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Decentralized Multi-Robot Line-of-Sight
Connectivity Maintenance under Uncertainty
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Abstract—In this paper, we propose a novel decentralized
control method to maintain Line-of-Sight connectivity for multi-
robot networks in the presence of Guassian-distributed local-
ization uncertainty. In contrast to most existing work that
assumes perfect positional information about robots or enforces
overly restrictive rigid formation against uncertainty, our method
enables robots to preserve Line-of-Sight connectivity with high
probability under unbounded Gaussian-like positional noises
while remaining minimally intrusive to the original robots’ tasks.
This is achieved by a motion coordination framework that jointly
optimizes the set of existing Line-of-Sight edges to preserve and
control revisions to the nominal task-related controllers, subject
to the safety constraints and the corresponding composition
of uncertainty-aware Line-of-Sight control constraints. Such
compositional control constraints, expressed by our novel notion
of probabilistic Line-of-Sight connectivity barrier certificates
(PrLOS-CBC) for pairwise robots using control barrier functions,
explicitly characterize the deterministic admissible control space
for the two robots. The resulting motion ensures Line-of-Sight
connectedness for the robot team with high probability. Further-
more, we propose a fully decentralized algorithm that decomposes
the motion coordination framework by interleaving the composite
constraint specification and solving for the resulting optimization-
based controllers. The optimality of our approach is justified by
the theoretical proofs. Simulation and real-world experiments
results are given to demonstrate the effectiveness of our method.

I. INTRODUCTION

To facilitate efficient information sharing among teams of
robots, connectivity maintenance often considers maintaining
the distance-based multi-robot communication graph as one
connected component by constraining the coordinated robots’
motions, commonly referred to as maintaining global connec-
tivity [1, 2, 3]. Local methods seek to maintain connectivity
among multiple robots by preserving the initial communication
graph topology over time [4, 5], while in global methods
the algebraic connectivity of the communication graph is
maintained by a secondary connectivity controller that keeps
the second-smallest eigenvalue of the graph Laplacian positive
at all times [1, 3]. In realistic environments, however, the
established multi-robot networks dependent on conventional
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distance-based communication models may suffer from po-
tential interruptions, e.g., wireless signals between two robots
within communication range could still be obstructed by thick
metal walls [6] and thus disconnect the whole network.

Hence, Line-of-Sight (LOS) connectivity maintenance is
gaining attention for ensuring reliable data exchange among
robots [6, 7, 8]. However, these methods assume perfect
positional information, and uncertainties like noisy locational
data from real-world sensing can significantly affect its perfor-
mance. Although connectivity-focused controllers can mitigate
uncertainty with conservative motion [9], they may hinder
other primary robot objectives. Therefore, addressing uncer-
tainties while enabling flexible robot motion and ensuring LOS
communication is vital for multi-robot coordination.

To solve the probabilistic constraint satisfaction problems
due to uncertainties such as noisy observations, recent works
[10, 11] have focused on enforcing the probability through
state-related chance constraints in applications such as col-
lision avoidance. However, constraints based on robot states
may necessitate enlarged bounding volumes to account for
braking distances, potentially overestimating the probability
and leading to conservative behaviors. By leveraging Control
Barrier Functions (CBFs) the researches in [12, 13] introduce
deterministic control constraints to ensure chance-constrained
properties such as safety. These deterministic constraints, in
quadratic form, can raise computational costs when integrated
into optimization problems. Authors in [14] proposed Prob-
abilistic Safety Control Barrier Certificates (PrSBC), which
develop linear control constraints for pairwise robots to guar-
antee chance-constrained state-related safety under positional
and motion noises. The resulting robot motions are less restric-
tive and the developed control constraints are easy to compose
for achieving team-level specifications. This inspires further
research on composition of pairwise connectivity constraints
for ensuring team-level properties such as communication
graph connectivity among robots.

On the other hand, existing connectivity maintenance meth-
ods often rely on centralized computation and synchronized
communication [8, 15], raising scalability issues for multi-
robot systems. Instead, decentralized frameworks such as C-
ADMM [16] can effectively distribute the computational load
across all robots by solving one centralized optimization
problem in a decentralized manner. However, such methods
may be limited to predefined constraints [17, 18]. In flexible
multi-robot connectivity maintenance with switching topology,
it is often difficult to pre-determine the particular set of edges
needed for establishing the corresponding constraints. This



added complexity makes it particularly challenging to co-
optimize connectivity constraints and desired robots’ behaviors
in a fully decentralized manner.

In this paper, we seek to minimally modify the nominal
task-related multi-robot controller while ensuring global and
subgroup LOS connectivity for the team of robots under
positional noises. Our contributions are as follows.

• A novel notion of Probabilistic Line-of-Sight Connectiv-
ity Barrier Certificate (PrLOS-CBC) is proposed to define
the admissible control space, from which the existing
pairwise LOS can be preserved with high probability
under noisy positional information;

• A decentralized algorithm, referred to as Uncertainty-
Aware Decentralized Line-of-Sight Least Constraining
Tree (Dec-LOS-LCT), is proposed to interleave the bi-
level optimization process of selective LOS constraint
specification and constrained control optimization;

• The theoretical proofs, simulation and real-world experi-
ments are given to justify the performance of our method.

II. PRELIMINARIES

Consider a robotic team S with N robots moving in a d-
dimensional shared workspace, which consists of free space

and occupied space Cobs =
K⋃
k=1

Ok by K static polyhedral

obstacles Ok ⊂ Rd, ∀k. The positions of the static obstacles
are assumed to be known by the robots. Each robot i ∈ I =
{1, .., N} is centered at the position xi∈X ⊂Rd. The system
dynamics ẋi affine in control and the noisy observation x̂i ∈
Rd of each robot i are described as follows.

ẋi = Fi(xi) +Gi(xi)ui, x̂i = xi + ϵi, ϵi ∼ N (0,Σi) (1)

where ui ∈U ⊂Rq denotes the control input. Fi : Rd 7→ Rd
and Gi : Rd 7→ Rd×q are locally Lipschitz continuous. ϵi ∈
Rd is the measurement noise and considered as a continuous
independent random variable with a Gaussian distribution that
can vary at each time step.

A. Safety and Range Limited Line-of-Sight Connectivity

We assume the K static polyhedral obstacles can be com-
monly represented by L discretized obstacles modeled as rigid
spheres along the boundary of the static obstacles [19]. Each
discretized obstacle can be denoted as o ∈ {1, ..., L}. Consider
the joint robot states x = {x1, ...,xN} ∈ X ⊂ RdN , the
discretized joint obstacle states xobs = {xobs

1 , . . . ,xobs
L } ∈

X obs ⊂ RdL, the minimum inter-robot safe distance as
Rs ∈ R, and the minimum obstacle-robot safe distance as
Robs ∈ R, the desired sets for any pairwise robots i, j and
obstacle o satisfying inter-robot or robot-obstacle collision
avoidance can be defined as:

hsi,j(x) = ||xi − xj ||2 −R2
s , ∀i > j,

Hs
i,j = {x ∈ RdN |hsi,j(x) ≥ 0} (2)

hobsi,o (x,x
obs) = ||xi − xobs

o ||2 −R2
obs, ∀i, o,

Hobs
i,o = {x ∈ RdN ,xobs ∈ RdL|hobsi,o (x,x

obs
o ) ≥ 0} (3)

Pairwise robots i and j are said to be Line-of-Sight (LOS)
connected when they are not only within the limited commu-
nication range (communication distance condition), but also
have an unobstructed LOS between the two for all obstacles
(occlusion-free condition). The undirected LOS edge between
such two robots can be denoted by (vi, vj) ∈ E los (i.e.,
(vi, vj) ∈ E los ⇔ (vj , vi) ∈ E los), where each node vi, vj ∈ V
represents a robot, and we denote LOS communication graph
1 as Glos = (V, E los) for the entire team.

Considering the communication range Rc ∈ R, the desired
set of x for pairwise robots i and j satisfying the communi-
cation distance condition can be defined as:

hci,j(x) = R2
c − ||xi − xj ||2, ∀(vi, vj) ∈ Ec ⊆ E los,

Hc
i,j = {x ∈ RdN |hci,j(x) ≥ 0} (4)

Accordingly, the desired set satisfying occlusion-free con-
dition for pairwise LOS connectivity of robots i, j can be
described as follows.

Hlos
i,j ={x ∈ RdN | hlosi,j (x, Cobs) ≥ 0} =

{x ∈ RdN | xi(1− Ω) + xjΩ /∈ Cobs, ∀Ω ∈ [0, 1]}
(5)

Therefore, for the entire team with any given LOS connec-
tivity communication graph Gslos = (V, Eslos) ⊆ Glos with
Eslos ⊆ E los to enforce, the desired set implying the satisfying
LOS connectivity condition can be defined by the intersection
of the connectivity set Hc

i,j and occlusion-free set Hlos
i,j as

follows.

Hlos(Gslos) =
( ⋂
{vi,vj∈V:(vi,vj)∈Eslos}

Hlos
i,j

)⋂
( ⋂
{vi,vj∈V:(vi,vj)∈Eslos}

Hc
i,j

)
(6)

B. Probabilistic Safety and Line-of-Sight Connectivity using
Control Barrier Function

To guarantee the system’s safety in a deterministic dynami-
cal system, control barrier functions could be used to enforce
the safety set forward invariant by defining an admissible
control space. The results can be summarized as follows.

Lemma 1. [Summarized from [20]] Given a deterministic
dynamical system affine in control (i.e., ẋ = F (x) + G(x)u)
and a desired set H as the 0-super level set of a continuously
differentiable function h : X 7→ R, the function h is called
a control barrier function, if there exists an extended class-K
function2 κ(·) such that supu∈U{ḣ(x,u)} ≥ −κ(h(x)) for all
x ∈ X .

