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Abstract—Coupled tensor decompositions (CTDs) perform
data fusion by linking factors from different datasets. Although
many CTDs have been already proposed, current works do
not address important challenges of data fusion, where: 1) the
datasets are often heterogeneous, constituting different “views”
of a given phenomena (multimodality); and 2) each dataset can
contain personalized or dataset-specific information, constituting
distinct factors that are not coupled with other datasets. In this
work, we introduce a personalized CTD framework tackling these
challenges. A flexible model is proposed where each dataset is
represented as the sum of two components, one related to a
common tensor through a multilinear measurement model, and
another specific to each dataset. Both the common and distinct
components are assumed to admit a polyadic decomposition.
This generalizes several existing CTD models. We provide con-
ditions for specific and generic uniqueness of the decomposition
that are easy to interpret. These conditions employ uni-mode
uniqueness of different individual datasets and properties of the
measurement model. Two algorithms are proposed to compute
the common and distinct components: a semi-algebraic one and
a coordinate-descent optimization method. Experimental results
illustrate the advantage of the proposed framework compared
with the state of the art approaches.

Index Terms—Coupled tensor decomposition, personalized
learning, shared and distinct components, uniqueness.

I. INTRODUCTION

Coupled tensor decompositions (CTDs) perform data fusion
by linking factors among different datasets, benefiting from the
complementary information across modalities [1], [2]. CTD
has recently drawn increasing interest in various disciplines,
particularly in data mining and multimodal data fusion [1]–[5].
Applications include social network data analysis [6] and
link prediction [7], multimodal image fusion [8]–[11], multi-
subject fMRI data fusion [12], [13], and several problems in
array signal processing [14]–[18]. CTDs are also important
in methods based on high-order statistics for blind system
identification [19], joint blind source separation from multiple
datasets [20], and for blind deconvolution of underdeter-
mined systems [21]. Moreover, related approaches coupling
both matrix and tensor data have shown great potential in
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metabolomics, combining nuclear magnetic resonance and
spectrometry or spectroscopy measurements [22], and in neu-
roimaging, fusing electroencephalogram (EEG) with func-
tional magnetic resonance imaging (fMRI) data [23], [24], or
fMRI with magnetoencephalography (MEG) data [25]. The
flexibility of CTDs allow them to address data fusion both
in the multiset setting, where data is collected using the
same modality over different conditions or observation times
(e.g., fMRI datasets of different subjects), and also in the
multimodal setting, where information is collected about the
same phenomenon using different modalities or sensors (e.g.,
EEG and fMRI datasets) [26].

One of the main advantages of CTDs is that the coupled
decomposition can be unique even when uniqueness does not
hold for the decomposition of any of the individual tensors and
matrices [27]. This occurs, for example, when coupling images
with different spectral and spatial resolutions [9]. Thus, CTDs
can exploit advantages of each data modality, being able to
leverage weaker uniqueness results of each dataset to provide
uniqueness to the full decomposition.

Shared and distinct features: In many applications, the
following aspect of CTDs is important: even if the modes
of all coupled tensors express the same “view” of the data
(e.g., spatial dimensions, subjects, time, etc.), there is often
content unique to each dataset in addition to the content shared
with other measurements. This can occur due to datasets
being captured from multiple subjects or from experiments
running in different conditions, which provides more diver-
sity but also incurs factors of variation which do not occur
in all measurements [28]. For instance, in multitask fMRI
data fusion this allows one to account for task-specific in-
formation [13]. Moreover, accurately identifying underlying
shared and distinct factors from EEG and fMRI data reveals
biologically meaningful components (biomarkers) which allow
for differentiating between patients with schizophrenia and
healthy controls [29]. Subspace-based representation learning
of face images can be made more accurate by considering
one subspace common to all persons along with others unique
to each individual [30]. Moreover, when fusing hyperspectral
images (HSI) with multispectral images (MSI) of different spa-
tial/spectral resolutions, such models account for the distinct
information present in each image due to differences between
their acquisition conditions (e.g., cloud cover, illumination or
atmosphere) [10], [11], [31], addressing the so-called inter-
image variability problem. In what follows, we consider a
general framework of so-called personalized decompositions,
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which include some components that are common to all
datasets, and other which are distinct to each dataset.

