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Key to being able to accurately model the properties of realistic materials is being able to

predict their properties in the thermodynamic limit. Nevertheless, because most many-

body electronic structure methods scale as a high-order polynomial, or even exponentially,

with system size, directly simulating large systems in their thermodynamic limit rapidly

becomes computationally intractable. As a result, researchers typically estimate the

properties of large systems that approach the thermodynamic limit by extrapolating the

properties of smaller, computationally-accessible systems based on relatively simple scaling

expressions. In this work, we employ Gaussian processes to more accurately and efficiently

extrapolate many-body simulations to their thermodynamic limit. We train our Gaussian

processes on Smooth Overlap of Atomic Positions (SOAP) descriptors to extrapolate the

energies of one-dimensional hydrogen chains obtained using two high-accuracy many-

body methods: coupled cluster theory and Auxiliary Field Quantum Monte Carlo (AFQMC).

In so doing, we show that Gaussian processes trained on relatively short 10–30-atom

chains can predict the energies of both homogeneous and inhomogeneous hydrogen

chains in their thermodynamic limit with sub-milliHartree accuracy. Unlike standard scaling

expressions, our GPR-based approach is highly generalizable given representative training

data and is not dependent on systems’ geometries or dimensionality. This work highlights

the potential for machine learning to correct for the finite size effects that routinely

complicate the interpretation of finite size many-body simulations.

1. Introduction

Over the past few decades, ab initio electronic structure methods have trans-

formed our ability to design materials by enabling researchers to predict the
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macroscopic and emergent behavior of solids from a basic knowledge of their

constituent atoms. Researchers can now routinely model the electronic and

geometric properties of systems ranging from quantum materials to heteroge-

neous catalysts with – or very near – chemical accuracy. However, the accuracy

that accompanies many-body electronic structure methods such as Coupled

Cluster (CC) theory, Quantum Monte Carlo (QMC), and many-body perturbation

theories oen comes at a steep cost: these methods typically scale as a high degree

polynomial with system size. For example, Coupled Cluster Singles, Doubles, and

Perturbative Triples [CCSD(T)] conventionally scales as O(N3M4), where N is the

number of electrons and M is the size of the basis set, while Auxiliary Field

Quantum Monte Carlo (AFQMC) typically scales as O(N2M2 + M2N).1 In contrast,

mean eld methods such as Density Functional Theory (DFT) scale as O(N2 log

N)2,3 or O(N),4 when locality is a good approximation, but are only predictive when

the degree of electron correlation is mild. Historically, the comparatively steep

scaling of many-body methods has thwarted their direct application to solids with

large unit and/or supercells, limiting their use to systems with just tens to,

potentially, hundreds of atoms. However, such smaller, more computationally-

accessible systems cannot manifest the same long-range correlations as are

present in larger, more realistic solids, and can exhibit spurious boundary effects

that confound their interpretation. Indeed, given the remarkable accuracy of

many modern electronic structure methods, these nite size errors are oen the

largest sources of error in many calculations of solids.5,6 This leads to a long-

standing conundrum: if many-body methods may only be directly applied to

smaller, nite systems, how can they be leveraged to predict the properties of larger,

more realistic solids?

To increase the feasibility of many-body methods for the prediction of the

properties of solids in their innite-size, “thermodynamic limit” researchers have

developed approaches that correct results for smaller systems to predict the

properties of larger systems. Such so-called nite size corrections consist of two

main contributions: one-body and two-body corrections, which ameliorate the

one- and two-body contributions to the total energy, respectively. One-body nite

size errors typically stem from shell-lling effects that lead to a mis-estimation of

the kinetic energy6,7 and can therefore be corrected by a judicious averaging over

k-points.8 For example, in mean eld theories, integrating over many points in the

rst Brillouin zone can be circumvented by instead approximating quantities

using mean-value points known as Baldereschi points.9 While many-body

methods such as QMC methods need to integrate over the full simulation

supercell, not just one point, twist averaging10 provides a means of averaging over

a set of angles (offset vectors) on the Brillouin zone of the supercell that results in

a rapid convergence of the one-body effects.6,10 In contrast, two-body nite size

effects stem from errors in the Coulomb and exchange–correlation interactions

and are more challenging to correct. These effects can be alleviated by intro-

ducing modied versions of these interactions, such as model periodic Coulomb

corrections.6,7 An alternative approach for correcting both one- and two-body

nite size effects is to determine nite size corrections using methods that

scale more gracefully with system size, such as Density Functional Theory

(DFT).6,7,11 Such methods are used to estimate the differences in energies between

smaller and larger systems, and then these differences are added to the smaller-

sized many-body calculations. One such DFT-based approach is the Kwee, Zhang,
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Krakauer correction (KZK).12 While such corrections are now widely applied to

materials, they inherently lack the accuracy that would be possible if many-body

corrections that take strong correlation into account were applied.

Even though these one- and two-body corrections markedly reduce nite-size

errors, extrapolations to the thermodynamic limit are oen still made to reduce

any remaining errors. The simplest approach for performing these extrapolations

is to t many-body results obtained at smaller system sizes (e.g., 2 × 2 or 3 × 3

supercells) to functional forms that enable extrapolation to larger system sizes.7,11

Nevertheless, it is oen unclear which functional form should be employed since

it can vary with the geometry, dimensionality, and electronic phase of the mate-

rial.5,8 This is especially true for systems with atypical geometries and boundary

conditions. It is also of particular importance for calculations involving excited

states, including gap and exciton binding energy calculations, because excited

states can be more diûcult to converge to their thermodynamic limit.13–15 When

a system’s correlation energy converges slowly, the number of points necessary for

accurate tting can exceed computational constraints, limiting the overall utility

of such extrapolations and the results they yield.8,16

One potentially promising approach for estimating many-body corrections

that can reduce this computational expense is machine learning. Machine

learning methods surrogate more complex models with regressions that have

lower computational complexity, thereby accelerating prediction.17–19 In the

context of condensed matter physics, machine learning has been employed to

accelerate the prediction and discovery of new materials based upon the prop-

erties of knownmaterials20 as well as to learn the presence of certain phases based

upon their known signatures.21,22 Machine learning techniques have moreover

recently been harnessed to accelerate and improve the accuracy of quantum

Monte Carlo methods (see a more detailed discussion in Section 2).8,18,23–28 To

approach the problem of determining accurate, many-body nite size corrections,

one can analogously imagine using data from smaller system sizes to train

machine learning algorithms to predict the properties of systems of larger sizes.

