-Ion Collider (EIC) facility [24] and
Electron-ion collider in China (EicC) [25].

At present, lattice QCD is the only nonperturbative
method that can directly predict EMFF without any
model dependence, and the results can also be system-
atically improved. Therefore, first-principle calculations
on a lattice can provide benchmark QCD predictions for
comparison with experiments. Existing lattice calcula-
tions of the pion [26–35] and kaon [36, 37] EMFF are
restricted to the low Q2 region. Calculations of pion
EMFF with Q2 up to 6 GeV2 were performed in Ref. [38]
using the Feynman-Hellmann method, albeit with large
uncertainties. There also exist lattice QCD calculations
of the EMFF at large momentum transfer for pseudo-
scalar mesons with strange-antistrange quark and charm-
anticharm quarks [39, 40]. In this work, we study the
pion and kaon EMFF with large momentum transfers
Q2 up to 10 GeV2 and 28 GeV2, respectively, using op-
timized boosted sources for large momenta in both the
initial and final states. The calculations are performed
directly at the physical point. Moreover, with indepen-
dent lattice QCD calculations of the pion and kaon light-
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cone distribution amplitudes [41–46], as well as the state-
of-the-art perturbative input at next-to-next-to-leading
order (NNLO) [47], we are able to verify the collinear
leading-twist QCD factorization of the EMFF at such
high Q2 [8, 9] for the first time, thus demonstrating the
universality within these nonperturbative quantities.

Lattice QCD calculations of the form factors. We ex-
tract the bare meson form factors from meson two-point
and meson-current three-point correlation functions. We
use two lattice QCD gauge ensembles generated by the
HotQCD collaboration [48] with 2+1 flavors of highly im-
proved staggered quarks (HISQ) [49]. These ensembles
are defined on L3

s × Lt = 643 × 64 lattices with spacings
a = 0.076 fm and 0.04 fm. The strange quark mass ms

for these ensembles is set to the physical value while the
light quark masses are set to ms/27 and ms/20, respec-
tively. The light quark masses correspond to the pion
masses of 140 MeV and 160 MeV for the coarser and the
finer lattice, respectively. For the valence quarks, we use
the Wilson-clover action with 1-step hypercubic (HYP)
smeared [50] gauge links and with tree-level tadpole im-
proved coefficients csw = 1.0372 and 1.02868 [51, 52] for
the coarser and the finer lattices, respectively, which were
determined from the smeared plaquette averages. The
valence quark masses are tuned so that the pion/kaon
masses are 140(1)/498(1) MeV for the a = 0.076 fm en-
semble and 134(3)/497(4) MeV for the a = 0.04 fm en-
semble. We use the QUDA multigrid algorithm [53–56]
for the Wilson-Dirac operator inversions to calculate the
quark propagators. All Mode Averaging (AMA) tech-
nique [57] is employed to increase the statistics.

In order to obtain the bare matrix elements of the
ground state, we need to compute the two-point func-
tions to extract the energy spectra and get the overlap
amplitudes,

C2pt(P, ts) =
〈

[ΠS(P, ts)][ΠS(P, 0)]†
〉

. (1)

Here, ΠS = πS ,KS denote the pion and kaon interpo-
lating operators, respectively, which can be written as
follows

πS(P, t) =
∑

x

d̄S(x, t)γ5uS(x, t)e
−iP·x,

KS(P, t) =
∑

x

s̄S(x, t)γ5uS(x, t)e
−iP·x.

(2)

These interpolating operators are constructed from
Gaussian-smeared quark sources (sinks) in Coulomb
gauge [58], which are also boosted with momentum ki

(kf ) [58, 59]. Hence, we use the subscript S in the above
equations. The Gaussian radii of the light and strange
quarks used in this work are rGl = 0.59 fm and rGs = 0.83
fm for the a = 0.076 fm lattice, and rGl = 0.59 fm and
rGs = 0.86 fm for the a = 0.04 fm lattice.

