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A B S T R A C T

Deep reinforcement learning (DRL) has been shown to have numerous potential applications in the real
world. However, DRL algorithms are still extremely sensitive to noise and adversarial perturbations, hence
inhibiting the deployment of RL in many real-life applications. Analyzing the robustness of DRL algorithms
to adversarial attacks is an important prerequisite to enabling the widespread adoption of DRL algorithms.
Common perturbations on DRL frameworks during test time include perturbations to the observation and the
action channel. Compared with observation channel attacks, action channel attacks are less studied; hence,
few comparisons exist that compare the effectiveness of these attacks in DRL literature. In this work, we
examined the effectiveness of these two paradigms of attacks on common DRL algorithms and studied the
natural robustness of DRL algorithms towards various adversarial attacks in hopes of gaining insights into the
individual response of each type of algorithm under different attack conditions.
1. Introduction

Deep reinforcement learning (DRL) has seen substantial successes
in multiple domains of applications such as design (Abbeel et al.,
2006), scheduling (Wang et al., 2019) and robotic control applications
in industrial automation (Bahrin et al., 2016). Contrary to supervised
learning, RL algorithms train an agent to learn to perform a given
task in an environment by making sequential actions and observing
the resulting rewards to learn an optimal policy. In recent years,
advancements in neural networks have led to the popularity of DRL,
where a deep neural network represents the RL policy. Although neural
networks are powerful function approximators, they are also extremely
easy to fool into making erroneous predictions by applying perturbation
on the model’s inputs (Goodfellow et al., 2014). This observation led
to numerous studies on the robustness of deep learning algorithms. A
study by Huang et al. (2017) proved that similar adversarial attacks
could also be extended to manipulate RL agents where the RL agent
is vulnerable to subtle adversarial attacks that are not perceivable to
humans but could cause a significant change in RL policy’s actions.
Subsequently, this has led to the development of several other success-
ful adversarial attacks (Behzadan and Munir, 2017; Lin et al., 2017;
Pattanaik et al., 2017; Xiao et al., 2019; Lee et al., 2020).

While numerous works have developed DRL algorithms that are
robust towards different perturbations (Tan et al., 2020; Zhang et al.,
2020, 2021; Moos et al., 2022), to the best of our knowledge, a
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study that compares the response of popular benchmark DRL algo-
rithms towards common adversarial perturbations is still lacking in
the literature, and this work aims to fill in such a gap. Specifically,
in this work, we analyze the performance of multiple DRL algorithms
commonly used in literature when subjected to observation and action
perturbations. Most of the perturbations we study in this work are
also commonly used perturbation methods in the literature. Although
these perturbations are typically generated using different methods,
in practice they could manifest in many forms, such as a result of
malicious attacks aimed at degrading the RL algorithm’s performance
or as external environmental factors such as faulty sensors or sudden
system load that an RL-based controller needs to handle (Jan et al.,
2021; Argawal et al., 2021). As a first step, we restrict our experiments
to existing model-free RL algorithms that are designed for continuous
action space environments, which provide a more realistic proxy to
industrial robotic applications, where adversarial attacks are of greater
concern. Our experiments aim to answer the following questions: (1)
Are the existing DRL algorithms especially sensitive to one class of
adversarial perturbations over the other? (e.g., observation vs. ac-
tion space perturbations), (2) Is there a specific DRL algorithm that
is naturally more robust than all other algorithms under adversarial
perturbations and (3) Is there a limitation of the magnitude of the
perturbation on the degradation of the DRL performance, i.e., is there
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an empirically observable threshold in which perturbations below or
above this threshold will not affect the behavior of the DRL policy? As
such, we aim to assess the performance of agents across perturbation
levels and identify the range of perturbation that has the greatest
impact on each agent, rather than the effect of the magnitudes on
the imperceptibility of the perturbations. Additionally, we intend to
rank the algorithms based on their ability to perform under varying
levels of difficulty and different attack strategies. The results of our
experiments are intended to offer insights into the robustness of these
DRL algorithms and serve as a stepping stone for the development of
more robust DRL algorithms in the future.

2. Related works

2.1. Introduction to adversarial attack

Adversarial attacks on deep neural networks were first popularized
by Szegedy et al. (2013), who demonstrated that small perturbations
added to input images could lead to significant misclassifications by
image classification models. These attacks expose vulnerabilities in
DNNs, challenging their robustness and reliability.