An early such work used energies and densities from the density matrix

renormalization group to learn the DFT kinetic energy functional of hydrogen

chains in the thermodynamic limit.29 More recently, while this work was being

prepared, Gaussian process regression techniques were shown to be able to

successfully learn corrections to coupled cluster calculations in k-space. More

specically, Mihm et al.8,30 employed the transfer structure factor to quantify the

nite size effects present in coupled cluster theories’ correlation energy. They

then innovatively bypassed directly computing the structure factor for G values

approaching zero (i.e., in the thermodynamic limit) by exibly representing the

structure factor using Gaussian Process Regression.

In this work, we leverage Gaussian Process Regression (GPR)31 to learn nite

size corrections in real-space to homogeneous (one-dimensional) and inhomo-

geneous (two-dimensional) hydrogen chains modeled using the rst-principles,

many-body methods Coupled Cluster (CC) Theory and Auxiliary Field Quantum

Monte Carlo (AFQMC). Kernel methods like Gaussian processes31 are advanta-

geous because they are not parametric and make use of Bayesian inference that

can come at a lower O(Nt
3) (where Nt is the size of the training set) cost than more

complicated parametric methods such as neural networks that scale with the

number of layers employed.17 Gaussian processes have also been shown to make
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equally, if not more, accurate predictions than neural networks when less training

data is available, which is an important consideration when training is to be

performed on data generated using relatively expensive electronic structure

calculations.32 We use Gaussian processes to rst predict the energies of one-

dimensional, homogeneous hydrogen chains of varying lengths using atomic

environment descriptors that enable us to incorporate information regarding the

geometry and electronic density of each atom and its neighbors. Importantly,

even though machine learning methods are most accurate for interpolation, we

demonstrate that training our models on the energies of one-dimensional

hydrogen chains containing 10–30 atoms enables us to predict (extrapolate) the

energies of chains of more than 100 atoms, nearing the thermodynamic limit,

with sub-milliHartree accuracy. To contextualize the accuracy of our methods, we

compare the accuracy of our predictions to that of polynomial ts to larger-sized

systems, the so-called “subtraction trick”,33 and other alternative regression

methods. Finally, to demonstrate the generalizability and robustness of our

approach, we show that our technique can readily be adapted to also extrapolate

the energies of heterogeneous chains of hydrogen dimers, which possess more

free parameters, to their thermodynamic limit. This work thus illustrates that

machine learning is a relatively cheap, yet accurate means of correcting for nite

size effects in many-body simulations that can potentially address many of the

challenges the many-bodymodeling community faces predicting the properties of

solids in the thermodynamic limit.

In the spirit of a Faraday Discussion, in Section 2, we begin with a discussion of

the emerging synergies between machine learning techniques and stochastic

electronic structure methods. We then describe the machine learning methods,

descriptors, and electronic structure techniques we employ in our nite-size

extrapolation research in Section 3. We next present our primary results

demonstrating our technique’s ability to accurately correct for nite size errors in

Section 4. We conclude by discussing the relative merits and potential applica-

tions of our algorithm in Sections 5 and 6.

2. Machine learning in stochastic electronic
structure

Over the past decade, an increasing amount of research has shown that stochastic

electronic structure and machine learning methods can form a very fruitful

partnership that both accelerates and extends the capabilities of stochastic

methods. Because stochastic electronic structure methods are oen more

expensive than other common electronic structure methods such as Density

Functional Theory, machine learning techniques hold the promise of making

stochastic electronic structure techniques less costly. At the same time, the high

accuracy of most stochastic electronic structure techniques like Diffusion,34,35 Full

Conguration Interaction,36 and Auxiliary Field37,38 Quantum Monte Carlo

methods can provide ML techniques with high-quality data that can be used to

correct less accurate predictions.

One triumph of the union of these techniques has been the generation of

machine learned force elds from QMC energies and gradients.27,39–41 QMC

energies and forces calculated for representative congurations are used to train
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a variety of different neural networks, e.g., Behler–Parrinello Neural Networks,42 or

other architectures, which are in turn used to predict the energies and forces for

other congurations, accelerating geometry relaxation and/or ab initio molecular

dynamics simulations.43,44 For instance, in recent work, Diffusion Monte Carlo

energies and forces were used to generate a force eld using a hierarchical D-

machine learning scheme based upon the Deep Potential Molecular Dynamics

(DPMD) framework45 that was able to successfully uncover a new phase of

hydrogen.27 Since QMC has historically met challenges calculating forces,46 recent

work has also exploited machine learning architectures to learn force elds from

energy data alone.39 Other ways to further reduce the cost of QMC data generation

for training itself employ either D-ML47 or transfer learning.48 These techniques

rst learn potentials and forces, using data from less accurate, but less costly

theories and then correct those force elds by either adding a machine learned

correction or updating the less accurate force eld with select higher accuracy

information. Both methods capitalize on the fact that less accurate theories can

oen reproduce much of the correct physical behavior of a system, meaning that

high accuracy methods are effectively only needed to correct specic phenomena

or regions of the potential energy surface. Further opportunities lie in better

harnessing the statistical nature of stochastic methods to more eûciently train

such force elds.49 Overall, QMC-quality force elds open up the grand possibil-

ities of studying dynamics in large molecular or solid state systems with relatively

little overhead, making QMC dynamics a practical reality.

Stochastic methods and machine learning techniques have also been fruitfully

paired to develop new neural network-based variational ansatze. The Variational

Principle, which states that the ground state wave function of a system can best be

approximated by varying the parameters and forms of trial wave functions to

minimize the energy of the system, has long been used to produce wave function

ansatze in computational quantum chemistry and physics. Oen, such ansatze

have been optimized using QMC (i.e., Variational Monte Carlo methods) and used

either on their own or as starting points for projection-based QMC techniques.6,50

Historically, the forms of these variational ansatze have been specied based

upon knowledge of the chemistry/physics they ultimately aim to describe (e.g.,

Gutzwiller51 or pairing52 wave functions) or condence that their form is gener-

alizable and expressive enough to describe the phenomenon under study (e.g.,

backow wave functions).53 Specifying the forms of trial wave functions based

upon the physics expected can potentially lead to circular logic in which the

physics that is expected to be seen is incorporated into a variational wave function

form that then recovers that physics.

