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A B S T R A C T

The dark dimension provides a mechanism to resolve the cosmological hierarchy problem and assembles a
colosseum for dark matter contenders. In a series of recent publications we investigated whether primordial
black holes (PBHs) perceiving the dark dimension could constitute all of the dark matter in the universe. A key
assumption of these investigations is that PBHs remain confined to the brane during the entire evaporation
process. As a consequence, the abundance of PBHs evaporating at the present epoch is severely constrained
by observations of both the extragalactic and Galactic �-ray backgrounds. As a natural outgrowth of these
investigations, herein we relax the assumption of brane localized PBHs and reexamine the evaporation process
of PBHs which are allowed to escape into the dark dimension. We show that the escape of PBHs from the
brane is almost instantaneous. Armed with this pivotal finding we reassess the allowed mass range of PBHs to
assemble all cosmological dark matter, which is estimated to be 10

11 ø M
BH

_g ø 10
21.

1. Introduction

The set of effective field theories (EFTs) that look consistent ac-
cording to all available low-energy criteria, but do not arise from an
ultraviolet complete theory that includes quantum gravity has become
known as the swampland [1]. There are several conjectures for fencing
off the swampland [2–5]. For example, the distance conjecture (DC)
asserts that in any consistent theory of quantum gravity, when ven-
turing to large distances in four-dimensional (4D) Planck units within
scalar field space, a tower of particles will become light at a rate that
is exponential in the field space distance [6]. Concatenated to the DC
is the anti-de Sitter (AdS) distance conjecture, which hitches the dark
energy density to the mass scale m characterizing the infinite tower of
states, m Ì ⇤↵ , as the negative AdS vacuum energy ⇤ ô 0, with ↵
a positive constant of O(1) [7]. Furthermore, if this scaling behavior
stays around valid in de Sitter (or quasi de Sitter) space, an unbounded
number of massless modes also would pop up in the limit ⇤ ô 0.

The AdS-DC in dS space provides an expressway to elucidate the
cosmological hierarchy problem, ⇤_M4

p Ì 10*122, because it connects
the size of the compact space R⌅ to the dark energy scale ⇤*1_4 via

R⌅ Ì � ⇤*1_4 , (1)
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where the proportionality factor is estimated to be within the range
10

*1 < � < 10
*4 and where Mp is the Planck mass [8]. As a matter

of fact, (1) stems from constraints of both theory and experiment.
Firstly, the accompanying Kaluza–Klein (KK) tower contains massive
spin-2 bosons, and thus the Higuchi bound [9] sets an absolute up-
per bound to ↵. Secondly, explicit string calculations of the vacuum
energy (see e.g. [10–13]) lead to a lower limit on ↵. More precisely,
these two stringy constraints imply 1_4 f ↵ f 1_2. Now, when these
theoretical arguments are combined with experimental observations
(e.g. constraints on deviations from Newton’s gravitational inverse-
square law [14] and neutron star heating [15]) we arrive at the
conclusion encapsulated in (1): The cosmological hierarchy problem can
be addressed if there exists one extra dimension of radius R⌅ in the micron
range, and the lower bound for ↵ = 1_4 is basically saturated [8]. A
theoretical amendment on the connection between the cosmological
and KK mass scales confirms ↵ = 1_4 [16]. A second conclusion
encapsulated in (1) is that the KK tower of the new (dark) dimension
lays bare at the mass scale m

K K Ì 1_R⌅.
The 5-dimensional Planck scale (or species scale where gravity

becomes strong [17–33]) provides an upper bound for the ultraviolet
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cutoff of EFTs of gravity coupled to a number of light particle species
and within the dark dimension scenario is found to be

M
<
Ì m1_3

K K M2_3

p . (2)

The dark dimension heralds a new era of particle phenomenology
and cosmology [34–56]. For example, primordial black holes (PBHs)
with a Schwarzschild radius smaller than a micron could be potential
dark matter candidates [35,37,50,53]. If such PBHs were evaporating at
the present epoch, then their abundance would be strongly constrained
by observations of both the extragalactic and Galactic �-ray back-
grounds [57,58]. The null results from searches in �-ray experiments,
imply that only for the black hole mass range

10
15 ø M

BH
_g ø 10

21 , (3)

PBHs could make all cosmological dark matter [53]. This bound was
derived within the probe-brane approximation, which ensures that
the black hole is bind to the brane during the evaporation process.
However, a thorough study of the evolution of the PBH-brane system,
once the black hole is given an initial velocity (that mimics the recoil
effect due to graviton emission in the bulk), suggests that the brane
would bend around the PBH forcing it to eventually escape into the
dark dimension once the two portions of the brane come in contact
and reconnect [59–62]. Motivated by this pivotal finding, in this paper
we explore the possibility of enriching the dark dimension with bulk
black hole dark matter.