The three-point functions for EMFF can be written as,

C3pt(P
f ,Pi; τ, ts)

=
〈

[ΠSf (Pf , ts)]OΓ(q, τ)[ΠSi(Pi, 0)]†
〉

,
(3)

with Pi = Pf − q. Here, the electro-magnetic current is
OΓ = 2

3 ūγµu − 1
3 d̄γµd and 2

3 ūγµu − 1
3 s̄γµs for pion and

kaon, respectively. The time component of the vector
current γµ = γ0 is used. With degenerate light quark
masses, there are no disconnected diagrams for the pion,
while their contribution to the kaon, which is expected
to be small, is neglected in this work. To achieve high
momentum transfer Q2 = −(pf − pi)2 as the main tar-
get of this work, we make use of the Breit frame with
Pf = (0, 0,−P3) and q = (0, 0,−2P3), when calculating
the three-point functions. Here P3 = 2πn3/(Lsa) with
n3 being an integer. To optimize the signal, we use the
same quark boost parameter ζ for the hadron states mov-
ing back-to-back, meaning that for the quark momentum
boost, we choose kf = −ki to ensure ζ = ki/Pi = kf/Pf

[51, 52]. Given that the hadron states with slight mo-
mentum variation share the same propagator [51], it is
possible to reliably calculate the three-point functions at
multiple momentum transfers with small deviations from
the Breit frame, requiring minimal additional computa-
tional costs. For instance, in the case of the kaon, apart
from the Breit frame scenario with Pf = (0, 0,−2.42)
GeV and Pi = (0, 0, 2.42) GeV, we can also consider the
non-Breit frame setup with Pf = (0, 0,−2.42) GeV and
Pi = (0, 0, 2.91) GeV, which allows us to reach Q2 up to
28 GeV2. In this study, we used 350 gauge configurations
for the a = 0.076 fm lattice and 280 gauge configurations
for the a = 0.04 fm lattice. The number of AMA samples
ranged from 32 to 256, depending on the lattice spacing
and the momentum considered, with more samples used
for larger momenta. More detailed information on our
choice of momenta and the number of AMA samples can
be found in the Supplemental Material.
To take advantage of the correlation between the two-

point and three-point functions, we construct the ratio

Rfi(Pf ,Pi; τ, ts) ≡
2

√

Ef
0E

i
0

Ef
0 + Ei

0

C3pt(P
f ,Pi; τ, ts)

C2pt(Pf , ts)

×
[

C2pt(P
i, ts − τ)C2pt(P

f , τ)C2pt(P
f , ts)

C2pt(Pf , ts − τ)C2pt(Pi, τ)C2pt(Pi, ts)

]1/2

.

(4)

In the ts → ∞ limit, this ratio approaches the ground-
state bare matrix elements Rfi(Pf ,Pi; τ → ∞, ts →
∞) = FB

M (Q2) (M = π+ or K+). Taking the results of
the energy levels and overlap amplitudes from the anal-
ysis of the two-point functions, we use the two-state fit
on the lattice data to extract the bare matrix elements
from the ratios. Details of the analysis can be found
in the Supplemental Material. We show examples in
the Breit frame of the ratio Rfi in Fig. 1 for the pion
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upper panel of the figure, we compare the lattice results
on Fπ+(Q2) to the experimental results from Fπ collab-
oration [60]. Impressively, the lattice determination ex-
hibits excellent agreement with the experimental data.
This agreement is reassuring for the model-based extrac-
tion of meson EMFF from experimental data, further
bolstering the anticipation for their future experimental
determination at JLAB [22, 23], EIC [24], and EicC [25].
For the kaon, we have results from two different lattice
ensembles with a = 0.076 fm (filled circle symbols) and
a = 0.04 fm (open circle symbols), which appear to be
consistent at the overlap range. This suggests that the
lattice artifacts are small compared to the statistical er-
rors. Overall, one can observe that both Q2Fπ+(Q2) and
Q2FK+(Q2) exhibit a rapid rise at low Q2, transitioning
into a plateau-like region at high Q2 ≳ 5 GeV2 within
the errors.