Recently, machine learning has been employed to overcome this limitation by

providing ameans of creating highly expressive variational wave functions. One of

themost popular means of achieving this has been to use deep neural networks to

specify a given variational wave function and then to optimize that neural network

using the energy and/or variance as a loss function.54 Examples of such variational

neural networks include DeepQMC,55 FermiNet,23 and PauliNet,24 all of which

have shown promise determining the ground states of challenging chemical

systems. PauliNet and FermiNet, for example, use deep neural networks to learn

a parameterized form of the Jastrow factor and backow functions and maintain

antisymmetry using Slater determinants. Unlike traditional methods that use

single-particle orbitals, FermiNet employs functions invariant under two-electron
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permutations and incorporates back-ow-like transformations for enhanced

accuracy.56

An alternative approach to combining the expression and optimization of wave

functions with machine learning has been neural network quantum states.57 One

promising form of neural network quantum states established by Carleo and

Troyer are Restricted Boltzmann Machines, which implement a representation of

the wave function through hidden and visible layers.57 The Boltzmann distribu-

tion models the probabilities associated with different congurations of visible

and hidden nodes based on the energy; lower energies are favored to accommo-

date the variational principle which guides the optimization of wave function

parameters. These wave functions can then be extrapolated to larger systems by

reusing the learned features of the wave function to initialize a machine learning

model applied to a similar, but larger system.58,59 This process of transferring the

learning done for one type of problem to a related, but different problem makes

seemingly out-of-reach problems, such as the thermodynamic limit, computa-

tionally feasible. Success with the transverse-eld Ising model,57 Heisenberg

model,57 and molecules60 has been demonstrated. Akin to the use of GPR in this

work, Gaussian Processes have also been used to specify wave functions called

Gaussian Process States.61 These wave functions are expressed as the exponential

of a GP estimator and thus, as Gaussian processes more generally, are highly

generalizable and can provide critical information about uncertainties. Such

machine learning-based wave functions offer a potential means of achieving

unprecedented levels of accuracy without the need for typically more expensive

projection techniques.

Given these successes combining stochastic methods with machine learning

approaches – and the many more we have not been able to discuss due to space

constraints – here, we focus on the possibility of using machine learning methods

to extend QMC’s capabilities in a different way: by facilitating the extrapolation of

QMC results to the thermodynamic limit.

3. Methods
3.1 Gaussian Approximation Potentials (GAP)

In this work, we employ Gaussian Process Regression (GPR) to predict nite size

corrections for discrete hydrogen chains. We have focused on GPR62 because it

has previously been shown to yield high accuracy results with less training data

than comparable methods.32 This is an especially desirable property when one is

interested in performing regressions on data obtained from comparatively costly

many-body simulations, since computational expense practically limits how

much reference data can reasonably be collected. The Bayesian nature of GPR also

makes it possible to compute the variance of its predictions, which greatly facil-

itates the interpretation of its results.63 For these reasons, we employ a GPR-based

approach which is very similar in avor to the Gaussian Approximation Potential

(GAP) approach.64 We rst summarize our approach at a high level and then

provide more details in subsequent subsections.

A GPR is a random process which takes input vectors xi and maps them to

random variables y = f(x) with a multivariate, normal joint distribution with

covariance (K)31,63
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p(f(x)) ∼ N(m,K). (1)

The target function f(xi) (which yields the energy in this work) is characterized by

the expectation value of the distribution m = hf(xi)i. Like GAP, we use atomic

environment descriptors65 as input features, xi (which are vectors containing the

atomic descriptors of a structure i). These capture the main features of the elec-

tron density of an atom and its neighborhood (its atomic environment) to

represent the electronic characteristics of the atoms. The covariance determines

how the features are correlated and is specied by the kernel function. In kernel

methods such as GPR,31,66 input features xi are mapped to a nonlinear, high-

dimensional space through the function f(xi). Correlations between descriptors

that represent different atomic structures are subsequently represented by taking

their inner product in this nonlinear space to yield the kernel

K(xi,xj) = f(xi)$f(xj). (2)

Nevertheless, the kernel can be dened in a more arbitrary way as long as it

satises the properties of a covariance matrix.66 In order to make predictions,

Bayesian inference can be used to compute new values of the target function.31,63

This is done by extending the distribution to unobserved data, y*. The idea is to

generate a distribution based on the observed data (y,X) using unseen data X* to

generate the prediction y* with the corresponding joint distribution:
"

y

y*

#

� N

 "

m

m*

#"

K K*

KT
* K**

#!

; (3)

where m and m* denote the means over the training and unobserved data,

respectively, and K, K*, and K** represent the covariances among the training data,

training and unobserved data, and unobserved data, respectively. Based upon

Bayes’ rule, the posterior distribution is Gaussian since the joint distribution is

Gaussian. The posterior distribution can be expressed as

P(y*jy) ∼ N(ŷ,K̂), (4)

while the predicted mean and variance for an unobserved point may be expressed

as

y* = ŷ = K−1yK(X,X*) (5)

and

s* = K(X*,X*) − K(X,X*)TK(X,X)−1K(X,X*). (6)

The functional form of the prediction is equivalent to that produced by Kernel

Ridge regression,66 and can be written in the same way

y* = ŷ = (K + s
2)−1yK(X,X*). (7)

In this equation, the weights, a,66 are given by

a = (K + s
2I)−1y. (8)
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Eqn (7) can be written in terms of the coeûcients given by eqn (8)

y* ¼
X

i

ai$Kðxi; x*Þ; (9)

where the ai are vectors of the coeûcients obtained from the regression and

K(xi,x*) is the kernel between the unseen data, x*, and the training data, xi. Kernel

methods such as GPR can thus be used to predict the total energy, E*
total, using the

equation

E*
total ¼

X

i

ai$Kðxi; x*Þ: (10)

The kernels can be tuned to optimize the prediction of the Gaussian process

through the selection of their free parameters, known as hyper-parameters. The

most common method of optimizing the posterior is the log-likelihood maximi-

zation method. In this work, we use three-way hold-out and log-likelihood

maximization over the hyper-parameters.

3.2 Atomic environment descriptors and regression model

In contrast with physics-based approaches for describing a system, machine

learning models are oen more expressive, meaning that a single model has the

potential to describe many different systems. One way to constrain the predic-

tions of a machine learning model is to include prior physical information in the

surrogate model. This can be achieved by making the model invariant to

symmetries, including translational, rotational, or permutation symmetries, or

constraints, in order to suppress spurious correlations. These symmetries or

constraints are usually incorporated into the model in two ways: explicitly inte-

grating these symmetries into the regression algorithm or designing features that

are invariant to the symmetry transformations.

