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1 Introduction

The emerging field of cosmological collider physics [1-7] shows how primordial correlators can
probe particle physics at inflationary energy scales, which may be many orders of magnitude
above that of any terrestrial collider. Current data places an upper bound on the Hubble
scale during inflation [8]

H <5 x 10" GeV, (1.1)

informing us of the potential reach of the cosmological collider. The core universal mechanism
involves particle production due to spacetime expansion for all species with masses m ~ O(H).
If such heavy particles decay into inflatons their propagation will be imprinted on primordial
non gaussianities (NGs), with potentially observable signals in CMB data (see [9] for recent
data analysis), large scale structure surveys [10-13] (see [14] for recent data analysis), and
high-redshift 21-cm tomography [15, 16].

The proto-typical signal for on-shell exchange of a heavy particle is given in the squeezed
limit k; ~ ko > ks by [1, 4]

(Re, Re,Re,)’ < ey \ /%m0
=e ™| f(uo) <> +ce |, (1.2)
<RE1 R_g, >/<RE3R7E3>/ ks

where pg = Vm?/H? —9/4, and R is the comoving curvature perturbation. The key
observable feature is the non-analytic dependence on comoving momentum, k. However,
inspection of eq. (1.2) shows the mass must be in a narrow window around m ~ H due
to an exponential suppression for large masses, and the non-analytic dependence being
unobservable for small masses. Intuitively, the exponential suppression for large masses can
be thought of as a Boltzmann suppression, where the exponential factor is the square root
of a Boltzmann probability for particle excitation with respect to a Hawking temperature
of dS-space Ty = H/2w [17].

Since observability requires a new particle’s mass to lie in a narrow range, it is important
to consider whether new particles are expected at this scale. A highly motivated class of models
predicting new particles at around this energy are grand unified theories (GUTS) [18, 19]
(see [20] for a review). The main piece of quantitative evidence for GUTs is the approximate
unification of the SM gauge couplings if their RG flow is extrapolated to energies of Mgyt ~
104 GeV. The case for detecting the “Higgs” that breaks the GUT gauge group down to
the SM in NGs was investigated in [21]. However, the minimal GUT scenarios predict
proton decay at a rate ruled out by experiments [22, 23]. Proton decay can be naturally
avoided in higher-dimensional “orbifold GUTs” where the GUT symmetry is broken to the
standard model by boundary conditions on a (3 + 1)-dimensional boundary [24-26]. Ref. [27]
investigated the cosmological collider signals of such models. It was found that the signals
for the heavy gauge bosons were highly suppressed, so the largest contribution to NGs was a
Planck suppressed signal from the Kaluza Kelin (KK) graviton. Remarkably the KK graviton
had small but observable signals. However, this required an even narrower mass range for
these spin-2 particles than in the spin-0 case of eq. (1.2).

Minimal GUTs have a few theoretical drawbacks. Firstly, the quantitative evidence in
the form of the coupling unification is not so precise. Secondly, the value of the electroweak
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Figure 1. Adapted from ref. [26]. In orbifold GUTs the gauge couplings need not exactly unify before
the extra dimension becomes important. Above this scale the running is modified, and it has been
speculated that they unify with the gravitational coupling into a strongly coupled string theory, or
some other UV completion of quantum gravity.

symmetry breaking (EWSB) scale v < Mgyt requires fine tuning, that is the gauge hierarchy
problem. Both of these problems are solved in supersymmetric (SUSY) GUTs where the
coupling unification is more precisely achieved, and a small EWSB scale is radiatively stable.
However, bounds on proton decay require the colored GUT partners of the Higgs doublet to
be at the GUT scale. This is called the doublet-triplet splitting problem and corresponds
to a significant tree-level fine tuning. On the other hand, orbifold SUSY GUTs suppress
proton decay as before, and also solve the doublet triplet splitting by using the boundary
conditions to remove the light modes of the colored Higgs triplet whilst retaining the light
modes of the SM Higgs. The “cost” of standard supersymmetric grand unification from the
perspective of cosmological collider physics is a higher unification scale Mgyt ~ 106 GeV,
placing it out of reach for the cosmological collider. In orbifold SUSY GUTs however, the KK
excited GUT partners can appear at the lower compactification scale Mg ~ 10 GeV [26],
as illustrated in figure 1. However, naively this is still out of reach given eq. (1.1) and the
Boltzmann suppression in eq. (1.2).

Nevertheless, there is a “chemical potential” extension of cosmological collider physics
involving direct couplings between the heavy particles and the inflaton, in which Boltzmann
suppression above H can be evaded [28—-33]. In this paper we will develop a variant of the
chemical potential mechanism that allows spin-1 GUT excitations to be seen.

As in thermodynamics, the idea of a chemical potential is that it can overcome Boltzmann
suppression. In the inflationary context the mechanism takes advantage of a larger scale
than H during inflation, namely the kinetic energy of the inflaton [§]

do ~ (60H)?, (1.3)

where ¢g(t) is the inflationary slow-roll background. There exist a class of dimension-5
“chemical potential” couplings schematically of the form

L~ %V“qﬁj“, (1.4)



where A > 60H in order for the inflationary EFT to be in theoretical control, and J* is
a current which is quadratic in the heavy field. In the inflationary background, eq. (1.4)
reduces to a chemical potential coupling £ ~ iAJ?. Such couplings allow for unsuppressed
particle production provided m < A, where

A= do/A (1.5)

is the chemical potential. Note, the chemical potential can be as large as the kinetic
energy scale

A < 60H <3 x10% Gev, (1.6)

which is above the compactification scale of orbifold SUSY GUTs. The chemical potential
mechanism both increases the reach, and widens the mass window probed by cosmological
collider physics, thereby allowing us to plausibly directly see GUT particles!

Our mechanism of chemical potential applies to a massive complex vector field, which
for a simple tree-level process must be a SM singlet in order to decay to singlet inflatons.
This precludes its application to SU(5) and SO(10) GUTs for which there is at most a single
SM singlet real vector field among the GUT partners. However, trinification, another classic
unification scenario with the gauge group G = SU(3)¢ x SU(3)r x SU(3)r/Zs [34], provides
a suitable target as it contains several SM singlet GUT partners. The realization of the
chemical potential in an orbifold trinification scenario is the focus of this paper, while the
extension to fully supersymmetric dynamics is left for future work. We expect the central
effect of supersymmetry will be to replace the SM gauge-coupling running by the MSSM
running, thereby raising the estimate of the compactification scale to Mg ~ 10'° GeV. Here
we will simply assume Mg ~ 10 GeV as the target for our chemical potential mechanism.

There has been an earlier implementation of chemical potential for a single real spin-1
field, in which the enhanced /suppressed “charges” correspond to the two helicities (that is, the
rough analog of our complex field is made from the two real polarizations) [29, 30]. In this case
the gauge-invariant form of the chemical potential interaction displays a tachyonic instability
that is cut off by the spin-1 (gauge-noninvariant) mass, requiring some tuning in parameter
space to obtain sizeable NG within theoretical control. By contrast our chemical potential
interaction is not gauge-invariant in form (gauge-invariance is not mandatory because we
are dealing with massive spin-1 particles) and avoids such tuning. Also, the gauge-invariant
chemical potential gives rise to NG only at loop-level, whereas our implementation gives rise to
NG at tree level with a relatively straightforward analysis. However, since the gauge-invariant
realization requires only one real spin-1 field, it might be more readily applicable to SU(5)
and SO(10) GUTs. We leave this to future work.