2.2. Types of adversarial attack

Adversarial attacks are generally categorized based on the adver-
sary’s knowledge of the machine learning (ML) model:

1. white-box attacks: The adversary has full access to the model’s
internal parameters, such as the learned weights, training param-
eters, and training and testing data. With that complete informa-
tion, these attacks can be used to analyze more precise manipu-
lation, often used to evaluate the worst-case scenarios (Ebrahimi
et al., 2017).

2. Gray-box attacks: The adversary possesses partial knowledge
of the model. This type of attack falls between the extremes
of white-box and black-box, leveraging some known aspects
while remaining uncertain about others (Papernot et al., 2016a;
Tramèr et al., 2017; Carlini et al., 2019; Papernot et al., 2017).

3. black-box attacks: The adversary has no knowledge of the
model’s internal workings and instead relies on external obser-
vations, such as inputs and outputs, to infer vulnerabilities. For
example, the author of Mahmood et al. (2021) provides a novel
analysis to comprehend the success rate of attacks with respect
to each adversarial model. Hence, black-box attacks are often
established based on the model inputs, confidence scores, or
perturbing the feedback of the ML model (Guo et al., 2019).

2.3. Adversarial attacks on deep reinforcement learning

In the realm of DRL, adversarial attacks have also been shown to
be effective. Behzadan and Munir (2017) highlighted that Deep Q-
Networks (DQN) are vulnerable to adversarial state perturbations. The
adversarial perturbations were generated using the Fast Gradient Sign
Method (FGSM) and Jacobian-based Saliency Map Attack (JSMA) (Pa-
pernot et al., 2016b). Additionally, they also implemented a black-box
and showed a success rate of 70%.

Expanding on this, in Huang et al. (2017), the authors employed
similar attack techniques in Behzadan and Munir (2017) but imple-
ented the attacks on other DRL algorithms such as DQN, Trust Region
olicy Optimization (TRPO), and Asynchronous Advantage Actor-Critic
A3C) methods in both white and black-box settings. Their results
emonstrated that DQN was particularly susceptible to adversarial
anipulations, suggesting a need for more robust defense mechanisms.
Recent studies have further explored the impact of adversarial

ttacks in multi-agent reinforcement learning systems. Gleave et al.
2020) showed that adversarial perturbations could be introduced by a
 o
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ompromised agent, leading to manipulated behaviors in other agents
ithin the system. The development of more sophisticated black-box
ttack methods continues to be a critical area of research. Another
ork suggests various enhancements to the black-box adversarial attack
ethod known as SimBA, with the goal of improving its efficiency by
ptimizing query usage (Yang et al., 2020).
Nonetheless, in this work, we will limit the scope of our experiments

nd the class of perturbations that are only applicable to single-agent
nvironments. In addition to observation space perturbations, the at-
acks can also occur in the action space in the form of perturbations on
he actuators. For example, Lee et al. (2020) proposed spatial–temporal
oupled action space attacks that reveal the potential vulnerabilities of
he DRL model. Moreover, action space perturbations can also man-
fest in the form of environmental noise or changes in environmental
actors (Tan et al., 2020). In addition, changes in environmental factors
ay also manifest as a form of environmental perturbation that affects
he underlying dynamics of the system (Sun et al., 2022).

.4. Recent innovations

For brevity, we refer interested readers to the more detailed and
omplete taxonomy of adversarial attacks presented in Chen et al.
2019). In Li et al. (2023), the authors introduce an innovative ad-
ersarial strategy that integrates Attack Time Selection and Optimal
ttack Action to precisely target DRL systems by exploiting vulnera-
ilities at critical decision points, showcasing a methodical approach
o enhancing attack efficacy and stealth.
The authors of Li et al. (2022) offer a comprehensive overview

f adversarial attacks on DRL systems. They emphasize the strategic
eployment of attacks across observation, reward, action, policy, and
nvironment vectors to degrade system performance, additionally, the
aper also discusses the development of defensive strategies aimed at
ncreasing the robustness of DRL systems against such attacks.

.5. Summary

This overview highlights the evolution of adversarial attacks from
heir origins in DNNs to their application in DRL systems. While sub-
tantial progress has been made in understanding these attacks and
eveloping countermeasures, challenges remain in ensuring the robust-
ess and security of DRL models. Our work builds on this foundation by
ocusing on action space attacks, with the aim of deepening our under-
tanding of their analysis and performance across different white-box
nd black-box scenarios.

. Methodology

In this section, we provide a description of the experiments we
onducted to compare the performance and response of common DRL
lgorithms to adversarial attacks.

