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Abstract

Zero-knowledge range proofs (ZKRPs) allow a prover to convince a verifier that a secret value lies in

a given interval. ZKRPs have numerous applications: from anonymous credentials and auctions, to

confidential transactions in cryptocurrencies. At the same time, a plethora of ZKRP constructions

exist in the literature, each with its own trade-offs. In this work, we systematize the knowledge

around ZKRPs. We create a classification of existing constructions based on the underlying building

techniques, and we summarize their properties. We provide comparisons between schemes both in

terms of properties as well as efficiency levels, and construct a guideline to assist in the selection

of an appropriate ZKRP for different application requirements. Finally, we discuss a number of

interesting open research problems.
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1 Introduction

Zero-knowledge (ZK) proofs have received much attention in recent years, with an abundance

of generic protocols being developed using various assumptions and techniques. Although

these generic protocols are becoming very efficient and easier to implement, there are still

cases for specific types of statements, where customized ZK protocols are preferable.

Zero-knowledge range proofs (ZKRPs) are a subclass of zero-knowledge proofs that proves

a structured kind of set membership. A ZKRP allows a prover to convince a verifier that a

secret, committed value lies in a given (integer) interval. Brickell et al. [15] introduced the

first type of zero-knowledge range proof as a building block in a protocol for revealing a secret

discrete logarithm bit-by-bit. Since their introduction, ZKRPs have been used in various

applications such as private e-cash protocols [25] (to verify non-negative transaction amounts),

anonymous credentials systems [22, 6, 24] (to prove that a secret credential attribute, i.e.

user age, falls in a specific range) as well as private voting [43], auctions [3] and privacy

preserving federated learning [7] and so on. Additionally, ZKRPs are often used as building

blocks for more complex cryptographic schemes. For instance, they have been used to
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construct ZK proofs of non-membership [55] and ZK proofs of certain polynomial relations

over the integers [23, 21], and they have also been used to prove well-formedness of RLWE

ciphertexts [35, 52] and well-formedness of shares in secret-sharing schemes [45, 42].

At the same time, with the rise of decentralized systems and cryptocurrencies, range

proofs have received increased attention due to their use in mechanisms that preserve the

privacy of transactions posted on the blockchain. For instance, ZKRPs are a key ingredient

in confidential transactions [59, 16, 64] – which hide the amount of each transaction posted

on the blockchain. The transaction amounts are stored in a committed fashion, and to ensure

validity of the transaction the sender must prove that the sum of the output amounts does

not exceed the sum of the input amounts. For this check to be sound, the sender must

also prove that all output amounts are positive (else an adversarial sender could commit to

negative output amounts and create coins out of thin air). For commitments in a group, such

as Pedersen commitments, this positivity check also involves showing that the committed

value is much less than the order of the group. This check essentially amounts to showing

that the committed value is in some integer range [0, 2k − 1] and is done via a ZKRP.

Additionally, ZKRPs are heavily used in protocols for blockchain auditing and solvency

solutions [32, 20, 48, 26] to show that transactions or reserves of an organization satisfy

certain policies.

This increased interest in ZKRPs has also resulted in a growing number of proposed con-

structions with different characteristics and properties. With numerous ZKRP constructions

available, selecting the suitable scheme for a specific application can be challenging. The

goals of this SoK are to organize the space on the various techniques used to construct range

proofs, compare their properties in a systematic way, identify open research questions, and

provide a guideline to select the appropriate protocol for each type of application.

Our contributions and organization. We start by defining the necessary background on

cryptographic schemes and computational assumptions in Section 2. In Section 3, we provide

a taxonomy of general approaches used in the construction of zero-knowledge range proofs.

Concretely, we identify three underlying methods used in the constructions of known ZKRP

schemes: (a) square decomposition, (b) binary/n-ary decomposition and (c) hash-chain

approach. We describe each method in detail, and for n-ary decomposition we present an

abstraction that allows us to synthesize the several techniques used. Our abstraction is

of independent interest, and could potentially lead to new insights. Then, in Section 4,

we collect the set of properties beyond the standard soundness and zero-knowledge that

are desirable in certain application scenarios of ZKRPs, such as aggregation, transparent

setup and efficiency considerations. In Sections 5-7 we classify all known (to the best of our

knowledge) ZKRP constructions under the three methods we identified in Section 3. For

each method, we provide an analytical list of known protocols and we compare all protocols

based on the desirable properties listed in Section 4. In Section 8, we provide a guideline

for how to select the best type of ZKRP construction based on the desired properties and

then in Section 9, we report storage and computation (verifier/prover time) costs of the

most popular ZKRP constructions using existing and new benchmarks. (We provide a more

detailed list of known ZKRP applications in the full version of the paper [27].) Finally, we

identify a series of research gaps relevant to ZKRP which we believe can serve as a starting

point for future research works in Section 10.

Comparison with prior work. We compare our paper with the previous survey of range proofs

by Morais, Koens, van Wijk, and Koren [60]. The technical portion of [60] focuses largely on

Boudot’s four-square decomposition construction [14], the signature-based construction of
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CCs [22], and Bulletproofs [17]. It omits or does not go into detail on many other works, such

as the line of code-based constructions, the newer and more efficient square-decomposition

constructions, the polynomial commitment-based constructions, the hash chain constructions

and lattice based constructions. In particular, many of the most efficient schemes such

as Sharp [29] and BFGW [11] are not covered in their survey. Their work also provides

a comparison only of the three schemes that it focuses on. Our SoK is significantly more

comprehensive, and here is a summary of how our work goes beyond [60]. First, to the

best of our knowledge, we provide a complete description of techniques and schemes in the

ZKRP category and we extensively compare all such schemes based on their techniques,

assumptions, and other properties. Additionally, we observe a useful abstraction for binary

decomposition-based range proofs, breaking such proofs into two components, and presenting

the techniques used for each of these components. An important aspect for our work,

especially for practitioners who will use our SoK to determine the most suitable ZKRP for

their application, is that we provide new benchmarks and assemble existing benchmarks

for easier comparison. We plan to open-source the code used for our benchmarks. Finally,

we include open questions and research gaps, and a flowchart to help identify the most

appropriate range proof construction family for various applications.

2 Preliminaries

We use boldface, like a = (a1, . . . , an), to denote a vector, and we let wt(a) denote its

Hamming weight. We use ◦ to denote the Hadamard product, i.e., a ◦ b = (a1b1, . . . , anbn).

For a nonzero value a, we use an to denote the vector (1, a, a2, . . . , an−1). We let 0n denote

the length-n vector (0, . . . , 0). For two vectors x, y, we let xy = (xy1

1 , . . . , xyn

n ) denote

element-wise exponentiation. We use λ to denote the security parameter, A to denote an

adversary, Z to denote the integers, and negl(·) to denote a negligible function. We use the

word efficient, or p.p.t., to mean probabilistic polynomial time.

▶ Definition 1 (Commitment scheme [50]). A commitment scheme is a pair of efficiently

computable algorithms (Gen, Com) where:

Gen(1λ) is an efficient randomized algorithm that outputs public parameters p.

Com(p, m, r) is an efficient deterministic function that takes as input the public parameters,

a message m, and randomness r. It outputs a commitment to m.

A commitment scheme must be binding and hiding, defined as follows:

A commitment scheme is binding if for all p.p.t. adversaries A, it is infeasible to come up

with two different messages corresponding to a given commitment.