With Lemma 1, the admissible control space for any Lips-
chitz continuous controller u ∈ U rendering H forward invari-
ant (i.e., keeping the system state x staying in H overtime)

1For ease of notation, the dependency of Glos(t) on time t may be omitted.
2In the rest of this paper, we select the particular choice of κ(h(x)) =

γh(x) with γ as a user-defined parameter [20].



thus becomes:

B(x) = {u ∈ U|ḣ(x,u) + κ(h(x)) ≥ 0} (7)

Due to the unbounded noisy observations described in
Eq. (1), the desired sets for collision avoidance between
pairwise robots can only be satisfied in a probabilistic man-
ner. Motivated by Lemma 1, the probabilistic safety barrier
certificates (PrSBC) [14] has been presented to specify the
admissible control space Sσs

u (x̂) that guarantees the proba-
bility of pairwise safety Pr(xi,xj ∈ Hs

i,j) above the user-
defined confidence level σs ∈ (0, 1), i.e., u ∈ Sσs

u (x̂) =⇒
Pr(xi,xj ∈ Hs

i,j) ≥ σs, ∀i > j.

Sσ
s

u (x̂) = {u ∈ RqN |Aσ
s

i,ju ≤ gσ
s

i,j , ∀i > j,

Aσ
s

i,j ∈ R1×qN , gσ
s

i,j ∈ R}
(8)

where Aσ
s

i,j and gσ
s

i,j are determined by observed robot states,
distribution of system noise, and confidence level σs. Like-
wise, the admissible control space Sσ

obs

u (x̂,xobs) for robot-
obstacle collision avoidance could be derived in a similar
form as Eq. (8) to guarantee the chance-constrained robot-
obstacle safety (i.e., u ∈ Sσobs

u (x̂,xobs) =⇒ Pr(xi,xobs
o ∈

Hobs
i,o ) ≥ σobs, ∀i, o). Readers are referred to [14] for detailed

derivations of Eq. (8).
Given the similar structure of pairwise inter-robot safety and

communication distance constraints in Eq. (2) and Eq. (4),
one can also obtain the set of pairwise connectivity control
constraints in the form of Cσc

u (x̂,Gslos) as follows to enforce
chance-constrained communication distance condition (i.e.,
u ∈ Cσc

u (x̂,Gslos) =⇒ Pr(xi,xj ∈ Hc
i,j) ≥ σc, ∀(vi, vj) ∈

Eslos) for every pairwise robots in a given LOS communication
spanning graph Gslos.

Cσ
c

u (x̂,Gslos) = {u ∈ RqN |Bσ
c

i,ju ≤ fσ
c

i,j , ∀(vi, vj) ∈ Eslos,
Bσ

c

i,j ∈ R2d×qN , fσ
c

i,j ∈ R2d} (9)

where Bσ
c

i,j and fσ
c

i,j are determined by observed robot states,
distribution of system noise, and confidence level σc ∈ (0, 1).
See discussion about Eq. (9) in Section VI-A.

Considering the occlusion-free condition in Eq. (5), in
Section III-A we first present a novel analytical form of
occlusion-free condition. Based on that, we further propose
a novel notion of Probabilistic Line-of-Sight Connectivity
Barrier Certificates (PrLOS-CBC) as the control constraint for
the pairwise robots to preserve the occlusion-free condition
with satisfying probability.

C. Problem Statement

We assume that the team of robots S is allocated M simul-
taneous tasks (M ≤ N ) by M subgroups S = {S1, . . . ,SM}.
Each robot is assigned to one of the subgroups Sm, ∀m =
1, . . . ,M with the individual task-related nominal controller
ui = ũi ∈ Rq . To ensure overall task performance and
efficient inter-robot collaboration within each subgroup, the
LOS connectivity should be preserved both globally and at
the subgroup level [21]. Here we formally define the required
two levels of LOS connectivity as follows.

Definition 2. Global LOS Connectivity: A graph Glos is
LOS connected if there exists at least one occlusion-free path
between every pair of vertices on the graph. Subgroup LOS
Connectivity: A graph Glos is Subgroup LOS connected if
there exists at least one occlusion-free path between every
pair of vertices in each induced LOS subgroup graph Glosm =
Glos[Vm] ⊆ Glos, ∀m = 1, ...,M , where Vm ⊆ V includes all
robots within the same subgroup.

Assumption: Without loss of generality, we assume that the
communication range Rc is much larger than the inter-robot
safety distance Rs and obstacle-robot safety distance Robs,
i.e., Rc ≫ Rs, Robs.

Given the real-time LOS communication graph Glos, the
objective is to optimize the joint multi-robot controller u ∈
RqN such that (i) the global and subgroup LOS connectivity
of the resulting LOS communication graph will be preserved,
and (ii) the deviation of the LOS constrained joint controller
u for all robots will be minimized from their nominal task-
related joint controller ũ. We assume Glos satisfies the global
and subgroup LOS connectivity initially. Then, the problem
can be formally defined as follows.

u∗ = argmin
Gslos,u

N∑
i=1

||ui − ũi||2 (10)

s.t. Gslos = (V, Eslos) ⊆ Glos (11)

Gslosm = Gslos[Vm], ∀m = 1, ...,M (12)

where Gslos and all Gslosm are LOS connected and

edges in Gslos stay LOS connected with high probability.

u ∈ Sσ
s

u (x̂)
⋂
Sσ

obs

u (x̂,xobs),

||ui|| ≤ αi, ∀i = 1, ..., N (13)

In Section III-B, we will reformulate problem Eq. (10) as a
standard bilevel optimization form. The optimization problem
Eq. (10) involves the lower-level task in Eq. (11) and Eq. (12)
of finding an optimal subset of edges from Glos forming
globally and subgroup LOS connected Gslos to preserve, and
the upper-level task in Eq. (10) of minimizing the accumulative
deviations from the predefined task-related nominal controllers
ũi, i = 1, . . . , N . This allows for co-optimization between
connectivity constraints to enforce and the overall control
modification for staying as close to nominal robots’ behaviors.
Due to the noisy observation of robots’ positional information,
we will discuss in Section III how to derive deterministic
robot controllers so that the selected Gslos will remain LOS
connected with satisfying probability.

III. METHOD

A. Probabilistic Line-of-Sight Connectivity Barrier Certifi-
cates (PrLOS-CBC)

Considering the occlusion-free condition defined in Eq. (5)
alongside the noisy observations of robots’ positions, deriving
an analytical expression for hlosi,j (x, Cobs) that quantifies the
satisfaction of the condition hlosi,j (x, Cobs) ≥ 0 is a non-trivial



task. Hence, we propose to use approximation methods such
as the ellipsoidal representation to characterize the satisfy-
ing occlusion-free condition for LOS communication edge
(vi, vj) ∈ E los and to analytically determine with satisfying
probability σlos ∈ (0, 1) whether any obstacle is intersecting
with this edge. To prevent overly conservative approximation,
we formulate the ellipsoidal approximation as a Minimum Vol-
ume Covering Ellipsoid (MVCE) [22] circumscribing the edge
(vi, vj) ∈ E los as well as the

√
σlos-confidence error ellipsoids

Q
√
σlos

i ,Q
√
σlos

j defined by the Gaussian distributions of the
noisy positions of the robots i, j.

Given the observed positions and uncertainty covariance of
pairwise robots xi ∼ N (x̂i,Σi),xj ∼ N (x̂j ,Σj) that are ini-
tially LOS connected and the corresponding

√
σlos-confidence

error ellipsoids Q
√
σlos

i ,Q
√
σlos

j , then the probability of the two
robots’ states both lie in those two

√
σlos-confidence error

ellipsoids is σlos. With this, one can compute the instantaneous
MVCE centered at p̂0

i,j =
x̂i+x̂j

2 ∈ Rd as Qσlos

i,j (Qσ
los

i,j , p̂
0
i,j) =

{p ∈ Rd|(p − p̂0
i,j)

TQσ
los

i,j (p − p̂0
i,j) ≤ 1} over the

set of σ
√
los-confidence error ellipsoids {Q

√
σlos

i ,Q
√
σlos

j }
[22], where Qσ

los

i,j = argmin{Qσlos
i,j } det(Qσ

los

i,j )−1 subjects

to Q
√
σlos

i ,Q
√
σlos

j ⊂ Qσlos

i,j and Qσ
los

i,j ≻ 0. Note that the
approximated ellipsoid characterized by Qσ

los

i,j will update as
robots i, j move over time.

Then the function of hlosi,j for occlusion-free condition under
uncertainty and its 0-superlevel set Hlos

i,j in Eq. (5) could be
analytically re-defined as follows.

hlos
i,j,o(x̂,x

obs) = (xobs
o − p̂0

i,j)
TQσlos

i,j (xobs
o − p̂0

i,j)− 1, ∀(vi, vj) ∈ E los

Hlos
i,j,o = {x̂ ∈ RdN |hlos

i,j,o(x̂,x
obs) ≥ 0 , ∀(vi, vj) ∈ E los, ∀o}

Hlos
i,j =

⋂
∀o

Hlos
i,j,o (14)

Following Lemma 1 and its probabilistic extension in [14],
we now formally define Probabilistic Line-of-Sight Connec-
tivity Barrier Certificates (PrLOS-CBC) as follows.