Traditional CTDs fail to consider shared and distinct fea-
tures in the datasets, which motivated the development of more
flexible models. For example, in [4] the authors proposed a
flexible decomposition framework in which the contribution
of the coupled components to each dataset is weighted by
a set of sparse coefficients. This allows components not to
contribute to some datasets. Other works proposed to “un-
couple” a subset of the columns of one of the factor matrices.
For instance, the authors in [32] perform nonnegative tensor
factorization with common and distinct parts in one factor
to achieve representation learning for classification tasks. A
similar model was used in [33] for the analysis of critical
events in data (from, e.g., social networks). More recently,
this approach has been considered for coupled matrix decom-
position [34], and for the coupled block term decomposition
(BTD) in multimodal image fusion [10], [11]. A different
approach uses flexible couplings, in which the factor matrices
of different tensors or matrices are not constrained to be equal,
but only to belong to a Euclidean ball [35], [36]. However,
previous approaches suffer from one of two limitations: they
either lack flexibility in the observation model or do not
have established uniqueness guarantees. In this work we will
consider a general personalized CTD framework, addressing
both these issues.

Uniqueness of CTDs: Uniqueness of matrix and tensor
decompositions is of fundamental importance in most applica-
tions as it allows the recovered factors to be directly interpreted
when there is a match between the decomposition and the
data generating model [37]. The uniqueness of the coupled
canonical polyadic decomposition (CPD) was first studied
in [38], [39]. The authors derived uniqueness guarantees based
on the Kruskal condition for the case when one of the factors
was coupled for all tensors.

More recent works established uniqueness for more flexible
data acquisition models and different tensor decompositions.
The recovery of an order-3 tensor admitting a CPD from
measurements acquired according to sampling schemes acting
separately on each mode (such as sampling entries, fibers or
slabs) was studied in [40]. Conditions for the recovery of the
full tensor were given depending on the uniqueness of indi-
vidual tensors in the decomposition. This approach is closely
related to [9] in the context of hyperspectral and multispectral
image fusion, and to [41] for spectrum cartography in the case
when the observed tensors have missing data, in which a BTD
model is considered. However, these problems do not require
the uniqueness of all factors of the decomposition; instead,
only the recoverability of the unobserved “high-resolution”
tensor is necessary.

Although the basic problem of fusing HSIs and MSIs does
not require the uniqueness of all factor matrices, recent work
addressed the inter-image variability problem by considering
flexible CTDs containing both shared and distinct factors. In
this case, conditions ensuring the recoverability of the true
high resolution image tensor based on degraded measurements
were obtained for image tensors admitting both an LL1
BTD [11] and a Tucker decomposition [10]. However, those

works assume a very specific measurement model which also
contains no variability (i.e., distinct components) for one of
the measured tensors.

Other related work studied the recoverability of principal
component analysis [42] and dictionary learning [43], [44]
with shared and dataset-specific factors using incoherence
assumptions between the shared and distinct components. The
uniqueness of coupled decomposition with structured matrices
accounting for shared and unique factors was studied in [34].

Contribution: In this paper, we propose a general per-
sonalized CTD framework for multimodal data fusion. A
distinctive feature of our approach is that we clearly show
how it is possible to leverage the so-called uni-modal unique-
ness of each tensor [45], [46], which can be satisfied under
milder conditions when compared to the traditional uniqueness
requirements, to provide uniqueness guarantees for the full
decomposition. The main contributions of this paper are:

1) Our coupling framework generalizes several existing
ones, including [9], [40] (which do not have distinct com-
ponents), [10], [11], which uses a very specific measurement
model and have a distinct component in only one dataset.
Although [34] provides uniqueness results for the CPD with
shared and distinct components, it does not consider a gen-
eral measurement/degradation model or heterogeneity between
datasets. However, the results in [34] are based on a different
low-rank model and cannot be directly compared to the results
presented in this paper.

2) The general multilinear measurement model comprises
a wide range of possible practical applications in, e.g., hy-
perspectral and neuroimaging (e.g., fMRI, MRI, MEG) data
fusion problems.

3) Uniqueness results which are easy to interpret and pro-
vide insight on the role that “weaker” (uni-mode) uniqueness
of each measured tensor and the measurement model have on
the uniqueness of the full decomposition. An important feature
of the proofs is that they are constructive and directly motivate
a semi-algebraic decomposition method.

4) Semi-algebraic (motivated by the constructive uniqueness
results) and optimization-based algorithms are proposed to
compute the decomposition. The solution provided by the
semi-algebraic algorithm also serves as a principled approach
to initialize optimization-based methods.