.1. Selection of environments and algorithms

We conducted our experiments on five different continuous control
nvironments based on OpenAI Gym (Brockman et al., 2016) Mu-
oCo environments. The five selected environments are: (i) Ant, (ii)
alfCheetah, (iii) Swimmer, (iv) Walker, and (v) Hopper. To facilitate
more accurate comparison, all experiments were run with six random
eeds, and for each seed, we ran 100 episodes and reported the average
core across all episodes and seeds. These five MuJoCo environments
ere selected due to the fact that they are well-established benchmarks
n the RL community and have been shown to be solvable by popular
L algorithms without requiring additional reward engineering and
ith a feasible amount of computation. This makes them an excellent
hoice for comparing the effectiveness of different algorithms. More-

ver, these environments also simulate various action and observation



Q. Liu et al.

t
a
t
h
m

𝑠

t
u
t
f
o

t
o
s
b
o
d
c

r
t
a
f
g
a
t
w

4

t
e
u
p
M
t
m
e
G
E

4

a
o
a
f
p
b
a
f
w
t
c
5

AI Open 5 (2024) 126–141 
spaces with different dimensionality and difficulty, thus closely mim-
icking real-world scenarios and the challenges that RL agents face under
perturbations. To compare the performance of various DRL algorithms
in continuous control tasks, we chose five widely-used algorithms
that are commonly adopted as benchmarks. These include Proximal
Policy Optimization (PPO) (Schulman et al., 2017), Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2015), Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015), Twin Delayed DDPG
(TD3) (Fujimoto et al., 2018), and Soft Actor-Critic (SAC) (Haarnoja
et al., 2018). Despite the emergence of newer RL algorithms, we
chose to study these five algorithms because they are still prevalent in
research and practical applications due to their widespread adoption as
benchmarks and stability during training.

3.2. Black-box attacks

Next, we describe the suite of black-box attacks that we imple-
mented as part of our experiments to compare the performance of
the DRL agents. To the best of our knowledge, there are no black-
box attacks that are consistently used as a benchmark due to the fact
that most black-box attacks typically require querying the model and
different methods have made different assumptions on the amount of
information querying a model might reveal. As such, as an initial step,
we limit the scope of black-box attacks in this paper to a set of heuris-
tics that consist of simple additive perturbations. In practice, these
black-box perturbations may represent environmental factors such as
additional friction or load acting on a robot in realistic conditions.
However, we highlight that black-box attack strategies extend beyond
naive additive perturbations and will be a key focus of future studies.
To fully investigate the behavior of the policies in a comprehensive
manner, we develop multiple heuristic strategies for black-box attacks.
These strategies were generated by identifying the three stages where
the perturbations can be performed. The first stage consists of the
channel of perturbation, where the perturbation can either be added
to the observations of the agent or the actions of the agent. The second
stage involves the magnitude of perturbation, where the magnitude
of perturbation is either random, bounded by the action space, or
bounded by the magnitude of the actual action taken by the agent. The
third stage involves the direction in which the perturbation is applied.
Since the actions and observations in these environments are multi-
dimensional vectors, the perturbations can be added in four different
ways: (1) consistently adding noise following the signs of individual
observations/actions, (2) consistently adding noise that is opposite the
sign of the individual observations/actions, (3) Chooses a perturbation
direction randomly at each time step, applying it uniformly across all
dimensions of observations or actions within that timeframe, ensuring
consistent perturbation direction for every observation or action. and
(4) This strategy selects a distinct perturbation direction for each
observation or action at every time step. This introduces a higher level
of unpredictability and granularity, with each observation or action
potentially experiencing different directional perturbations within the
same time frame, leading to a varied and more disruptive perturbation
pattern. The suite of all possible black-box attacks can be summarized
according to Fig. 1, where selecting a choice at each stage will result
in a valid strategy.

3.3. White-box attacks

Next, we describe the three white-box attack strategies that we
selected to test on the common benchmark RL algorithms. All three
attacks leverage the gradient information to craft the attacks and these
three attack strategies were selected to study both perturbations on the
observation and action channels. Specifically, the white-box attacks we
implemented are the Fast Gradient Sign Method (FGSM) (Goodfellow

et al., 2014), Projected Gradient Descent (PGD) algorithm (Madry et al., t
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2017), and the Myopic Action Space (MAS) attack algorithm (Lee et al.,
2020).