Here, we incorporate symmetries via the latter approach using Smooth Overlap

of Atomic Positions (SOAP) descriptors that are invariant to rotation and trans-

lation. These atomic environment descriptors represent the electron density at

some point r by the superposition of the Gaussian densities of atoms with the

same atomic number Z in the neighborhood of that point

rZðrÞ ¼
X

kZik

i

exp

 

�
kr� Rik

2

2s2

!

; (11)

where Ri is the position of an atom, i, in the neighborhood and s
2 is the variance

of the Gaussian. This density may be expanded in terms of radial and angular

basis functions

rZðrÞ ¼
X

nlm

cZnlmYlmgnðrÞ; (12)

where the gn(r) are the n radial basis functions that can be expressed in terms of

polynomials or atomic orbitals and the Ylm correspond to the spherical harmonic

functions. The cZnlm coeûcients of the expansion can be computed by integrating

over the density

cZnlmðrÞ ¼ ∭
R

3dVgnðrÞYlmðq;fÞrZðrÞ: (13)
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In this work, we use the Dscribe library67 to obtain the descriptors. This library

implements SOAP descriptors using a partial power spectrum that only includes

real spherical harmonics. Because the density depends on the square of the

distances between points, it is already invariant to translation. A descriptor vector,

p, is formed from elements of the power spectrum

pðrÞZ1Z2

nn0 l ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

8

2l þ 1

r

X

m

c
Z1

nlmðrÞ*c
Z2

n0 lmðrÞ; (14)

where n and n0 # nmax run over the radial basis functions and l # lmax runs over

the spherical harmonics. nmax and lmax dene themaximum number of radial and

angular functions in which the density in eqn (12) is expanded, respectively. Z1
and Z2 are the atomic numbers of the species. The resulting power spectra are

rotationally- and permutationally-invariant by construction.

The original SOAP descriptors compare the local atomic environments using

a kernel that is the dot product of the normalized power spectra between different

congurations

KSOAP
�

p; p
0�
¼

 

p$p0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp$pÞ � ðp0$p0Þ
p

!x

: (15)

This kernel takes the overlap of two atomic environments. However, other kernels

employ different ways of measuring the similarity of the environments that may

lead to better results. One of the most common kernels because of its versatility

and robustness is the Radial Basis Function (RBF) or Squared Exponential (SE)

kernel

K
�

p; p
0�
¼ v2 exp

 

dðp; p0Þ2

l2

!

; (16)

where d(p,p0) is the Euclidean distance, v2 is a tunable amplitude, and l2 is the

global weight or length scale of the features. We choose to use the latter kernel

throughout this work because of its exibility and robustness for comparing

features.

3.3 Comparing environments with global descriptors

The descriptor vector, p, of an atomic structure depends on the number of atoms

of each species and is created by concatenating the different combinations of

atomic species, each with n radial basis functions and a maximum angular

number lmax.
65 As a result, structures with different numbers of atoms,M, N, have

different numbers of descriptors. One way to deal with descriptor vectors of

differing lengths is to pad the feature vectors with zeros such that their dimen-

sions match those of the descriptor vectors with the largest number of features in

the samples. A similar approach involves padding the dummy (missing) features

with values selected to decrease the biases the missing features would otherwise

introduce.68

An alternative that can reduce bias is the use of global descriptors. These

descriptors characterize the whole structure, i.e., the features depend on all of the

atoms, rendering the number of features independent of the number of atoms in

the structure. However, such an approach may diminish the quality of the kernel,
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since the descriptors may not have enough resolution to distinguish subtle

differences between structures because of their global nature. A very simple and

intuitive method to make the kernel global is to construct an “average kernel:”69

KðA;BÞ ¼
1

NM

X

N;M

i;j

CijðA;BÞ: (17)

Such a kernel recursively compares the features of the atoms i and j in structures A

and B, respectively, using the kernel, C, and averaging over its corresponding

numbers of atoms N andM. This approach is equivalent to averaging the features

of all of the atoms of each conguration and comparing them with the kernel C,

which amounts to making the descriptors global

pðrÞZ1Z2

nn0 l ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

8

2l þ 1

r

X

N

i

1

N

X

m

�

c
i;Z1

nlm ðrÞ*
�

�

c
i;Z2

n0 lmðrÞ
�

: (18)

The RBF kernel with the global descriptors then becomes

K
�

p; p
0�
¼ v2 exp

 

X

i

dðpi; p
0
iÞ
2

li
2

!

: (19)

It is important to note that, when global descriptors are employed, the total

energy is no longer the simple sum of local contributions. Now, it explicitly

depends on quantities that interrelate features of the whole structure. This overall

description of atomic structures implicitly removes the need for descriptors that

capture long-range order. Nonetheless, the resolution of the features still needs to

be high enough to capture small structural changes, as mentioned earlier. The

resolution of the kernel can be improved by weighting each global feature by some

characteristic length, li, according to eqn (19). This improves kernel performance

by allowing ne-tuning of the parameters, but at the cost of adding more

complexity to the model. In the following, we employ this combination of SOAP-

averaged descriptors and the RBF kernel on linear hydrogen chains, which serve

as an interesting and challenging benchmark.

4. Results
4.1 One-dimensional, homogeneous hydrogen chains

4.1.1 Coupled cluster and AFQMC database of homogeneous hydrogen chain

energies. To analyze the ability of our GPRs to predict the energies of solids in

their thermodynamic limit, we rst attempt to predict the nite size effects of

linear hydrogen chains (LHC) stretched homogeneously, i.e., with their atoms

equally-spaced, and with open boundary conditions. This system is a very well-

known benchmark for strong electron correlation because of the multireference

character it develops at long bond distances and has therefore been used to test

the accuracy of a wide-range of many-body methods.1,70–73 As illustrated in Fig. 1,

Unrestricted Hartree–Fock theory (UHF) underbinds the hydrogen atoms, while

Unrestricted Coupled Cluster Theory (UCCSD(T)) and AFQMC are able to rela-

tively accurately reproduce the chains’ energies near their equilibrium bond

lengths, but can struggle to capture their energies at longer bond lengths closer to

the dissociation limit.1,70
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This system furthermore exhibits a metal-to-insulator transition when

stretched homogeneously, which occurs at 1.8 Bohr.1 This transition is of second

order, meaning that it is continuous with respect to the energy, but can be

characterized by the polarization or spin correlation functions.70 Dimerization of

pairs of hydrogen atoms in the chains can be observed by looking at the electron

Fig. 1 Energy per atom vs. bond length for a 50-atom hydrogen chain using the UHF,
UCCSD(T), and AFQMC methods in the STO-6G basis. The symbols depict the energies
from calculations from ref. 1, while the dotted lines interpolate among 250 of our database
energies. AFQMC error bars are too small to see.