The paper is organized as follows. In section 2 we introduce our conventions and
background material. In particular we summarize the spin-0 chemical potential which we
generalise to spin-1. In section 3 we introduce the model for spin-1 chemical potential. A
Stueckelberg analysis is then performed to ensure that the massive spin-1 EFT is within
theoretical control, and the relevant interactions for our NG calculation are isolated. Section 4
introduces the stationary phase approximation for calculating the NG. The central structure
of the calculation is presented, with the full details left for appendix C. We then discuss



the apparent late-time divergences due to non-derivative inflaton couplings, explaining why
they should cancel based on the shift symmetry under which the inflaton and the heavy
field transform. A fuller explanation of this cancellation is presented in appendix D. We
also calculate the corrections to the power spectrum. Requiring this to be subdominant
places a bound on the strength of our NG signal. In section 5 we discuss observational
prospects, a method to determine both the mass of the spin-1 particle and the chemical
potential, and the possibility of inferring the spin. In section 6 we study trinification, and
show that it contains a candidate complex gauge boson that is uncharged under the SM. We
show how to implement the chemical potential coupling, but with a fully supersymmetric
implementation left for future work. In section 7 we end with a summary and a discussion
of possible avenues for future research.

2 Preliminaries

In this section we establish notational conventions, introduce the in-in formalism for computing
cosmological correlators, and give a summary of relevant results from the previous paper
on chemical potential [31], which we are generalizing to the spin-1 case.

2.1 Conventions

The mostly plus metric signature (—,+,+,+) is used throughout, and the Lagrangian
densities are defined with the volume form factored out to facilitate easy integration by parts.
During slow-roll inflation, the approximate constancy of the Hubble parameter (H) justifies
approximating inflationary spacetime as de-Sitter (dS) space:

ds? = —dt® + a*(t)dz® with a(t) = ",

1 2.1
T (—d772 + d£2> . (1)
Here, n = [ dt/a(t) is the conformal time with a(t) being the scale factor. In dS spacetime,
n = —1/(aH). For the sake of convenience, we will set units such that the approximately
constant Hubble parameter H = 1, restoring H explicitly as needed by dimensional analysis.

The inflationary spacetime is most simply realized by the dynamics of a scalar “inflaton”
field, ¢, when it dominates the energy density of the universe. This field can be conveniently
separated into a slowly-varying homogeneous background, ¢¢(t), which drives inflation and
fluctuations, d¢(&,t), which seed the inhomogeneities of the later universe after inflation.
The fluctuations of the inflaton and the scalar perturbations of the metric, however, are
coordinate dependent, with the gauge-invariant combination being the comoving curvature
perturbation, R [35, 36]. Since spatial translation is still a good symmetry of the background
inflationary dynamics, the correlations of curvature perturbations have the following form,

where the prime indicates that the comoving momentum-conserving delta function has been

factored out.
The CMB data favors a nearly scale-invariant primordial power spectrum [8]

Prlk) = (RiR_) = —  (k/k)mt, (2.3)

(o2 23 /B
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Figure 2. The shape of the squeezed limit triangle (k1 ~ ko > k3) is specified by the degree of

"

squeezing, p = k1 /ks, and the angle between the hard and soft momenta, 6.

where the scalar spectral index ngs =~ 0.96, and the reference comoving momentum scale
k. =~ 0.05Mpc~!. Beyond the power spectrum there will be non-Gaussian (NG) higher-point
correlations in R.

The focus of this paper is the 3-point correlation function, also called the primordial
bispectrum, <RE1REQR123>I . It is conventional to characterise NGs relative to the size of
the power spectrum [37]

5 <RE1REZREQ,>/

Flhkarks) = 6 5 Y Pr(k) T Pr(ka)Pr(ks) - Prka)Prlks) 24

Momentum conservation implies that the three comoving momentum vectors can be arranged
to form a triangle. There are two limits of the above expression that are of interest to
us. Firstly, the size of NG is typically quoted in terms of a quantity, fnr,, defined by the
equilateral triangle configuration

I = F(k, k, k). (2.5)

Secondly, the characteristic cosmological collider signal appears in the squeezed limit kj ~
ko > ks, illustrated in figure 2.

As of now, primordial NG has not been detected in the CMB, which roughly puts the
bounds on fnr, S O(5 — 10) [37] (the exact constraint is shape-dependent.) However, future
datasets are expected to reach higher precision for NGs compared to the CMB. For example,
large-scale structure surveys (LSS) are projected to be sensitive to fxr, ~ O(1) [10], while a
more futuristic 21-cm tomography could probe NG as low as fxi, ~ O(1072) [15, 16]. These
datasets would be sensitive to our benchmark signals in section 4.

Calculation of the bispectrum is performed in the in-in formalism. The expectation value
of a Heisenberg picture operator at a time ¢ is given by [38, 39]

t

. rt ’ ’ " / ’
(Ou(t)) = (0|T {e’ Foaeiio Hi ) } Or(t)T {e cca i Hr (@)t } 10), (2.6)

where the subscript I indicates an interaction picture operator and Hj(t) is the interaction
Hamiltonian. The state |0) is the Bunch-Davies “vacuum” corresponding to the free Minkowski
vacuum at asymptotically early times (when each k mode has physical wavenumber |kn| > H),
while the ie prescription projects onto the interacting de-Sitter state as time evolves. The
primordial contribution to an expectation value is calculated at the end of inflation (on the
reheating surface, for example). Provided the primordial NGs are insensitive to the details of



reheating (which is a valid assumption since all the comoving modes that we are interested in
exit the horizon before reheating), one can calculate expectation values in exact dS space,
with the end of inflation approximated as ¢ — oo, or n — 0. In this limit the curvature
perturbation is most easily calculated in the spatially flat gauge

_ 09
%o’

where the time derivative of the inflaton background ¢y ~ constant during inflation. In the

R (2.7)

squeezed limit we can simplify eq. (2.4), and define Fyq as

5. (005 005,00r)
Fiq= — ks _Ths , 2.8
V= 12N 50 695 V097,005 ) (28)

where eq. (2.7) was used to write the NG in terms of inflaton fluctuations. Henceforth, we
will ignore the subdominant slow-roll corrections and work to leading order in the slow-roll
background.

2.2 Recap: chemical potential for spin-0 particles

The goal of this paper is to extend to spin-1 particles the mechanism of chemical potential
that was discussed for spin-0 fields in ref. [31]. We therefore review some of the important
lessons from ref. [31]. In the minimal cosmological collider, the exponential suppression
~ e ™/H for fields with m > H is a consequence of the fact that the inflating background
typically provides energies of order H, or intuitively a Hawking temperature Ty = H/(2m).
One way to overcome this “Boltzmann” suppression is to incorporate a “chemical potential”
that is larger than Ty, and can allow excitations of particles that are heavier than H. Such a
chemical potential can be provided by the kinetic energy of the rolling inflaton. Coupling the
inflaton derivatively to the current of the heavy field can produce a chemical potential-like
operator. For a complex scalar y of mass m, the Lagrangian looks like

Ly D [(VM—FZ'V“QS) X} [(V“ —zvjlzd)> XT} — M?|x* + ax + h.c

A
V. oVHe

vV
= V= M i e VeOVEG o b (2.9)
A A ———
chem pot explicit UgA)

where V, is the diffeomorphism-covariant derivative and J# = i(xV*x! — xTV#y) is the
Noether current associated with the global U(1) rephasing symmetry of x. The role of a
small explicit U(1) symmetry-breaking term in eq. (2.9) will becomes clear shortly. After
plugging in the background for ¢, we see that the Lagrangian contains a charge density
operator, %JO = \J?, with a chemical potential A\ = %

The effect of a chemical potential is more apparent in a “rotated” basis y — e *®/Ay,
where the Lagrangian in eq. (2.9) becomes

Ly zotated, IV,.x 2 = M2 |x|* + axe A 4 pe.