At high Q2, the asymptotic nature of QCD allows the
factorization of the electromagnetic form factors into the
convolutions of the meson DA and a hard-scattering ker-
nel, as has been pointed out in the past [8, 9, 71]. There-
fore, our lattice QCD results can be utilized to test this
factorization. At the leading twist, the collinear factor-
ization formula of the form factor reads

FM (Q2) =

∫ 1

0

∫ 1

0

dxdy Φ∗
M (y, µ2

F )

× TH(x, y,Q2, µ2
R, µ

2
F )ΦM (x, µ2

F ),

(5)

where TH is the hard-process kernel calculated in per-
turbative QCD (pQCD). The hard kernel depends on
the momentum transfer Q2, the factorization scale µF ,
as well as the renormalization scale µR at a fixed or-
der of perturbation theory. It has been known up to
the next-to-leading order (NLO) [72–75] for some time.
Very recently, the NNLO correction has become avail-
able [47]. The nonperturbative physics is encoded in the
meson DA ΦM (x, µ2

F ). Its dependence on µF comes from
its anomalous dimension, which is compensated by the
µF -dependence of the hard kernel in the factorization
formula above. The limit of very large Q2 also implies
that µF → ∞, and in this limit, one can use the asymp-
totic limit of DA, given by Φas

M = 3fMx(1 − x)/
√
2Nc

(Nc = 3 for QCD). Therefore, at asymptotically large
Q2, where the leading order (LO) result for TH is jus-
tified, we have FM (Q2 → ∞) = 8παs(Q

2)f2
M/Q2. This

means that Q2FM (Q2)/f2
M should be approximately con-

stant and small at sufficiently large Q2, explaining our
normalization process. This LO asymptotic result gives
a very small EMFF in comparison to the experimental
results. For example, for the largest Q2 = 2.45 GeV2

accessible experimentally, the LO asymptotic result pre-
dicts Q2Fπ+(Q2)/f2

π ≃ 8.6, which is almost three times
smaller than the experimental value, as shown in Fig. 2.

The pion and kaon EMFF have also been calculated
using the kT factorization approach [61, 62, 76–78]. For

Q ≫ kT , the pion and kaon EMFF can also be re-
lated to the meson DA in this approach. Furthermore,
it has long been suggested that higher-twist contribu-
tions to the EMFF factorization could be numerically
large even for Q2 < 100 GeV2 despite being formally
suppressed [61, 62, 78–84]. The state-of-the-art studies
that consider higher-twist contributions are performed
within the kT factorization approach and include all
two- and three-particle (parton) contributions up to twist
four [61, 62]. We note, however, that it has been known
since long that there are infrared sensitive double logs in
the hard kernel at twist three and beyond [79, 81], and
it is not completely clear that these are properly treated
in the kT factorization. In Fig. 2, we compare our lat-
tice results with the state-of-the-art perturbative calcula-
tions, including the higher-twist contributions under the
kT factorization framework [61–63], as well as the pQCD
predictions up to NNLO within the collinear factoriza-
tion framework [47]. For the latter, we use the NNLO
perturbative results written in terms of Gegenbauer ex-
pansion of the pion and kaon DA. The DAs can be calcu-
lated from lattice QCD [41–44]. In this work, we utilize
results obtained from the same lattice setup using the a
= 0.076 fm gauge ensemble [46], where we derived up to
the sixth conformal moment with minimal model depen-
dence. We use the conformal moments at µF = 2 GeV:
a2 = 0.196(32), a4 = 0.085(26), a6 = 0.056(15) for the
pion and a2 = 0.114(20), a4 = 0.037(11), a6 = 0.019(5)
for the kaon. We set µF = µR = Q and evolve the con-
formal moments consistently using their anomalous di-
mensions up to 3 loops [85]. We vary the scales between
Q/2 and 2Q to estimate the theoretical uncertainties.