Fig. 2 Electron density as a function of atomic position (x) for 10-atom hydrogen chains.
Each curve depicts the electron density profile when the chain is stretched homoge-
neously at the bond lengths indicated in the legend. The change in the distance between
and depth of adjacent local minima as the bond distance is increased reflects the onset of
dimerization. The densities depicted here were computed using Full-Configuration
Interaction74 and the y-axis was shifted so that the profiles for all bond lengths could be
clearly seen.
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density prole along the chains, as in Fig. 2. The maxima correspond to the

nuclear positions, while the deep minima indicative of dimerization may be

observed between pairs of atoms at all of the chain lengths depicted. Methods

capable of predicting the energies as a function of bond length must implicitly be

able to predict energies across these transitions.

In order to generate enough data for training, we created a database of the

energies of hydrogen chains at varying bond lengths using UHF and two many-

body methods – UCCSD(T)74 and AFQMC75
– in the minimal STO-6G basis.

UCCSD(T) has long been considered the gold standard for accuracy for quantum

chemistry calculations,74,76 and is seeing an increasing number of applications to

solids.77,78 AFQMC75 is a second-quantized QMC method that, despite its typical

use of the phaseless approximation,79 has been shown to achieve chemical

accuracy in systems ranging from small molecules,80–82 to complexes,82,83 to

strongly correlated solids.84,85 As a check on our databases, we produced and

extended the benchmarks of Motta et al.1 with sub-milliHartree accuracy (see

Fig. 1).

To perform our UHF and UCCSD(T) calculations, we use the open source

soware PySCF.86 For the AFQMC calculations, we use the high-performance

implementation of AFQMC in QMCPACK.87 Within QMCPACK, we employ UHF

wave functions produced by PySCF as trial wave functions and perform calcula-

tions with a time step of 0.005, 1000 walkers, a Cholesky decomposition threshold

of 10−8, and 104 steps in the phaseless approximation.75 Energies are computed

with the hybrid estimator. Using all of these methods, we compute 250 points for

each 10–60-atom chain with bond lengths ranging from 1 to 3.65 Bohr. For chains

of 70 to 100 atoms, we compute 40 points within the same range of bond lengths

in order to conserve computational resources. The 10–30 atom data was used for

training, while chains with larger numbers of atoms were used for benchmarking

and analysis.

4.1.2 Energy predictions using Gaussian process regression. We use the

smallest of our hydrogen chains of 10–30 atoms to train and test the GP regres-

sions, which corresponds to 750 total samples. Samples were uniformly mixed by

shuüing the data points at all bond lengths for each chain of a given size in the

training set. This is to avoid training with an imbalanced data set. SOAP

descriptors were constructed by using six GTOs as radial basis functions with

a sigma of 1 Bohr and six tesseral spherical harmonics as angular functions to

build the atomic descriptors for all sizes and bond lengths. A cutoff radius that

denes the extent of the atomic environment was set to 7 Bohr for all chain sizes

and bond lengths. This cutoff radius guarantees that the local environment of an

atom consists of amaximum of 14 atoms at the shortest bond lengths studied and

a minimum of 2 atoms at the longest bond lengths studied. It may be anticipated

that the local atomic environment descriptors become linearly dependent when

they have a large cutoff radius and are placed on bulk atoms that repeat

throughout the chains. Nonetheless, descriptors placed on the edge atoms

manifest asymmetries that reect the nite extent of the chains.

The descriptors are rst generated for all of the atoms of each chain in the

database. A global descriptor is then obtained by averaging each descriptor over

the atoms within each chain. Finally, feature selection is carried out by obtaining

leverage scores from a CUR decomposition.88 The leverage scores are ordered in

descending order and features are taken until 97% of the leverage score is
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accounted for. To perform the CUR decomposition, a Singular Value Decompo-

sition (SVD)88 is conducted given a singular value threshold that denes the rank

of the decomposition. For this purpose, we used optimal hard thresholding,89

whichmakes an optimal choice based on the dimensions and the estimated noise

in the features or global descriptors matrix. We don’t orthogonalize the features

or use covariate principal coordinate analysis to improve our current feature

selection, as further discussed in Section 5.90

A Gaussian kernel with multiple length scales allows more sensitivity to global

descriptors without greatly increasing the complexity of the model. We used the

maximum likelihood31 method to optimize the kernel hyper-parameters. We

employed up to 500 congurations for training and 250 for validation.

4.1.3 Accuracy of GPR predictions. Aer training our GPRs on the UCCSD(T)

and AFQMC energies of shorter hydrogen chains, we are able to predict the

energies per atom of chains with larger numbers of hydrogen atoms over the same

range of bond lengths in the database with reasonable accuracy. We predict the

energies per atom using the mean and variance of the posterior distribution.

Fig. 3 depicts the differences between the energies computed with the

UCCSD(T) (le) and AFQMC (right) methods, and their respective GPR predic-

tions. In both cases, the differences between the predictions and the calculated

energies are less than 1 mHa. It is reassuring to note that the short chain length

predictions are most accurate throughout the prediction interval, which is

a consequence of training the Gaussian processes on short chains. Prediction

errors grow with the lengths of the chains because the generalization error

increases with system size. This is reected in the larger condence intervals that

accompany the larger chain length predictions. Hydrogen chains have previously

been observed to exhibit slower convergence at short bond lengths because their

total chain lengths are not yet long enough to converge nite size effects that stem

Fig. 3 Energy differences between the calculated UCCSD(T) (left) and AFQMC (right)
energies, and their respective EGPR predictions per atom for hydrogen chains of different
lengths in mHa. The green dashed lines depict the bounds of 1 mHa energy differences.
The shadows delineate 95% confidence intervals based on the predicted variance. The
vertical dashed line denotes the bond length at which the metal–insulator transition
occurs.
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from long-range Coulomb interactions. This comparatively slow convergence is

likely responsible for the larger error bars we observe at short bond lengths.1 At

bond lengths longer than 3 Bohr where dissociation begins to occur, the error is

signicantly smaller and expected to converge faster because chains with longer

total lengths will more rapidly converge the long-range Coulomb interaction.