A general measurement model is presented in Section III
where each measured tensor is represented as a sum of
two terms. The first term is linked to a common compo-
nent through an arbitrary multilinear measurement/degrada-
tion model, which couples the different datasets. The second
(uncoupled) component is distinct to each measured tensor
representing personalized or dataset-specific information. The
common and distinct tensors are assumed to admit CPDs. In
Section IV we demonstrate that this decomposition is generi-
cally unique (i.e., the common and distinct components can be
recovered) under mild conditions. The developed uniqueness
conditions are also highly interpretable: informally, they show
that recovery of the common and distinct components is
possible as long as 1) one of the low-resolution measured
tensors is fully unique, and 2) for each mode j, there exists
a measured tensor that is mode-j unique and whose mode-j



3

factor is measured at full resolution. Obtaining uniqueness of
the full decomposition from “weaker” uniqueness results of
each individual tensor highlights the benefits of data fusion.
A semi-algebraic algorithm inspired by the uniqueness results
as well as an optimization approach based on alternating
least squares (ALS) are proposed in Section V. Experiments
with synthetic data and real hyperspectral images illustrate the
advantage of the proposed framework compared to competing
algorithms. In addition, a preliminary conference version of
this work containing experimental results for multi-subject
and multitask fMRI data fusion based on a more constrained
version of the model proposed in Section III was presented
in [13]. These results further demonstrate the practical value
of the proposed model.

II. BACKGROUND

A. Definitions and notation

Scalars, vectors and matrices are denoted by plain font (x
or X), lowercase bold font (x) and uppercase bold font (X),
respectively. Order-3 tensors are represented by calligraphic
bold font (X ). The pi, jq-th element of a matrix X is denoted
by rXsi,j , while the pi, j, kq-th element of a tensor X is
denoted by rX si,j,k. We also use the notation a : b, for a and
b being positive integers to compute submatrices of a given
matrix. For example, rXs1:a,1:b denotes the first a rows and b
columns of X . We denote by b and by d the Kronecker and
the Khatri-Rao products [47]. The outer product between three
vectors is defined as a ˝ b ˝ c, ra ˝ b ˝ csi,j,k “ aibjck, and
constitutes a rank-1 tensor. We denote the left pseudoinverse of
matrix X by X:. A mode-k fiber of a tensor X is the vector
obtained by fixing all but one mode of X , while a slice is a
two dimensional subset obtained by fixing one mode of X .
For K P N`, we also use rKs to represent the set of integers
t1, . . . ,Ku. Note that although we consider the case of third
order tensors to keep the presentation cleaner, the proposed
framework can be extended to higher order tensors as well.

Definition 1. The Kruskal rank (also called K-rank) of a
matrix X , denoted by krpXq, is the largest number r such
that every set of r columns of X are linearly independent.

Definition 2. The mode-k matricization of a tensor T P

RN1ˆN2ˆN3 , denoted by T xky, arranges its mode-k fibers to
be the rows of matrix T xky P RN`NmˆNk such that the nk-th
column of T xky consists of the vectorization of the slice of T
obtained by fixing the index of the k-th mode of T as nk.

Definition 3. The mode-k product between a tensor T and a
matrix B is denoted by T ˆk B and consists of multiplying
every mode-k fiber of T by B. It can be written using the
mode-k matricization as U “ T ˆk B ô U xky “ T xkyB

J.

Definition 4. The full multilinear product consists of mode-k
products between a tensor T and matrices Bk for each mode
k P t1, 2, 3u, and can be expressed as vT ;B1,B2,B3w “

T ˆ1 B1 ˆ2 B2 ˆ3 B3.

B. Canonical Polyadic Decomposition

The polyadic decomposition expresses a tensor X P

RIˆJˆK as a sum of rank-1 terms:

X “

R
ÿ

r“1

ar ˝ br ˝ cr “ vA,B,Cw , (1)

where matrices A “ ra1, . . . ,aRs, B “ rb1, . . . , bRs,
C “ rc1, . . . , cRs are called the factor matrices. When R is
minimal, this is called the canonical polyadic decomposition
(CPD), and R is called the (CP) rank of X .

A fundamental property of the CPD is that it is essentially
unique under mild conditions. More precisely, a decomposition
X “ vA,B,Cw is essentially unique if every alternative
decomposition X “ vA1,B1,C 1

w satisfies:

A1
“ AΠΛA , (2)

B1
“ BΠΛB , (3)

C 1
“ CΠΛC , (4)

where Π is a permutation matrix and ΛA, ΛB , ΛC are
diagonal matrices satisfying ΛAΛBΛC “ I . This means that
the factors of the decomposition are unique up to a permutation
and scaling of their columns. We also say that one of the
factor matrices of the CPD, say, C, is essentially unique if (4)
is satisfied, but nothing is required of the remaining factor
matrices A and B.