Pr
p←Gen(1λ)





(m0, r0), (m1, r1)← A(1λ, p)'
(m0 ̸= m1)'

Com(p, m0, r0) = Com(p, m1, r1)



 = negl(λ)

A commitment scheme is computationally (resp., statistically) hiding if for all p.p.t. (resp.,

unbounded) adversaries A, it is infeasible to distinguish whether a commitment corresponds

to any m0 or m1 known to A. That is, for all m0, m1:

Pr
r←$

[

c← Com(p, m0, r)

A(1λ, p, c, m0, m1) = 1

]

≈ Pr
r←$

[

c← Com(p, m1, r)

A(1λ, p, c, m0, m1) = 1

]

A commitment scheme is homomorphic if

Com(p, m0, r0) + Com(p, m1, r1) = Com(p, m0 + m1, r0 + r1).

AFT 2024
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Next we define zero-knowledge proof and non-interactive zero-knowledge proof (NIZK). Most

of the ZKRPs in this SoK are in fact non-interactive. In the following sections, we will skip

mention of the non-interactive aspect, unless not clear from context. We provide informal

definitions next, while deferring the formal definition of NIZK and its properties to our full

version [27].

▶ Definition 2 (Zero-knowledge proof). Let L be a language in NP and R be a polynomially

verifiable relation, such that x ∈ L ⇐⇒ ∃w : R(x, w). A zero-knowledge proof system for

L is a tuple of efficient interactive algorithms (Prover, Verifier, Simulator), such that the

following properties hold:

Completeness. Given (x, w) ∈ R, the honest execution of the Prover (given x, w) and the

Verifier (given only x) result in the Verifier outputting 1.

Soundness. Given x /∈ L, a malicious Prover interacting with the Verifier can only make

it output 1 with negligible probability.

Zero-Knowledge. Given x ∈ L, the Simulator can produce an interaction transcript of an

honest Prover with a (possibly) malicious Verifier, that is computationally indistinguishable

from an actual execution transcript of the Prover with the Verifier. Note that the Simulator

doesn’t get w, while the Prover gets w.

A non-interactive zero-knowledge (NIZK) proof system is a zero-knowledge proof system,

where the Prover, given (x, w) just sends one message π to the Verifier and the Verifier

outputs 0/1 based on (x, π). A NIZK has an additional setup algorithm CRSGen, which

outputs a common reference string (CRS) used by all the proofs and verifications. Instead of

a CRS, some NIZKs can also specify a random oracle. The Simulator algorithm is allowed to

keep trapdoors about the CRS, or be able to simulate the random oracle.

A zero-knowledge proof of knowledge requires that an adversary which produces a valid

proof for a statement also knows a valid witness. This is formally captured by requiring the

existence of an extractor, which can run the adversary’s code and produce the witness.

▶ Definition 3 (ZKRP). A zero-knowledge range proof (ZKRP) is a zero-knowledge proof of

knowledge for the following relation:

RPp = {((y, u, v), (m, r)) : y = Com(p, m, r) ' u f m f v}

where p, y, u, and v are known to the verifier, and Com is some particular commitment

scheme.

A question may arise since p is hard-coded in the language definition: what if a malicious

prover samples p badly and thus renders the NIZK-soundness property vacuous? We note

that most applications require both commitment security and NIZK-soundness. These

requirements enforce that the attacker of the application’s security cannot badly sample p.

Pedersen commitments. Most range proofs use Pedersen commitments [63] as the underly-

ing commitment scheme. Let G be a cyclic group of prime order and g and h be generators

of that group, where the discrete logarithm relationship between g and h is not known. The

Pedersen commitment Com(x, r) for a value x ∈ G with randomness r is gxhr.

Pedersen commitments are statistically hiding, and their binding property is based on

the hardness of the discrete logarithm assumption.

▶ Definition 4 (Discrete Logarithm Assumption). Let G be a group of order p and let g be

a generator of G. A challenger samples a random x ← Zp and sends gx to an adversary.

The Discrete Logarithm Assumption states that it is infeasible for the adversary to output x,

given (G, g, gx).
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Apart from the Discrete Logarithm setting, we will also describe schemes based on the

hardness of the RSA problem, as well as lattices.

▶ Definition 5 (RSA Assumption). A challenger samples primes p and q and sets N = pq. It

picks a quantity e co-prime to φ(N), where φ(N) = (p− 1)(q − 1) is Euler’s totient function.

Then it randomly samples z ← [1, N ] and sends (N, e, z) to the adversary. The adversary

outputs y. The RSA Assumption states that the probability of ye = z (mod N) is negligible.

▶ Definition 6 (Strong RSA Assumption). The Strong RSA Assumption states that the RSA

problem is intractable even when the adversary is allowed to choose the public exponent e

(for e g 3).

▶ Definition 7 (SIS Assumption). Let q, n, m ∈ Z
+, β ∈ R

+ be given, where β j q. A

challenger samples a random matrix A ← Z
n×m
q . The SIS Assumption states that it is

infeasible for an adversary to find a nonzero m-vector e, such that Ae = 0 mod q and

||e||2 f β.

3 General Approaches

Efficient zero-knowledge range proofs typically use three classes of approaches: square

decomposition, n-ary decomposition, and hash chains. We present these approaches below,

then explore specific instantiations of these approaches in more detail in their respective

sections. We also mention the approach of using generic zero-knowledge proofs.

We describe these approaches for proving that a committed value lies in a range of the

form [0, nk − 1], or that a committed value is positive in the case of square decomposition.

Most works consider ranges of this form, which may seem at a first glance to be a relaxed

version of the problem. However, when the commitments used are homomorphic, it turns

out to be sufficient for constructing more general range proofs with only a small amount of

work to translate.

Assume that we have the ability to prove that any committed value is in the interval

[0, nk−1]. To prove that z is in some interval [u, v], one can show first that (z−u) ∈ [0, nk−1]

and then that (v−z) ∈ [0, nk−1]. Thus, z g u and z f v. Certain constructions from integer

commitments (e.g., CKLR [30]) can combine these checks into proving a single equation:

(z−u)(v− z) g 0. It is easy to obtain commitments for (z−u) and (v− z) homomorphically,

given a commitment to z. For non-homomorphic commitments, one can do this translation

by creating a commitment c to z − u, proving in zero knowledge that c indeed commits to

z − u, and performing this range proof with respect to c.

3.1 Square decomposition

The square decomposition method involves writing the committed integer as a sum of squares

in order to prove that it is positive. A common version of this method, the four-square

decomposition method, uses Lagrange’s four-square theorem. This theorem states that for

any integer z ∈ Zg0, there exist x1, x2, x3, x4 ∈ Z such that

z = x2
1 + x2

2 + x2
3 + x2

4 (1)

Thus, to prove that a committed value z is non-negative, it suffices to prove knowledge of

x1, . . . , x4 such that Equation 1 holds. However, it is crucial that the relation of Equation 1

holds over the integers since it may hold for a negative z if we are working in some group

rather than over Z. For example, in Z5 it is possible that z = −1 and 02 +12 +22 +22 = 9 = z

(mod 5). To avoid such problems, this approach requires a special type of commitment called

an integer commitment.

AFT 2024
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Integer commitments

An integer commitment scheme is a commitment scheme where binding holds over Z. That

is, for all p.p.t. adversaries A,

Pr
p←Gen(1λ)





(m0, r0), (m1, r1)← A(1λ, p)

'(m0 ̸=Z m1)

'Com(p, m0, r0) = Com(p, m1, r1)



 = negl(λ)

where m0 ̸=Z m1 denotes that m0 and m1 are not equal over the integers. Bounded integer

commitments (used in [30]) satisfy the same binding property, but are weaker in that the

message space is restricted to some bounded interval, e.g., {x ∈ Z : |x| f B}. For constructing

range proofs, this boundedness is not an issue as long as the ranges in question are well

within the bounds.