=— Vx> = M?|x|* + axe N0 4 p e (2.10)



where we have used e /A = ¢~i(¢o+d9)/A — o=iM—i06/A  The importance of symmetry-
breaking is now manifest; it acts as a “bath” that allows us to violate y number conservation.
However, there remains a non-linearly realised symmetry

X = ey
5 86 + a, (2.11)

protecting the flatness of the inflaton slow-roll potential, that ensures correlators are free
of late time divergences.

The coupling in eq. (2.10) is effectively a linear source term for x, where the source has
frequency A. This source can now produce particles as heavy as A without any suppression.
This is further illustrated in section 4.1. The non-Gaussianity due to an exchange of a heavy
scalar with m < X\ was found, up to an unimportant phase, to have the following form

ko \ —3/2+i(o—A)
1) +ecec. (2.12)

qu = ‘foscil(ﬂOy)\)‘ (kjg

The signal is unsuppressed for pg < A as expected, with a potentially observable | foscil| ~
0(0.1 — 1) [31].
The key takeaways from ref. [31] for implementing the chemical potential are:

1. An explicit breaking of the heavy particle number conservation is required,

+ip/A

2. The chemical potential can be implemented as a phase e so as to nonlinearly

realise the symmetry in eq. (2.11).

We will use these simplified principles in our study to generalize the mechanism to complex
vector fields.

3 A chemical potential for tree-level spin-1 exchange

3.1 Chemical potential in the rotated basis

This section establishes the spin-1 equivalent of eq. (2.10). Consider a complex vector field
A, of mass m. The U(1) invariant Proca Lagrangian is

1
Ly = *§’Fuu|2 - m2|Au|2- (3.1)

As seen in eq. (2.10) in the previous section, a chemical potential can be realized as a
¢-dependent phase in the U(1) symmetry-breaking term. The simplest U(1) breaking term
coupling A, linearly to the inflaton is naively L, = CV#(bA“e*M)/ A+ c.c. However, this
interaction is redundant because integration by parts yields a term, Lin, = —icA(V MA“)e*id’/ A
which is zero in the leading order equations of motion V,A* = 0. This coupling can therefore
be removed by a field redefinition,

c* ip/ A
Ay A+ 5V e o/, (3.2)



The leading non-redundant interaction that is linear in the vector field comes from a dimension-
7 operator,’

Lin = %Vﬂ)/lﬂvpgbquﬁe*i‘b//\ + c.c. (3.3)

Despite high dimensionality, this interaction is relevant as it contributes to the bispectrum
at tree-level, which makes the calculation analytically tractable. The interaction above, along
with the Proca Lagrangian, has the residual nonlinearly realized symmetry,

o= o+ a,

Ay A4, (3.4)
which protects the flatness of the inflaton potential, and ensures no late-time divergences
as in eq. (2.11).

3.2 Expansion parameters

Self-interactions of the inflaton follow a derivative expansion £(V ¢/ A?), where A is roughly
the scale of the EFT breakdown. Requiring this to be a controlled expansion gives the
first constraint

A > (do)Y? ~ 60H. (3.5)
Combining with the definition of the chemical potential in eq. (1.5), eq. (3.5) implies
A < 60H. (3.6)

The strength of massive vector interactions at high energies is in general sensitive to both
its mass and couplings. Recall the propagator (in Minkowski space)

Dyn(p?) = ——— ( V—p“p”) .
(P p? +m? —ie T m2 )’ (3.7)

has a term that scales as 1/m?, which enhances the interactions of longitudinal modes in
the UV. Determining the scale at which massive vector interactions get strong, and thus the
EFT breaks down, is most easily done with the Stueckelberg trick. The high-energy behavior
of the longitudinal mode can be isolated by restricting to the form [40] (see [41] for a review):

1
A= —V,m. (3.8)
With this form, the interaction in eq. (3.3) looks like
C —id/A
Lint % — 5V, 0V 1V 6V e /A (3.9)

As expected, the interactions of the longitudinal mode are enhanced by a factor of cE/m
for momenta of typical size E¥. Requiring that the interactions remain weak up to £ ~ A
gives the final constraint

m
—. 1
<y (3.10)

!Such an interaction can arise by integrating out a heavy scalar, o, which interacts with the inflaton via
two couplings of the form £ ~ {oV,,pA" e/ 5(V ,¢)?}.




3.3 Other lower dimension interactions

While we have stated the leading linear interaction between ¢, and A,, there are lower
dimension interactions that are quadratic in A,. We choose a power counting for these
couplings consistent with eq. (3.3) in which every A, appearing in interactions with ¢ is
multiplied by c. In this way the leading such interactions appear at dimension-6 and are
given by
Lg ~ ﬁATAMV VL) @ATA VHOVY . (3.11)
A2 TH v TOA2 TR
These provide generalised mass terms m? ~ |¢|>A2. However, due to equations (3.6) and (3.10)
these are subleading to the mass term in (3.1), and will be neglected here.
In addition to these higher dimension terms there is the possibility of providing a chemical
potential for pairs of vectors within loop level processes

Ling ~ |c*|A2A At 29/0 4 pe. (3.12)

This is an interesting possibility which we will explore in future work, but in this paper we
will focus on the tree-level effect due to the linear coupling.

3.4 Interactions

The interactions can be obtained from eq. (3.3) by separating the fields into their homogeneous
backgrounds and fluctuations, ¢(Z,n) = ¢o(n) + do(Z,n), Au(Z,n) = Au(n) + Au(Z,n). To
avoid confusion with the time component of a 4-vector we have called the vector background

“ b

o
cumbersome notation.

and we have reused “A,” (rather than “5A,”) for the fluctuation to avoid overly

When the background for the vector is plugged into eq. (3.3), we are only left with inflaton
self-interactions. While these interactions are important for the evaluation of the full shape
of non-Gaussianity, they do not contribute to the non-analytic part as it requires on-shell
propagation of a heavy particle. Therefore, we will not discuss the effects of inflaton self-
interactions in this work. The full set of interactions and the expression for the homogeneous
background of the vector field can be found in appendix B. Below we only collect terms
that are relevant for the calculation of the non-analytic part of the NG. For the bispectrum,
both mixing and three-point vertices are important.

The quadratic mixing terms between the two fields are as follows,

Lonix = —Hmix = %(—n)“ {in/\3A05¢ + 302X 4069 — )\2772,428,6(;5} + h.c., (3.13)

where the prime indicates ' = 9/9n.
At tree-level, the relevant three-point interactions are those that contain two inflaton

fluctuations and one vector fluctuation,

C

L[ A3 _
Laos=—Haps= A2 (=)™ { 7”140&?2 —3iA2n? Agdpdg’ —3 0P Ag(64')?

+ M2 Ag(9;00)2+iN* 2 Aid o 9;0p+2 > Aid ¢ 8¢5¢}+h.c.

(3.14)

,10,
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Figure 3. The tree level contributions to the three-point function due to exchange of A,,. Vertices
above 7 = 0 come from the expansion of the anti time-ordered exponential in eq. (2.6), whilst the
vertices below come from the time ordered exponential. The wavy line is the heavy vector, and the
dashed lines are inflaton fluctuations.

In the next section we derive the central features of the NG calculation, while the detailed
calculation is performed in appendix C.