Lemma 3. Probabilistic Line-of-Sight Connectivity Bar-
rier Certificates (PrLOS-CBC): Given a LOS communication
spanning graph Gslos = (V, Eslos), a desired set Hlos(Gslos)
in Eq. (6) with hlosi,j,o from Eq. (14), and a user-defined
high probability σlos ∈ (0, 1), for any Lipschitz continuous
controller u, the Probabilistic Line-of-Sight connectivity bar-
rier certificates (PrLOS-CBC) as admissible control space
Cσlos

u (x̂, Cobs,Gslos) defined below enforces system state to
stay in {

⋂
{vi,vj∈V:(vi,vj)∈Eslos}Hlos

i,j } with high probability
(by enforcing pairwise LOS separately with satisfying σlos):

Cσlos

u (x̂, Cobs,Gslos) = {u ∈ RqN : (15)

ḣlos
i,j,o(x̂,x

obs, σlos,u) + γhlos
i,j,o(x̂,x

obs, σlos) ≥ 0, ∀(vi, vj) ∈ Eslos, ∀o}

where ḣlosi,j,o(x̂,x
obs,u) = −(xobs

o −
x̂i+x̂j

2 )TQσ
los

i,j (Fi,j(x)+
Gi,j(x)uij), Fi,j(x) = Fi(xi) + Fj(xj) and Gi,j(x)uij =
Gi(xi)ui +Gj(xj)uj .

See detailed proofs and computation of Cσlos

u (x̂, Cobs,Gslos)
in Section VI-B.

Remark 4. The computation of Probabilistic Line-of-Sight
Connectivity Barrier Certificates (PrLOS-CBC) proposed in
Lemma 3 is mainly valid for systems with relative degree 1
when CBFs can be directly applied. To extend PrLOS-CBC
on higher-order dynamics, one can employ variants of CBF
such as Exponential Control Barrier Function (ECBF) [23]
or High Order Control Barrier Functions (HOCBFs) [24] to
ensure the forward invariance of Hlos

i,j .

B. Uncertainty-Aware Line-of-Sight Least Constraining Tree
(ULOS-LCT)

We first characterize the desired graph Gslos = Gslos∗ in
Eq. (11) and Eq. (12) to maintain at each time step. This
selected optimal graph Gslos∗ = (V, Eslos∗) ⊆ Glos should
(a) have the least number of edges for Gslos∗ to be globally
and subgroup LOS connected (i.e., spanning trees of Glos),
and (b) introduce minimum motion constraints around ũ for
robots to keep edges in Eslos∗ LOS connected, implying that
nominal multi-robot controllers ũ are least likely violating
constraints Cσc

u (x̂,Gslos∗)∩Cσlos

u (x̂, Cobs,Gslos∗) prescribed by
Gslos∗ compared to other spanning graph Gslos at each time
step. Thus, we formally define the class of candidate Gslos
(trees) below with redefined edge weights to quantify the levels
of violation if following ũ in order to find Gslos∗.

Definition 5. Given the current LOS communication graph
Glos = (V, E los), we can define the weights W ′ =
{w′

i,j} for all edges in E los as follows, where wd+los
i,j =

wlos
i,j + wd

i,j with occlusion condition weights wlos
i,j =

1
L

∑L
o=1(ḣ

los
i,j,o(x̂,x

obs, ũ) + γhlosi,j,o(x̂,x
obs)) and connectiv-

ity condition weight wd
i,j = fσ

c

i,j −Bσ
c

i,jũ.

w′
i,j =

{
−β · wd+los

i,j , if vi and vj are in the same sub-group

−wd+los
i,j , if vi and vj are in different sub-groups

(16)

where Bσ
c

i,j and fσ
c

i,j , are from Eq. (9). β ∈ {β ≫ 1| −
β · wi,j ≪ −wi′,j′ , ∀vi, v′i, vj , v′j ∈ V} is a unique user-
defined constant for the entire graph Glos. Then given the
weight-modified graph denoted as G′, its spanning trees
{T los′

w = (V, ET ,WT ′
)} are defined as Uncertainty-Aware

Line-of-Sight Spanning Trees (ULOS-ST).

The communication distance condition weight wd
i,j ,

occlusion-free condition weight wlos
i,j , and the edge weight

wd+los
i,j as the sum of the two are heuristically used to

quantify how likely the pairwise LOS constraints are to be
violated under the task-related controller ũi, ũj . With the
higher value of wd+los

i,j (i.e., the smaller value of −wd+los
i,j ),

there is less total violation of the LOS communication con-
straints in Eq. (9) and Eq. (15) for pairwise robots i and
j under the task-related controllers ũi and ũj , heuristically
implying less disruption to the nominal controller if enforcing
the LOS edge between vi, vj . To satisfy the subgroup LOS
connectivity requirement in Eq. (12), the parameter β is
used to regulate intra-group edge weights as significantly
smaller than inter-group edge weights. Hence, the optimal



Gslos∗ satisfying global and subgroup LOS connectivity is
equivalent to the particular ULOS-ST with minimum total
weight (proved below), and we define such a minimum weight
ULOS-ST T̄ los′

w = argmin{T los′
w }

∑
(vi,vj)∈ET {w′

i,j} as the
Uncertainty-Aware Line-of-Sight Least Constraining Tree
(ULOS-LCT).

Theorem 6. The Uncertainty-Aware Line-of-Sight Least Con-
straining Tree (ULOS-LCT) T̄ los′

w is (i) globally and subgroup
LOS connected, and (ii) least violated if following nominal
joint controller u compared to all other candidate spanning
trees in {T los′

w = (V, ET ,WT ′
)}.

See detailed proof in Section VI-D.

Remark 7. The result of Theorem 6 answers an important
question: which existing edges in E los from current multi-robot
LOS graph Glos should be maintained from now to the future
(by constraining corresponding robots’ motion), so that the
resulting multi-robot LOS graph at future timesteps remains
globally and subgroup LOS connected through at least these
enforced edges that also introduce the least interruption on
the original multi-robot tasks? In other words, the computed
ULOS-LCT T̄ los′

w ⊆ Glos at each time step specifies such
desired Gslos ⊆ Glos that translates the high-level LOS
graph connectivity constraints Eq. (11) and Eq. (12) into
edge-preserving for T̄ los′

w in favor of original task-related
controllers.

With that, we can reformulate the original problem in
Eq. (10) into the following standard bilevel optimization:

u∗ = argmin
Gslos,u

N∑
i=1

||ui − ũi||2 (17)

s.t. Gslos ← T̄ los′

w = argmin
{T los′

w }

∑
(vi,vj)∈ET

{w′
i,j} (18)

u ∈ Sσ
s

u

⋂
Sσobs

u

⋂
Cσc

u (x̂,Gslos)
⋂
Cσlos

u (x̂, Cobs,Gslos),
||ui|| ≤ αi, ∀i = 1, . . . , N (19)

Note that the resulting ULOS-LCT T̄ los′

w may vary over
time due to the dynamically changing real-time graph Glos.
Hence, the optimal controller can be obtained by solving the
QP problem in Eq. (17) following the construction of the T̄ los′

w

using a standard Minimum Spanning Tree (MST) algorithm
at each time step in a centralized manner. Next, we introduce
our Dec-LOS-LCT algorithm that solves bi-level optimization
Eq. (17) with optimal Gslos∗ computed in a fully decentralized
and interleaved manner.

C. Decentralized Algorithm Design

Define neighborhood set Pi, ∀i ∈ [1, N ] that contains all
robots that can communicate with each robot i. We assume
that robots can communicate and share noisy state and deter-
ministic control information with all neighbors only if they
are LOS connected. Denote ni as the number of neighbors
for robot i, we thus define the local control variable ui =
[ui, (u

i
j)j∈Pi ] ∈ Rq(ni+1), noisy observation state information

x̂i = [x̂i, (x̂
i
j)j∈Pi

] ∈ Rd(ni+1) and pre-assigned nominal
task-related controller information ũi = [ũi, (ũij)j∈Pi ] ∈
Rq(ni+1) for each robot i, where uij , x̂

i
j and ũij are the local

copy of the uj , x̂j and ũj for robot i. For each robot i, denote
the reformulated inequality constraints in Eq. (19) based on its
own local information as SCi = Sσ

s

ui (x̂i) ∩ Sσ
obs

ui (x̂i,xobs) ∩
Cσc

ui (x̂i,Gslosi )∩Cσlos

ui (x̂i, Cobs,Gslosi ), where Gslosi is the partial
of Gslos from robot i’s view. With this, the centralized QP
problem in Eq. (17) with given Gslos can be written as a
compact decentralized form as follows.

u∗ = argmin
u

N∑
i=1

∑
j∈{i,Pi}

(
∥uij − ũij∥2 +ISCi)

s.t. ∥uij∥ ≤ αi, ∀j ∈ {i,P}, ∀i = 1, ..., N

(20)

where Iψ : RqN 7→ R is the indicator function that Iψ(u) =
0 if u ∈ ψ, otherwise Iψ(u) = ∞. Thus, the decomposed
problem from Eq. (20) to each robot i becomes:

ui∗ =argmin
ui

∑
j∈{i,Pi}

∥∥uij − ũij
∥∥2 (21)

s.t. ui ∈ SCi, ||uij || ≤ αi, ∀j ∈ {i,P}

To enforce the consensus within the robot system, the
augmented Lagrangian is defined as Liρ(ui, ūi, ηi) =

OFi + (ηi)⊤(ui − ūi) + ρ
2

∥∥ui − ūi
∥∥2
2

[16], where OFi =∑
j∈{i,Pi}

∥∥uij − ũij
∥∥2 and ρ is the penalty parameter. ηi =

ρ(ui − ūi) is the Lagrangian multiplier with ūi as the global
average variable which can be defined as:

ūi = [ūi, (ūj)j∈Pi ] ∈ Rq(ni+1),

ūi =
1

ni

∑
j∈Pi

uji ∈ Rq (22)

The augmented Lagrangian incorporates a penalty term to
ensure robot consensus. Finally, the decomposed problem in
Eq. (21) for each robot i could be reformulated as:

ui+ = argmin
ui

Liρ(ui, ūi, ηi) (23)

s.t. ui ∈ SCi, ||uij || ≤ αi, ∀j ∈ {i,P}

In the standard iteration of C-ADMM [16], each robot i
sends its local update ui+j from ui+ in Eq. (23) to all neighbors
j ∈ Pi, and calculates the average variable ū+

i according to
Eq. (22). Then it collects the ū+

j and constructs the global
average variable ūi+ Eq. (22) from its neighbors j ∈ Pi. At
the end of each C-ADMM iteration, each robot will update
the Lagrangian multiplier by ηi+ = ui+−ūi+. The agreement
feasibility

∥∥ui − ūi
∥∥
2

is applied to determine the convergence
during the C-ADMM iteration [16].