The quality and characteristics of the AFQMC-based GPR predictions are

similar to that of the UCCSD(T)-based predictions. Higher accuracies are again

observed for shorter chains and at larger bond lengths. The AFQMC-GPR differ-

ences are, however, noisier than the UCCSD(T) differences, which reects the

stochastic character of AFQMC. The AFQMC-GPR differences are, in general,

smaller than the UCCSD(T)-GPR predictions, especially at intermediate bond

lengths. Overall, the AFQMC predictions are slightly more accurate and homo-

geneous at all of the bond lengths studied, likely due to a larger consistency

within the AFQMC data.

4.1.4 Extrapolation of chain energies to the thermodynamic limit. Given the

sub-milliHartree accuracy of these predictions, we now turn to analyzing the

performance of our GPR predictions for extrapolating the energies of very long,

yet nite chains that approach the thermodynamic limit. In previous studies,1

thermodynamic limit predictions were made by assuming the chain energies

varied polynomially with N−1, with orders ranging from 1 to 3 depending upon the

convergence speed exhibited by the data.1 To make use of such scaling laws,

a polynomial must be t to a large enough number of different chain sizes to

capture the correct scaling behavior. To compare the performance of our GP

regressions against this more conventional tting procedure, we t the energies

of chains containing 10, 30, and 50 atoms, as was done in ref. 1. We contrasted the

extrapolations produced by this polynomial t with GPR results trained once

across different bond lengths on chains of 10, 20, and 30 atoms. Indeed, the

primary advantage of our method is that we can automatically predict the energy

per atom of any chain by computing its global descriptor vector and using the

posterior to predict its energy. As an added benet, the condence intervals based

on the predicted variance provide an estimate of the uncertainty of the prediction,

which is not available from typical polynomial regressions.

Fig. 4 displays the convergence of the energy per atom to the thermodynamic

limit for four representative bond lengths. The circles denote the UCCSD(T)

calculations while the squares represent the GPR predictions at each size. As

before, the shadows delineate 95% condence intervals on the GPR calculations.

The green dashed line denotes the polynomial regression at the given bond length

and the red triangle represents the energy in the thermodynamic limit taken from

ref. 1. The GPR prediction of the energy in the thermodynamic limit is made using

a chain of 5000 hydrogen atoms. As an illustration of the speed of our regression

technique, producing the descriptors for the 5000-atom chain took about 2

minutes on an Intel Core i7-8550U (Turbo 4.0 GHz, 4 Cores, 8 Threads) laptop. We

note that the differences between the thermodynamic limit predictions made by

the reference regression1 and the polynomial regression performed on our dataset

simply reect the small differences between the two different databases. The GPR

predictions are in good agreement with the reference and polynomial regressions,

deviating most for bond lengths near the equilibrium bond length (around 1.8

Bohr) where the convergence is less linear. Note that the energies converge one to
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two orders of magnitude more rapidly at larger bond lengths because the long-

range Coulomb interaction is weaker at larger bond lengths, as described earlier.

Fig. 5 similarly exhibits the convergence to the thermodynamic limit for the

AFQMC database and its respective GPR predictions. One of the most noticeable

differences relative to the UCCSD(T) calculations is that the AFQMC predictions

seem more linear close to the equilibrium bond length. This means that the

AFQMC calculations can more accurately resolve small, sub-milliHartree differ-

ences in the energies as a function of system size and therefore so can the

AFQMC-based GPR.

The le panel of Fig. 6 presents the energy of the hydrogen chains as a function

of bond length directly calculated using UHF and UCCSD(T) for 100-atom chains,

as well as the ref. 1 and GPR predictions in the thermodynamic limit. The energy

differences between the N = 100 UCCSD(T), reference, and GPR predictions are

Fig. 4 Predictions of the energy per atom in the thermodynamic limit vs. N−1 based on
UCCSD(T) results for hydrogen chains with bond lengths of 1.0, 1.4, 1.8, and 2.8 Bohr. Cyan
circles denote UCCSD(T) calculations, while maroon squares denote the GPR predictions.
The shadow depicts 95% confidence intervals, and the dashed lines depict the polynomial
regression of second order at each bond length. The triangle represents the energy in the
thermodynamic limit computed in ref. 1. The gap between points at small values of N−1

corresponds to chains between 100 and 5000 atoms, which are prohibitive to model even
using less expensive theories.
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hardly perceptible. The right panel of Fig. 6 likewise presents the energy as

a function of bond length for the largest, N = 100-atom AFQMC calculations we

were able to perform, in addition to the reference and GPR thermodynamic limit

predictions. As in the UCCSD(T) case, the discrepancies are too small to discern at

this scale.

To more closely examine how the GPR predictions converge with the number

of atoms in the chains, in Fig. 7, we plot the difference between the thermody-

namic limit predictions of ref. 1 and our UCCSD(T) (le) and AFQMC-based

(right) GPR predictions on the milliHartree scale. For both methods, we take

N = 5000 hydrogen chain GPR predictions to be representative of the thermo-

dynamic limit. In the le-hand panel, we also plot UCCSD(T) results for N = 200

Fig. 5 Predictions of the energy per atom in the thermodynamic limit vs. N−1 based on
AFQMC results for hydrogen chains with bond lengths of 1.0, 1.4, 1.8, and 2.8 Bohr. Cyan
circles denote direct AFQMC calculations, while the maroon squares denote the GPR
predictions. The shadow depicts 95% confidence intervals, and the dashed lines depict the
polynomial regression of second order at each bond length. The triangle represents the
energy in the thermodynamic limit computed in ref. 1. The gap between points at small
values of N−1 corresponds to chains between 100 and 5000 atoms, which are too
prohibitive to compute using even less expensive theories. Note that the TDL of ref. 1 (REF
TDL) for the bond length of 2.8 Bohr was replaced by our TDL extrapolation using
a polynomial regression because the reference value seemed to be in disagreement with
the rest of the reference’s data at that bond length.
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hydrogen chains, the largest we could directly simulate, to contrast N = 200 with

N/N results. We see that, at smaller bond lengths, discrepancies still remain

between the N = 200 and N/ N results, signifying that nite size effects still

inuence the energies of even N = 200-length chains.

These discrepancies are also manifested in the larger condence intervals that

accompany the GPR predictions. Even so, GPR predictions at all bond lengths

studied possess sub-milliHartree accuracy, and the discrepancies between the

different chain length predictions disappear at the longest bond lengths studied.

Fig. 6 Energy per atom computed for N = 100 chains and predicted for N = N chains
using the UCCSD(T) (left) and AFQMC (right) methods. The “REF / N” is the TDL
extrapolation taken from ref. 1. We plot this reference’s extrapolation so that it can be
contrasted with our GPR’s prediction using 5000 atoms.