4 Non-Gaussianity due to massive spin-1 exchange

4.1 The stationary phase approximation

The bispectrum can be computed by plugging interactions into the in-in formula of eq. (2.6),
. 0 N gt [0 N gt
<6¢3>‘77—>0 _ <0| {Tezf—w(l‘*‘if) Hy(n")dn } (5¢3)‘77—>0 {Te zf_oo(l_i€> Hr(n')dn } ‘O>, (4.1>

where we have used a shorthand §¢> = 5¢El 5(15];2 5(;5,;3. We restrict to the relevant interactions
described in egs. (3.13) and (3.14) in the previous section, (Hmix, Haeg) C H1. By expanding
the exponential, we can see that the dominant non-analytic contribution occurs at tree-level
with two vertices and four types of diagrams,

<6¢E16¢E26¢E3>;7—>0 =1  +1, +I +1 _
= 2R,€(I_+ + _[++), (42)

where the +/— notation indicates whether the mixing and the 3-point vertices are chosen
from the time-ordered /anti time-ordered exponential respectively. It is easy to check that I, _
and I__ are the complex conjugates of I_ and I, respectively, leading to the simplification
in the second line in eq. (4.2). The corresponding diagrams are shown in figure 3.

Let us first focus on the I_, diagram, which is easier to analyse and is useful in
understanding the role of the chemical potential. Since the time ordering is trivial in this

diagram, the calculation factorizes into two time integrals, one at each vertex,
e 43
_+—F ks k12+C.C.. ()
Here, I ks corresponds to the integral at the mixing vertex, while Ij,, corresponds to the integral
at the cubic vertex. These integrals typically contain polynomial functions accompanied

by highly oscillatory phase factors,
o [t o)

I, = [ defi@eten, (4.4)

— 11 —



where a convenient variable of integration, x = —ksn, is chosen and

p= (kl —+ kz)/kg, (4.5)

is the squeezing parameter.

Let us focus on the oscillatory phases as they turn out to be important in determining
the presence (or absence) of exponential suppression. Firstly, the chemical potential provides
a high frequency source at each vertex as seen in egs. (3.13) and (3.14),

H; eii)\t — 6¥i)\log(fn)' (46)

Secondly, the mode functions for the fields also have oscillatory time-dependence (equivalent

of eF* in Minkowski space),

—

So(k,m) oc ¥k,
Au(kym) oce™ JNER T e i [ av B : (4.7)

where p = \/m? — 1/4 ~ m for m > H, and +(—) in the phases corresponds to particle
creation (annihilation). The full expressions for the mode functions of A, are given by Hankel
functions, as described in appendix A. However, for m > H, they can be approximated
by the WKB solutions to a harmonic oscillator with time-dependent frequency Ej(n) =

(—kn)% +m? = | /k2) 4 m?, which is used in the second line of eq. (4.7). This is essentially
the locally Minkowskian energy of a massive particle in the expanding dS background. Putting
these together, the phases in eq. (4.4) can be written as

z !
g(a:):—)\ln:c+a:+/ x—%\/x’Q—i-/uL?,
x !
h(az):)\lnm—px—/ x—x/\/xa—{—u?. (4.8)

We see that due to the highly oscillatory nature of the exponential in these time-integrals,
the contribution is suppressed except where the phase is stationary. In I, integral, g (x)=0

occurs when

(—k3n) + 1/ (—k3n)? + p? = £\

)\2_ 2
al = (—kn) = QA“ . (4.9)

Similarly, for I kt , integral, h'(z) = 0 happens when

(—k1n) + (—kon) 4+ \/(—k3n)? + p2 = £
A —
= ay = (—kany) = TM- (4.10)
The interpretation is clear: the integrals are dominated by the time when the energy flowing

through the vertex is conserved in the local Minkowski frame. The intermediate heavy
particle is therefore produced on-shell, and can propagate over a long distance leading to the
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characteristic non-analytic signature. If the time integrals do not include a region where energy
can be conserved modulo H (supplied by the expanding spacetime), putting the heavy particle
on-shell will lead to an exponential suppression analogous to Boltzmann suppression with the
chemical potential taken into account [31]. This is also the reason behind the Boltzmann-like
suppression e~ in the minimal cosmological collider signal, as a stationary point does not
exist on the real axis for egs. (4.9) and (4.10) if A = 0. The chemical potential, through the

factors of eTiM

, is effectively injecting or removing energy at each vertex, and is therefore
crucial for overcoming the standard Boltzmann suppression of cosmological collider signals.

The non-analytic dependence can be pinned down from the phase at the stationary points,
I_y o e9@=) (@), (4.11)

Since xz_ only depends on p and A, ¢9(=-) only provides an overall phase. However, Ty
depends on the degree of squeezing p, and e(@+) will contain the non-analytic dependence
on p. The h(z) in eq. (4.8) can be straightforwardly evaluated to be

Lt
h(z4) =Alnzy —pry — /2t + p? — pln ; 5 -] (4.12)
[ RV E i o U
In the squeezed limit p > 1, every term is approximately independent of p besides the two
logs, (A — p) In(x4). The result therefore has a non-analytic dependence coming from
eMet) = piln=2)gid(1A) (4.13)
Determining the prefactors in the integrals requires considering the polynomial functions in

eq. (4.4) and performing the Gaussian integral around the stationary point. The normalised
bispectrum given in eq. (2.8) has the form,

1 .
Fyy = ifoscﬂ(u, A, COS 0)p75/2+’(“*>‘) + c.c. (4.14)

Following the outline described above, the full calculation of the non-analytic component
of the bispectrum is performed in appendix C. Here we simply report the final answer for fogci:

40m|c? . A3 AN C(u, A) [A(p, A) + B, M) cos? 0]

v2m2 88\ )2 — ) - (41)

where functions A(A, 1), B(A, u), and C(A, ) are given by

foscil(/% )‘a COS 9) =

1
A== (—3>\4 + 8\ — A2(5p% + 2ip 4 6) — 22u(p? — 2) + 202 (1 + ip — 1))

8
3t n
-5 (1ro(5)).
- (200—p)? 2
N v T _ 2> (A —p)? 2 Z( P +“)
B—Q(QZ()\ 0] A2 — N+ p) ( 5 +u +2((/\7“)2+u2)
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A2 2 22 (A2 + p2)2

Snfiro(2)) o

where we used A > u, and p > \/u for the approximations. Note that B is smaller than A

2 9\2 N2 2 2 N2 a\d 4
oo 3 -1 H.(l_%(A M)) Ao L0242 i )

by a factor of p/A, which is relevant for the determination of spin as discussed in section 5.3.
Also in the smaller squeezing regime, p < A\/u, B will have some modest p-dependence.
Observing the non-analytic signal in this regime will be useful in determining the particles
mass, and will be discussed in the next section.

4.2 Other subdominant diagrams

The vector propagator in all four diagrams requires an A, to contract with an AL, which
means one vertex gets e\, whilst the other gets e . In the I__ diagram ) is either injected
or removed at both vertices, which corresponds to the propagation of an anti-particle or a
particle, respectively. We studied the case of anti-particle propagation above, where energy
is injected at both vertices, and a stationary point therefore exists in both integrals. It is
then straightforward to conclude that stationary points do not exist for particle propagation,
where energy is instead removed from both vertices. This diagram (and its complex conjugate

—2r(Mt1) - For the I, and I__ diagrams,

in I _) is therefore exponentially suppressed as ~ e
the energy from the chemical potential can only be injected at one vertex, and must be
taken away at the other. Therefore, there is always one time-integral in which a stationary
point does not exist. This gives a slightly less severe but still exponential suppression of
the form ~ e~ A=), For more detailed discussion, we refer the reader to ref. [31]. We will

henceforth only focus on the dominant diagram I_,.