The layout is as follows. We begin in Section 2 with a synopsis of
PBH formation in standard 4D inflation and after that we lay out the
hypotheses for PBH formation within the dark dimension scenario. In
Section 3 we reexamine the Hawking evaporation process considering
particle emission onto the brane and in the bulk. In Section 4 we
estimate the time scale for PBHs escaping the brane in the mass range of
interest. Armed with our finding, we reassess limits on the abundance
of PBH dark matter by focusing on black holes which could escape
from the brane into the bulk, and therefore would avoid constraints
from �-ray experiments. The paper wraps up in Section 5 with some
conclusions.

Before proceeding, we pause to note that the dark dimension can
be understood as a line interval with end-of-the-world 9-branes in M-
theory attached at each end, which is equivalent to a semicircular 11th
dimension endowed with S1

_Z
2

symmetry [63]. It is worthy of mention
that if the dark dimension is warped then the brane could behave as if
the tension were infinite, resulting in the impossibility for PBHs to leave
the brane [64].

2. Primordial black hole production

Arguably, the most well-motivated model for PBH production makes
use of quantum fluctuations generated during inflation [65–67]. Planck
measurements of the CMB tightly constrain temperature fluctuations on
large scales, because the power spectrum of the comoving curvature
perturbation R is almost scale invariant: PR(k) = A(k_k

0
)
ns*1, with

amplitude ln(10
10
A) = 3.044 ± 0.014, spectral index ns = 0.965 ±

0.004, and pivot scale k
0
= 0.05 Mpc

*1 [68]. However, observational
constraints on smaller scales (which cannot be probed by CMB data)
are loose enough to allow for large fluctuations, with amplitude of
power spectrum O(0.01) [69]. In this section we review the necessary
conditions for obtaining large curvature fluctuations that could ignite
PBH formation with appreciable abundance today.

To lay out the foundation of the discussion we first note that the
order of magnitude estimate of the black hole mass M

BH
can be guessed

by equating the scaling of the cosmological energy density with time t
in the radiation dominated epoch,

⇢ Ì M2

p _t
2 , (4)

to the required density in a region of mass M
BH

which is able to
collapse within its Schwarzschild radius

⇢ Ì M6

p _M
2

BH
. (5)

Drawing a connection between (4) and (5) we can see that at produc-
tion PBHs would have roughly the cosmological horizon mass [57]

M
BH

Ì tM2

p Ì 1015
0

t
10*23 s

1

g . (6)

Substituting in (6) representative cosmological time scales we can
roughly estimate that black holes produced at the Planck time (10*43 s)
would have the Planck mass (Mp Ì 10*5 g), black holes produced at the
QCD epoch (10*5 s) would have a solar mass (1 MÊ), and black holes
produced at t Ì 1 s would have a mass of 105MÊ, which is comparable
to the mass of the black holes thought to reside in galactic nuclei. The
back-of-a-napkin calculation delivering (6) suggests that PBHs could
span an enormous mass range. Even though the spectrum of masses
of these PBHs remains unspecified, on cosmological scales PBHs could
behave like a typical cold dark matter particle.

Taking into account the cosmological expansion, the present day
PBH density parameter in units of the critical density ⌦

PBH
can be

related to the initial collapse fraction at redshift z by

� =
⌦

PBH

⌦r

1

(1 + z)
Ì 10*6 ⌦

PBH

⇠ t
s

⇡1_2

Ì 10*18 ⌦
PBH

0

M
BH

1015 g

11_2

,

(7)

where ⌦r Ì 10*4 is the present-day density parameter of radiation and
in the last step we have used (6) [70]. Note that the (1 +z) factor derives
from the fact that the radiation density scales as (1 +z)4, while the PBH
density scales as (1 + z)3. This implies that �(M

BH
) must be tiny even if

PBHs provide all of the dark matter [71].
The criterion for PBH formation is most easily specified in terms

of the density contrast � í (⇢ * Ñ⇢)_ Ñ⇢, where ⇢ is the density of the
region and Ñ⇢ is the average background density. A PBH will form if
the density contrast exceeds a critical value, �c . The PBH abundance at
formation epoch can then be interpreted as the fraction of the universe
with regions dense enough to produce PBHs,