Pedersen commitments, for example, are not integer commitments as their message space

is Zp, and any messages that are equivalent (mod p) result in the same commitment given

the same randomness: gmhr = gm+phr over a cyclic group of order p. This attack against

binding fails if the order of the group is unknown, and indeed many integer commitment

schemes (e.g., Fujisaki-Okamoto commitments, and constructions of [30, 29]) operate in

groups of unknown order.

Fujisaki-Okamoto commitments [40]. We recall an overview of FO commitments but refer

the reader to [40] for details. FO commitments operate over a group of unknown order Z∗N . g

and h are generators of large subgroups of Z∗N , whose relation is unknown. The commitment

to x ∈ Z is

ComF O(p, x, r) := gxhr

This commitment is computationally hiding when r is chosen uniformly in the interval

[2−λ ·N + 1, . . . , 2λ ·N − 1]. Fujisaki-Okamoto commitments are computationally binding

under the factoring assumption.

3.2 n-ary decomposition

The n-ary decomposition method involves committing to the digits of the committed value

z in some base n. For simplicity, assume for this explanation that we use base 2, although

certain approaches can be generalized to other bases. Thus, if the prover wishes to show

that z ∈ [0, 2k − 1], the prover writes z = z0 · 20 + z1 · 21 + . . . + zk−1 · 2k−1 and generates

commitments to z0, . . . , zk−1. The prover then shows that both of the following properties

hold, which we present as predicates:

Digit validity (DV(z)): DV(z) = 1 if and only if zi ∈ {0, 1} for all i ∈ [0, k − 1].

Representativeness (Rep(z, z)): Rep(z, z) = 1 if and only if z =
∑k−1

i=0 zi · 2i.

In terms of these predicates, the n-ary decomposition method proves membership in the

following relation:

Rdecomp = {(p, (c1, c2, n, k), (z, z, r, r)) : c1 = Com(p, z, r)

' c2 = Com(p, z, r) ' DV(z) ' Rep(z, z)}

We note that here, we slightly abuse notation and use Com to commit to a vector z with

a vector of randomness r.
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There are (at least) four common tools used to show that the digits are valid for the desired

base; i.e., for binary decomposition they all lie in {0, 1}. These tools include zero-knowledge

set membership arguments, product arguments, inner product arguments, and polynomial

commitments. These strategies are primarily applicable for base 2, with the exception of set

membership, which easily extends to any arbitrary base.

3.2.1 Set membership

A set membership proof shows that a committed value lies in some publicly known set Φ;

that is, it is a proof of knowledge for the following relation:

SM = {(p, (Φ, y), (m, r)) : y = Com(p, m, r) 'm ∈ Φ}

Although one could define a set membership proof with respect to a private committed set,

in our application the set is determined by the publicly known base.

Digit validity. Set membership arguments are useful for instances of Rdecomp where the

commitment scheme used for z commits to its components individually; that is,

c2 = (Com(p, z0, r0), . . . , Com(p, zk−1, rk−1))

for some scheme Com. Then, one can show digit validity by providing a set membership

proof for each element of c2, with respect to the set Φ = {0, 1, . . . , n − 1}. However, such

protocols require commitments and range proofs of length at least linear in k.

Representativeness. There is no general way to show representativeness using set mem-

bership proofs; schemes using this construction (e.g., [22]) rely on properties of the specific

commitment scheme used.

3.2.2 Product arguments

A product argument is a proof system for showing that the product of two committed values a

and b is some value c. Typically, this equality holds in the group underlying the commitment

scheme. For example, for Pedersen commitments in a group of prime order p, this argument

shows that ab ≡ c (mod p). For integer commitments, we have the stronger property that

this equality holds over the integers: ab = c.

Digit validity. Product arguments are useful for proving digit validity base 2, if as with set

membership c2 consists of individual bit commitments. To show that a committed bit b is in

{0, 1}, the prover can commit to a value a and prove that ab = 0 and a + b = 1. Observe

that if b ̸= 0, a must be 0 to satisfy the first equation. Then the second equation implies

that b = 1. Thus, b must be 0 or 1. Furthermore, the prover can always find a satisfying a; if

b = 0, a = 1, and if b = 1, a = 0. Inner product arguments, which we present next, allow the

prover to simultaneously show many product relations more efficiently.

Representativeness. As is the case with set membership proofs, product arguments are

primarily useful for showing digital validity rather than representativeness.

AFT 2024
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3.2.3 Inner product arguments

An inner product argument (IPA) is a proof system for showing that the inner product of

two committed vectors is some value. The inner product used in Bulletproofs [17] shows the

following relation, using Pedersen commitments, where G denotes a group of prime order:
{(

g, h ∈ G
k, P ∈ G, z ∈ Zp ; a, b ∈ Z

n
p

)

: P = gahb ' z = ïa, bð
}

Here, P is a binding (but not hiding) commitment to the vectors a and b. Therefore,

Bulletproofs introduces blinding factors to make this argument zero-knowledge. Bulletproofs

also constructs an argument for the Hadamard product relation (i.e., c = a ◦ b) from their

inner product argument, though we do not present the details here.

Digit validity. A useful fact used when constructing zero-knowledge range proofs from inner

product arguments is that with overwhelming probability, the inner product of a nonzero

vector a and a random vector b is nonzero. Thus, the prover can convince the verifier that

a is 0k by showing that its inner product with a random challenge vector is 0. Using the

same idea as for product arguments, the prover can commit to the binary representation of

the given value as a vector z, then use an inner product argument to show simultaneously

that all components of this vector are indeed bits. That is, the prover commits to a vector

z′ = 1k − z, and shows for a random x that:
〈

z′ − (1k − z), x
〉

= 0 and z′ ◦ z = 0k

The lattice-based scheme [4] uses this approach as well.

Representativeness. Although we presented an inner product relation where the value z is

a public input, many inner product arguments, such as that of Bulletproofs, work also when z

is secret and the public input includes only a commitment to z. One shows representativeness

by a single application of this inner product argument, showing ïz, 2kð = z.

Bulletproofs combines some of these checks for greater efficiency and uses blinding factors

to make their argument zero-knowledge.

3.2.4 Polynomial commitments

A polynomial commitment scheme allows a prover to commit to a polynomial p(·) over a

finite field Fp, such that a verifier can query a point x to the prover, which can respond with

p(x) and a proof π that this evaluation is correct. The scheme should be hiding in that the

commitment reveals nothing about the polynomial, and the evaluation proofs reveal no extra

information beyond the evaluations themselves. Polynomial commitments are binding in

that it is computationally infeasible to produce a verifying proof for an incorrect evaluation

of the committed polynomial. A useful property of polynomial commitments is that it is

easy for a prover to show that a committed polynomial is identically zero, by providing a

proof that its evaluation at a random point is zero. By binding and the Schwartz-Zippel

lemma, this occurs with only negligible probability if the polynomial is nonzero.

The following approach, which we describe at a high level, was introduced in BFGW [11]

and is detailed nicely in [67]. Suppose that we are given a commitment to z in the form

of a polynomial commitment to f such that f(1) = z. In constructing a range proof for

z ∈ [0, 2k − 1], it is useful to work over a subgroup H = {1, ω, ω2, . . . , ωk−1} and use

polynomials whose evaluations over H encode the binary representation of z. That is, the

prover computes a polynomial g such that:

g(ωk−1) = zk−1

g(ωi) = 2g(ωi+1) + zi ∀i ∈ {0, . . . , k − 2}



M. Christ, F. Baldimtsi, K. K. Chalkias, D. Maram, A. Roy, and J. Wang 14:9

Another useful property of polynomial commitments is that one can show that a polyno-

mial g(X) is zero on all of H by committing to a related polynomial g′(X) and proving that

g′(X) is identically zero over Fp.