Next, we propose a novel decentralized approach in Algo-
rithm 1 to solve the bi-level optimization problem Eq. (17)
without specifying Gslos beforehand. Note that our Algo-
rithm 1 interleaves the two processes of finding ULOS-LCT
T̄ los′

w and solving the resultant C-ADMM based optimization
Eq. (23) at each time step.



In general, our algorithm starts with a graph where each
node (robot) is isolated from each other. By following the
Algorithm 1, robots keep updating their LOS connectivity
information (Line 7-13). Once new control constraints are
established, the robots are collaboratively solving the resultant
optimization problem (Line 15-20). Iteratively, the robots
will join and form the optimal tree T̄ los′

w and reach the
consensus on the local control variable ui. Then the converged
u∗
i , ∀i = 1, · · · , N extracted from ui is the solution of

Eq. (17) that guarantees the safety and global and subgroup
LOS connectivity with satisfying probability.

Specifically, at the beginning of Algorithm 1, each robot
initializes two adjacency matrices – the local adjacency ma-
trix Adi ∈ R(ni+1)×(ni+1) and a local copy of the global
adjacency matrix Ad ∈ RN×N . Adi records the connectivity
within neighbors j ∈ Pi, while Ad records connectivity among
the team. Each robot collects information from all neighbors
to construct (a) local variables (i.e., x̂i and ũi), and (b)
safety constraints Sσs

ui (x̂i) and Sσobs

ui (x̂i,xobs). Each robot
is assigned a unique ID, and the leader ID is initialized to
be itself. Each robot evaluates the matrix Ad to determine
the LOS connectivity of the team. If the team is not LOS
connected, each robot selects the leader among its fragment,
which is a subtree of the MST. It then reports the Minimum-
Weight Outgoing Edge (MWOE) information to the leader,
which is the least-weighted edge among all outgoing edges
of a fragment linking a fragment’s node to an external node.
The leader selects a robot for connection and updates the
fragment’s global connectivity information. Upon establishing
a new connection, each robot updates its leader ID, local
adjacency matrix (Adi), and LOS connectivity constraints.
In summary, the leader is required to guarantee consistency
within each fragment and utilized to avoid unnecessary compu-
tation. The robot then achieves a consensus within its fragment
and iteratively between different fragments, while selecting
a new leader for the merged fragments. In this way, each
robot is able to collectively construct the optimal tree T̄ los′

w

(Line 10-12) and establish the corresponding control con-
straints Cσc

u (x̂,Gslosi )
⋂
Cσlos

u (x̂, Cobs,Gslosi ) (Line 13) using
local adjacency matrix (Adi), where Gslosi = (T̄ los′

w )i is the
optimal tree T̄ los′

w from each robot’s view. With this, the robots
can accordingly update their local control variable ui based
on the updated control constraints (Line 15-20). The final goal
is to form a single leader and achieve team-wide consensus
on the global adjacency matrix (Ad), representing the optimal
tree T̄ los′

w . The algorithm terminates when global consensus
is reached respecting safety and LOS connectivity constraints
by the optimal tree T̄ los′

w . The optimal controller u∗
i is then

derived from the converged ui.

D. Theoretic Analysis

Proposition 8. By Algorithm 1, each robot agrees with the
same LOS communication graph Gslos, which is the real-time
ULOS-LCT T̄ los′

w .

See detailed proof in Section VI-E.

Algorithm 1 Uncertainty-Aware Dec-LOS-LCT

Input: ai: adjacency edge weight list, ũi: pre-assigned nomi-
nal task-related controller, and x̂i: noisy state information.

Output: u∗
i optimal controller for robot i

1: function DEC-LOS-LCT (ai, x̂i and ũi)
2: Adi, Ad ← empty adjacency matrix
3: initialize ūi = 0, ηi = 0
4: x̂i and ũi ← from all neighbors j ∈ Pi
5: construct Sσs

ui (x̂i) and Sσobs

ui (x̂i,xobs) from neighbour
message

6: while Ad is not connected do
7: leader id ← min(self id, neighbor id)
8: report the MWOE to leader
9: if leader id is self id then

10: connect with MWOE and update MWOE
11: update Ad and broadcast Ad within the frag-

ment
12: update the Adi according to Ad
13: compute Cσc

ui (x̂i,Gslosi )∩Cσlos

ui (x̂i, Cobs,Gslosi ) from
Adi

14: while not converged do
15: solve Eq. (23) and send ui+j to all neighbors

j ∈ Pi
16: collect uj+i (j ∈ Pi), ū+

i ← Eq. (22)
17: send ū+

i to neighbors j ∈ Pi
18: construct ūi+ ← Eq. (22)
19: update ηi+ = ηi + ρ(ui+ − ūi+)
20: check convergence with agreement feasibility
21: update ui

return u∗
i from ui

Proposition 9. By following Algorithm 1 at each time step,
robots reach consensus regarding the admissible control
space prescribed by Cσc

u (x̂,Gslos)
⋂
Cσlos

u (x̂, Cobs,Gslos) where
Gslos = T̄ los′

w , and the derived u∗
i , ∀i = 1, · · · , N is the solu-

tion of Eq. (17), rendering the resulting Glos ⊇ T̄ los′

w globally
and subgroup LOS connected with satisfying probability at all
times.

See detailed proof in Section VI-F.

Proposition 10. By choosing σlos = 1 − 1−σgraph

N−1 as the
pair-wise robots occlusion-free confidence level to guarantee
the occlusion-free condition for ULOS-LCT T̄ los′

w , the resul-
tant LOS communication graph Glos ⊇ T̄ los′

w satisfies the
occlusion-free condition, ensuring at least one occlusion-free
path between every pair of vertices with a probability greater
than σgraph.

See detailed proof in Section VI-G.
Proposition 8 guarantees that robots converge to a uniform

LOS graph T̄ los′

w via edge updates in Line 10 of Algorithm 1.
Proposition 9 ensures that updating control constraints in
Line 13 of Algorithm 1 confines the robot team’s control space
to Cσc

u (x̂, T̄ los′

w )
⋂
Cσlos

u (x̂, Cobs, T̄ los′

w ) based on the optimal
graph Gslos∗. Hence, with Lemma 3 all the robots remain



globally and subgroup LOS connected (with satisfying prob-
ability) through preserving edges in T̄ los′

w overtime. Finally,
if each pair-wise robot in T̄ los′

w satisfies the occlusion-free
condition with σlos = 1− 1−σgraph

N−1 probability, Proposition 10
guarantees that the resultant LOS communication graph has at
least σgraph ∈ (0, 1) to satisfy the occlusion-free condition.

Remark 11. [summarized from [14]] The probability of
collision avoidance between two robots throughout an entire
trajectory, denoted by nt time steps, is the product of inde-
pendent probabilities at each step, with a lower bound of
(σs)nt . For longer trajectories, a discount factor ζ < 1 could
be introduced to moderate the step-wise threshold, ensuring
the overall probability of collision avoidance remains within
acceptable limits.

IV. RESULTS

A. Simulation Example

Fig. 1 shows the first set of simulations performed on a
team of N = 24 mobile robots with unicycle dynamics,
where controllers are applied using kinematics mapping from
[25]. Fig. 1a to 1c demonstrate that our proposed method
consistently maintains Line-of-Sight (LOS) connectivity over
time. Besides, we implemented four baseline methods as
shown in Fig. 1d-1g. In Fig. 1d (MCCST [21]), robots fail to
maintain a safe distance due to the lack of consideration for
observation uncertainty. In Fig. 1e (our method without occlu-
sion avoidance), robots lose inter-robot LOS communication
due to obstacles. In Fig. 1f and 1g where the enforced LOS
communication graph remains unchanged from the beginning,
LOS communication is preserved but overly constrains robots’
motion with poor task performance as a result. In summary,
our proposed method effectively maintains safety and LOS
connectivity despite observation uncertainty, while achieving
the best task performance.

In Fig. 2a, all methods, except MCCST which doesn’t
account for observation uncertainty, meet the required safety
criteria. Fig. 2b shows that both MCCST and our method
without occlusion avoidance can lead to a disconnected Line-
of-Sight configuration (λ2 = 0). In Fig. 2c and Fig. 2d,
task performance and control perturbation for MCCST are
not included, as it fails to ensure both safety and LOS
connectivity under positional uncertainty. These results illus-
trate that our method achieves the highest task efficiency
through minimal control perturbation while maintaining safety
and LOS connectivity under observation uncertainty. Finally,
Fig. 2d demonstrates that our method performs similarly to
the centralized solution in terms of task performance.