4.3 Apparent late-time divergences

Lastly, we would like to address the apparent divergences in the integrals. It seems that the
inflaton fluctuations in the vertices that come from the expansion of the exponential phase
e 0N =] — i% + .-+ are not derivatively coupled. Non-derivative couplings of the inflaton
typically lead to late-time (n — 0) divergences in the integrals,

0 g ,
7= /_Oo sz(n)ezg(n). (4.17)

This is because the inflaton fluctuations become constant at late time (i.e. superhorizon
freezing) and f(n) n%/? coming from the heavy field dilution is not sufficient to nullify the
divergence 1/n* from the metric factor. However, the divergences in our calculations are
purely artifacts of the rotated basis that we are using. The residual symmetry in eq. (3.4)
ensures that the late-time diverges cancel when we sum over all Feynman diagrams, while
the stationary phase contributions that are coming from early time remain. The reader is
referred to appendix D for more details.
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Figure 4. The tree level contributions to the power spectrum involving the exchange of the vector. The
wavy line is the heavy vector, and the dashed lines are inflaton fluctuations. Kinematic considerations
show that the I_ diagram on the left is dominant, and the result can be calculcated in the stationary
phase approximation, as was done for the NG.

4.4 Correction to the power spectrum

Ensuring corrections to the two-point function are small compared to the usual primordial
power spectrum provides a further constraint on |¢|. To estimate the leading correction
we can first consider the case m > A. While this case is not the focus of this paper, the
calculation can be used to infer the constraint in the region of interest m < A. For m > A,
the vector can be straightforwardly integrated out by solving the equations of motion for
A, in eq. (3.3) and ignoring the kinetic term

¢ 1
 m2A3

Plugging back into the Lagrangian renormalizes the purely inflaton pieces. Expanding about

AP VHG(V ) 2e 10/ (4.18)

the slow-roll background leads to
1
Lo = _52(%5@2 + Ling(6), (4.19)

where Z — 1 = O(1)|c|?\*/m?A2%. The fluctuations should be canonically normalised by
5¢p — 6¢/v/Z. This has an effect on the power spectrum
11 1 lc|2A2 A
- N = — |1 1 -
OO0 = Zo18 = 918 l oW A

Since eq. (4.20) is scale invariant, sizable corrections to the power spectrum are tolerable.

(4.20)

For example, imposing the conservative constraint that the correction is at most 10% of
the free field contribution yields
2 4

|c\2% < 0.1%. (4.21)
In the scenario of interest for cosmological collider physics, m < A, there are two regimes: in
one regime the heavy particle is significantly off shell, just as in the m = \ case, and we can
expect its contribution to be of similar size. There is also the possibility of the heavy particle
being produced on shell, dominated by the I_ diagram for similar kinematic reasons to the
NG. The tree level contributions involved the exchange of the heavy vector are shown in

figure 4. The I_, diagram factorises and can be readily calculated, yielding

1 |c? AP 1 |e?

L 2 p<A L
2k3 m2A2 ()\2 _ M2)2 |C(,u, )‘)| — 0(1)2/{:3 m2A2

I, =0() 4N3, (4.22)
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Figure 5. A plot of the maximum possible signal size | foscil| within theoretical control as a function
of the mass m of the heavy vector field in inflationary Hubble units. We have fixed cos@ = 0.5. For
S A/2, the signal strength is within the sensitivity of future LSS and 21-cm experiments.

where C'(u, \) is given in eq. (4.16). Comparing with eq. (4.20), the on-shell contribution
is subdominant for masses p < A/2. Therefore, we obtain the same conservative constraint
that we derived from m 2 A, namely equation eq. (4.21).

5 Signal strength and key features

5.1 Signal size

The size of the signal is characterized by the amplitude |foscit| in eq. (4.15). In figure 5 we
plot the size of the signal |fosii| for the largest value of |c|/m consistent with egs. (3.10)
and (4.21). We also restrict to values of A\ < 40H, in accord with the constraint eq. (3.6)
from the requirement of perturbative control.

As expected, the exponential suppression is nullified and |foscii| is enhanced for p < A.
For heavier masses beyond the chemical potential, the nonanalyticity in the NG drops
exponentially as the on-shell production becomes inefficient. The increase in the maximum
allowed value of the coupling ¢ with mass is compensated by the 1/m? factor in the NG, as
seen in eq. (4.15), which leads to roughly flat profiles in figure 5. We see that depending
on the value of the chemical potential, a signal size of

|foscil’ ~ 0(1 - 103) (51)

is theoretically possible for a wide range of masses. A large portion of this signal space is not
excluded by current data, whilst still being able to be probed by future large-scale structure
and 21-cm experiments [10, 15, 16]. Note that the stationary phase approximation should not
be trusted for values of u close to A, since in this limit the stationary points are pushed to late
times, z_, x4 — 0, and the non-analyticity becomes approximately analytic. Therefore, the
non-analytic signal would not be separable from the background analytic part leftover after
the cancellation of IR divergences and that coming from the inflaton self-interactions. For this
reason, we restrict to regions y < A/2 in figure 5, with the largest mass m ~ 20H ~ 10'° GeV.
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Figure 6. A plot of the non analytic dependence of Fy, as a function of the squeezing (ki/ks)
with cos@ = 1/2. A measurement of the frequency of oscillation will allow a determination of the
combination u — A.

Even with this conservative choice, the chemical potential allows us to reach the typical mass
of the KK gauge bosons in a SUSY orbifold GUT scenario, to be discussed in section 6.

5.2 Inferring the mass and the chemical potential

As seen in eq. (4.15), the non-analytic dependence in the squeezed limit has the form
FSCI X pi(“_k)v (52)

which allows for an observation of the combination (u — \). Figure 6 shows the non analytic
dependence on squeezing for p = 20H, with A = 40H.

However, this form is correct only in the very squeezed limit. To see this, let us see
more carefully how the stationary point at kjs-vertex (x4 ) changes with squeezing. Using
m & i, eq. (4.10) can be solved to get

p)\ /\2 +p2u2 _ M2

S R

(5.3)

At large squeezing such that p > A/u, all but the second term in the square root can be
dropped. On the other hand, in the regime of modest squeezing with p < A/u, all but the
first term can be neglected. Therefore,

A—p) A
vo={ 7P > A (5.4)
T1p> P L )\/M

Since p > 2, such a regime can only exist if A\ > 2u, which we are restricting to anyway.
This change in the expression of the stationary point at kjo-vertex in different regions of

the squeezing parameter p has a direct effect on the imaginary exponent in Fy,. To see this,

let us zoom in on the non-analytic dependence that comes from the phase in eq. (4.12),

h(zy) = Alnzy —pry — /2% + p? — pln hs . (5.5)

12+ 2 4 p?
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For p > A/pand A > u, x4 < p, and the phase simplifies to (A — p) In(z4). However, in
the modest squeezing regime, x+ > u, and the second log term in the above expression
becomes approximately independent of p. The non-analytic dependence in this case comes
entirely from the first log term, which depends only on A. Therefore, the non-analyticity
in these two regimes goes as

i(u—A) > A\
Fy x {2(? ’ P> A (5.6)

L+p)?, p<A/p.

Observation of this change in the non-analytic exponent as we change the amount of squeezing
can be used to infer both the mass and the chemical potential, paralleling the results of
spin-0 case from ref. [31].

5.3 Constraining the spin

In ref. [6] it was claimed that NG due to spin-j exchange would have a characteristic
dependence on the shape of the momentum-conservation triangle. They used the minimal
coupling

L (V) (VO) Ay (5.7)

leading to a signal of the form

k
Fyq o< Pj(cos ) (kl
3

—3/24ip
) +c.c., (5.8)
where P; is the Legendre polynomial of a degree that is determined by the spin j. Observing
the signal as a function of cos# would then allow determination of the spin.