Digit validity. The prover shows that the following two polynomials are zero over all of H:

w2 = g · (1− g)(X − 1)(X − ω) · · · (X − ωk−2)

w3 = [g(X)− 2g(Xω)] · [1− g(X) + 2g(Xω)] · (X − ωk−1)

w2 has zeros at 1, ω, . . . , ωk−2 by construction. It is zero at ωk−1 if and only if g(ωk−1) ∈ {0, 1}.
For w3, observe that g(X) − 2g(Xω) is exactly zi when evaluated at ωi. Therefore, w3 is

zero at {1, . . . , ωk−2} if and only if zi ∈ {0, 1}.

Representativeness. The prover shows that the following polynomial is zero over all of H:

w1 = (g − f)(X − ω)(X − ω2) · · · (X − ωk−1)

As [11] notes, this approach can be instantiated with any polynomial commitment scheme

that is hiding, binding, and additively homomorphic.

3.3 Hash chains

Hash chains can be used to prove that a committed value is at least some threshold. In the

hash chain approach, a commitment to a value z is Cz = Hz(r), the output of a hash function

applied z times to a random r. The proof that z exceeds some threshold t is π = Hz−t(r).

A verifier can check that Ht(π) = Cz; if z < t, then z − t is negative and it is infeasible for a

cheating prover to compute a preimage of r under H.

This simple hash chain requires prover and verifier time that is exponential in k for

ranges [0, 2k − 1]. However, using decomposition techniques, HashWires [24] constructs a

hash chain-based range proof requiring only O(k) work.

3.4 Generic zero-knowledge

There are many efficient generic zk-SNARKs, such as [44, 41, 9, 18]. These proof systems can

be used to construct range proofs. However, because they are generic and do not leverage

the structure of the range proof relation, they are less efficient than the tailored range proofs

we explore. In Section 9, we include efficiency benchmarks for Groth16 [44], one of the most

popular generic zk-SNARKs used in practice.

It is worth noting that practical benefits may outweight these efficiency losses. In

particular, because of their wide-ranging applications, generic zk-SNARKs offer convenient,

well-engineered, and optimized libraries. For example, we used Circom [8] and rapidsnark [47]

for our Groth16 benchmarks. Even so, the prover and verifier times for Groth16 are roughly

an order of magnitude larger than the more tailored range proofs. Furthermore, if range

proofs are required in a larger system that already uses a generic zk-SNARK elsewhere, using

this zk-SNARK for the range proof as well may be practically convenient.

4 Desirable properties

All zero-knowledge range proofs must satisfy the standard notions of soundness, completeness,

and zero knowledge. All ZKRPs that we cover in this SoK are non-interactive. In this section,

we discuss some additional nice features that might be desirable in some settings.
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Efficiency. Unsurprisingly, it is desirable for ZKRPs to be efficient. In blockchain applic-

ations, where a transactor must pay for the storage cost and the amount of computation

done by validators, it is especially important to minimize proof size and verifier time. The

proof size should be at most linear in k for intervals [0, 2k − 1], and several schemes offer

even constant-sized proofs. Though proof size and verifier time are often priorities, prover

time also should not be prohibitively large. Since it is hard to directly compare efficiency of

the constructions we discuss in Sections 5 - 7 (even in the asymptotic setting the different

parameters make one-to-one comparison very hard), we instead opt to provide a concrete

comparison of some of the most popular ZKRPs in Section 9.

Transparent setup. Some range proofs require public parameters that are generated using

secret randomness. It is crucial for the security of the proofs that this randomness is not

known to the prover. For example, several square decomposition range proofs use RSA-based

integer commitments, which require an RSA modulus. Importantly, this modulus N must

be generated in such a way that no party know the factorization of N = pq. Similarly,

BFGW [11] instantiated with KZG commitments [49] requires a powers-of-tau common

reference string, which consists of a series of values gτ i

, where no party knows τ . Protocols

that require secrecy of the randomness used in parameter generation are said to require

trusted setup. Trusted setup does not necessarily require a trusted party, as many trusted

setup procedures can be conducted by distributed multi-party protocols. Such protocols

(often called ceremonies) exist for many common trusted setup procedures, such as generation

of RSA modului and powers-of-tau [39, 12, 62].

Ideally, protocols should have a transparent setup procedure that does not require secret

randomness. For example, the parameters could be generated by applying a hash function to

some public randomness, e.g., to generate a random group element or random matrix.

Note that trusted setup is different from having a trusted issuer responsible for distributing

the proper commitments to users, e.g., a Pedersen commitment corresponding to that user’s

account balance. Any protocol needs to assume that the prover and verifier agree on the

commitment at hand.

Aggregation. Aggregation allows multiple range proofs to be compressed into a single

succinct proof. That is, a single prover holding m commitments to values in the same

range [0, 2k − 1] can efficiently generate a short aggregate proof π proving all of these range

statements simultaneously. For this aggregation property to be nontrivial, π should be shorter

than the concatenation of π1, . . . , πm. For example, for Bulletproofs, Bulletproofs+, and

Bulletproofs++ [17, 28, 36], the aggregate proof for m values in [0, 2k − 1] consists of only

O(log(m · k)) group elements. As the concatenation of m proofs would require O(m · log(k))

group elements, aggregation results in considerable space savings.

In the notion of aggregation considered so far, a single prover knows the openings of

all commitments that are being aggregated. A stronger notion of multi-prover aggregation

allows one to combine range proofs generated by multiple provers, who wish to hide their

openings from one another. Bulletproofs enables such aggregation via an MPC protocol run

by the parties holding the commitments [17]. Multi-prover aggregation is harder to achieve,

and is less well studied than single-prover aggregation.

Aggregation is especially useful for confidential transactions, where minimizing the amount

of space used on-chain decreases gas costs. Since range proofs are used to show non-negativity,

all range proofs typically prove membership in the same interval.
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Table 1 Properties of square decomposition-based range proofs.

Square Decomposition-Based Range Proofs

Scheme Commitment Scheme Assumptions Transp. Setup Proof Aggregation Batched Ver.

Boudot [14] F-O [40] Strong RSA N N N

Lipmaa [56] RDF integer comm.* Strong RSA N N N

Groth [43]** RDF integer comm.* Strong RSA N N N

CKLR [30] Ped*** DLOG (optionally DSLE) N N N

CKLR [30] ElGamal variant [30] DXDH, ORD Y (class groups) N N

SharpGS, SharpPO
SO [29]† Pedersen DLOG, SEI Y Y Y

SharpHO [29]† Pedersen 1/2-fROOT N (RSA), Y (class groups) Y Y

An extension of the Dåmgard-Fujisaki commitment [33] that [56] constructs.

**[43] is not exactly a new scheme; its contribution is observing a trick that can be applied to make [56] more efficient. Integers of a

certain form can be written as a sum of three squares, and one can quickly find this decomposition.

*** A bounded integer commitment scheme based on Pedersen commitments.

† Sharp is only a relaxed range proof and not sufficient for all applications. [29] has a thorough discussion; it is sufficient for anonymous

credentials and can be used for some but not all proofs in anonymous transactions, with some modifications. SharpHO refers to a

scheme where SharpGS or SharpPO
SO is modified using an additional commitment requiring an RSA group or class group in order to

achieve improved soundness.

Batch verification. A related property is batch verification, where there exists a process for

verifying many proofs together that is more efficient than verifying each proof individually.

Batch verification is especially useful in blockchain applications, where a block proposer can

aggregate the range proofs for its block and other validators can batch verify this proof more

efficiently. Bulletproofs provides batch verification [17], using an observation that verifying

many statements of the form gx = 1 can be done by carefully combining them into a single

equation requiring fewer exponentiations.