B. Quantitative Results

In this section, we provide three case studies to verify the
effectiveness of our algorithm in different environments, eval-
uate our algorithm under different noisy observation settings,
and analyze the scalability of our algorithm.
Case study 1: To assess the robustness of our algorithm, we
conducted experiments under not only different environments

which are provided in Fig. 1a and Fig. 3, but with different
initial positions up to 66 robots. Specifically, for each batch
of robots with different sizes, we conduct experiments
in these five different environments, testing five different
initial positions within each environment, and repeating each
position five times, totaling 125 experiments per number of
robots. Finally, 5× 5× 5× 15 = 1875 number of experiments
are conducted to verify the robustness of our algorithm
(15 is the number of batches from 24 robots to 66 robots).
The results are summarized in Fig. 4. Fig. 4a demonstrates
that safety is guaranteed except for MCCST. Fig. 4b shows
that our method, fixed initial ULOS-LCT, and fixed LOS
communication graph algorithm guarantee the required LOS
connectivity, while the MCCST and our method without
considering occlusion avoidance fail (λ2 = 0) as it does
not consider the LOS connectivity. Fig. 4c demonstrates our
algorithm’s superior task performance in reducing distance
to the target. Fig. 4d indicates that our method achieves
less average control perturbance than fixed-graph algorithms,
highlighting the importance of dynamic LOS graph updates.

Case study 2: To evaluate the performance of our algorithm
under varying levels of observation noise, represented

by the matrix
[
σx 0
0 σy

]
, we conducted tests using the

same configuration depicted in Fig. 1a, but with different
observation noise parameters. The results are illustrated in
Fig. 5. In Fig. 5a, the results clearly show that our algorithm
reliably guarantees the desired safety, even as observation
noise grows. It is worth noting that as the observation
noise increases, the algorithm enforces the robots to stay
further away from the other robots and obstacles, effectively
compensating for the increase in localization error. Fig. 5b
verifies that our algorithm preserves LOS connectivity under
varying noisy observation parameters. Fig. 5d reveals that
handling larger observation noise necessitates greater control
deviations, which can complicate the execution of original
tasks, as indicated by the increased average distances to
targets in Fig. 5c.

Case study 3: To evaluate the efficiency and scalability of
our algorithm, we conduct another case study. Our algorithm’s
running time is dominated by the topology of the graph. The
more complex topology costs more iteration to ensure the
robots to agree with the same optimal graph T̄ los′

w . Hence,
to evaluate the efficiency and scalability of our method3, we
conducted 20 trials for each number of robots, each trial using
a different graph topology. The experiment environment is the
same as described in Fig. 1a. The results are shown in Fig. 8.
The worst computation time is evaluated based on complete
graph4 Glos, while the best computation time is evaluated

3The experiments were conducted on a 2.9 GHz Intel Core i7 processor
with 16 GB RAM.

4In this paper, a complete graph is a graph in which each pair of graph
vertices is LOS connected with an edge.



(a) Our Method t = 0 (b) Our Method t = 1000 (c) Our Method t = 2000 (Converged)

(d) (e) (f) (g)

Figure 1: Simulation example of 24 robots divided into M = 3 subgroups with different colors and tasked to three different
places. Robots in blue subgroup 1 execute biased rendezvous behaviors towards the blue task site 1, while robots in red subgroup
2 and green subgroup 3 perform circle formation behaviors around the red task site 2 and green task site 3, respectively. The
Rs, Robs and Rc are 0.2 m, 0.2 m and 0.8 m in this experiment. The red lines in this figure denote the currently optimal LOS
communication graph Gslos∗ and the gray dash lines are the current LOS communication graph Glos. The black boxes represent
the obstacles. The confidence level in this experiment is set as σs = σobs = σc = 0.90, σlos = 0.99 (i.e., σgraph = 0.9). The
robot diameter is 0.16 m. The Multivariate Gaussian covariance matrix for measurement noise is diag[0.03, 0.04]. Compared
baseline methods include (d) MCCST [21], (e) Our method without considering occlusion avoidance, (f) Enforcing edges from
fixed initial ULOS-LCT (red edges in Figure 1a), and (g) Enforcing edges from fixed initial LOS connectivity graph (gray
edges in Figure 1a).

(a) Minimum distance between
robot/Obstacle (b) Algebraic LOS connectivity (c) Dave to target region (d) Average control perturbation

Figure 2: Performance comparison of the simulation example in Fig. 1 w.r.t. different metrics: a) Minimum distance to
robots/obstacles to verify the safety constraints’ satisfaction, b) Average algebraic LOS connectivity to indicate whether the
LOS graph is LOS connected (λ2 > 0) or not λ2 = 0, where λ2 is the second-smallest eigenvalue of the LOS Laplacian
matrix calculated from the LOS adjacency matrix. The elements in the LOS adjacency matrix indicate whether the pairwise
robots are LOS connected), c) Average distance to target region to indicate the overall task efficiency, and (d) Average control
perturbation (computed by 1

N

∑N
i=1 ||ui − ũi||2 measuring the accumulated deviation from nominal controllers).

based on the ”minimally connected graph”5 Glos. The results
5In this paper, a minimally connected graph is a graph that is LOS

connected and there is no edge that can be removed while still leaving the
graph LOS connected.

demonstrate that our algorithm can support up to 48 robots



(a) (b) (c) (d)

Figure 3: Testing environments with different initial positions of robots, numbers of robot subgroups, and obstacles with
different lengths, positions, and shapes.

(a) Minimum distance between
robot/Obstacle (b) Algebraic LOS connectivity (c) Average distance to target (d) Average control perturbation

Figure 4: Quantitative results on different sizes of robot team. Error bars show the standard deviation.

(a) Minimum distance between
robot/Obstacle (b) Algebraic LOS connectivity (c) Average distance to target (d) Average control perturbation

Figure 5: Numerical results under different levels of noisy observations.

(a) Time Step = 0 (b) Time Step = 1000 (c) Time Step = 2000 (Converged)

Figure 6: Simulation examples using CoppeliaSim. The confidence level in this experiment is set as σs = σobs = σc =
0.90, σlos = 0.99. The Multivariate Gaussian covariance matrix for measurement noise is diag[0.03, 0.04]. The robot’s diameter
is 0.14 m. The Rs, Robs and Rc are 0.28 m, 0.34 m and 0.9 m, respectively. Red edges denote the current active LOS
communication graph Gslos∗ to preserve.

updating control commands at 100 Hz. This indicates that our
algorithm is capable of real-time implementation with a large
number of robots.

C. CoppeliaSim Simulation

To further validate our algorithm in realistic scenarios,
we conducted simulations using CoppeliaSim platform [26]
with 10 Khepera IV robots under differential drive dynamics,



(a) Initial configuration (b) Converged configuration
(c) Minimum distance between
robot/Obstacle (d) Algebraic LOS connectivity

Figure 7: Hardware experiment. The confidence level in this experiment is set as σs = σobs = σc = 0.90, σlos = 0.90. The
Multivariate Gaussian covariance matrix for measurement noise is diag[0.01, 0.02]. Rs, Robs and Rc are 0.3 m, 0.3 m and
0.8 m, respectively. Red lines show the average performance. The shade area shows the standard derivation.

Figure 8: Computation time. Error bar shows the min and max
values.

where controllers from our Dec-LOS-LCT method are applied
using kinematics mapping from [27]. As depicted in Fig. 6,
robots with observation noise were divided into two subgroups,
forming a circle with a radius of 0.5 m around two task
locations. Our algorithm ensures flexible behaviors while
remaining collision-free with the required LOS connectivity
for the robots.

D. Real-world Experiment

We also validated our algorithm through hardware experi-
ments using 4 Husarion ROSbot 2 PRO robots and 4 Khepera
IV robots. The robots with observation noise are grouped
based on different types of robots and tasked to two different
task regions. Positions of the robots and obstacles are acquired
from OptiTrack system with manually added Multivariate
Gaussian distributed noise. The initial configuration of the
robots is shown in Fig.7a. We conducted 10 experiments using
our method with this setup. The numerical results, presented
in Fig.7c and Fig. 7d, confirm that our algorithm consistently
ensures the required safety and maintains Line-of-Sight (LOS)
connectivity. The red lines in the figures represent the average
results from the 10 experiments, while the shaded areas
depict the standard deviation, with ground truth position data
provided by the OptiTrack system. Finally, the average running
time per robot is 1.25 ms at each time step, which also verifies
the efficiency of our proposed method. We provide video

demonstrations for all simulation and real-world experiments
at https://youtu.be/LxTxjxLWjx4?si= wEq1AHUSgyT IzI.