We see from Fig. 2 that for Q2 > 5 GeV2 lattice QCD
results for pion and kaon EMFF mostly agree with the
collinear NNLO pQCD results within the estimated er-
rors. Note that the same values of DAs used to pro-
duce the EMFF also lead to prediction for pion tran-
sition form factors [46] that are consistent with experi-
mental data from the Belle collaboration [11]. For the
first time, the perturbative factorization and universality
of DAs are tested in two exclusive processes, thanks to
the large momentum transfer achieved in this work. For
the pion, we also find agreement with NLO results from
the kT factorization that includes higher-twist contribu-
tions [61, 62]. However, for the kaon case, the kT factor-
ization approach with higher-twist contributions overes-
timates the lattice QCD results and also leads to much
stronger Q2-dependence of Q2FK(Q2) compared to our
lattice results.

The fact that LO asymptotic pQCD prediction results
in small EMFF at large Q2 in comparison to the exper-
imental results, motivated the development of partonic
approaches that incorporate some nonperturbative infor-
mation. These approaches include those based on the
Dyson-Schwinger equation (DSE) [64, 86] and the Bethe-
Salpeter equation (BSE) [65, 66]. The former approach
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is related to the idea of dynamical mass generation in
QCD. We also compare our lattice results against these
theoretical predictions in Fig. 2. For the pion EMFF,
there is a reasonable agreement between the lattice QCD
results and the DSE calculations [64, 86], whereas the
BSE calculations [65, 66] fall below the lattice results for
Q2 ≳ 3 GeV2. In the case of the kaon EMFF, there
is some tension between the DSE calculations and the
lattice results during the intermediate Q2 range.

At low Q2, the form factors could be understood by
low-energy models such as the Vector Meson Dominance
(VMD) model [87, 88]. Based on the lowest-lying vector
resonances, the kaon form factors can be parameterized
as [88–90],

FK+(Q2) =
∑

v

cv
1 +Q2/m2

v

, (6)

with mv being the mass of vector mesons. In this work,
we take v = ρ, ϕ, ω with their mass from PDG [91] and
fit cv using the lattice results at low Q2 ≤ 0.4 GeV2.
Using this parameterization, the charge radius of K+

can be determined by the slope at FK+(0), which gives
⟨r2K⟩ = 0.360(2) fm2. This value is consistent with a
recent dispersive analysis of the experimental data that
gives ⟨r2K⟩ = 0.359(3) fm2 [90]. As for the pion, the
form factors at low Q2 can be parameterized by a single
term in Eq. (6) using the VMD form, which is a one-
parameter fit as discussed in Ref. [33]. The fit results
from the VMD model extended to a high Q2 region are
also shown in Fig. 2. Surprisingly, the VMD fits from the
low Q2 region give a fairly good description of the lattice
results for the pion and kaon EMFF, even for relatively
large Q2 values, up to Q2 = 5 GeV2.

Since we have information on the pion and kaon form
factors up to high Q2, we can extract the charge or
flavor distribution of hadrons in the impact parameter
plane [92] using a model-independent way. There is no
need to model the high Q2 behavior of the form fac-
tors. We find that the form factors as well as the impact
parameter (b⊥) distributions of the u quark inside the
pion and the kaon are identical, contradicting to the pre-
diction from NJL model [93]. The distribution of the
heavier s anti-quark, on the other hand, is considerably
narrower. The details of these calculations are presented
in the Supplemental Material.
Summary. In this work, we calculated the electromag-

netic form factors of the pion and kaon with large Q2 up
to 10 GeV2 and 28 GeV2, respectively, on the lattice for
the first time. For the kaon EMFF, we employ two lat-
tice ensembles and find that the lattice artifacts are minor
compared to the statistical uncertainties. Future stuties
targeting precision at percent level should be more careful
with the systematics including the excited state contam-
ination and discretization effect. Our results can serve as
benchmark QCD predictions for model-based studies and
for the forthcoming experimental measurements planned

at JLab and the future EIC and EicC. We find that for
Q2 > 5 GeV2 the lattice results on the pion and kaon
EMFF agree with the leading-twist collinear factoriza-
tion if the NNLO hard kernel is used together with the
most recent lattice QCD results on the DA. For smaller
values of Q2, our lattice QCD results can be understood
in terms of the VMD model, suggesting that the tran-
sition from hadronic description to partonic description
does not lead to abrupt changes in the Q2-dependence
of the pion and kaon EMFF. Finally, our results for the
form factors provide a model-independent picture of the
spatial distribution in the transverse plane of the up and
strange quarks inside the pion and the kaon.
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Motaghi, J. Najjar, W. Söldner, and A. Sternbeck, PoS
LATTICE2013, 447 (2014), arXiv:1311.7639 [hep-lat].