Aggregated range proofs often naturally enable batch verification, as some of the work is

effectively done by the aggregator. However, neither aggregation nor batch verification in

general implies the other.

Compatibility with homomorphic commitments. A commitment scheme Com is homo-

morphic if Com(m0, r0) + Com(m1, r1) = Com(m0 + m1, r0 + r1). It is convenient for

applications such as confidential transactions for the underlying commitments to be homo-

morphic; in particular, homomorphism makes it easier to prove that the sum of transaction

output amounts is at least the sum of input amounts.

Most ZKRPs use Pedersen commitments, which are homomorphic. Some exceptions are

HashWires [24] and various lattice-based constructions such as KTX [51], which often achieve

weaker homomorphism.

5 Square Decomposition Constructions

Recall that the square decomposition method involves writing the committed value as the sum

of four squares and proving that this equality holds over the integers. Integer commitments,

which were discussed in greater detail in Section 3, are a useful tool here. (Recall: An integer

commitment scheme is a commitment scheme for which binding holds over the integers: it is

computationally infeasible for an adversary to find messages m0, m1 and randomness r0, r1

such that Com(m0, r0) = Com(m1, r1), where m0 ̸= m1 over Z.) Below we discuss different

approaches in this class and also compare them in Table 1. Our comparison is done in terms

of the properties discussed in Section 4 except efficiency which as explained above, will be

treated separately in Section 9.
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Approaches in this class combine integer commitment schemes with a way to prove in

zero knowledge that, given a commitments Comx and Comy, the committed values satisfy

x2 = y. This implies that y is non-negative. One can generalize this argument to work not

just for squares y, but for all non-negative integers.

Boudot [14] introduced the approach of proving that a committed value is positive by

representing an arbitrary integer as a sum of squares (although not four squares). It uses

Fujisaki-Okamoto commitments [40], which require a group of unknown order such as an RSA

group. Damgård-Fujisaki commitments [33] are slightly more efficient integer commitments

used in subsequent work [56] which refined Boudot’s idea and used Lagrange’s four square

theorem [46, Theorem 369] (which states that every integer can be written as the sum of

the squares of four integers). In order to do so, it also introduced an efficient algorithm for

finding this four-square decomposition. [43] similarly followed this approach and improved

its efficiency by observing that x’s of a certain form can be written as the sum of only three

squares rather than four. [31] further improved the efficiency and showed that the RSA

assumption (rather than the strong RSA assumption, as previously shown) is sufficient to

show the security of Damgård-Fujisaki commitments.

The integer commitments used by all of [14, 56, 43] require a group modulus whose

factorization is unknown, and therefore require trusted setup. A newer line of work [30, 29]

develops new integer commitment schemes, some of which do not require a trusted setup.

These schemes also yield much better efficiency, though Bulletproofs and subsequent binary-

decomposition-based proofs are still more efficient in practice due to compatibility with

available optimized libraries.

CKLR [30] build a bounded integer commitment by modifying Pedersen commitments;

their scheme essentially enforces that the Pedersen commitment can only be opened to values

within some bounded range. They then use this bounded integer commitment to construct

their ZKRP following the square decomposition approach. However, their commitment scheme

operates over rationals rather than integers; while honest openers round these rationals to

integers, malicious openers may open to rationals instead which can be problematic for some

applications and results in a relaxed notion of soundness. Sharp [29] improves upon CKLR

in several ways. In addition to improving over the efficiency of CKLR, Sharp is compatible

with standard Pedersen commitments. This is because Sharp effectively moves CKLR’s

modifications of Pedersen commitments to the proof rather than modifying the commitment

itself. Two variants of Sharp (SharpGS, SharpPO
SO), like CKLR, achieve a relaxed notion of

soundness. However, they show how to boost soundness by adding an additional commitment

using a hidden-order group such as an RSA group or class group; the resulting variants

SharpHO achieve standard soundness but require longer proofs. The RSA version also requires

a trusted setup. Class groups are hidden-order groups that can be instantiated without a

trusted setup, though they are less well-supported than RSA groups from an engineering

standpoint. Finally, Sharp improves over CKLR by also offering batching capabilities.

6 Binary Decomposition Constructions

CCs [22] introduced the n-ary decomposition paradigm to zero-knowledge range proofs.

CCs [22] operates over Pedersen commitments and constructs a zero-knowledge set mem-

bership protocol by having the verifier publish a signature of each element in the set. The

prover then shows in zero knowledge that it knows a signature of its committed value x

under the verifier’s secret key; by unforgeability this is only possible if the value is in this

set. By choosing this set to be {0, . . . , n − 1} for base n, the prover can commit to the
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digits of x and prove that they are valid digits under that base. CCs then uses properties

of Pedersen commitments to show that the committed digits indeed represent x. The size

of the proof is linear in logn 2k, where n is the base used and the range is of size 2k. By

optimizing the choice of the base n, this results in a slightly sublinear (in k) proof size for a

range [0, 2k − 1]. This scheme requires a trusted setup for the signature generation, and it

does not offer aggregation.

Subsequent constructions (which we call “Bulletproofs-style” and detail in the next

subsection) improve on the efficiency of CCs to avoid this near-linear dependence on k. They

use inner product arguments or polynomial commitment schemes in clever ways to avoid

showing individually that each bit is in {0, 1}; instead, they are able to roll all of these checks

into a shorter proof.

There are also several newer lattice- and code-based constructions that use binary

decomposition, such as [61, 4]. While these schemes are less efficient and have very large

proofs, their main merit is that they are plausibly post-quantum secure. Additionally, they

do offer transparent setup. Developing more practical lattice-based ZKRPs is an interesting

research direction as we discuss in more details in Section 10.

When surveying binary decomposition constructions, we separate them into two categories:

Bulletproofs-style constructions, which are very practical; and lattice-based constructions,

which are primarily of theoretical interest. We provide an overview of all the bulletproof

style constructions described below in Table 2.

6.1 Bulletproofs-Style Constructions

Bulletproofs [17], arguably considered the state-of-the-art range proof scheme, uses the binary

decomposition technique.

Bulletproofs combines the binary decomposition technique with an inner product argument

to enable the prover to send only O(log k) elements. Bulletproofs improves and uses their

improvement of an inner product argument (IPA) of [13] where the prover sends only O(log k)

group elements for an IPA over length-k vectors. The key idea in Bulletproofs is that the

prover can use this IPA to execute the binary decomposition approach more efficiently; we

give intuition for this idea here.

We write x = a0 · 20 + a1 · 21 + . . . + ak−1 · 2k−1 and let aL = [a0, a1, . . . , ak−1]. We let

2k := [20, 21, . . . , 2k−1]. The prover shows that it knows a vector aR such that:

(1) aL ◦ aR = 0k, (2) aL − aR = 1k, (3) aL ◦ 2k = x

Conditions (1) and (2) show that each component of aL is in {0, 1}, using the standard inner

product strategy described in Section 3. Condition (3) shows that indeed aL contains the

binary decomposition of x.

These three checks can be combined into a single invocation of the IPA. The IPA used

employs a technique that reduces each IPA of length-n vectors to an equivalent IPA over

length- n
2 vectors. Using this IPA results in a proofs size of O(log2 k).

Subsequent works [28, 68, 69] slightly optimize Bulletproofs but keep the scheme and

its properties (in particular, its transparent setup and aggregation properties) largely the

same. Bulletproofs+ [28] slightly optimizes the Bulletproofs argument to reduce the number

of group elements sent by the prover. Bulletproofs++ [36] further improves efficiency by

reducing both prover and verifier time. All of these Bulletproofs derivatives maintain the

same aggregation properties.
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Table 2 Properties of Bulletproofs-style proofs (all support aggregation and batched verification).