V. CONCLUSION

In this paper, we introduced a novel decentralized algo-
rithm to address global and subgroup Line-of-Sight (LOS)
connectivity maintenance with collision avoidance for robotic
teams under positional uncertainty. Probabilistic Line-of-Sight
Connectivity Barrier Certificates (PrLOS-CBC) are proposed
to ensure a lower bounded probability of inter-robot LOS
occlusion avoidance with closed-from expression. By formu-
lating the problem as a bi-level optimization process, it enables
robots to first compute the least constraining set of LOS
edges as the lower-level task, and the resulting composition of
PrLOS-CBC is integrated into the upper-level task to derive
the minimally modified task-related controllers satisfying the
global and subgroup LOS constraints. With our proposed
Dec-LOS-LCT algorithm, the optimization formulation can be
solved in a fully decentralized manner, with superior perfor-
mance demonstrated in simulation and real-world experiments.
Future work includes extending the method and algorithm to
more general nonlinear systems with higher relative degrees,
by leveraging variants of CBFs such as Exponential Control
Barrier Function (ECBF) [23] and High Order Control Barrier
Functions (HOCBFs) [24].
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VI. APPENDIX

A. Discussion on Eq. (9)

Here, we provide the brief discussion on the proof of
existence of Cσc

u (x̂,Gslos) and how to construct Bσ
c

i,j and fσ
c

i,j

in Cσc

u (x̂,Gslos) in Eq. (9). The desired set of x for pairwise
robots i and j satisfying the communication distance condition
is defined in Eq. (4):

hci,j(x) = R2
c − ||xi − xj ||2, ∀(vi, vj) ∈ Ec ⊆ E los,

Hc
i,j = {x ∈ RdN |hci,j(x) ≥ 0} (4)

Following [14], to ensure the probability of pairwise robot
satisfying the communication distance condition above the
user-defined confidence level σc, we can derive the following
sufficient condition:

Pr(ui,uj ∈ Bc
i,j(x)) ≥ σc ⇒ Pr(xi,xj ∈ Hc

i,j(x)) ≥ σc

(24)
where Bci,j(x) = {u ∈ RqN |ḣci,j(x,u) + γhci,j(x) ≥ 0}.
Considering ḣci,j(x,u) =

∂hc
i,j

∂x (x)(∆Fi,j(x) + Gi,j(x)ui,j)
with ∆Fi,j(x) = Fi(xj) − Fj(x) and Gi,j(x)ui,j =
Gi(xi)ui − Gj(xj)uj , we can re-write the sufficiency con-
dition Pr(ui,uj ∈ Bc

i,j(x)) ≥ σc in Eq. (24) using Eq. (4) as
follows:

Pr(ui,uj ∈ Bc
i,j(x)) ≥ σc ⇐⇒ (25)

Pr(
∂hc

i,j

∂x
(x)Gi,j(x)ui,j ≥ −γhc

i,j(x)−
∂hc

i,j

∂x
(x)(∆Fi,j(x)) ≥ σc

Hence, following [14], we can reorganize Eq. (25) as:

Pr
([

∆xi,j +

ẋi−ẋj︷ ︸︸ ︷
Gi,jui,j +∆Fi,j

γ

]2
≤ R2

c +

[ ẋi−ẋj︷ ︸︸ ︷
Gi,jui,j +∆Fi,j

γ

]2)
≥ σc

(26)

where ∆xi,j = xi − xj ∼ N (x̂i − x̂j ,Σi +Σj).
Eq. (26) follows the same format as Eq. (19) in [14] when

without motion uncertainty. With this, the rest of proof for
existence of Cσc

u (x̂,Gslos) could directly follow the proof of
Existence of PrSBC in Appendix A.1 in [14], which guarantees
that the Cσc

u (x̂,Gslos) defined in Eq. (9) is always non-empty.
Then, one can also follow [14] to derive the sufficient

condition, so that ensuring u ∈ Cσc

u (x̂,Gslos) =⇒ Eq. (26).
Specifically, we need to modify the Eq. (24) in [14] by
changing the sign ≥ in Pr(·) to the sign ≤. Note that in [14],
they consider the motion uncertainty, hence they have the extra
term Bli,j . The rest of the computation follows the calculation
of PrSBC. The only difference is that, rather than enforcing
the condition Pr(∆xli,j ≤ A) ≥ σc or Pr(∆xli,j ≥ B) ≥ σc,
we aim to enforce the condition Pr(A ≤ ∆xli,j ≤ B) ≤ σc,
which is equivalent to enforcing Pr(∆xli,j ≥ A) ≥ 1+σc

2 and
Pr(∆xli,j ≤ B) ≥ 1+σc

2 . By denoting eli,j = Φ( 1+σ
c

2 ) with
Φ(·) as the inverse cumulative distribution function (CDF) of
random variable ∆xli,j along each lth dimension of ∆xi,j ,
one can develop the following condition to ensure Eq. (26)
holds true on each dimension:

∀l = 1, ...d : 2eli,j(Gi,jui,j)l/γ ≤ −[(eli,j)
2 −R2

c + 2eli,j∆F l
i,j/γ]

−2eli,j(Gi,jui,j)l/γ ≤ (eli,j)
2 +R2

c + 2eli,j∆F l
i,j/γ

(27)

where (Gi,jui,j)l = (Giui − Gjuj)l ∈ R and ∆F li,j =
F li − F lj ∈ R denote the lth element of Gi,jui,j ∈ Rd and
∆Fi,j ∈ Rd respectively.

Finally, one can combine the condition in all dimensions
to get Bσ

c

i,j ∈ R2d×qN and fσ
c

i,j ∈ R2d for Bσ
c

i,ju ≤ fσ
c

i,j in
Cσc

u (x̂,Gslos) as:

Bσc

i,j =



2e1i,j · · · 0

−2e1i,j · · · 0

...
. . .

...
0 · · · 2edi,j
0 · · · −2edi,j


︸ ︷︷ ︸

∈R2d×d

∈Rd×qN︷ ︸︸ ︷
[0, . . . , Gi, . . . ,−Gj , . . . , 0]

fσc

i,j =



−γ(e1i,j)
2 + γR2

c − 2e1i,j∆F 1
i,j

γ(e1i,j)
2 + γR2

c + 2e1i,j∆F 1
i,j

...
−γ(edi,j)

2 + γR2
c − 2edi,j∆F d

i,j

γ(edi,j)
2 + γR2

c + 2edi,j∆F d
i,j


︸ ︷︷ ︸

∈R2d

B. Proof of Lemma 3

Lemma 12. (Summarized from [1]) A function h is a valid
control barrier function, if the following properties are satis-
fied:

1) The function h is continuously differentiable.
2) The first-order time derivative of h depends explicitly on

the control input u (i.e., h is of relative degree one).
3) It is possible to find an extended class-K function κ(·)

such that supu∈U{ḣ(x,u) + κ(h(x))} ≥ 0 for all x.

Lemma 3. Probabilistic Line-of-Sight Connectivity Bar-
rier Certificates (PrLOS-CBC:) Given a LOS communication
spanning graph Gslos = (V, Eslos), a desired set Hlos(Gslos)
in Eq. (6) with hlosi,j,o from Eq. (14), and a user-defined
high probability σlos ∈ (0, 1), for any Lipschitz continuous
controller u, the PrLOS-CBC as admissible control space
Cσlos

u (x̂, Cobs,Gslos) defined below enforces system state to
stay in {

⋂
{vi,vj∈V:(vi,vj)∈Eslos}Hlos

i,j } with high probability
(by enforcing pairwise LOS separately with satisfying σlos):

Cσlos

u (x̂, Cobs,Gslos) = {u ∈ RqN : (15)

ḣlos
i,j,o(x̂,x

obs, σlos,u) + γhlos
i,j,o(x̂,x

obs, σlos) ≥ 0, ∀(vi, vj) ∈ Eslos, ∀o}

where ḣlosi,j,o(x̂,x
obs,u) = −(xobs

o −
x̂i+x̂j

2 )TQσ
los

i,j (Fi,j(x)+
Gi,j(x)uij), Fi,j(x) = Fi(xi) + Fj(xj) and Gi,j(x)uij =
Gi(xi)ui +Gj(xj)uj .

Proof: To prove the control constraints in
Cσlos

u (x̂, Cobs,Gslos) for every pair of robots i, j where
(vi, vj) ∈ Eslos, ensuring they stay in Hlos

i,j with the
prescribed probability σlos ∈ (0, 1), we first demonstrate that
the function hlosi,j,o, as defined in Eq. (14), is a valid control
barrier function (CBF).

Considering our proposed candidate CBF hlosi,j,o in
Eq. (14) for ∀(vi, vj) ∈ Eslos, ∀o, we can derive: (a)
∂hlos

i,j,o(x̂,x
obs,σlos)

∂x = 2(xobs
o − x̂i+x̂j

2 )TQσ
los

i,j , and (b)
ḣlosi,j,o(x̂,x

obs,u) = −(xobs
o − x̂i+x̂j

2 )TQσ
los

i,j (Fi,j(x) +



Gi,j(x)uij), where Qσ
los

i,j ∈ Rd×d is the positive-definite
symmetric computed from the ellipsoid approximation for
the occlusion-free condition between pairwise robots i and
j. Thus, we can conclude that hlosi,j,o (a) is continuously
differentiable, and (b) is of relative degree one, which sat-
isfies the first two conditions in Lemma 12. Then, by
substituting ḣlosi,j,o(x̂,x

obs, σlos,u) = d
dth

los
i,j,o(x̂,x

obs, σlos)

in ḣlosi,j,o(x̂,x
obs, σlos,u) + γhlosi,j,o(x̂,x

obs, σlos) ≥ 0 from
Eq. (15), we can obtain:

(xobs
o − x̂i + x̂j

2
)TQσ

los

i,j (Fi,j(x) +Gi,j(x)uij)

≤ γ[(xobs
o − x̂i + x̂j

2
)TQσ

los

i,j (xobs
o − x̂i + x̂j

2
)− 1]

(28)

Given the assumption that each pair-wise robot satisfies the
occlusion-free condition initially, we can derive that γ[(xobs

o −
x̂i+x̂j

2 )TQi,j(x
obs
o −

x̂i+x̂j

2 )−1] ≥ 0 on the right-hand side of
Eq. (28) holds, i.e., there are no obstacles blocking the LOS
between pair-wise robot i and j. Besides, it is also straight to
prove that (xobs

o − x̂i+x̂j

2 )Qσ
los

i,j ̸= 0 (matrix Qσ
los

i,j ≻ 0 and
vector xobs

o − x̂i+x̂j

2 ̸= 0). Furthermore, it is possible to find
a pair-wise control input ui = u0

i , uj = u0
j such that ẋi = 0,

ẋj = 0. In this case, ẋi + ẋj = Fi,j(x) + Gi,j(x)u
0
ij = 0,

then Eq. (28) holds. Hence, we can conclude that, the proposed
control barrier function hlosi,j,o is a valid control barrier function.
It is then straightforward to extend to all pairwise inter-robot in
a LOS communication spanning graph Gslos (i.e., ∀(vi, vj) ∈
Eslos) occlusion-free constraints in Eq. (15). To that end, we
can prove that the admissible control space constrained by
Eq. (15) is always non-empty.