[30] H. Fukaya, S. Aoki, S. Hashimoto, T. Kaneko, H. Mat-
sufuru, and J. Noaki, Phys. Rev. D 90, 034506 (2014),
arXiv:1405.4077 [hep-lat].

[31] G. Colangelo, M. Hoferichter, and P. Stoffer, JHEP 02,
006, arXiv:1810.00007 [hep-ph].

[32] G. Wang, J. Liang, T. Draper, K.-F. Liu, and Y.-

B. Yang (chiQCD), Phys. Rev. D 104, 074502 (2021),
arXiv:2006.05431 [hep-ph].

[33] X. Gao, N. Karthik, S. Mukherjee, P. Petreczky, S. Syrit-
syn, and Y. Zhao, Phys. Rev. D 104, 114515 (2021),
arXiv:2102.06047 [hep-lat].

[34] J. Koponen, F. Bursa, C. T. H. Davies, R. J. Dow-
dall, and G. P. Lepage, Phys. Rev. D 93, 054503 (2016),
arXiv:1511.07382 [hep-lat].

[35] C. Alexandrou et al. (ETM), Phys. Rev. D 97, 014508
(2018), arXiv:1710.10401 [hep-lat].

[36] T. Kaneko, S. Aoki, G. Cossu, H. Fukaya, S. Hashimoto,
J. Noaki, and T. Onogi (JLQCD), PoS LATTICE2010,
146 (2010), arXiv:1012.0137 [hep-lat].

[37] C. Alexandrou, S. Bacchio, I. Cloet, M. Constantinou,
J. Delmar, K. Hadjiyiannakou, G. Koutsou, C. Lauer,
and A. Vaquero (ETM), Phys. Rev. D 105, 054502
(2022), arXiv:2111.08135 [hep-lat].

[38] A. J. Chambers et al. (QCDSF, UKQCD, CSSM), Phys.
Rev. D 96, 114509 (2017), arXiv:1702.01513 [hep-lat].

[39] J. Koponen, A. C. Zimermmane-Santos, C. T. H. Davies,
G. P. Lepage, and A. T. Lytle, Phys. Rev. D 96, 054501
(2017), arXiv:1701.04250 [hep-lat].

[40] C. T. H. Davies, J. Koponen, P. G. Lepage, A. T. Lytle,
and A. C. Zimermmane-Santos (HPQCD), PoS LAT-

TICE2018, 298 (2018), arXiv:1902.03808 [hep-lat].
[41] G. S. Bali, V. M. Braun, S. Bürger, M. Göckeler, M. Gru-
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Rev. D 93, 094515 (2016), arXiv:1602.05525 [hep-lat].

[60] G. M. Huber et al. (Jefferson Lab), Phys. Rev. C 78,
045203 (2008), arXiv:0809.3052 [nucl-ex].

[61] S. Cheng, Phys. Rev. D 100, 013007 (2019),
arXiv:1905.05059 [hep-ph].

[62] J. Chai, S. Cheng, and J. Hua, Eur. Phys. J. C 83, 556
(2023), arXiv:2209.13312 [hep-ph].

[63] J. Chai, S. Cheng, and Z. Fang, The transition and elec-
tromagnetic form factors of the pseudoscalar mesons, in
preparation.

[64] Z.-Q. Yao, D. Binosi, and C. D. Roberts, Phys. Lett. B
855, 138823 (2024), arXiv:2405.04681 [hep-ph].