Bulletproofs-Style Range Proofs (all DLOG-based)

Scheme Commitment Scheme Transparent Setup

Bulletproofs [17] Pedersen Y

Bulletproofs+ [28] Pedersen Y

Bulletproofs++ [36] Pedersen Y

Flashproofs [68] Pedersen Y

SwiftRange [69] Pedersen Y

DRZ [34] Pedersen N

ZZT+ [72] Pedersen N

Libert [52] Pedersen N

BFGW [11] + KZGPed Pedersen N

BFGW [11] + DARKs [19] DARK [19] Y with class groups; N with RSA

Bulletproofs++ [36] extends the recursive-style argument of Bulletproofs to work for any

base, yielding asymptotic and concrete efficiency improvements. They do so using a lookup

argument, which shows that committed values lie in some predefined table. Bulletproofs++

applies this lookup argument to show digit validity in arbitrary bases, allowing them to

improve the proof size from Bulletproofs’ O(log2 k) to O(log2 k/ log2 log2 k).

BFGW [11] takes a different approach to the binary decomposition idea, using a polynomial

commitment scheme. We detail this approach in Section 3. This scheme assumes that the

commitment to a value x is formed as commitment to a polynomial f such that f(1) = x.

For some polynomial commitment schemes, such a commitment is nonstandard; conveniently,

there is a version of KZG commitments for which this is a Pedersen commitment.

BFGW works with any hiding and binding polynomial commitment scheme, yielding

different properties based on the scheme used. Notably, when instantiated with KZG

commitments [49], BFGW has constant-sized proofs and is competitive efficiency-wise with

Bulletproofs. Though KZG commitments require a trusted setup, this setup ceremony is

perhaps one of the most commonly run, and some blockchains such as Ethereum have run

a KZG ceremony.1 In Section 9, we provide the first efficiency (prover and verifier time)

benchmarks that we know of for BFGW + KZG. If the Pedersen variant of KZG commitments

is used, BFGW + KZG is compatible with Pedersen commitments. BFGW can also be

instantiated with DARKs [19], which do not require a trusted setup. Both BFGW + KZG

and BFGW + DARKs are aggregatable.

6.2 Lattice- and code-based constructions

There are several lattice- and code- based zero knowledge range proof schemes. These schemes

have the advantages that they are plausibly post-quantum secure and have a transparent setup.

However, they are concretely much less efficient than the discrete logarithm-based schemes

such as Bulletproofs. In particular, they have very long proofs. Thus, one worthwhile research

direction is to improve the efficiency of these lattice-based protocols, such as [4, 37, 58]. One

area for improvement is in the repetition required to achieve negligible soundness error. Most

of these schemes build on protocols with constant soundness and must repeat the protocol

Ω(λ) times to achieve λ bits of security. When made non-interactive, this amplification

results in large proofs.

1 https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony

https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony


M. Christ, F. Baldimtsi, K. K. Chalkias, D. Maram, A. Roy, and J. Wang 14:15

Lattice- and code-based schemes typically use the binary decomposition approach, where

the prover already holds a commitment to the bits b0, . . . , bk−1 of the value in question.

The prover wants to show that
∑k−1

i=0 2i · bi f β for some β. This condition can be written

equivalently as a system of equations over the bits modulo 2. Such systems of equations can

be proven in zero-knowledge using Stern-like protocols [66].

In this section, we present several ideas involved in lattice-based schemes. We first present

a lattice-based commitment scheme, KTX [51], that is used in some of these ZKRPs. In

doing so, we emphasize several challenges common to many lattice-based schemes. We

then give a high-level description of Stern-like protocols, a standard technique for lattice-

based zero-knowledge proofs. We also include a table with newer lattice-based schemes

that offer constructions tailored to range proofs. We do not include all generic lattice-based

zero-knowledge proof constructions.

KTX commitment scheme ([51]). The KTX commitment scheme is based on the hardness

of the Short Integer Solution (SIS) problem. Let λ be the security parameter, L be the number

of bits to be committed to, and q be a prime modulus of size O(λ
√

L). Let m = 2λ+log q,.
The scheme uses public parameters (A, B) chosen uniformly from Z

λ×L
q × Z

λ×m
q . The

commitment to a bit vector x ∈ {0, 1}L is the vector

c = A · x + B · r (mod q)

where r is sampled uniformly from {0, 1}m. This scheme is statistically hiding and computa-

tionally binding assuming that the public parameters are sampled uniformly.

Note that KTX commitments are only approximately homomorphic. While it holds that:

A · x1 + B · r1 + A · x2 + B · r2 = A(x1 + x2) + B(r1 + r2) (mod q),

note that (x1 + x2) and (r1 + r2) may not be 0/1 vectors. Therefore, A(x1 + x2) + B(r1 + r2)

is not necessarily a valid commitment to a message in the message space. Many commitment

schemes used by schemes in this section have similar limited homomorphism.

Note also that KTX commitments do not require a trusted setup to generate the public

parameters A, B, and q, as these matrices are uniformly random and q can be publicly

known. Many lattice-based commitment schemes similarly use random matrices as the public

parameters. All of the range proofs in this section offer transparent setup.

Stern-like protocols. Stern’s original protocol [66] proves in zero knowledge that a commit-

ted bit vector has a certain Hamming weight; that is, it is a zero-knowledge argument of

knowledge for the following relation:

{((H, y, w), s) ∈ Z
n×m
2 × Z

n
2 × Z× Z

m
2 : (wt(s) = w) ' (H · s = y)}

The key idea behind Stern’s protocol is that the prover permutes the bits of s to obtain s′

which it reveals to the verifier. It also convinces the verifier that s′ is indeed a permutation of

s under some π. s′ has the same Hamming weight as s, and the distribution of s′ is identical

for any s satisfying the relation – therefore, s′ reveals no information about s. At a high level,

the prover samples a random blinding factor r and constructs three commitments, which it

sends to the verifier, as follows:

c1 = Com(π, H · r), c2 = Com(π(r)), c3 = Com(π(r· s))

Here, π(v) denotes the vector obtained by permuting the components of v under π. We now

run one of three randomized checks: the verifier sends the prover b ∈ {0, 1, 2}. In each of

these tests, the prover opens a different combination of the commitments and sends some
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additional information, e.g., π(s) for b = 2. The cheating prover cannot pass all of these

tests simultaneously and therefore fails with probability at least 1/3. Note that running all

of these tests at once would reveal information about s.

This permute-then-reveal strategy can be used for other relations with similar properties.

[61] provides an abstraction of such relations, in terms of some set VALID, which in Stern’s

original protocol was VALID = {s : wt(s) = w}:

R = {((H, y), s) ∈ Z
n×m
2 × Z

n
2 × VALID : H · x = y}

Correctness under permutation: For all ((H, y), s) ∈ Z
n×m
2 ×Z

n
2 ×Z

m
2 and all permutations

π over [m],

s ∈ VALID ⇐⇒ π(s) ∈ VALID

Hiding under permutation: For all s ∈ VALID, the distribution of π(s) where π is a random

permutation over [m] is uniform over the set VALID

Even given a relation that does not fit the above requirements, one can sometimes construct

an associated relation (e.g., using a common technique called extension) that does fall into

this paradigm and allows one to construct the desired argument.

Other relations that can be proven under Stern’s paradigm include proving knowledge

of one secret bit that may appear in multiple equations [54], or proving the knowledge of

the product of two secret bits [53]. Stern-like techniques underlie many older lattice- and

code-based zero-knowledge protocols. However, recall that due to the randomized tests,

Stern’s original protocol has soundness error 2/3. In general, Stern-like protocols have

constant soundness error and thus require roughly λ repetitions for λ bits of security. Thus,

once made non-interactive via Fiat-Shamir, these protocols result in long proofs.