� í
 

ÿ

�c
P (�) d � , (8)

where P (�) is the probability distribution function, which describes
the likelihood that a given fluctuation have an over-density �, and we
assume that a perturbation will collapse to form PBH if its amplitude
is larger than a critical value �c [72]. It is generally assumed that the
density fluctuations have a Gaussian distribution

PG(�) = 1
˘

2⇡ �
e*(�*�)

2
_2�2 , (9)

and are spherically symmetric, where � is the mean and �2 is the
variance of the distribution. Equating (7) to (8), we can estimate the
required mass variance �2 of (9) that can give rise to large population
of PBH today. Setting � = 0 and integrating (8) it follows that

� =
 

ÿ

�c

d �
˘

2⇡ �
exp

0

*
�2

2�2

1

=
1

2
Er f c

H

�
c

˘

2�

I

Ù
�

˘

2⇡ �
c

exp

H

*

�2
c

2�2

I

,

(10)

where Er f c(x) = 1 * Er f (x) is the complementary error function and
in the last equality we have assumed �

c
∏ �, which is a good

approximation for all practical purposes. Indeed, following [73] we set
�c Ì 0.4, and so for an all-dark-matter interpretation with M

BH
Ì 1015 g

we arrive at � Ì 0.045, where we have taken the present-day dark-
matter density from Planck’s measurements ⌦

DM
h2 Ì 0.120 ± 0.001 [68],

with a dimensionless Hubble constant h Ì 0.73 [74,75].
Now, we can estimate the primordial power spectrum of the curva-

ture perturbation at the time of PBH formation, which is of order the
square of the mass variance,

PR(kPBH) Ì �2 , (11)
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and so for Gaussian fluctuations the amplitude of the scalar power
spectrum needed at scales k

PBH
relevant for PBH formation is found to

be PR(kPBH) Ì 10*3 [76,77]. We can then infer that the assumption
⌦

PBH
= ⌦

CDM
requires a very large amplification of the curvature

spectrum between large CMB and small PBH-formation scales; namely,

�PR í
PR(kPBH)
PR(kCMB

)
Ì 106 . (12)

Noticeably, one- and two-field slow-roll inflationary dynamics could
actually generate a peak in the curvature power spectrum [78–81].
This is possible if the effective dynamics of the inflation field presents
a near-inflection point which slows down the field right before the
end of inflation. This simple and quite generic feature of the potential
makes the inflation enter into an ultra-slow-rolling stage during a short
range of e-folds that gives rise to a prominent spike in the fluctuation
power spectrum at scales much smaller than those probed by CMB
experiments. Concerns were raised regarding one-loop corrections to
the large power spectrum in single-field inflation [82,83]. However,
these corrections have been found to be negligible when the transition
from the ultra-slow-roll to the slow-roll phase is smooth [84–87].1

An alternative proposal for PBH production within slow-roll infla-
tion, advocates for nucleation of bubbles of metastable vacuum during
a time interval that is short compared to the inflationary Hubble
time [95]. These bubbles would then expand exponentially during
inflation to super-horizon size, and later collapse into black holes
when the expansion of the universe is decelerating. As a consequence,
even though M

BH
is exponentially sensitive to the moment bubbles

form during inflation, the resulting PBH mass spectrum can be nearly
monochromatic. If bubble nucleation occurs near the middle of infla-
tion, M

BH
can fall in the range given in (3), in which PBHs could make

all cosmological dark matter.
The preceding discussion has been framed within the context of

standard 4D inflation. This implies that the size of the dark dimension
during the inflationary epoch should have been much smaller than
a micron (most likely at M*1

<
); otherwise, as we observed in [39],

the dark dimension scenario would be inconsistent with the Higuchi
bound [9]. On the other hand, to have 5D black hole formation and
evaporation, one should also assume that the size of the dark dimension
became much bigger by some 4D potential that was created immedi-
ately after the end of inflation. Alternatively, it is always possible that
the PBHs are produced in the bulk to start with. This situation will be
more appealing within the proposal introduced elsewhere [39,47,56],
in which we postulated that the dark dimension may have under-
gone a uniform rapid expansion, together with the three-dimensional
non-compact space, by regular exponential inflation driven by an (ap-
proximate) higher dimensional cosmological constant.2 If this were the
case, then primordial fluctuations during inflation of the compact space
could lead to the production of black holes in the bulk. An investigation
along these lines is obviously important to be done, but it is beyond
the scope of this paper. Herein, we proceed under the hypothesis that
5D PBHs could be formed within the dark dimension scenario. Shortly
after the PBHs are formed they experience Hawking evaporation. It is
this that we now turn to study.