Fast Gradient Sign Method: FGSM generates a perturbation by
aking the sign of the loss’s gradient with respect to observation and
dding that perturbation to the observation. By adding the perturba-
ion, FGSM seeks to find a perturbation that increases the loss function,
ence fooling the agent into taking poor action. Formally, the FGSM
ethod can be defined as follows:

̂ = 𝑠 + 𝜖 × 𝑠𝑖𝑔𝑛∇𝑠(𝐿) (1)

where 𝑠 and 𝑠̂ denote the original and perturbed observation respec-
ively, 𝜖 denotes a budget that scales the perturbation to keep it
ndetectable, and 𝐿 denotes the policy’s loss function. To instantiate
hese attacks in practice, we used the actor network’s loss as the loss
unction to obtain the gradients to compute the perturbation for each
f the RL benchmark algorithms.
Projected Gradient Descent: PGD is an iterative attack method

hat works similarly to FGSM in principle. While the FGSM attacks
nly take a single gradient step, the PGD performs multiple gradient
teps to maximize the loss function and finally projects the perturbation
ack into the budget of 𝜖. In our implementation, we set the number
f iterations of PGD to be 25 after empirically observing that the
egradation in performance of the RL policy displays no significant
hanges after 25 iterations.
Myopic Action Space attack algorithm: MAS is an attack algo-

ithm that generates perturbation that attacks the action channel rather
han the observation channel. It follows the same principle of FGSM
nd PGD of generating perturbations but takes gradients of the reward
unction with respect to the action instead of the observation. Since the
radients of the reward function with respect to the action might not be
ccessible, the gradients of the action probabilities or value function are
aken as a proxy of the reward function to generate the perturbation,
hich is subsequently added to the RL agent’s actions.

. Results and discussions

In this section, we present the results of our experiments comparing
he performance of the RL algorithms when subjected to the differ-
nt adversarial attacks as discussed in the previous section. To fully
nderstand the efficacy of each attack, we first trained the five RL
olicies using PFRL’s implementation (Fujita et al., 2021) on the five
uJoCo environments and ensured that the final rewards are similar
o the reported scores. As such, the subsequent results are all based on
ounting the attacks on the trained RL policies during test time. All
xperiments were performed on an internal cluster using three GeForce
TX TITAN X GPUs for training the RL agents and Intel(R) Xeon(R) CPU
5-1650 v3 CPUs for testing and mounting the attacks.

.1. Comparison of different black-box attack strategies

We begin by visualizing and comparing the effects of different
ttack strategies on the five RL algorithms. To measure the effectiveness
f each attack, we measure the percentage change in rewards, denoted
s 𝛥𝑅%, and defined as the change in rewards due to an attack as a
raction of the original rewards achieved by the trained policy. To com-
are the attacks, we plot the 𝛥𝑅% for each RL algorithm as a stacked
ar plot to measure the overall effectiveness of each attack strategy on
ll the algorithms. As an illustrative example, we show the comparison
or the HalfCheetah environment in Fig. 2. An important parameter
hen mounting these attacks is the constraint on the magnitude of
he perturbations or the attack budget, 𝜖. To obtain a comprehensive
omparison, we mounted all the attacks at four budget levels: 25%,
0%, 100%, and 200%.
As shown in Fig. 2, the first observation that can be made is that all
he different attack strategies resulted in a negative 𝛥𝑅% across all RL
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Fig. 1. Black-box attack strategies: The flowchart shows the various black-box strategies implemented. The attacks can be mounted on either one of the two channels, with the
constraint on the attack following one of the three magnitudes and the specific instantiation following one of the four directions. The names of each attack are denoted by the
abbreviation from each stage, e,g: attacks on the observation with constraint from percent of observation with the same direction denotes O_PO_S.
Fig. 2. Comparison of black-box attack on HalfCheetah: Vertical axis represents different black-box attack strategies, and the horizontal axis denotes the cumulative 𝛥𝑅% across
all RL algorithms. The colors represent different RL algorithms, bars with shaded patterns represent observation channel attacks, and solid bars represent action channel attacks.
Each subplot denotes mounting the attacks with a specific budget 𝜖 on the magnitude of the perturbations.
algorithms in the HalfCheetah environments across all 𝜖 values. (more
detailed framework is represented in Fig. A.8 in Supplementary)

We did, however, observe certain environments seen in supplemen-
ary Figs. A.8, A.10, A.9, and A.11 where some attack strategies resulted
in a positive 𝛥𝑅%; nonetheless, the overall trend remains negative. For
more detailed visualization plots with normalization, please refer to the
appendix Fig. A.16, A.17, A.18, A.19, A.20. The second observation
we made is that even the most ineffective attack strategies saturate
when the budget is above 100%, with the most drastic changes in
𝛥𝑅% occurring below the budget of 100%. As such, in our following
experiments below, we focused only on budget levels below 100% but
at a finer resolution.