Only recently have techniques emerged for avoiding Stern-like protocols in constructing

lattice-based ZKRPs, whose state-of-the-art is thus not reflected in the previous ZKRP survey

[60]. These new techniques resulted in a surge of lattice-based constructions with greatly

improved efficiency, with proofs on the order of 10,000 KB rather than 100,000 KB. However,

this efficiency still lags behind many non-lattice-based constructions with 5̃00-byte proofs, as

seen in Table 4. Improving lattice-based schemes remains a fruitful research direction.

[37] proposes techniques for avoiding the repetition that Stern-like protocols require for

soundness. Their one-shot protocol saves a factor of λ computation time over repeated Stern-

like protocols, though the proofs are still quite long as shown in Table 4. One-shot approaches

are a fruitful direction for developing a more practical (in terms of both communication and

computation) lattice-based ZKRP.

ALS [4] uses an inner product argument in the n-ary decomposition approach, which

results in significantly shorter proofs compared to other lattice-based constructions; see

Table 4. Its proofs are roughly an order of magnitude larger than those of the most efficient

non-lattice schemes, such as Bulletproofs. Another barrier to practical efficiency is that the

proofs of ALS cannot be aggregated.

7 Hash chain constructions

Payword [65] was the first to use hash chains to construct a range proof for electronic payments,

and HashWires [24] more recently revisited this idea with great efficiency improvements. In

this approach, the core idea is that a commitment Cx to a value x is the output of a hash

function evaluated x times on a random value. That is, Cx = Hx(r) for a random r. The

proof that x is at least some threshold t is a value π = Hx−t(r) such that applying the
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Table 3 Properties of lattice- and code-based range proofs. CKLR supports proof aggregation

and batch verification, while it is unclear if the other schemes natively do so.

Lattice- and Code-Based Range Proofs

Scheme Commitment Scheme Assumptions Transp. Setup

LLNW [55] KTX [51] SIVP Y

ESLL [37] UMC, HMC [10, 5, 38] Module-SIS, Module-LWE Y

YAZ+ [71] KTX [51] LWE, SIS Y

ALS [4] BDLOP [5] Module-SIS, Module-LWE Y

CKLR [30]† BDLOP [5], as modified by [71] LWE, SIS Y

LNS [58]* BDLOP [5] Module-SIS, Module-LWE Y

LNP [57] ABDLOP [1, 5] Module-SIS, Module-LWE Y

Code-based [61] [61] 2-RNSD Y

†CKLR [30] uses the square decomposition approach, but one of their constructions is

lattice-based.

*In addition to their standard range proof, LNS [58] also constructs an approximate

range proof, showing that z ∈ [0, n · 2k − 1] for some small n. While relaxed, this kind

of approximate range proof is sufficient for showing smallness of vectors, which is an

application they target. Its efficiency does not depend on k.

hash function t more times to π yields Cx; that is, Ht(π) = Cx. Since the hash function is

hard to invert, if x− t is negative it should be hard for the prover to find an accepting π.

Importantly, though, Cx must be well-formed to ensure soundness. Thus, the setting where

hash chain constructions can be used is slightly more restricted.

HashWires [24] defines a relaxation of zero-knowledge range proofs called credential-based

range proofs (CBRPs). This notion is weaker than general ZKRPs in that the commitment

is assumed to be well-formed. Soundness is shown only under this assumption, which is

motivated by a setting where a trusted authority distributes commitments to parties that later

prove that their committed values exceed some threshold. For example, the trusted authority

may be a government, and the commitments might be used for credentials including citizens’

ages. If a commitment is signed by this trusted authority, a verifier can be confident that

the commitment is properly formed. Technically, this implies that when defining soundness

for CBRPs, the adversary cannot produce the commitment (as defined in the statement of

Def. 3, but instead is honestly generated (the full definition of CBRPs can be found in [24]).

As described, the time to generate π and Cx is linear in x, and the verifier time is linear

in t. This is very expensive if we wish to prove that x is in some large range [0, 2k−1]; ideally,

these costs should grow at most linearly with k. HashWires achieves this by observing that x

can be written in some base u, and the proof can be broken into several sub-chains to greatly

improve this efficiency (they called this a minimum dominating partition). This base can be

chosen to trade off between proof size and prover/verifier efficiency. In our later discussion

of efficiency, we include benchmarks for a variety of bases. We will see in Section 9 that

HashWires is extremely concretely efficient, in terms of both verifier time and prover time.

Its proof sizes are also competitive with other constructions.

8 Choosing the construction family for your application

As there are dozens of ZKRP constructions, choosing the appropriate scheme for a particular

application can be challenging. In Figure 1, we give a flowchart for narrowing down the class

of range proofs depending on constraints. The next section gives an efficiency comparison to

help choose a scheme within this class.
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Start

Credential-based?

HashWires [24] Post-quantum security?

Lattice- & code-based Transparent setup?

BFGW + KZG [11],

Sharp [29], [52]

Bulletproofs family,

CKLR [30]

Yes No

Yes No

Yes No

Figure 1 Flowchart for choosing a range proof based on desired properties.

HashWires [24] are concretely quite efficient and use only hash functions; thus, they are

plausibly post-quantum secure and do not require a trusted setup. However, they’re in a

more stringent trust model (they are credential-based range proofs as defined in Section 7),

where there is a trusted issuer distributing commitments; that is, soundness holds only if

the commitment is well-formed. If the desired use case does have this type of trusted issuer,

HashWires is likely the most efficient scheme.

Among the remaining constructions, only the lattice-and code-based constructions are

plausibly post-quantum secure, and thus if this is a requirement this class is the only option.

These schemes have relatively large proof sizes (on the order of 10KB). Hash-based generic

zero-knowledge proof systems may be considered as well.

If trusted setup is allowed, there are several schemes with very short proofs and efficient

verifier and prover. BFGW + KZG [11], Sharp [29], and Libert’s DLOG-based scheme [52]

all have constant-sized proofs.

If trusted setup is undesired, the Bulletproofs family is recommended. Although many

lattice- and code-based constructions do not require a trusted setup, all Bulletproofs-style

constructions have much shorter proofs. Even if a trusted setup is allowed, Bulletproofs-style

constructions may still be worth considering depending on how much one values short proofs.

Though their proof sizes are not constant, they seem to be the most commonly used in

practice. We list CKLR [30] as well because it has comparable efficiency to Bulletproofs on

paper and also does not require trusted setup. However, it has several drawbacks: it does

not allow batching, it is less efficient in practice due to its incompatibility with optimized

libraries for common elliptic curves, and it offers a more relaxed notion of security. For certain

applications where these drawbacks are less important, CKLR may be worth considering.

9 Efficiency Comparison

This section includes an efficiency comparison of various ZKRPs. In Table 4, we compile

both concrete and asymptotic proof sizes for schemes of particular interest. The concrete

proof sizes have been extracted directly from the schemes’ respective papers, as the proof

sizes are largely the same across machine configurations. Groth16 has the shortest range

proofs for a 64-bit range at 192 bytes whereas HashWires has the shortest range proofs at

177 bytes for a 32-bit range.



M. Christ, F. Baldimtsi, K. K. Chalkias, D. Maram, A. Roy, and J. Wang 14:19

In Table 5, we record prover and verifier times for various schemes. We add many of

our own benchmarks to ensure that configurations are normalized. In particular, we add a

benchmark for Groth16 [44] that was absent in prior work. The configurations for benchmarks

that we pull from other papers are noted below.