Fig. 7 Differences between the energies predicted by ref. 1 and the UCCSD(T) (left) and
AFQMC (right) GPR-predicted energies in the thermodynamic limit (red triangles). For both
the UCCSD(T) and AFQMC plots, we assume that the GPR prediction using 5000 atoms is
representative of the GPR prediction in the thermodynamic limit. On the left, we also plot
the UCCSD(T) energies for N = 200 hydrogen chains, the largest we could directly
simulate. The shadows depict 95% confidence intervals for the GPR predictions.
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In contrast, the right panel of Fig. 7 demonstrates that the AFQMC-based GPR

predictions are in much better agreement with ref. 1’s thermodynamic limit

predictions, even at shorter bond lengths. This is in line with the results pre-

sented earlier in Fig. 3.

Since our calculations were performed with open boundary conditions (OBC),

it is also worthwhile to compare our predictions to those produced using the

“subtraction trick”,33 in which the energies of systems of different sizes are sub-

tracted to eliminate surface effects from bulk energies. Fig. 8 presents the

differences in energy between our GPR predictions of the energies in the ther-

modynamic limit and those produced using the subtraction trick based on chains

of different lengths. The differences in the energies predicted by these approaches

is sub-milliHartree at all bond lengths studied, further demonstrating that our

GPR predictions are highly accurate relative to a widely-employed benchmark,

while also illustrating the surprising accuracy of the subtraction trick. As the

subtraction trick eliminates edge effects from energy predictions, this compar-

ison especially highlights the GPR method’s ability to correct for edge effects. It is

satisfying to see that the energies predicted by the subtraction trick performed on

chains of lengths 30 and 50, which should yield the most accurate predictions of

the subtraction trick calculations, are in the greatest agreement with our GPR

predictions, especially at intermediate bond lengths. As before, we see that our

GPR predictions are in the greatest agreement with the subtraction trick results at

longer bond lengths. Indeed, our GPR predictions almost perfectly agree with all

three of the subtraction trick predictions at the longest bond lengths studied.

Moreover, our AFQMC-based GPR predictions again converge more rapidly and

reliably to the thermodynamic limit with increasing bond length. Overall, Fig. 7

and 8 possess very similar features: the GPR predictions overestimate the energies

at the shortest bond lengths and then oscillate between under- and over-

estimating the energies at intermediate bond lengths before coming to agreement

at the longest bond lengths. This points to the overwhelming agreement between

Fig. 8 The difference in energies between our GPR predictions in the thermodynamic
limit, EGPR(N/ N), and extrapolated energies obtained using the subtraction trick, EST.
(Left) Differences based upon UCCSD(T) energies; (Right) differences based upon AFQMC
energies.
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the polynomial regression and subtraction trick energies. These comparisons also

demonstrate that the GPR predictions are not uniformly biased toward over- or

underestimating energies.

A more quantitative comparison of the predictions generated by all of these

methods can be found in the ESI.†

4.2 Two-dimensional, inhomogeneous hydrogen chains

Given the success of GPR at predicting the energies of homogeneously-stretched

hydrogen chains in the thermodynamic limit, we next examine the capacity for

the same GPR techniques to predict the energies of inherently heterogeneous

chains of hydrogen dimers. As depicted in Fig. 9, these chains of hydrogen dimers

are described by two key distances: the intra-dimer bond distance, a, and the

inter-dimer bond distance, b. In the following, we generally x the intradimer

distance, a, between 1.0 and 3.5 Bohr, and vary the interdimer distance between

1.0 and a Bohr, maintaining open boundary conditions. While these chains of

dimers enable us to retain the same periodicity present in our earlier homoge-

neous chains, they also enable us to purposefully and controllably introduce

heterogeneity into our systems that complicates our prediction problem. Indeed,

these chains of dimers manifest several levels of correlation when stretched,

typically necessitating the use of advanced quantum chemistry methods to make

high-accuracy energy predictions.91

To study the performance of our GPR algorithm on these chains, we generate

a database of dimer chain energies starting from UHF calculations with single

Slater determinants that we again input into either CCSD(T) or AFQMC calcula-

tions. We model our hydrogen atoms using the minimal STO-6G basis set given

the steep computational cost of the system with increasing system size. Chains of

5, 10, and 15 dimers for a total of 176 congurations were employed for training.

The remaining 315 congurations of chains consisting of 20 to 50 dimers were

subsequently used for testing and validation. The same atomic environment

descriptors previously employed for the homogeneous chains were also employed

here.

The energy surfaces for chains consisting of N = 30, 50, and 100 atoms are

depicted in Fig. 10. It can be seen that the GPR predictions are in qualitative

agreement with the AFQMC database values, both for short chains (N = 10) and

long chains approaching the thermodynamic limit (N= 100). In particular, GPR is

able to well describe both the energy minimum around a = 1.5 Bohr, b = 3.25

Bohr, and highly stretched chains with both a and b greater than 3 Bohr. More

detailed slices of the potential energy surface for several values of a are depicted in

Fig. 11.

As is apparent from these plots, the approach to large inter-dimer separations

is highly dependent upon the intra-dimer separation: for small a, the approach is

Fig. 9 Illustration of the linear chains of hydrogen dimers studied in this work with
intradimer distance, a, and interdimer distance, b.
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steeper than for large a. This behavior is a sign of correlation between the a and

b values and is non-trivial, given the seeming simplicity of the model. This makes

the model a useful testbed for multidimensional extrapolations, as further dis-

cussed in the ESI.†

To visualize the energy surface, as shown in Fig. 12, we use triangulation over

the sample points and then Delaunay smoothing. The thermodynamic limit was

estimated using GPR regression onN= 5000 atoms. On the le, we present the 3D

energy surface for a chain of 15 dimers; the black dots denote the energies esti-

mated by GPR in the thermodynamic limit. On the right, we provide a heat map

corresponding to the plot on the le annotated with iso-energy contour lines

predicted using GPR for systems of different sizes. In particular, the red and

yellow dashed lines denote the energies for chains comprised of 15 and 50

dimers, respectively. The errors on these energies are all less than 1mHa, which is

within chemical accuracy.

This plot underscores how the contours change or shi with system size. We

can see that the largest differences between the contours occur near the

minimum of the plot around an intra-dimer distance of 1.5 Bohr and an inter-

dimer distance of 3 Bohr. In this region of the surface, the N = 30 contours

differ signicantly from the N = 100 contours, which nearly align with the ther-

modynamic limit contours, suggesting that 100 atoms are nearly enough to

Fig. 10 Energy surfaces, E/N, predicted for chains consisting of (left) 30, (center) 50, and
(right) 100 atoms (15, 25, and 50 dimers, respectively) for several a and b values. AFQMC
energies are given by the cyan circles, while GPR predictions are given by the maroon
triangles.