Comparing the attack strategies on the observation channel versus
the action channels, we observed that overall, attacks on the observa-
tion channel are as effective and sometimes more effective (in Hopper,
Swimmer, and Walker) than action channel attacks up to a certain
budget value, specifically for 𝜖 = 25% and 50%. Beyond 𝜖 = 50%, the
action channel attacks are more effective while the observation chan-
nel generally saturates (elaborated in further detail in the following
sections). In terms of the different strategies of attacks, overall, we ob-
served that strategies that add a perturbation that has an opposite sign
(flip direction) to the original action/observation (O_PO_F, O_POS_F,
A_PA_F, A_PAS_F) value are the most effective, while strategies that
add a perturbation that has the same sign (same direction) (A_PA_S,
A_PAS_S, O_PO_S, O_POS_S) are the least effective. Furthermore, the
attack strategy that perturbs the individual elements of the observation
channel/action channel (O_PO_RI, O_POS_RI, A_PA_RI, A_PAS_RI) is also
slightly more effective than randomly perturbing the entire vector in

a random direction (O_R, A_R). We highlight that these trends are
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observed consistently across all five benchmark algorithms and all
environments, except for the Ant environment.

Based on our observations for the Ant environment (as shown in
Appendix Fig A.8), the response of the benchmark algorithm towards
action channel attacks deviates slightly from the rest of the environ-
ments. Specifically, the attacks that add perturbation in an opposing
direction in the action space (A_PA_F, A_PAS_F) resulted in a positive
𝛥𝑅% for most RL algorithms, while perturbations of the same direction
(A_PAS_S) ended up being one of the most effective strategies. We
hypothesize that this is possibly due to the more complex 3-dimensional
non-linear interaction of the action space of the Ant robot as com-
pared to the rest of the environments, which are restricted to the
2-dimensional plane. This also alludes to the fact that the benchmark
RL algorithms have not converged to the optimal policies in practice
and the perturbations ended up being less effective. Nonetheless, the
Ant environment also poses a challenge for comparison with other
environments due to its extremely large state space with mostly zero
values. This differs from other environments where the state spaces are
dense vectors that can be fully utilized by the RL agent. Therefore, to
fully comprehend the behavior of agents in such complex environments
and to further validate our hypothesis, additional experimentation, and
analysis are necessary in future works.

4.2. Comparison of the robustness of different policies

Next, we present the comparisons between the overall robustness
of different RL policies across all environments and black-box attacks.
The sum of all the 𝛥𝑅% across all attacks and all environments for each

policy is illustrated in Fig. 3. We hope that such a plot would reveal
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Fig. 3. Comparison of the robustness of different policies: The vertical axis represents different RL algorithms, and the horizontal axis denotes the cumulative 𝛥𝑅% across all
lack-box attacks. Different colors denote different environments and each subplot represents mounting the attacks with a specific budget 𝜖 on the magnitude of the perturbations,
n the order of 25%, 50%, 100%, and 200%.
Fig. 4. Effect of increasing 𝜖 on 𝛥𝑅% in HalfCheetah: The 𝑥-axis represents 𝜖 and the 𝑦-axis represents the 𝛥𝑅% with respect to 𝜖. The solid line represents the average 𝛥𝑅%
cross all black box attacks and environments, and the dotted line represents the average excluding the Ant environment.
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he natural robustness of each type of policy, i.e., how insensitive an
L algorithm is to perturbations if it was not specifically trained to
e robust in the first place. In summary, we observed that both TD3
nd SAC exhibit the most robustness across all environments and for
ll values of budget on the magnitude of perturbation, 𝜖. Additionally,
D3 and SAC were also the least affected when increasing 𝜖, while
he other three algorithms 𝛥𝑅% increased significantly, with the Ant
nd HalfCheetah environments contributing to most of the change. On
he other hand, we note that DDPG was overall the policy that is most
ensitive to perturbations, especially in the Ant environment. Removing
he outlier effect of the Ant environment, TRPO ranks as the policy most
ulnerable to perturbations. While it is not clear why DDPG or TRPO
re so sensitive, we hypothesize that the reason both SAC and TD3 are
ore robust is because of their shared implementation of having two
-values to reduce overestimation. More importantly, SAC also includes
n entropy bonus term in the objective function, while TD3 implements
target policy smoothing that includes noise to the action, both of
hich can be considered an indirect way of incorporating adversarial
raining in the learning process. However, this hypothesis remains to
e further verified.