3. Hawking evaporation

In the mid-70’s Hawking pointed out that a black hole emits thermal
radiation as if it were a black body, with a temperature inversely
proportional to its mass [96,97]. However, in the neighborhood of
the horizon the black hole produces an effective potential barrier that

1 For additional input on the one-loop correction from the short modes onto
the large-scale power spectrum, see [88–94].

2 Note that the amplitude of the power spectrum observed in the branes
should be suppressed by the bulk volume in order to convert M

<
to 4D Mp.

backscatters part of the emitted radiation, modifying the thermal spec-
trum. The so-called ‘‘greybody factor’’ �(s)(!), which controls the black
hole absorption cross section, depends upon the spin of the emitted
particles s, their energy !, and M

BH
[98–100]. In this section we carry

out a numerical analysis of the evaporation of black holes perceiving
the dark dimension to determine the emission rate onto the brane and
in the bulk.

We assume that the black hole is spherically symmetric and can
be treated as a flat (4 + n) dimensional object. This assumption is
valid for extra dimensions that are larger than the (4 + n)-dimensional
Schwarzschild radius

rs =
1

M
<

4

M
M

<

51_(n+1) b
f

f

d

8�
� n+3

2

�

(n + 2) ⇡(n+1)_2

c

g

g

e

1_(n+1)

, (13)

where � (x) is the Gamma function [101–103]. The higher-dimensional
Schwarzschild black hole behaves like a thermodynamic system [104],
with temperature TH Ì (n + 1)_(4⇡ rs) and entropy S = (4⇡ M

BH
rs)_(n +

2) [105].
The emission rate of particles of spin s is found to be

d N (s)

d t = �(s)(!)
4

exp

0

!
TH

1

* (*1)2s
5*1 dd*1k

(2⇡)d*1
, (14)

where k is the (d * 1)-momenta of the particle living in d dimensions,
and

�(s)(!) =
…

l

2
n+1 ⇡(n+1)_2 �

⇠

n+3
2

⇡

!n+2 n!
(2l + n + 1) (l + n)!

l!
A

(s)
l (!)

2

=
2
n

⇡

$

�
⇠

n+3
2

⇡%2

(!rs)n+2
A
hor

Nl A
(s)
l (!)

2

, (15)

and where

Nl =
(2l + n + 1) (l + n)!

l! (n + 1)! , (16)

is the multiplicity of states corresponding to the same partial wave l,

A
hor

= rn+2s  

2⇡

0

d '
n+1
«

k=1
 

⇡

0

sin
k ✓k+1 d ✓k+1 = 2⇡ rn+2s

n+1
«

k=1

˘

⇡
� (

k+1
2
)

� (
k+2
2
)

= 2⇡ rn+2s
⇡(n+1)_2

�
⇠

n+3
2

⇡
(17)

is the horizon area of the (4 + n)-dimensional black hole, and A
(s)
l (!)

the absorption coefficient [106]. Note that the number of dimensions
d in which a particular field lives should not be confused with di-
mensionality of spacetime (4 + n). For massless particles, k = !, and
the phase-space integral reduces to an integral over the energy of the
emitted particle !. For massive particles, k2 = !2

*m2, which implies
that for a black hole to emit a particle of mass m, its temperature
TH g m.

Bearing this in mind, the evaporation rate of a given particle species
of spin s in the frequency window (!, ! + d !) is given by [107]

d2N (s)

d t d ! =
1

2⇡
…

l
Nl A

(s)
l (!)

2

4

exp

0

!
TH

1

* (*1)2s
5*1

. (18)

The absorption coefficients for different particle species have been
calculated in [108,109] and for emission of particles on the brane, in
the low frequency limit !rs ~ 1, are given by

A
(0)

l (!)
2

=
16⇡

(n + 1)2
⇠!rs

2

⇡2l+2

$

� (
l+1
n+1 )

%2 $

� (1 + l
n+1 )

%2

$

� (
1

2
+ l)

%2 $

� (1 + 2l+1
n+1 )

%2
, (19)

A
(
1

2
)

l (!)
2

=
2⇡ (!rs)2l+1 2

*(4l+2)_(n+1)

22l {� (l + 1)}2
, (20)
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and

A(1)

l (!)
2

=
(2!rs)2+2l

(n + 1)2

$

�
⇠

l
n+1

⇡%2 $

�
⇠

l+1
n+1

⇡%2

{� (l + 2)}2
$

�
⇠

2l+1
n+1

⇡%2

{� (2l + 2)}2
. (21)

The absorption coefficient for graviton emission in the bulk is estimated
to be

A
(s)
l (!)