Other benchmarks. The Sharp paper’s [29] benchmark was run on a MacBook Pro with

a 2.3 GHz Intel core i7 processor and uses the library libsecp256k1 [70]. The HashWires

paper [24] includes a benchmark for Bulletproofs which is significantly faster than ours. They

used an AVX2 backend was used which significantly speeds up curve arithmetic. We include

this benchmark in addition to ours, to reflect the speedup possible with their configuration.

Our benchmarks. We add our own benchmarks for Hashwires (base 16 and base 256),

Bulletproofs, BFGW + KZG, and Groth16. In all cases, we record the median running time

over 100 runs. We plan to open source all of our benchmarks for reproducibility.

For Groth16, we implement range proofs with two versions of the commitment scheme:

the well-established Pedersen commitments and the new zk-friendly Poseidon commitments.

We’ve used Circom [8] for writing circuits and rapidsnark [47] for generating and verifying

the Groth16 proofs.

The implementations for Hashwires, Bulletproofs and BFGW + KZG are in Rust. All the

benchmarks were run on a AMD EPYC 7443P 24-Core with 512GB of RAM (a c3.large.x86

machine hosted by latitude.sh). We explicitly chose a non-Mac machine because rapidsnark

leverages Intel Assembly to speed up Groth16 proof generation.

Hashwires has the fastest proof generation and verification times. Both BFGW + KZG

and Groth16 have constant-sized proofs but they are less computationally efficient than

others. Groth16 has the longest proof generation times. This is expected because we are

instantiating range proofs within a general-purpose zk proof system.

It is worth noting that in practice the availability of a reliable library may outweigh mild

efficiency gains. Bulletproofs is the most widely used range proof in practice and is likely

a good choice. Groth16, though not tailored to range proofs, is one of the most popular

general-purpose zero-knowledge proof systems and offers several well supported libraries; we

use Circom [8] and rapidsnark [47]. From our benchmarks, one can see the efficiency gains

offered by tailored range proof solutions over generic solutions, which can be seen especially

in the long prover times required for Groth16 relative to the other range proofs.

10 Research Gaps

▶ Research Gap 1. Practical transparent constant-sized range proofs.

No zero-knowledge range proofs are practical, transparent, and have constant-sized proofs.

Bulletproofs and its close relatives have transparent setup but have proofs of size O(log k)

for a k-bit range. BFGW + KZG has constant-sized proofs but requires a trusted setup;

BFGW + DARKs has a transparent setup but requires O(log k)-sized proofs. CKLR has

a transparent setup and has constant-sized proofs but achieves only a relaxed notion of

soundness. Furthermore, its proofs are not as practically efficient as the above schemes

because they use less common curves that optimized libraries do not support.

▶ Research Gap 2. Shorter (even amortized) lattice- or code-based ZKRPs.

AFT 2024
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Table 4 Proof sizes in bytes for 64- and 32-bit ranges. The benchmark for each of these schemes

is from that scheme’s original paper, except where otherwise noted.

Scheme Proof size (bytes) Proof size (asymptotic)

32-bit range 64-bit range k-bit range

Bulletproofs 610 675 O(log k)

BFGW + KZG † 576 576 O(1)

SharpGS 318 360 O(1)

SharpPo
SO 335 389 O(1)

SharpRSA 751 793 O(1)

HashWires (Base 16)† 231 263 O(log k)

HashWires (Base 256)† 167 199 O(log k)

Groth16 [44]§ 192 192 O(1)

Lattice-based ALS [4]** 5,900 - O(k)

Lattice-based ESLL [37] 58,000 93,000 Ω(k)*

Lattice-based LNS [58]** 11,800 - o(k)‡

† Our own benchmark.
§ Benchmark from HashWires [24], over the BLS12-381 curve.

*See [37] for the exact expression, which includes several other parameters

not described here. It is Ω(k) and is large relative to the other schemes.

**The proof sizes for 64-bit ranges were not included in [4, 58]. Note that [4]

has linear growth, so extrapolating from its 5,900-bit proof for 32-bit ranges,

its proof for 64-bit ranges would be large.

! See [58] for the exact expression, which is complicated; it is sublinear in k.

Table 5 Verifier and prover times. †Our own benchmark.

Scheme Verifier Time (ms) Prover Time (ms)

32-bit range 64-bit range 32-bit range 64-bit range

Bulletproofs† 1.37 2.51 6.32 11.96

SharpPo
SO 0.74 0.75 0.97 1.17

Bulletproofs AVX2 (HashWires benchmark) - 0.938 - 6.516

HashWires base 16† 0.002 0.002 0.003 0.061

HashWires base 256† 0.009 0.01 0.083 0.194

BFGW + KZG† 5.653 5.682 9.572 12.569

Groth16-Poseidon† 4 4 34.23 34.46

Groth16-Pedersen† 4 4 31.18 33.57

The proofs of lattice-based and code-based ZKRPs are concretely quite long, as shown in

Table 4. For blockchain applications where one must pay for the space used on-chain, this

length is problematic, especially as these constructions do not support aggregation. In order

to be competitive with constructions using other techniques shown in Table 4, the proof size

must be under 1 KB.

▶ Research Gap 3. Lattice- or code-based ZKRPs with multi-prover aggregation.

Lattice-based ZKRPs with short proofs are desirable for confidential transactions, as

blockchains transition to post-quantum security. In such settings, this size issue may be

mitigated by multi-prover aggregation. Each block would then contain only an aggregate

range proof for all included transactions. However, this aggregation must be multi-prover as

these transactions may be made by many different parties, each holding commitments to

private values. Lattice- and code-based ZKRPs with multi-prover aggregation have not yet

been constructed, leading us to the this related research gap.

▶ Research Gap 4. Un-replayable credential-based range proofs.
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For credential applications, one might want an interactive range proof that cannot be replayed.

Suppose that Alice has a commitment of her age signed by a trusted credential issuer. Alice

should be able to visit the DMV and prove in zero knowledge that her committed age is

above 16. An observer Bob should not be able to copy Alice’s commitment and re-use the

transcript of the protocol to prove (possibly falsely) that his age is above 16. If this range

proof is non-interactive, Bob can simply copy the proof and re-use it. This re-use might be

avoided if the protocol is public-coin interactive, and the DMV issues a random challenge

that requires knowledge of the committed value to respond to.

Can we make hash-chain-based range proofs that are un-replayable in this way? As

credentials are a primary motivation for HashWires, un-replayability would be a nice property

to add.

▶ Research Gap 5. Integer commitments with full soundness with transparent setup.

CKLR [30] and Sharp [29] construct integer commitments with a relaxed notion of soundness.

In order to be used for confidential transactions, they must be augmented with additional

proof elements from an RSA group or class group. The RSA version requires a trusted setup,

and the class group solution is not compatible with existing optimized libraries. Rather than

patching soundness issues by adding these extra elements, it would be preferred to construct

practically efficient integer commitments with full soundness and transparent setup.

▶ Research Gap 6. Efficient post-quantum ZKRPs compatible with LWE-based ciphertexts.

Zero-knowledge range proofs can be used to build verifiable LWE-based encryption schemes as

discussed in our full version[27].However, existing verifiable LWE-based encryption schemes

constructed using ZKRPs [35, 52] use discrete logarithm-based ZKRPs. Thus, while they

obtain privacy against quantum adversaries due to the LWE-based encryption used, they lack

soundness in verification due to the DLOG-based range proofs. If there were efficient post-

quantum range proofs compatible with LWE-based ciphertexts, one could obtain verifiable

encryption with soundness against quantum adversaries as well. While a lattice-based

zkSNARK (e.g., [2]) may work in theory, it may not be efficient (yielding long ciphertexts and

heavy computation). An efficient lattice-based ZKRP that is compatible with lattice-based

encryption would be more satisfactory.
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