.3. The effect of budget 𝜖 on 𝛥𝑅%

While it is clear that the value of 𝜖, the budget on the magnitude
f perturbation, affects the effectiveness of an attack in a positively
orrelated manner, we study the relationship between these two vari-
bles in more detail in this section. We repeated the experiments
hown in Fig. 2 by varying the values of 𝜖 at a finer resolution of
%. The solid lines in Figs. 4(a) and (b) represent the average of
𝑅% across all environments for each RL algorithm for action channel
ttacks and observation channel attacks, respectively. From this plot,
e can make several more interesting observations. Firstly, we see
hat perturbations in the observation channel are effective but have
130 
iminishing effectiveness, as seen by the saturating trends of the 𝛥𝑅%
n Fig. 4(b). In contrast, perturbations in the action space do not display
his characteristic as we see that 𝛥𝑅% still decreases at a linear rate as
he attack budget increases up until 200%. However, one caveat is that
major contributor to the continued decrease in rewards was due to the
ttacks mounted on the Ant environment, as discussed in the previous
ection. Removing the Ant environment from the trends (as shown in
he dotted lines of Figs. 4(a) and (b)) revealed that the 𝛥𝑅% decreases
ess drastically for action channel attacks but still more significant than
bservation channel attacks. This further validates our hypothesis that
L agents that operate in environments with a higher degree of freedom
re likely to be more sensitive to perturbations and display catastrophic
ailures.
Another observation that can be made is that in the regime of the 𝜖
50%, attacks on the agent’s observation channel cause a much more
ignificant drop in performance than attacks on the agent’s action chan-
el. This observation is further validated when we visualize the 𝛥𝑅% for
very 5% increment of 𝜖 in Fig. 5. Once again, we only present the ex-
eriments for HalfCheetah for brevity, with the visualization for the rest
f the environments shown in supplementary Figs. A.12, A.13, A.14,
nd A.15. For more detailed visualization plots with normalization,
please refer to the appendix Figs. A.20, A.21, A.22, A.23, A.24, A.25.
From the figure, we can observe that the largest drop in rewards for
observation channel attacks (bars with diagonal patterns) occurs when
𝜖 is between 0 to 10%. Meanwhile, we observe the exact opposite trend
in action channel attacks where the initial effect when 𝜖 is between 0
to 5% was small, but the 𝛥𝑅% increases as we increase 𝜖.

4.4. Comparison of different white-box attacks

Next, we compare the effects of the three white-box attack strategies
we had selected on the performance of the benchmark RL policies.
While this is by no means a comprehensive experiment of white-
box attack strategies, we hope that the results in these sections will
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Fig. 5. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in HalfCheetah: This plot visualizes in detail the effect of increasing 𝜖 every 5% on 𝛥𝑅%. Observe that the
largest 𝛥𝑅% occurs for observation channel attacks when 𝜖 is low while the largest 𝛥𝑅% occurs for action channel attacks when 𝜖 is higher.

Fig. 6. White-box attacks trends for HalfCheetah: The plots show the relationship between the value of 𝜖 (𝑥-axis) and 𝛥𝑅% (𝑦-axis). Line markers in the plots represent experiments
we ran with a specific value of 𝜖. The solid line represents the average 𝛥𝑅% across all environments, and the dotted line represents the average excluding the Ant environment.
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Fig. 7. Summary of observations: Visualization of the relative sensitivity and robustness of common RL benchmark algorithms. The 𝑥-axis denotes the robustness of the algorithms,
and the 𝑦-axis denotes the sensitivity of the algorithms. Colors represent the five examined algorithms, the subplot on the left indicates the performance of the algorithm under
black-box attacks, while the subplot on the right indicates the performance under white-box attacks. The circle sizes indicate the range of robustness by computing the differences
between the maximum and the minimum 𝛥𝑅%.
rovide some initial insights. Fig. 6 illustrates the average 𝛥𝑅% cross all
nvironments for each attack strategy. Similar to the black-box attacks
e implemented, we observed that all white-box attacks resulted in a
eneral negative trend. Compared to black-box attacks, we observed
hat the decrease in 𝛥𝑅% is much steeper than the trends observed in
ig. 4. However, it is worth highlighting that the context and range
f the 𝜖 values used in white-box experiments are different. While
he values of 𝜖 in the black-box experiments were expressed as a
ercentage of the action/observation space or the actual values of
he action/observations themselves, the values of 𝜖 used in the white-
ox experiments were based on the values reported in the literature.
urthermore, the black-box attack strategies we proposed followed the
trategy of adding noise, while the white-box strategy we implemented
ll incorporated some form of optimization. As such, no direct compari-
on between white and black-box trends can be made. Nevertheless, an
nteresting observation we made is that while increasing the value of 𝜖
esulted in a monotonic decrease in 𝛥𝑅% for black-box attacks, the 𝛥𝑅%
or white-box attacks exhibited some form of fluctuations, although we
till observe a general decreasing trend.
Comparing the attacks on the observation channel (FGSM and PGD)