Several works investigated the uniqueness of the CPD. One
of the earliest conditions was obtained by Kruskal:

Theorem 1. [48], [49] The CPD of an order-3 tensor X “

vA,B,Cw with rank R is essentially unique if

krpAq ` krpBq ` krpCq ě 2R` 2 . (5)

Note that Kruskal’s condition is sufficient but not necessary
for a CPD to be unique. Recent work has investigated more
relaxed uniqueness conditions [50]. In particular, it has been
shown that conditions for the CPD of generic tensors to be
unique can be mild, especially for tensors that are “tall” in at
least one of the modes [51]. We also note that CPD can be
computed algebraically even when the factor matrices are not
full rank [52]. We refer to a tensor which satisfies Kruskal’s
uniqueness condition as fully unique in order to specify the
case in which all factor matrices (from the three modes)
are unique up to permutation and scaling ambiguities and to
clearly distinguish it from the uni-mode uniqueness condition
discussed in the following.

C. Coupled decompositions and uni-mode uniqueness

Given a set of tensors X t, t “ 1, . . . , T , coupled decompo-
sitions represent each X t using a low-rank model but constrain
some of the factors to be the same for different t. For instance,
a coupled PD of tX tut can be expressed as

X t “ vAt,Bt,Cw , t “ 1, . . . , T , (6)

where mode-1 and mode-2 factors At P RItˆR and Bt P

RJtˆR are individual to each tensor X t, while the mode-3
factor C P RKˆR is shared among all tensors.
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The uniqueness of decompositions in the form of (6) was
studied in [38], [39]. It was shown that conditions for the
coupled decomposition to be unique can be much milder than
those guaranteeing the uniqueness of every tensor. This is an
important advantage of coupled decompositions, which can be
unique even when some of tX tut are matrices [2].

Such relaxed uniqueness conditions are strongly related to
the so-called uni-mode uniqueness of tensors, which guarantee
the unique recovery of only a single factor of the decomposi-
tion. Such results will be important to guarantee uniqueness of
the coupled decompositions later in the paper. The uni-mode
uniqueness of the CPD has been studied in [45], [46]. We
recall the condition obtained in [45]:

Theorem 2. [45, Theorem 2.1] Given the CP decomposition
of an order-3 tensor X “ vA,B,Cw with rank R, if C has
no zero columns and

krpAq ` krpBq ` rankpCq ě 2R` 2 (7)

holds, then the third factor matrix C is essentially unique.

Other conditions for the uni-modal and full uniqueness
of the CPD were later studied considering the compound
matrix framework in [46], [50]. In particular, the uni-mode
uniqueness condition given in Expression 1.12 of [46] shows
that, under some mild additional conditions on factors A and
B, the condition (7) from Theorem 2 can be substituted by the
alternative condition rankpCq`minpkrpAq, krpBqq ě R`1.

The uni-mode uniqueness of the CPD plays a fundamental
role in the uniqueness of coupled decomposition models. Also,
the uni-mode uniqueness results for a single CPD have been
extended to the coupled case (6) to provide more relaxed con-
ditions to recover the factor C [38, Theorem 4.6]. Moreover,
the coupled CPD (6) can be transformed into an LL1 BTD
model (see [38, Section 4.3]). Thus, (6) inherits the uniqueness
of the LL1 BTD [53], which guarantees the recovery of C.
These results on the uniqueness of C serve as the basis to
derive uniqueness guarantees for the coupled CPD (6) even
when none of the individual tensors is unique [38]. Thus, uni-
mode uniqueness has a significant impact in the development
of recovery conditions in data fusion. In particular, it is
possible to recover a “high-resolution” tensor from the coupled
decomposition of multiple “low-resolution” ones, where the
low-resolution tensors only need to ensure the uniqueness of
a high-resolution factor matrix by being uni-mode unique, but
not necessarily fully unique.

III. PERSONALIZED COUPLED TENSOR DECOMPOSITION

We consider the problem of recovering a common order-
3 tensor C P RM1ˆM2ˆM3 and distinct order-3 tensors
Dk P RNk,1ˆNk,2ˆNk,3 from a set of possibly degraded
measurements Yk P RNk,1ˆNk,2ˆNk,3 , k “ 1, . . . ,K , which
are acquired according to the following measurement model:

Yk “ PkpCq `Dk , (8)

where Pk is a separable operator of the form:

PkpCq “ C ˆ1 P k,1 ˆ2 P k,2 ˆ3 P k,3 , (9)

with P k,j P RNk,jˆMj being matrices of rank mintNk,j ,Mju

which describe the way in which the j-th mode of C is
measured in (or contributes to) Yk. The common tensor
C represents information/content that is shared among all
datasets, linking them together, while the distinct tensors Dk

represent information unique to each dataset. The model in (8)
and (9) is illustrated in Figures 1 and 2.