Next, we will demonstrate that the control space defined
by (xobs

o − x̂i+x̂j

2 )TQσ
los

i,j (Fi,j(x) +Gi,j(x)uij) ≤ γ[(xobs
o −

x̂i+x̂j

2 )TQσ
los

i,j (xobs
o − x̂i+x̂j

2 ) − 1], ∀o enforces the pairwise
inter-robot stay occlusion-free with satisfying probability σlos

over time. Recall that each robot state is considered as a
Gaussian distributed variable with xi ∼ N (x̂i,

∑
i), ∀i ∈ I .

Hence, given the observed positions and uncertainty covari-
ance of pairwise robots xi ∼ N (x̂i,

∑
i), xj ∼ N (x̂j ,

∑
j)

that are initially LOS connected and the corresponding
√
σlos-

confidence error ellipsoids Q
√
σlos

i ,Q
√
σlos

j , we adopt MVCE
Qσlos

i,j (Qσ
los

i,j , p̂
0
i,j) = {p ∈ Rd : (p − p̂0

i,j)
TQσ

los

i,j (p −
p̂0
i,j) ≤ 1} over the set of

√
σlos-confidence error ellipsoids

{Q
√
σlos

i ,Q
√
σlos

j } to approximate the occlusion-free condition
for pairwise robots. Given that each robot has

√
σlos probabil-

ity to located within each confidence error ellipsoids and the
two robot states are independent, then it is straight to prove that
the probability of two robots are both located in the confidence
error ellipsoids {Q

√
σlos

i ,Q
√
σlos

j } is σlos =
√
σlos ×

√
σlos.

Hence, the MVCE approximation Qσlos

i,j can guarantee that the
two robots state are both within Qσlos

i,j with σlos probability.
With this, we adopt this approximation to define the occlusion-
free set Hlos

i,j in Eq. (14) which is the sufficient condition
to ensure pairwise robots stay occlusion-free with probability
σlos, i.e. xi,xj ∈ Hlos

i,j =⇒ Pr(xi,xj ∈ {xi,xj :

xi(1 − Ω) + xjΩ /∈ Cobs, ∀Ω ∈ [0, 1]}) ≥ σlos. Since
we assume that the pairwise robots are initially occlusion-
free, considering the property of the Lemma 1 and its proba-
bilistic extension in [14], we can derive ui,uj ∈ {ui,uj :

(xobs
o − x̂i+x̂j

2 )TQσ
los

i,j (Fi,j(x) + Gi,j(x)uij) ≤ γ[(xobs
o −

x̂i+x̂j

2 )TQσ
los

i,j (xobs
o − x̂i+x̂j

2 ) − 1], ∀o} =⇒ xi,xj ∈
Hlos
i,j =⇒ Pr(xi,xj ∈ {xi,xj : xi(1 − Ω) + xjΩ /∈
Cobs, ∀Ω ∈ [0, 1]}) ≥ σlos. With this, we can guarantee
that (xobs

o −
x̂i+x̂j

2 )TQσ
los

i,j (Fi,j(x)+Gi,j(x)uij) ≤ γ[(xobs
o −

x̂i+x̂j

2 )TQσ
los

i,j (xobs
o − x̂i+x̂j

2 ) − 1], ∀o defines the admissible
control space for pairwise robots i, j that enforces the two
robots to stay occlusion-free with satisfying probability σlos

over time.
Finally, consider the desired occlusion-free set for the robot

team as {
⋂

{vi,vj∈V:(vi,vj)∈Eslos}Hlos
i,j }, we seek to enforce all

pairwise robots (i.e., vi, vj ∈ V : (vi, vj) ∈ Eslos) to stay in
this desired set so that the occlusion-free condition is satisfied
with required probability. Since we proved that (a) the control
space defined in Eq. (28) enforces the pairwise robots to stay
occlusion-free with satisfying probability σlos, and (b) the
control space for the set of pairwise robots determined by Eslos
in Eq. (15) is always non-empty, we can guarantee that by
enforcing the joint control input to stay in the admissible con-
trol space defined by our PrLOS-CBC, the joint system state
x stays in the intersection set {

⋂
{vi,vj∈V:(vi,vj)∈Eslos}Hlos

i,j }
with satisfying probability. Thus, we conclude the proof.

C. Feasibility Discussion of the Quadratic Programming
Problem in Eq. (10)

In this paper, the detailed control constraints are defined as:

Sσs

u (x̂)
⋂

Sσobs

u (x̂,xobs)
⋂

Cσc

u (x̂,Gslos)
⋂

Cσlos

u (x̂, Cobs,Gslos) (29)

which consist of (a) the PrSBC Sσs

u (x̂) and Sσ
obs

u (x̂,xobs)
in Eq. (8)- a set of safety prescribed control constraints, (b)
Cσc

u (x̂,Gslos) in Eq. (9)- a set of inter-robot communication
distance prescribed control constraints, and (c) the Probabilis-
tic Line-of-Sight Connectivity Barrier Certificates (PrLOS-
CBC) in Eq. (15)- a set of inter-robot occlusion-free condition
constraints.

In [14], the author has proven that the joint control u = u0

leading the ẋ = [ẋ1, ..., ẋN ] = 0 ∈ RdN is always the
feasible solution satisfying the constraints in Sσs

u (x̂) and
Sσ

obs

u (x̂,xobs). Due to the similar structure of pairwise inter-
robot safety and communication distance constraints in Eq. (2)
and Eq. (4), one can adopt the same idea to prove that u = u0

is also always the feasible solution satisfying the constraints
in Cσc

u (x̂,Gslos). Readers are referred to [14] for detailed
discussion.

Besides, in Eq. (28) we have shown the detailed formulation
for each single constraint on the pairwise robots in our PrLOS-
CBC. Then it is straightforward to prove that one particular
solution u = u0 leading the ẋ = [ẋ1, ..., ẋN ] = 0, located
at the intersection of the admissible control space constrained
by PrLOS-CBC Cσlos

u (x̂, Cobs,Gslos), is one particular solution
for the robot team to stay occlusion-free with satisfying



probability. Hence, considering the unbounded control input,
we can always guarantee that u = u0 is always the feasible
solution satisfying the constraints in Eq. (29). In presence of
bounded input constraints, i.e., Ui := {ui ∈ Rq : umin ≤
||ui|| ≤ umax}, the feasible set constrained by Eq. (13) could
be empty. For example, due to the physical limitations of
the robot’s braking system, it is not possible for the robot
to instantaneously decelerate to a complete stop. The authors
in [28] provided a novel method to find sufficient conditions,
which are captured by a single constraint and formulated from
an additional CBF, to guarantee the feasibility of original
CBF-based QPs. Note that the additional CBF will always
be compatible with the existing constraints, implying that it
cannot make the previous feasible set of constraints infeasible.
Readers are referred to [28] for further details.

D. Proof of Theorem 6

Theorem 5. The Uncertainty-Aware Line-of-Sight Least Con-
straining Tree (ULOS-LCT) T̄ los′

w is (i) globally and subgroup
LOS connected, and (ii) least violated if following nominal
joint controller u compared to all other candidate spanning
trees in {T los′

w = (V, ET ,WT ′
)}.

Proof: Recall that in this paper, the optimal graph
Gslos∗ ⊆ Glos for robots to maintain at each time step should
(a) be a spanning tree of current Glos which has the least
number (N − 1) of edges to satisfy global and subgroup LOS
connectivity, and (b) introduce the least violated constraints
Cσc

u (x̂,Gslos∗)∩Cσlos

u (x̂, Cobs,Gslos∗) under nominal joint task-
related controller ũ = [ũ1, . . . , ũN ] prescribed by Gslos∗.

Given the requirement of the Gslos∗ as described above, in
Definition 5, we introduce the connectivity condition weight
wd
i,j and the occlusion-free condition weight wlos

i,j for all edges
in the entire LOS communication graph Glos = (V, E los)
between robots i and j under nominal controller ũi and ũj as
follows.

wlos
i,j =

1

L

L∑
o=1

(ḣlos
i,j,o(x̂,x

obs, σlos, ũ) + γhlos
i,j,o(x̂,x

obs, σlos))

wd
i,j = fσc

i,j −Bσc

i,j ũ

where Bσ
c

i,j and fσ
c

i,j , are from Eq. (9). Recall that the higher
value of wd

i,j and wlos
i,j indicates the less violation under

nominal controller ũi and ũj . And then in Definition 5, we
define the sum of two weights as: wd+los

i,j = wd
i,j + wlos

i,j

This weight is used to heuristically quantify the total vi-
olation of LOS connectivity on each (vi, vj) ∈ E los under
nominal controller ũi and ũj . With that, each spanning tree
T los ⊆ Glos as candidate solution of Gslos∗ can be redefined
as a weighted spanning tree T los

w = (V, ET ,WT ) where
ET ⊆ E los with weightWT = {−wd+los

i,j }. Hence, the optimal
LOS communication graph Gslos∗ satisfying constraints in
Eq. (11) and Eq. (12) can be defined as follows.