[65] E. Ydrefors, W. de Paula, J. H. A. Nogueira, T. Fred-
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TABLE I. The values of the meson initial and final momenta used in this work and the numbers of the samples used in the
AMA method are shown. The initial and final momenta and their corresponding boost parameters in the z-direction in units
of 2π/(Lsa) are denoted by n

i,f
P

and ni,f

k3
, respectively. The values of the momentum transfer Q2 are given in physical units.

Additionally, we provide the exact counts for both exact (#ex) and sloppy (#sl) inversion samples per configuration.

Meson a[fm] n
f
P
= (nf

P1
, nf

P2
, nf

P3
) nf

k3
ni
P = (ni

P1
, ni

P2
, ni

P3
) ni

k3
Q2[GeV2] (#ex, #sl)

Pion 0.076

(0, 0, -3) -2

(0,0,2)

2

1.56

(3, 96)
(0,0,3) 2.34

(0,0,4) 3.12

(2,0,3) 2.58

(0, 0, -5) -4

(0,0,3)

4

3.90

(7, 224)

(0,0,4) 5.20

(0,0,5) 6.50

(2,0,4) 5.50

(2,0,5) 6.75

(0, 0, -6) -5

(0,0,5)

5

7.80

(18, 576)
(0,0,6) 9.35

(2,0,5) 8.10

(2,0,6) 9.61

Kaon

0.076

(0, 0, -1) 0

(0,0,1)

0

0.26

(1, 32)

(1,0,-1) 0.062

(1,0,0) 0.13

(1,0,1) 0.32

(1,1,0) 0.19

(1,1,1) 0.38

(0, 0, -3) -2

(0,0,-2)

2

0.025

(5, 160)

(0,0,1) 0.91

(0,0,2) 1.58

(0,0,3) 2.34

(1,1,3) 2.46

(2,2,3) 2.80

(0, 0, -5) -4

(0,0,3)

4

3.95

(8, 256)

(0,0,4) 5.21

(0,0,5) 6.50

(1,1,5) 6.62

(2,2,5) 6.98

(0, 0, -6) -6

(0,0,5)

6

7.80

(8, 256)
(0,0,6) 9.35

(1,1,6) 9.48

(2,2,6) 9.84

0.04

(0, 0, -3) -2

(0,0,2)

2

5.66

(4, 128)
(0,0,3) 8.44

(0,0,4) 11.27

(0,0,5) 14.13

(0, 0, -5) -4

(0,0,4)

4

18.77

(8, 256)(0,0,5) 23.45

(0,0,6) 28.15
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Q2 [GeV2] 1.56 2.34 2.58 3.12 3.90 5.20

Fπ+ 0.252(5) 0.176(8) 0.169(6) 0.142(22) 0.120(9) 0.096(11)

5.50 6.50 6.75 7.80 8.10 9.35 9.61

0.098(9) 0.073(11) 0.068(11) 0.068(11) 0.061(8) 0.056(10) 0.053(9)

TABLE II. Pion electromagnetic form factors in this work from the a = 0.076 fm lattice are shown.

Q2 [GeV2] 0.025 0.062 0.13 0.19 0.26 0.32 0.38 0.91 1.58

FK+ 0.967(14) 0.906(2) 0.828(1) 0.767(1) 0.710(1) 0.666(1) 0.628(1) 0.414(1) 0.283(1)

2.34 2.46 2.80 3.95 5.21 5.60 6.50 6.62 6.98 7.80

0.207(3) 0.200(1) 0.184(2) 0.135(2) 0.105(1) 0.103(4) 0.088(1) 0.086(1) 0.082(2) 0.072(4)

8.44 9.35 9.48 9.85 11.26 14.13 18.63 23.45 28.12

0.075(4) 0.063(3) 0.062(3) 0.056(4) 0.053(4) 0.038(13) 0.033(13) 0.025(4) 0.019(3)

TABLE III. Kaon electromagnetic form factors from the a = 0.076 fm and a = 0.04 fm lattices are shown.