However, it was pointed out in ref. [7] that for odd spin particles, a cancellation between
diagrams leads to a more severe dilution factor of (ki/ks)~%/2. In [27, 42] the authors found
a sin? @ dependence for NG mediated by spin-1, by considering a minimal higher dimension
interaction. Here, because of the chemical potential, we find a different shape dependence
for spin-1 of the form

k
Faq = [Filp ) + Fal 3 cos?o] (1

. , (5.9)

> —5/24i(u—2XN)
where F;(u, ) can be read off from eq. (4.15).

It appears that an observation of the dilution will indicate the exchange of an odd spin
particle, but it may be hard to pin down the exact spin since there is no general form for the
shape dependence. Further investigation is therefore needed to know if the shape dependence
can unambiguously determine the spin in cosmological collider physics. It turns out that
in our model, F» is smaller than F; by a factor of u/\, so it may be difficult to observe
the 6 dependence. However, an observation of any dependence on cos 6 for the non-analytic
signal will be a smoking gun of non-zero spin.
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Figure 7. In orbifold GUTs the symmetry breaking occurs via boundary condition in an extra
dimension. We consider the gauge fields to live on an interval of length L. We must impose either
Dirichlet or Neumann BCs at either end of the interval. Imposing Dirichlet BCs will remove the zero
mode, explicitly breaking the gauge invariance in the IR for that particular generator. Neumann BCs
at both ends will leave a zero mode, such that after integrating out the extra dimension, the IR theory
respects the gauge invariance for that generator.

6 Embedding the chemical potential within orbifold unification

6.1 Trinification

Implementing a coupling of the form in equation eq. (3.3) requires the vector be a standard
model (SM) gauge singlet because the inflaton is uncharged under the SM. The simplest
SU(5), SO(10) GUTs do not include a complex vector SM singlet. However, the classic
trinification? scenario with a gauge group [34]

Ggur = SU(3)¢ x SU(3)r x SU(3)r/Zs, (6.1)

breaking to Gsm = SU(3)¢ x SU(2)r x U(1)y contains several neutral heavy gauge bosons.
The discrete Z3 exchanges the three SU(3) groups ensuring a single gauge coupling.
The symmetry breaking pattern for the gauge bosons is as follows

(8,1,1) — (8,1)o,
(17871) — (173>0@ (172)1/2@(1;2)_1/2@(1,1)0,
(1,1,8) — 4(1,1) ® 2(1,1); ®2(1,1)_y, (6.2)

where the numbers indicate the dimension of the representations under the GUT (left) or SM
gauge group (right) with the subscripts indicating the hypercharge. Of the 5 SM singlets
one linear combination is the hypercharge gauge boson, leaving 4 real, or 2 complex massive
vectors as candidates for a cosmological collider signal.

6.2 Realising the chemical potential coupling

The coupling in eq. (3.3) can be realised in the context of orbifold GUTs within 5-dimensional
effective field theory. In orbifold GUTs, the symmetry breaking, illustrated in figure 7, is
achieved by choice of boundary conditions (BC) on one or more (341) dimensional boundaries

2Note that all three unified groups mentioned are subgroups of Es.
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of a higher dimensional “bulk”. The full GUT gauge symmetry is respected by the bulk
action, but only the SM gauge invariance is respected on the SM boundary at x5 = 0. The
inflaton is a purely 4D field localised on the boundary at x5 = 0 [27].

The orbifold GUT symmetry breaking from trinification down to the standard model
gauge group was studied in [43, 44]. On the SM boundary, we impose the SM-gauge-invariant
conditions

V5 AM =0 = 0, (6.3)
A;)%M/bs:o =0, (64)

where S¥ indicates broken GUT generators. The boundary at x5 = L respects the full GUT
gauge invariance, and Neumann BCs are imposed on all generators

V5A,|pser = 0. (6.5)

After performing a KK decomposition, the BCs in egs. (6.3) and (6.5) ensure the existence
of a zero mode for the SM gauge bosons, whereas eq. (6.4) removes the zero mode for the
gauge bosons of the broken generators, leaving only the massive KK modes.

Let us denote by Y, = (AjSM +z’A§SM) u one of the candidate complex vectors corresponding
to two broken generators that are also SM singlets. The chemical potential coupling can
then be implemented via the interaction:

¢ —i
Sboundary D) /Vglg/d4xv,u¢(vp¢vp¢)e ¢/Av5Yu’x5=07 (66)

where the 5D effective gauge theory strong coupling scale Asp ~ 1672/Ng2 with g5 the
5D gauge coupling, and N = 3 are the number of colors of the various trinification groups.
Notice that since Y}, is a SM gauge singlet the coupling respects the SM gauge symmetry,
but not the gauge symmetry associated with the broken generators, which is allowed for
terms localised to the boundary at x5 = 0.

The 5D gauge field KK-decomposes as

o0 n— )T
Y. (x,x5) = \/Ezjlsin <(Z>5) Yu(”)(x). (6.7)

We will focus on the first KK mode with n = 1. The coupling in eq. (3.3) can therefore
be identified with

P 3/2
c= % (A?D> (AL)~3/?, (6.8)

where A is the cutoff of the inflationary EFT which must be before the 5D gauge theory
cutoff A < Ajp.

In the extra-dimensional framework the 5D gauge coupling, g5, is non-renormalisable.
Below the compactification scale M¢ = 7/L we match on to the SM or MSSM effective
theory. Tree level matching predicts gauge coupling unification at, M¢

gi(Mc) = L=

N (6.9)

where gi—123 are the SM gauge couplings.
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If we run SM gauge couplings up to high energies (where hypercharge is given its usual
GUT normalization), they unify crudely around the scale Mgyt ~ 1014 GeV. The discrepancy
may then be plausibly accounted for by loop level and SM brane-localised corrections to
eq. (6.9) that depend on the index i. A unification can be achieved with a compactification
scale of Mg ~ 5 x 1013 GeV. As the reader may have noticed, this scale is very close to the
inflationary Hubble parameter in high-scale inflation from eq. (1.1). The cosmological collider
prospects for such orbifold GUTs were explored in ref. [27]. One downside of this setup
however is that the corrections must be quite large since the unification in the SM is imperfect.

This issue is dramatically improved in the minimal supersymmetric standard model
(MSSM) as the running gauge couplings come much closer to unifying than in the non-
supersymmetric case, and SUSY helps to solve the gauge hierarchy problem between the
unification and electroweak scales. In the SUSY scenario, only small corrections to equation
eq. (6.9) are sufficient to fit the data to the unification hypothesis. A detailed accounting
of corrections to eq. (6.9) was given in [26, 43, 44], which points to a compactification
scale Mg ~ 2 x 10 GeV in the SUSY case. Interestingly, as pointed out in ref. [43], this
particular value of the compactification scale leads to the gauge couplings unifying at the
5D Planck scale. The UV completion of such a model may unify all fundamental forces
including gravity. While the compactification scale here is higher than the Hubble scale
of inflation H, it can still be brought within the reach of cosmological collider discovery
via our chemical potential mechanism.

The full model-building of an orbifold GUT coupled to the inflaton with our chemical
potential within a supersymmetric (supergravity) framework is left to future work. But
we expect this to be readily achieved, with the central relevant features already described
above. For the sake of simplification, we have also assumed that only the first KK mode
is below the chemical potential scale, i.e. m,, < A only holds for n = 1. Here m, is the
mass of the nth KK mode (Yén)),

My = (n - 1) Mec. (6.10)

Notice that the analysis of ref. [43] points to a mass for the first KK mode of m; ~ 105 GeV.
Combined with the restriction m; <

~

A/2 to trust the stationary phase calculation this
amounts to requiring my € (\/3,\/2). The analysis of the previous sections now hold for
Yu(l). It would be interesting for future work to consider the case where more than one of
the lowest lying KK modes are accessible, m,, < A for more than one n.