ersus attacks on the action channel (MAS), we observe that, in general,
oth types of attacks perform similarly asymptotically as we increase
he value of 𝜖. However, at lower values of 𝜖, action channel attacks
ave a higher variance in terms of the 𝛥𝑅% across different algorithms.
pecifically, we observe that the smaller values of 𝜖 increased the 𝛥𝑅%
by almost 100% for TD3. However, removing the results of the Ant
environment from the trend (dotted lines) showed that the trend for
TD3 reverts to a trend that follows the rest of the environment.

When we compare the performance across different RL policies,
we observe that most of the algorithms had similar robustness, with
DDPG and TD3 being the most sensitive to perturbations and displaying
the largest 𝛥𝑅% when subjected to observation channel attacks. Once
again, these trends became less extreme once removing the effect of
the Ant environment. In terms of action channel attack (MAS), one
interesting observation is that most RL algorithms performed similarly
except for SAC, which displayed a large drop in performance even with
a small value of 𝜖. This is a surprising observation as SAC was one of
the most robust policies in the black-box attack experiments, and even
removing the effect of the Ant environment did not change the trends
significantly. As such, it would be interesting for future studies to inves-
tigate why SAC is robust towards observation channel perturbation but
becomes particularly sensitive to action space perturbation, specifically
to the white-box MAS attack.
132 
4.5. Summary and discussions

To summarize our findings, we compile our observations into Fig. 7
and rank the benchmark RL algorithms according to three criteria:
robustness, range of robustness, and sensitivity. Furthermore, we clas-
sified the algorithm’s characteristics according to black-box attacks in
Fig. 7(a) and white-box attacks in Fig. 7(b). Formally, we define the
sensitivity and robustness for black-box attacks as:

Sensitivity = Average(|𝛥𝑅10% − 𝛥𝑅5%| + |𝛥𝑅15% − 𝛥𝑅10%|

+ |𝛥𝑅20% − 𝛥𝑅15%| + |𝛥𝑅25% − 𝛥𝑅20%|

+ |𝛥𝑅50% − 𝛥𝑅25%|)

(2)

Robustness = Average(𝛥𝑅5%+𝛥𝑅10%+𝛥𝑅15%+𝛥𝑅20%+𝛥𝑅25%+𝛥𝑅50%)

(3)

where the notation 𝛥𝑅5% represents the value of percentage change in
rewards (𝛥𝑅%) due to a black-box attack with 𝜖 = 5%. Similarly, we
define the sensitivity and robustness for white-box attacks as:

Sensitivity = Average(|𝛥𝑅𝑀𝐴𝑆% − 𝛥𝑅𝐹𝐺𝑆𝑀%|

+ |𝛥𝑅𝑀𝐴𝑆% − 𝛥𝑅𝑃𝐺𝐷%| + |𝛥𝑅𝐹𝐺𝑆𝑀% − 𝛥𝑅𝑃𝐺𝐷%|)
(4)

Robustness = Average(𝛥𝑅𝑀𝐴𝑆% + 𝛥𝑅𝐹𝐺𝑆𝑀% + 𝛥𝑅𝑃𝐺𝐷%) (5)

In Figs. 7(a) and 7(b), the horizontal axis represents an algorithm’s
robustness, where we define robustness as the average 𝛥𝑅% across
all attacks and all environments, as shown in Eqs. (3) and (5). The
vertical axis represents an algorithm’s sensitivity. We define sensitivity
by taking the average difference for all 𝛥𝑅% across all possible pairs
of strategies and computing its absolute value, as shown in Eqs. (2)
and (4). Intuitively, the sensitivity gives us a sense of how much
we can expect the performance of an RL policy will change when
subjected to different attacks. Finally, the size of the circles in Fig. 7
represents the range of the robustness of an algorithm. We define the
range of robustness by taking the difference between the maximum and
minimum 𝛥𝑅% under the white-box and black-box attack scenarios,
respectively:

Range of Robustness = max(𝛥𝑅%) −min(𝛥𝑅%) (6)

where  represents the set of all attacks under the black-box and
white-box scenarios respectively. Generally speaking, we observe that
TD3 exhibits the best robustness across both white-box and black-box

attacks, while SAC performs well under black-box attacks but performs
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Fig. A.8. Comparison of black-box attack on Ant:: All black-box strategies are shown on the 𝑦-axis, and the 𝑥-axis represents the cumulative 𝛥𝑅% across all RL algorithms. The
algorithms are present by the colors. The shaded bar and solid bar show the observation and the action channel. Each subplot represents a particular attack budget 𝜖.
extremely poorly on white-box attacks. We also note that PPO and
TRPO are robust to a certain extent with medium sensitivities, but
DDPG ranks the lowest in terms of having low robustness and high
sensitivity. Finally, we also highlight that black-box attacks have a
larger range of effects on the RL policies in general (larger circles) when
compared to white-box attacks, which have more consistent effects
(smaller circles).

5. Conclusion

In this work, we compared commonly used benchmark RL algo-
rithms’ robustness towards various types of perturbation during test
time. We designed a suite of simple black-box attack strategies to
perturb the RL agent’s observation and action channels, and we also
implemented three commonly used white-box optimization-based at-
tacks that perturbed the agent’s observation and action channels. From
our experiments, we made the following conclusions: Firstly, from
the black-box attack strategies we tested, a recurring theme is that
observation channel attacks are more effective than action channel
attacks, but only until a certain threshold on the magnitude of the
perturbation. Beyond this threshold, the effects of observation attacks
saturate while action channel attacks may continue to have some effect.
We also find that the Ant environment generally amplifies the effect of
attacks. In terms of the robustness of different policies under black-
box attacks, SAC and TD3 were generally robust, while DDPG and
TRPO were the most sensitive to perturbations. When subjected to
optimization-based white-box attacks in the observation channel, most
policies performed similarly, with DDPG and TD3 being the most sen-
sitive, while SAC was found to be extremely sensitive to action channel
attacks. We find it intriguing that two of the most robust policies under
black-box attacks ended up being the most sensitive to attacks under
white-box attacks, and future work will seek to further understand this
phenomenon. Furthermore, we will extend this study to include a more
comprehensive comparison of existing optimization-based black-box
attacks and white-box attacks.
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Appendix

In this supplementary appendix section, we present a comprehen-
sive collection of comparison plots for the remaining environments
that were not showcased within the main manuscript. The purpose of
including these additional plots is to offer a more in-depth analysis and
a broader understanding of the experimental outcomes. By examining
the diverse range of environments, we aim to provide a comprehensive
overview of the results, ensuring a comprehensive evaluation of the
proposed methodology. The inclusion of these supplementary plots
serves to enhance the scientific rigor of the research and provides
readers with a more complete picture of the experimental findings (see
Fig. A.25).

https://github.com/super864/Natural-Robustness-RL
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Fig. A.9. Comparison of black-box attack on Hopper.

Fig. A.10. Comparison of black-box attack on Swimmer.

Fig. A.11. Comparison of black-box attack on Walker.
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Fig. A.12. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in Ant.

Fig. A.13. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in Hopper.
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Fig. A.14. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in Swimmer.

Fig. A.15. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in Walker.

AI Open 5 (2024) 126–141 

136 



Q. Liu et al.

Fig. A.16. Comparison of black-box attacks on Ant with normalization: This figure illustrates the performance of various black-box attack strategies against the Ant environment,
with each strategy normalized between −1 to 1 for five unique policies. The 𝑦-axis details the attack strategies, whereas the 𝑥-axis shows the cumulative percentage change in
rewards 𝛥𝑅% across diverse reinforcement learning algorithms, each distinguished by color. Shaded and solid bars represent the observation and action channels, respectively.
Each subplot highlights a specific attack budget 𝜖, thoroughly examining attack impacts across different scenarios.

Fig. A.17. Comparison of black-box attacks on HalfCheetah with normalization.

Fig. A.18. Comparison of black-box attacks on Hopper with normalization.
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Fig. A.19. Comparison of black-box attacks on Swimmer with normalization.

Fig. A.20. Comparison of Black-Box Attacks on Walker with normalization.

Fig. A.21. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in Ant with normalization: This figure precisely showcases the influence of incremental 𝜖 adjustments, every
5%, on the 𝛥𝑅%, considering various policies. It normalizes individual attack strategies within a −1 to 1 range, clearly depicting each policy’s impact.
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Fig. A.22. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in HalfCheetah with normalization.

Fig. A.23. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in Hopper with normalization.
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Fig. A.24. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in Swimmer with normalization.
Fig. A.25. Detailed visualization of the effect of increasing 𝜖 on 𝛥𝑅% in Walker with normalization.
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