The ground-state bare matrix elements from three-point function

Similar to the two-point functions, the three-point functions have the spectral decomposition,

C3pt(P
f ,Pi; τ, ts) =

∑

m,n

AmA∗
n⟨m;Pf |OΓ|n;Pi⟩e−(ts−τ)Ef

me−τEi
n , (8)

where the overlap amplitudes An as well the energy levels En are the same as for the two-point functions, and the
ground-state bare matrix element FB = ⟨0;Pf |OΓ|0;Pi⟩ is the bare form factor. We construct a ratio defined as

Rfi(Pf ,Pi; τ, ts) ≡
2

√

Ef
0E

i
0

Ef
0 + Ei

0

C3pt(P
f ,Pi; τ, ts)

C2pt(Pf , ts)
×
[

C2pt(P
i, ts − τ)C2pt(P

f , τ)C2pt(P
f , ts)

C2pt(Pf , ts − τ)C2pt(Pi, τ)C2pt(Pi, ts)

]1/2

(9)

to take advantage of the correlation between two-point and three-point functions. In the ts → ∞ limit, the ratios
give the bare matrix elements of the ground state Rfi(Pf ,Pi, τ → ∞, ts → ∞) = FB

M (Q2). Based on the spectral
decomposition formula, several methods can be considered to perform the τ → ∞, ts → ∞ extrapolation of the ratios:

1. Two-state fit. We truncate the spectral decomposition formula of the two-point functions as well as the three-
point functions up to two states (m,n can be 0 and 1), insert them into the ratios, and finally get the formula
below.

Rfi(Pf ,Pi; τ, ts) =

[

O00 +
|Ai

1|
|Ai

0|
|Af

1 |
|Af

0 |
O11e

(∆Ef−∆Ei)τe−∆Ef ts +
|Ai

1|
|Ai

0|
O01e

−∆Eiτ +
|Af

1 |
|Af

0 |
O10e

−(ts−τ)∆Ef

]

×

√

√

√

√

√

√

1 +
|Ai

1
|2

|Ai
0
|2

|Af
1
|2

|Af
0
|2
e−(ts−τ)∆Eie−∆Efτ +

|Ai
1
|2

|Ai
0
|2
e−(ts−τ)∆Ei +

|Af
1
|2

|Af
0
|2
e−∆Efτ

1 +
|Ai

1
|2

|Ai
0
|2

|Af
1
|2

|Af
0
|2
e−(ts−τ)∆Ef e−∆Eiτ +

|Ai
1
|2

|Ai
0
|2
e−∆Eiτ +

|Af
1
|2

|Af
0
|2
e−(ts−τ)∆Ef

× 1
√

1 +
|Ai

1
|2

|Ai
0
|2

|Af
1
|2

|Af
0
|2
e−(∆Ef+∆Ei)ts +

|Ai
1
|2

|Ai
0
|2
e−∆Eits +

|Af
1
|2

|Af
0
|2
e−∆Ef ts

.

(10)

In the Breit frame limit, we can use a simplified form for this ratio:

Rfi(Pf ,Pi; τ, ts) =
O00 +

|A1|
2

|A0|2
O11e

−ts∆E + |A1|
|A0|

O01e
−τ∆E + |A1|

|A0|
O10e

−(ts−τ)∆E

1 + |A1|2

|A0|2
e−ts∆E

, (11)



12

with ∆E = E1−E0 being the energy difference and Omn = ⟨m;Pf |OΓ|n;Pi⟩ representing the matrix elements,
in which O00 is the bare form factor. We perform the fit using the above expressions by fixing ∆E as well as
|A1|/|A0| to the values obtained from the analysis of the two-point functions, treating Onm as fit parameters, and
skipping nsk data points in τ on the two sides of the source-sink separation to avoid excited-state contamination.
In general, this implies a four-parameter fit. In the case of the Breit frame, we have O01 = O10, so we deal
with a three-parameter fit. We will refer to this fit method as Fit(nsk). Alternatively, instead of fixing ∆E
and |A1|/|A0|, we could impose priors into the χ2 by utilizing their central values and corresponding 1-σ errors
derived from the two-point functions, and perform a constrained five-parameter fit, with O00,O01,O11,∆E and
|A1|/|A0| being fit parameters. We refer to this fit method as 2-prior Fit(nsk).