7 Discussion

In this paper, we have demonstrated that a chemical potential mechanism can be given to a
complex spin-1 particle coupled to the inflaton while maintaining EFT control, allowing its
propagation to be detected at tree-level. In line with the results of ref. [31] for spin-0, we find
that the chemical potential can lead to non-Boltzmann-suppressed signals in non-Gaussianities
(NGs) for masses up to the chemical potential, which can be as large as 60H. The size of the
signal can be within the reach of future experiments in a large part of the parameter space.

With the extended reach for single-production of massive spin-1 particles offered by
our chemical potential mechanism, the heavy gauge bosons of orbifold-trinification can be
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targeted. While this also includes the more motivated supersymmetric unification, which
has a higher GUT scale compared to the non-supersymmetric case, further model-building
is required to realize inflation and chemical potential within full supersymmetric dynamics.
While in this paper we have focused on a chemical potential mechanism that allows single-
production (therefore at tree level) of heavy complex fields, we saw in section 3 that there
is also a U(1)-breaking term quadratic in the complex vector field which would give rise to
pair-production (at loop level). Like the inflaton, the pair would have to be a SM-singlet, but
now each member of the pair may be SM-charged. We leave this exploration to future work.

We see that an observation of the non-analyticity at intermediate and large squeezing can
be used to determine both the mass and chemical potential. Our results are also consistent
with the general expectation that NGs of odd-spin heavy particle exchange come with a
dilution factor of (ki /ks)~%/2 [7]. Tt would therefore be possible to say that a cosmological
collider signal is due to exchange of a particle with odd spin, but we found a dependence
on the shape of the triangle that seems to suggest it may not be possible to say for certain
the particle is spin-1. In future work it would be interesting to explore the possibility of
determining the spin of a particle observed in cosmological collider physics. In addition to
this, the chemical potential mechanism seems generalisable to higher spins, and we hope
to apply this methodology to search for higher spin states in the future, including those
that might arise in superstring theory.
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A Mode functions

The mode functions for the inflaton and a massive spin-1 particle in dS space are given
below (see ref. [7] for a full derivation). After quantisation, the Fourier transformed inflaton
fluctuation is

Seg(n) = wk(n)e_g + ur(n)ck., (A1)
where ¢f, ¢ are the creation and annihilation operators, respectively. The mode function
is given by

un(n) = éﬁu — ik, (A.2)

where k = |k|.
For the vector, we focus on the longitudinal mode, which is the only polarization that
is affected by the chemical potential in our implementation. The longitudinal mode of a
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complex vector is quantized as
ALk, n) = u(k,n)a_g + o, (k,m)bl (A.3)

where ag, IA)E are the annihilation operators for the longitudinal mode of the particle, antiparticle
respectively. The bar indicates complex conjugation. For the longitudinal mode

7= (olkm) a1k &) s &= (A4)
with explicit forms
Go = ANo(—kn)*/*H}) (~kn),
71 = £ ANo(—kn)!/2 [~ H (k) — (k) (HD 1 (ko) — B (k)] (A5)
where y = \/m2 — 1/4. The prefactors are determined by normalisation,
T 1 1
No =\ o
A = /A2, (A.6)

If the particles mass is large compared to Hubble, u > H, we can approximate the
mode functions by their adiabatic (WKB) solution

1 $3/2
—kn) =
my/2k (22 + p2)1/4

1 Z2IZ’2+M2 .'131/2 - [T 2 [ pit2 !
5 — —kp) ~ — 2 2 2 i [T/ 1u2/a2da’ AS
a1(z n) T (2 Ea /2?4 (x2—|—u2)1/4e (A.8)

We will use these forms instead of eq. (A.5) henceforth. This will greatly simplify the

e (A7)

oo(z =

calculation as we will see in appendix C.

B The full set of interactions

The full Lagrangian along with the interaction given in eq. (3.3) is
1 1 C —
L= =5 (V) = Var(0) = 51 Fu[* = m?|A%| + (5 VoA (V)%™ e, (B.1)

where V;;.(¢) is the slow roll potential that drives inflation. It is easiest to calculate the
background fields by performing the field redefinition

C*

—a (V,0)2V e/, (B.2)

A= AL+

which removes the interaction term and replaces it with

Lint = —3rg P V,0V(Vo0))e /™ + hue, (B.3)
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In this basis, the interaction becomes trivial if all three ¢’s are replaced by the background,
¢o(n). To see this, notice that (qu§)2 is a scalar, so the second covariant derivative can be
replaced by a partial derivative, d,. If both fields are set to their background configuration,
(V,00)? = (A)? is constant. The partial derivative then gives Lint(¢) = 0. Therefore, after
the field definition the vector cannot obtain a VEV. Undoing the field redefinition in eq. (B.2)
then implies that in the original basis the vector field has a background A, (n), which can
be found by plugging ¢¢ into the shifting term in eq. (B.2),

* 13
Aul) = 855 (), (B4

Expanding both fields about their background, ¢ — ¢g + d¢ and A, — A, + A,, gives
the full Lagrangian

2
L= Lo + c(—mX* (=) Ag (e — 1) — zﬂﬂgxﬁ cos(8¢/\) (B.5)
_ %)\2(—77)”\VM5¢A“6*1’5¢/A 4 2§)\2n2(_n)i>\A05¢/845¢/A
lc[* N° / c ix 2 _isg/A
- WX(—W(M cos(0¢/A) — p)\(—n)(—ﬁ) Ao(V,op)e
— 2SN =n)(—n)*V 5¢Aﬂ5¢'e*@'5¢m+2@&(v 56)? cos(d¢/N)
A2 TV mZ AZ\VP
ERRSPe ¢ i u 2 _ish/A
4L (501 con(36/A) + g (~n) VAN (V50
<2 X 5 (V,660)? cos(86/A) + h
- WF” ' (Vpd¢)~ cos(0¢/A) + h.c.

C Detailed stationary phase calculation

The leading contribution to the three point function is calculated by expanding eq. (2.6)
to first order in perturbations. As argued in the main text, the leading contribution comes
from the I_, diagram

Iy = (0| /d433—\/—giHmix5¢g35¢,;15¢,;2 /d4x+\/jg(—i)7-l,4¢¢|0> +ce.  (C1)

After contracting all fields and factoring out momentum-conserving delta functions, the

result factorises into two integrals
‘C|2
A3

The first integral over the two point mixing vertex is

Iy ILLE +ce (C.2)

1

Ik_?):\/%

0
d . . _ P ) _
/ FZ(—U) A {(—“7)\3%3 + 3n° N1y, ) 5o (ks, n) — Z>\2n2k3uk301(k3,n)} - (C.3)

First insert the mode functions from eqs. (A.2), (A.7), and (A.8), then make the substitution

x = —ksn to massage this into a form appropriate for applying stationary phase
A2 o0 C(z) ;
A £19(0), ()
ks Qﬂmkg’/%M 0 23/2(22 4 p2)1/4
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The two functions are given by

C(z) =i(1 —ix) </\—|—\/ + p? —l—;w) — 3x% (C.5)
g(a:):—)\ln:c—i-a:#—/x\/l—l—uz/dey. (C.6)

This integral has a late-time divergence in the limit x — 0. However, the residual shift
symmetry ensures that the late-time divergences cancel in the sum over all Feynman diagrams.
This is discussed further in appendix D. Since the stationary phase occurs at early time,
well away from the n — 0 boundary, the contribution from around the stationary point is
still a valid method to evaluate these integrals.