2

= 4⇡
⇠!rH

2

⇡2l+n+2

$

�
⇠

1 + l
n+1

* G
⇡%2 $

�
⇠

1 + l
n+1

+ G
⇡%2

$

�
⇠

l + n+3
2

⇡%2 $

�
⇠

1 + 2l
n+1

⇡%2
,

(22)

where

G =
1

2(n + 1)

v

(n + 2)2 * q + Ép + Éw
[2 m + (n + 2)(n + 3)]2 (23)

for s = 0, and

G =
(1 + k)(n + 2)

4(n + 1) (24)

for s = 1 and s = 2, with m í l(l + n+ 1) * n* 2, q í (n+ 2)4(n+ 3)2, z í

16m3
+ 4m2

(n+ 2)(n+ 4), p í (n+ 2)(n+ 3) ⌅4m (2n2 + 5n + 6) + n(n + 2)(n + 3)
(n * 2)], w í *12m (n+ 2) [m(n * 2) + n(n + 2)(n + 3)], Ép = p*z(n+ 2)2(n+
3)

2
_(4m2

), and Éw = w * z(n + 2)(n + 3)_m [110].
In Fig. 1 we show the evaporation rate for particles of spin s from

PBHs perceiving the dark dimension, considering benchmark black hole
masses. One can check by inspection that for large values of !, the
differences in emission rate for all brane localized species become
smaller, as one would expect because in the high frequency limit, the
greybody factors for all species approach the geometric optics limit. The
curves have been truncated at the frequency in which the low frequency
approximation, adopted to derive the greybody factors, breaks down.
Note that the radiation of particles with higher spin is suppressed at
low frequencies because of the larger barrier such particles have to
surmount. Note also that d2N (s)

_d t d ! depends only weakly on M
BH

and M
<
. For a comparison with previous estimates of the particle

emission rate, see Appendix.

4. Filling the dark matter void with bulk black holes

In this section, in line with our stated plan, we turn to revise pre-
vious estimates of the fraction of dark matter that could be composed
of PBHs. Higher-dimensional black holes radiate Standard Model fields
and gravitons on the brane as well as gravitons into the bulk. The total
power emitted in both channels scales as

*
d M

BH

d t Ì n T n+4
H rn+2s Ì n T 2

H , (25)

where n encodes the effect of greybody factors [111]. As can be seen
in Fig. 1, n depends only weakly on TH .

A point worth noting at this juncture is that during the process of
black hole evaporation M

BH
decreases and TH rises. In what follows,

we adopt a quasi-stationary approach to the evaporation process, which
implies that the black hole has time to come into equilibrium at each
new temperature before the next particle is emitted. We also rely on
the semi-classical assumption of self-similarity; namely, we assume
that in the course of evaporation, a black hole gradually shrinks in
size while maintaining the standard semi-classical relations between
its parameters, such as its mass, the Schwarzschild radius, and the
Hawking temperature. Note that this is a very strong assumption,
because we will estimate the evaporation rate exclusively for a black
hole of a fixed radius. With this assumption in mind, (25) can be solved
for the lifetime

⌧
BH

Ì
1

n M
<

0

M
BH

M
<

1(n+3)_(n+1)
. (26)

Now, the recoil effect due to graviton emission imparts the black
hole a relative kick velocity v with respect to the brane, allowing the
PBH to escape into the bulk. The time scale of the escape of a black
hole is estimated to be [61]

⌧
esc

Ì
1

n

rs
v
. (27)

If the origin of the recoil is the inhomogeneous emission of particles
during black hole evaporation, a rough estimate of the kick velocity
gives

v Ì

fMBH

˘

N
emit t ed

, (28)

where fMBH
is the fraction of the evaporated mass and N

emit t ed Ì

fMBH
M

BH
_TH is the number of emitted particles [112]. Substituting

(13) and (28) into (27) it follows that

⌧
esc

Ì
1

n
t

fMBH
M

<

0

M
BH

M
<

1(n+4)_(2n+2)
. (29)

Now, fMBH
at ⌧

esc
is estimated to be fMBH

Ì ⌧
esc

_⌧
BH

, and so we arrive
at

⌧
esc

Ì
1

n M
<

0

M
BH

M
<

1(2n+7)_(3n+3)
(30)

and

fMBH
Ì

0

M
<

M
BH

1(n+2)_(3n+3)
. (31)

Taking n = 1 and M
<

Ì 1010 GeV, we can conclude that PBH of
M

BH
Ì 1015 g would almost immediately escape the brane.