Fig. 11 Comparison of GPR and AFQMC predictions for different intra-dimer bond
lengths as a function of inter-dimer distances. The N = 10, 50, and 100-atom data are all
provided by AFQMC.
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converge simulations of this system to their TDL. Away from this minimum, the

contours for all three system sizes concur, demonstrating that the system expe-

riences weaker nite size effects for these parameters. GPR’s success extrapo-

lating the energies of this non-trivial, multidimensional model suggests that it is

likely to have similar success on the more complex models and solids of interest

to the wider scientic community.

5. Discussion of results

Although we employed Gaussian Process Regression in this work, a wide range of

other machine learning approaches, including articial neural networks, could

also be used to perform these extrapolations. We opted to employ kernel methods

like Gaussian processes because they are non-parametric and make use of

Bayesian inference at a comparatively low, O(Nt
3) cost, where Nt is the size of the

training set.17 It has been proposed92 as a rule of thumb to use Nt = 10 × d, where

d is the dimension of the feature space, to train a GPR. In contrast, neural

network-based approaches involve matrix-vector multiplications that scale with

the number of neurons in the network, Nn, and the dimension of the input vector,

d, as O(Nnd). If the number of neurons in the network is small, this implies that

neural networks are less expensive to employ than GPR. However, neural

networks typically necessitate the use of non-linear activation functions that may

increase their overall cost. More importantly, neural networks oen suffer from

overtting if care is not taken to reoptimize their number of nodes or structures.

Overtting is much less of a concern for GPR since GPR with the same kernel but

more training points is guaranteed to be more accurate. In practice, NNs use at

least 2 to 3 orders of magnitude more training data than GPR.17,32 When training

data is scarce – as it usually is when many-body electronic structure calculations

are involved – GPR-based techniques hence become the method of choice.32 One

may also ask whether using GPR on these low-dimensional data sets is more

Fig. 12 (Left) Interpolated GPR potential energy surface, E/N, for a chain of 15 dimers as
a function of a and b. The black dots denote the AFQMC training points from the database.
(Right) Iso-contours of the energy surface, E/N, interpolated for chains ofN = 30 (red) and
N = 100 (yellow) atoms, and in the thermodynamic limit (dashed black lines). The color
map denotes the GPR predictions of the energy in the thermodynamic limit.
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sophisticated than necessary and if other, less sophisticated regression tech-

niques based on a small number of parameters could instead be employed. As

demonstrated in the ESI,† we have compared the performance of our GPR

approach to that of Bayesian Multivariate Adaptive Regression Splines, a spline-

based technique, and found that our GPR approach can extrapolate with signif-

icantly greater accuracy. We moreover show that, while one can extrapolate using

a few simple parameters, this extrapolation is not readily generalizable to more

complex situations in which the parameters to use are less obvious. Lastly, as

illustrated throughout this manuscript, GPR inherently quanties uncertainties,

which are critical for being able to determine its accuracy relative to that of other

methods.

Our studies of low-dimensional hydrogen chains naturally beg the question of

how well our techniques can be generalized to more realistic multidimensional

solids that are accompanied by an even more rapid growth in computational

expense. Much like other GAP methods, our approach should be readily gener-

alizable to higher dimensional systems, given suûcient data and high-quality

features. Indeed, here, we took the rst step toward demonstrating this by

applying our model to both a one-dimensional and a nontrivial two-dimensional

system, and in a previous preprint, we demonstrated how a similar GPR-based

approach could be leveraged to predict the energies of 3D alloys.93 The key

challenge associated with higher-dimensional predictions is the curse of

dimensionality: the higher the dimensionality of the space, the more data that is

needed for training to learn the larger space with suûcient accuracy to make

effective comparisons between different atomic environments. The resulting

increase in cost can be slowed through a more judicious selection of features and

design of kernels. CUR88 decompositions and Kernelized Principal Covariates

Regression90 are excellent alternatives for identifying the most relevant features,

which can signicantly reduce the dimension of the descriptors of a given data

set. More effective kernels may also be constructed through approaches that

recursively evaluate the differences between structures.69 For example, De et al.

proposed kernels based on regularized structure matching to optimize the

comparisons between the atomic environments of different structures.69 Thus,

with further technical developments, we believe that the techniques presented

here should be readily generalizable to the even larger, more complicated solids

that they would most benet.

6. Conclusions

In summary, in this work, we have presented a Gaussian Process Regression-

based approach for predicting the many-body energies of hydrogen chains, the

simplest examples of ab initio solids, in the thermodynamic limit. We have shown

that, by training on databases of the energies of short (10–30-atom) homogeneous

and inhomogeneous hydrogen chains with varying intra- and inter-dimer

distances, we can predict the energies of these chains in the thermodynamic

limit with sub-milliHartree accuracy relative to predictions made by alternative

extrapolation techniques. These alternative techniques, including polynomial

regressions and the “subtraction trick”, typically necessitate computing the

energies of chains much longer than the chains employed in our training sets. As

such, our approach enables the highly accurate prediction of the energies of
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solids in the thermodynamic limit based upon relatively small systems, and

hence, much less expensive calculations. Unlike many nite size extrapolation

techniques which apply to systems with only certain geometries, densities, and/or

dimensionality, as demonstrated by the easy generalizability of our method to

both homogeneous and inhomogeneous chains, our approach is largely agnostic

to the physical characteristics of the system studied; as long as there is suûcient

and representative training data, our approach can be applied, making it

particularly useful for some of the more complex systems of modern interest,

such as those at interfaces or having irregular geometries.
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52 M. Bajdich, L. Mitas, G. Drobný, L. K. Wagner and K. E. Schmidt, Pfaûan

pairing wave functions in electronic-structure quantum Monte Carlo

simulations, Phys. Rev. Lett., 2006, 96, 130201, DOI: 10.1103/

PhysRevLett.96.130201.

53 D. Luo and B. K. Clark, Backow transformations via neural networks for

quantum many-body wave functions, Phys. Rev. Lett., 2019, 122, 226401,

DOI: 10.1103/PhysRevLett.122.226401.

54 J. Hermann, J. Spencer, K. Choo, A. Mezzacapo, W. M. C. Foulkes, D. Pfau,
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