The stationary phase approximation ¢’(z_) = 0, yields z_ = (A2 — u2?)/2), and ¢"(z_) =
4X3/(A\* — p*) for the time and (inverse of the) variance respectively. The result is

)\2 1t C(l’,)eig(xi)
2v/2mks* AN 9" (@) 232 (22 4 p2)1/47

\/771'A2 \/X i A
= : C(x_)e A (C.8)
mkg/Q—z)\ A2 — p2

I, ~ (C.7)

where €(#A) is an overall phase that can be neglected. Notice that the time calculated
from stationary phase is identical to that estimated by energy conservation in the locally
Minkowski frame, with the mass m replaced by u = \/m? —1/4 ~ m

C.1 Squeezed limit

The second integral comes from the three-point vertex, and carries the dependence on the
shape of the triangle. There is a sum over both contractions of the external legs with the
inflaton fields in the vertex

0 d77 i)\ )\377 3 122 / 3.0 1
/ —— F ANk ko | gy ugy =3I Ugy Ug, — 3AN U, U, | 00
/ kdk?) 2

+E2.l;:3 (_)‘27I2uk1 Uky +2i/\773u;€1uk2> o1(ks,n)+ (k1 <> kg)} .

(C.9)

Equation eq. (C.9) is solved by again substituting z = —k3n, and the mode functions from
egs. (A.7) and (A.8).

The term multiplying o1 is almost antisymmetric in the exchange of k1 and ko, El . Eg =
—k1ks cos @ whereas EQ . Eg = kokscosf. In the squeezed limit there is a slight difference
between k; and ks. Using the cosine rule and Taylor expanding

k3

ks
— 1_7
k‘g—]ﬁ( A cos9—i—O(k1

) > — k1 — ko = k3 cos 0. (C.IO)
1

The second integral can be massaged into a similar form to the first

A o A B 29 .
L, = 73/2+1'A/ dz (f/)2+2 (5'3);:015/4 ¢ih(@). (C.11)
2/ 2mk3k3ks w32 (2% + i)
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N opx A2 . px 2 ~(px\® pr\*
1 i2x% + ,u2 1pT 2 [ px 2
— 2 2 -/ 7 e e
B(x) 2<\/x +u +2$2+M2 A(l—i— 2) +2l<2) , (C.13)
h(z) =Alnz — pz — / 1+ p2/22da’ (C.14)

where k1 = ko was taken in all terms besides those with a factor of k1 — ks.
The stationary phase approximation in the squeezed limit gives =4 ~ (A — u)/p, and
|n"(z4)| =~ p?/(X\ — p). In this integral the phase depends on p since

h(a:+):)\lnx+—px+—\/xi—|—,u2—,uln( ; x+2 2). (C.15)
Wt p g+

In the squeezed limit every term is approximately independent of p besides the two logs,

(A — ) In(x4). The result there has a non-analytic dependence coming from

(@) — =2 gid" (uX), (C.16)

The final result is given by

4 VA N Az ) + B(xy) cos® ‘9p1/2+i(u7)\)

I = |
M2 o amkdkdk; TN VB - p)

(C.17)

Combining equations (C.2), (C.8), and (C.17) leads to a result for the three point function

n Tl psien X ACG) [Ary) + Blay)cos®0] )
2v2m2k3 k3 A3\ (A= )X = p?)

I_4

Equation (2.8) is then used to relate the three point function to the observable quantity, Fyq
Fiq = foscit(c, s, Ap 7220 e (C.19)

where the amplitude of oscillations is given by

foscil(cv H, )‘)

20wt N \/XC(:U_) [A(x4) + B(xy) cos® 0] ' (C.20)
w

T 3vom? A (A — ) (N2 = p2)

D Cancellation of late-time divergences

In this section it is shown that the apparent late-time divergences in calculations due to the
non-derivative inflaton couplings are ultimately absent. It is demonstrated that the leading
late-time divergences cancel in the sum over all Feynman diagrams, and that the stationary
phase approximation extracts the non-analytic signal relevant for cosmological collider physics.
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D.1 Justifying the stationary phase approximation

The divergent integrals appearing in the NG calculation are of the form
I(p) = p™ /OO dww*nii(uﬂ)eipccefif(x,u,/\)7 (D.1)
0

where © = —kn. For n > 1, the integrand in eq. (D.1) diverges as x — 0. In the vector case,
n = 3/2, while in the scalar case of eq. (2.10), n = 5/2 or 3/2. Therefore, it appears that
there are late-time divergences in our integrals. Before we demonstrate finiteness, notice
that if we differentiate with respect to the squeezing parameter p enough (say ‘k’ times), the
effective n can be made small enough such that the integrand is rendered finite,

8k
Therefore, the form of I(p) must be
I(p) =1, + Lp+ - - - + I;p"~" + finite, (D.3)

where the I; are potentially divergent constants of integration. From this, we learn that the
apparent late-time divergences (which eventually cancel with other diagrams) are analytic
in the squeezing parameter, p. In cosmological collider physics we are interested in the
non-analytic dependence, which only comes from the region at early times near the saddle
point of eq. (D.1). The issue of late-time divergences therefore does not affect the calculation
of non-analytic dependence in the diagrams. It is therefore justified to only consider the
diagrams for which a saddle point exists, or equivalently for which energy conservation can
be satisfied at each vertex, and perform the stationary phase approximation, ignoring the
region of integration near x — 0.

The reader may still worry about the validity of the model since the analytic part of
the NG seems to diverge. Below, we justify why the apparent divergences cancel, at least
for the leading non-Boltzmann suppressed contributions.

D.2 “Integrating out” the vector field

In the following sections we treat the tadpole of the heavy particle perturbatively. Here
we show that despite the individual diagrams appearing to be divergent, the leading late-
time divergences must cancel when all diagrams are summed. This is a reflection of the
shift symmetry

6p— 0o+ a, (D.4)
A, et A, (D.5)
which protects the slow-roll potential of the inflaton.

As seen in the main text, the tree level contribution to the inflaton three-point function
is of the form

0 dT] 0 dn/
<5¢3>/ - /oo W —00 ?7/5’)/2']0(77777/)7 (Dﬁ)

— 27 —



where f is some function satisfying f(0,0) = const, and the integrals may or may not be
(anti)time-ordered. These integrals are divergent at late-times, and one may worry about
two possibilities:

1. There are regions of integration in which 1 > 7’ (or vice versa).

/

2. An overall divergence in the integration region n =~ n' — 0.

Since we are treating the tadpole perturbatively all diagrams involve a single internal line
of the heavy particle. In the first case the particle is propagating for a very long time and
therefore must be on-shell. The vertex at late times cannot then satisfy energy conservation
so these will be exponentially suppressed diagrams.

In the region of integration n ~ n’ — 0, the particle is propagating for a short time and
is therefore off-shell. In this scenario we have too much energy (m < X) to produce the vector
on-shell, and its exchange can be integrated out to give a local vertex.

To understand how this works we go to the local Minkowski frame at n ~ 7" — 0. We
consider the Minkowski space Feynman propagator with 4-momentum, k. Due to the A
injection we can say that the energy going through the intermediate line is kg = A + dkg. In
this case there is a well-defined expansion of the heavy off-shell propagator

t {

— - D.7

k2 —m? 22— m2 4 2\ko + 0k2 — |k|2 (D7)
i 20k

TN m2 1_/\2—m2+”. ’ (D-8)

where successive terms are suppressed by 1/(A? — m?), rather than the usual 1/m?. The
contributions to a correlator in the region n &~ 1’ — 0 can therefore be reproduced with local
effective vertices (polynomial in dk,) involving only d¢. The symmetry eq. (D.5) is then
simply a shift symmetry for d¢, leading to manifestly divergence free derivative couplings.
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