2. Summation method. We construct the sum of the ratios over time insertion τ ,

Rfi
sum(ts) =

ts−nska
∑

τ=nska

Rfi(ts, τ). (12)

For sufficiently large ts, the excited-states contribution is suppressed, and the sum can be approximated by a
linear function,

Rfi
sum(ts) = nFB +B0 +O(e−(E1−E0)ts), n = ts − (2nsk − 1)a. (13)

Therefore, we can do a linear fit of data on Rfi
sum(ts) to extract the bare form factor, FB . One can control the

excited-state contamination by choosing different values of nsk. However, for certain cases when ts is too small,
the excited-state contribution cannot be fully ignored. We can include the LO correction term, allowing us to
express the ansatz in the Breit frame as

Rfi
sum(ts) = nFB +B0 + nB1e

−(E1−E0)ts . (14)

These two methods will be denoted as Sum(nsk) and SumExp(nsk).

3. When the ts is large enough, the excited-states contribution is negligible within the statistic error. In this case,
the ratios Rfi(ts, τ) would show ts- and τ -independent plateaus within the errors. One can simply do a plateau
fit to get FB . We refer to this method as Plateau(nsk).

In this work, we considered the first two methods. One thing to notice is that τ has a rather limited range, so
the values of nsk must be determined appropriately. Since for a = 0.04 fm ensemble, we have source-sink separations
ts/a = {8, 10, 12, 14, 16}, the τ -dependence of the three-point correlators can only be studied for τ ≲ 8a. Based on
our previous experience [33, 51], here we choose nsk ≥ 3. For a = 0.076 fm ensemble, we have ts/a = {6, 8, 10, 12}, so
the τ -dependence of the three-point function can only be studied for τ ≲ 6a. Again, based on past experience, we use
nsk ≥ 2 in this case. The two-state fits to our lattice data are shown in Fig. 6 and Fig. 7. In Fig. 6, we present the
examples of the ratio (Rfi) for the a = 0.04 fm lattice, with P f

z = −1.45 GeV varied from P i
z = {1.45, 1.94} GeV in

the upper panels, and P f
z = −2.42 GeV varied from P i

z = {2.42, 2.91} GeV in the lower panels. While Fig. 7 show
the cases for the a = 0.076 fm lattice, with P f

z = −0.76 GeV, varying P i
z = {0.51, 0.76} GeV in the upper panels,

and P f
z = −1.53 GeV, varying P i

z = {1.27, 1.53} GeV in the lower panels. In each panel, the colored bands represent
the fit results using the two-state Fit(nsk) method, while the grey bands denote the extrapolated bare form factor
results, FB . The color coding of the bands corresponds to the color coding of the lattice data for different source-sink
separations.

In Fig. 8, we show the lattice results for Rfi
sum(ts) together with the correspondings fit results from Sum(nsk),

ExpSum(nsk), and Fit(nsk) for both a = 0.04 fm lattice (left two panels) and a = 0.076 fm lattice (right two panels).
Furthermore, the values of the bare form factor obtained using these fit methods are summarized in Fig. 9. In this
figure, we also show the corresponding χ2/dof and p-value for each method. As one can see, the two-state fits always
give χ2/dof ≲ 1 and consistent results for different choices of nsk, suggesting this method is robust for the data under
consideration. For the a = 0.076 fm ensemble and small momenta cases, the summation fits, Sum(nsk), have large
values of χ2/dof . This is because the statistical errors in these cases are small, and excited-state contamination cannot
be neglected. In this situation, it is necessary to introduce the excited-state corrections to the summation method,
namely ExpSum(nsk). The results from ExpSum(nsk) show reasonable χ2/dof , but the errors become large since it
is difficult to fit three parameters using only a few data points. On the other hand, the results from ExpSum(nsk) are
consistent with the two-state fit within errors. For the a = 0.04 fm lattice with larger momenta cases, the excited-state
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