To a very good approximation we can then assume the black holes
will only emit gravitons in the bulk, and so the semi-analytic studies
carried out in [113,114] yield 

1
Ì 0.06.3 Now, setting n = 1, M

<
Ì

10
10

GeV, and considering the age of the universe of 13.8 Gyr [68] we
can parametrize (26) as

⌧
BH

Ì 13.8
⇠ 

1

0.06

⇡*1
0

M
BH

1011.37 g

12

Gy r . (32)

Because PBHs evaporate almost entirely into gravitons in the bulk,
the constraints from gamma-ray observations [57,58] can be safely
neglected. Taking into account the systematic error associated with the
order of magnitude uncertainty in the species scale 10

9 ø M
<
_GeV ø

10
10, we conclude that the mass range for PBHs to make all the

cosmological dark matter is then

10
11 ø M

BH
_g ø 10

21 . (33)

Note that the minimum M
BH

required for bulk PBHs to make all
cosmological dark matter is in agreement with the estimate derived
in [53] using scaling arguments.

In closing, we stress that if there were 5D primordial near-extremal
black holes in nature, then it would be possible to lower the min-
imum mass allowing a PBH all-dark-matter interpretation, because
near-extremal black holes are colder and longer-lived [50]. Note, how-
ever, that near-extremal black holes cannot escape from the brane into
the bulk since they carry electromagnetic charge. It is also important
to stress that if PBHs experience the memory burden effect [117,118],
then the minimum M

BH
allowing a 5D PBH all-dark-matter interpre-

tation can also be relaxed [119–122]. Note that the limits from �-ray
observations adopted in [53] to constrain this possibility would be
evaded if PBHs escape from the brane.

3 This semi-analytic estimate is in agreement with those derived in [115,
116].
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Fig. 1. Evaporation rate for particles of spin s. We have taken n = 1, a species scale M
<
= 109 GeV (left) and M

<
= 1010 GeV (right), considering from top to bottom

M
BH

_g = 1011 , 1013 , 1015.

Fig. 2. Particle emission rate of Schwarzschild, near extremal, and quantum black holes; for d = 4 (left) and d = 5 (right).

Physics�of�the�Dark�Universe�46��������101714�

5�



L.A. Anchordoqui et al.

5. Conclusions

We have reexamined the Hawking evaporation process of PBH
perceiving the dark dimension. We have shown that PBHs are expected
to escape from the brane almost instantaneously. Motivated by this
essential finding, we have revised the allowed mass range of PBHs
that could assemble all cosmological dark matter. We found that a
PBH all-dark-matter interpretation would be possible in the mass range
10

11 ø M
BH

_g ø 10
21.

We end with an observation. Complementary to the PBHs, it was
observed in [38] that the universal coupling of Standard Model fields to
the massive spin-2 KK excitations of the graviton in the dark dimension
provides an alternative dark matter contender. The cosmic evolution
of the dark graviton gas is primarily dominated by ‘‘dark-to-dark’’
decays, yielding a specific realization of the dynamical dark matter
framework [123]. A remarkable close relation between PBHs and the
dark gravitons has been pointed out in [37]. We note that the ideas
discussed in this paper make more noticeable the PBH “ dark graviton
gas connection, as in both scenarios the cosmological evolution of the
dark matter sector would take place mostly in the bulk. Actually, PBHs
originally formed on the brane could act as a source of KK gravitons.
Note that for M

BH
in the range of interest the Hawking temperature,

TH Ì
1

rs
Ì

0

M
BH

1012 g

1*1_2

MeV , (34)

is consistent with experimental constraints on the natural scale in which
the KK gravitons on the dark dimension are generated with enough
abundance [38,46,48].
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Appendix

In this Appendix we compare our estimates of d2N (s)
_d td ! with

those obtained in [111] for n = 2 and n = 4. In Fig. 2 we show the
instantaneous emission of species on the brane and in the bulk for two
and four extra dimensions, with M

BH
= 10*10 g and M

<
= 10 TeV. One

can check by inspection of Fig. 2 and Fig. 1 in [111] that there is good
agreement between the two estimates.
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