Gslos∗ =argmax
{T los

w }

∑
(vi,vj)∈ET

wd+los
i,j =argmin

{T los
w }

∑
(vi,vj)∈ET

−wd+los
i,j

s.t. T los
m = T los

w [Vm] is LOS connected, ∀m = 1, . . . ,M
(30)

The optimal solution of problem in Eq. (30) is a Con-
strained Minimum Spanning Tree (CMST) weighted byWT =
{−wd+los

i,j }.
Then we introduce the subgroup parameter β >> 1 in

Definition 5 to transform this CMST to an unconstrained
Minimum Spanning Tree (MST) problem with the same
optimality guarantee, so that it can be solved efficiently by
standard MST algorithm. To be more specific, the subgroup
parameter β ensures that for any pairwise robots, we have
w′
i,j < w′

i,j′ if robot i and j are in the same subgroup while
the robot i and j′ are in the different subgroup. Then we
denote the weight-modified graph as G′ with its spanning trees
{T los′

w = (V, ET ,WT ′
)} (ULOS-ST in Definition 5), where

WT ′
= {w′

i,j} in Eq. (16). Next, we will prove that ULOS-
LCT T̄ los′

w = argmin{T los′
w }

∑
(vi,vj)∈ET {w′

i,j}, which is the
particular spanning tree T los′

w with the minimum total weight
(i.e., MST), is the solution of the problem defined in Eq. (30).
Due to the property of MST, it is straightforward to prove that
the edges across different subgroups are LOS connected after
edges within each subgroup are LOS connected. With this,
the MST of induced sub-graph G′[Vm] within subgroup Sm
is LOS connected and optimal with minimum total weight, as
shown below.

T̄ los′
w (m) = argmin

{T los′
w (m)}

∑
(vi,vj)∈ET (m)

w′
i,j

= argmin
{T los′

w (m)}
β ·

∑
(vi,vj)∈ET (m)

−wd+los
i,j

= argmin
{T los′

w (m)}

∑
(vi,vj)∈ET (m)

−wd+los
i,j

(31)

The equality holds since β > 0. Then we consider vi and
vj in different subgroups, i.e. S(vi) ̸= S(vj), while (vi, vj) is
the edge in spanning tree edges ET (m) that is LOS connected.
Connecting the minimum-weighted outgoing edge (MWOE)
between different sub-groups yields:

T̄ los′
w = argmin

{T los′
w }

∑
(vi,vj)∈ET (m)

w′
i,j , S(vi) ̸= S(vj)

= argmin
{T los′

w }

∑
(vi,vj)∈ET

−wd+los
i,j

(32)

In this way, we prove that ULOS-LCT T̄ los′

w is globally and
subgroup LOS connected and has the same optimal guarantee
in Eq. (30). Thus, we conclude the proof.

E. Proof of Proposition 8

Proposition 6. By Algorithm 1, each robot agrees with the
same LOS communication graph Gslos, which is the real-time
ULOS-LCT T̄ los′

w .

Proof: The repeated connection of a fragment’s MWOE
to an adjacent node in another fragment is proven to contribute
to a unique MST for graphs with unique edge weights [29, 30].
At the beginning of our Algorithm 1, each robot starts to
create the fragment which contains only itself. With this,
the iterations of Algorithm 1 starts with selecting the leader
within the current fragment in Line 7. Then the leader decides
which adjacent node to connect based on the updated MWOE
information in Line 10, yielding another fragment which is
also part of the MST. In summary, during the construction of
the MST in Line 7-11 of Algorithm 1, the leader repeatedly



guides the current fragment to connect the adjacent node
in a different fragment with MWOE. When the algorithm
converges, there is only one leader among the entire robot
team. Since only the leader of each fragment updates the
global adjacency matrix Ad in Line 11 of Algorithm 1 within
the fragment, the algorithm eventually terminates with only
one fragment, i.e., the MST, with a single leader. This implies
the convergence of the decentralized algorithm and guarantees
consistency among all robots. Hence, the resulting graph T̄ los′

w

generated by the decentralized construction is the same as the
tree generated by the centralized construction.

F. Proof of Proposition 9

Lemma 13. [summarized from [16]] The centralized QP
problem in the format of Eq. (17) can be decomposed for each
robot in the format of Eq. (21). Adopting the C-ADMM based
algorithm by updating Eq. (23) for each robot iteratively until
convergence, it has been proven that the derived solution is
the solution of centralized QP problem, if the object function
and the constraints in Eq. (23) are convex and the original
centralized QP problem has the feasible solution.

Proposition 7. By following Algorithm 1 at each time step,
robots reach consensus regarding the admissible control
space prescribed by Cσc

u (x̂,Gslos)
⋂
Cσlos

u (x̂, Cobs,Gslos) where
Gslos = T̄ los′

w , and the derived u∗
i , ∀i = [1, N ] is the solution

of Eq. (17), rendering the resulting Glos ⊇ T̄ los′

w globally
and subgroup LOS connected with satisfying probability at
all times.

Proof: Since the process of the Algorithm 1 is updated
over time, to prove Proposition 9, we give the explicit form
of the LOS communication graph with respect to time t (e.g.,
Glos = Glos(t)). Recall that in the manuscript, for ease of
the notation, we omit the notion of dependence on time. At
each time step, by following the Algorithm 1, it is guaran-
teed that by updating the safety constraints Sσs

ui (x̂i(t)) and
Sσobs

ui (x̂i(t),xobs) on Line 5 (through the message acquired
from neighbors containing x̂i and ũi) and LOS connectivity
constraints Cσc

ui (x̂i(t),Gslosi (t))∩Cσlos

ui (x̂i(t), Cobs,Gslosi (t)) on
Line 13, the admissible control space for the team of robots is
the equivalent transformation as the admissible control space
in Eq. (19). Since our objective function and constraints are
convex in Eq. (23) and the QP problem in Eq. (17) has
the feasible solution (discussed in Section VI-C), following
Lemma 13, the derived u∗

i (x̂i(t)), ∀i = [1, N ] is guaranteed
to be the solution of Eq. (17).

Since we assume the team of robots is globally and
subgroup LOS connected initially, then with Proposition 8,
it is guaranteed that each robot will agree with the same
ULOS-LCT T̄ los′

w (t = t0) ⊆ Glos(t = t0) that is both
globally and subgroup LOS connected. Then, considering the
state-dependent Lipschitz continuous controller u(x̂(t)) ∈
Cσc

u (x̂(t), T̄ los′

w (t0))
⋂
Cσlos

u (x̂(t), Cobs, T̄ los′

w (t0)) for all t ∈
[t0, t0+ τ ], it guarantees that each pairwise robots in the LOS
communication graph T̄ los′

w (t = t0) remains LOS connected
with satisfying probability. With that, we can guarantee that

Glos(t) ⊇ T̄ los′

w (t = t0) remains globally and subgroup LOS
connected with satisfying probability within t ∈ [t0, t0 + τ ].
Hence, at the next time step t1 = t0 + τ , it guarantees that
T̄ los′

w (t = t0) ⊆ Glos(t = t1) as well. In other words, it
guarantees that Glos(t = t1) is globally and subgroup LOS
connected with satisfying probability. In summary, the Dec-
LOS-LCT algorithm can guarantee that the preserved optimal
spanning tree T̄ los′

w (t) = Gslos∗(t) is always the subgraph
of the resulting LOS communication graph Glos(t) that are
thereby globally and subgroup LOS connected with satisfying
probability.

G. Proof of Proposition 10

Proposition 8. By choosing σlos = 1 − 1−σgraph

N−1 as the
pair-wise robots occlusion-free confidence level to guarantee
the occlusion-free condition for ULOS-LCT T̄ los′

w , the resul-
tant LOS communication graph Glos ⊇ T̄ los′

w , satisfies the
occlusion-free condition, ensuring at least one occlusion-free
path between every pair of vertices with a probability greater
than σgraph.

Proof: Given the occlusion-free condition for each pair-
wise robots in Eq. (14), the set of pair-wise robots that doesn’t
satisfy the occlusion condition is the complement of set Hlos

i,j ,
denoted as (Hlos

i,j )
∁. Then given the ULOS-LCT T̄ los′

w =
Gslos∗ = (V, Eslos∗), the set for the multi-robot team that
doesn’t satisfy the occlusion-free condition through a specific
LOS communication graph Gslos∗ can be defined as the com-
plement of set D = {x ∈ RdN |

⋂
{vi,vj∈V:(vi,vj)∈Eslos∗}Hlos

i,j },
which can be denoted as D∁. Because the optimal LOS
communication graph Gslos∗ is the subgraph of the LOS
communication graph Glos (Gslos∗ ⊆ Glos), the set for the
robot team doesn’t satisfy the occlusion-free condition (i.e.,
there is no occlusion-free path in current Glos), denoted as
Z, is the subset of D∁, i.e, Z ⊆ D∁. Recall that the LOS
communication graph Gslos∗, which we aim to maintain, is the
particular MST of the graph Glos with exactly N −1 numbers
of edges to be LOS connected. With this, the probability of
set Z is bounded by:

Pr(x ∈ Z) ≤ Pr(x ∈ D∁)

= Pr(
⋃

xi,j ∈ (Hlos
i,j )

∁), ∀(vi, vj) ∈ Eslos∗

≤
∑

(vi,vj)∈Eslos∗

Pr(x ∈ (Hlos
i,j )

∁) = (N − 1)(1− σlos) (33)

Given that, with our Lemma 3, if one desires to ensure
the optimal graph Gslos∗ satisfies the occlusion-free condition
with at least σgraph ∈ (0, 1) probability, then one can choose
σlos = 1− 1−σgraph

N−1 to ensure the pair-wise robot satisfies the
occlusion-free condition. This also indicates that, by main-
taining a specific graph Gslos∗, the probability of resultant
LOS communication graph Glos that satisfies the occlusion-
free condition through at least one occlusion-free path between
every pair of vertices on this graph is greater than σgraph.
Thus, we conclude the proof.
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