This general model can be related to different applications.
For instance, in multimodal image fusion, tensors Yk can
represent multichannel images acquired from the same scene,
C is a latent high-resolution image, operators P k,j represent
spatial and spectral degradations during image acquisition,
and Dk contains inter-image variations/changes [8], [10],
[11]. When Yk represents fMRI data from multiple tasks,
C contains functional brain networks that are active during
data acquisition for all tasks, whereas Dk contains task-
specific functional networks [13]. This model could also be
used, e.g., to separate images of faces from multiple subjects
(represented in Yk) represent common (C) and subject specific
(Dk) components as in [30], or to perform fusion of EEG and
fMRI data (represented in Yk) accounting for components that
might be present only in a single data modality (Dk) [4], [29].

Our aim in this work is to recover C and tDkuk from
tYkuk by considering a low-rank CPD tensor model for C
and Dk, which is described in the following. Assuming that
the common and distinct components admit CPDs, we can
write the tensors in (8) and (9) as:

C “ vC1,C2,C3w , (10)
Dk “ vDk,1,Dk,2,Dk,3w , (11)

PkpCq “ vP k,1C1,P k,2C2,P k,3C3w , (12)

where Cj P RMjˆR and Dk,j P RNk,jˆLk , j P t1, 2, 3u
are the factor matrices. Note that the model in (12) con-
sists in a polyadic decomposition with linear constraints on
the factor matrices. This is directly connected to the CAN-
DELINC decomposition [54]. However, unlike the traditional
CANDELINC, we do not require matrices P k,j to be full
column rank. In such cases, recovery of the common factors
Cj can still be achieved in the present case due to the coupling
between the different tensors. The tensor Yk also admits a
polyadic decomposition with factor matrices equal to

“

P k,jCj , Dk,j

‰

, (13)

for j P t1, 2, 3u. Note, however, that although C and Dk

are assumed to admit CPDs, the polyadic decomposition of
Yk with the factor matrices given in (13) is not necessar-
ily canonical, since the number of components might not
be minimal. This model is fairly general, and encompasses
as particular cases several applications as illustrated by the
following examples.

Example 1. (fMRI decomposition) Multi-subject fMRI data
of the brain can be represented in the form of spatial feature
maps, which are obtained by performing voxel-wise regression
of the raw time-series data [55]. Such feature representations
can be ordered as tensors, whose modes correspond to the
spatial dimensions (voxels), to the subject index, and to sets
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Figure 1. Illustration of the model in (8). A latent tensor C is common in all
measurements and acquired through an operator Pk while tensors Dk are
distinct to each measurement, leading to a personalized decomposition.

Figure 2. Illustration of the multilinear measurement model in (9).

of features corresponding to different data acquisitions within
a task. By acquiring data while subjects are performing certain
tasks (e.g., recognizing number sequences displayed on a
screen, or sound tunes), different tensors can be constructed,
one for each task. Then, by decomposing them according
to the model (8), (9), with the matrices P k,j being identity
matrices, it is possible to recover the brain activations which
are common to all tasks in C, and those which are specific to
each of the tasks in Dk [13].

Remark 1. Although the fMRI voxels are matricized in Ex-
ample 1 (i.e., they are considered a single mode of the tensor),
each of the three spatial dimensions of the fMRI volume can be
considered as additional tensor modes, as investigated in [56].
Although this would require extending the proposed model to
higher order tensors (the measurements would have order 5),
it allows the use of more general low-rank models which can
reduce the amount of unknowns to be estimated.

Example 2. (MRI fusion) A high-resolution MRI tensor C
(whose modes represent the three spatial dimensions) can be
computed efficiently by fusing three acquisitions, each with a
smaller resolution (i.e., a smaller number of slices) in one
of the modes, which can make acquisition time smaller [57],
[58]. The acquisition model can be written as in (8), (9), in
which P k,j consist in either the identity matrix (for modes
observed in full resolution), or downsampling and reweigh-
ing matrices (for modes observed in lower resolution). The
variability between the acquisitions, represented in Dk, can
originate from patient motion, which might not be perfectly
compensated between the different acquisitions [59].

Example 3. (Spectral image fusion) Spectral images can be
represented as order-3 tensors, with two modes corresponding

to spatial dimensions (pixels), and one mode to the spectral
dimension (bands). A high resolution image C can be recov-
ered by fusing two images, one with low spectral resolution
(an MSI), and one with low spatial resolution (an HSI) [9].
These images can be represented as degraded versions of
C according to model (8), (9), where matrices P k,j are
either identity matrices (for the modes observed with high
resolution), or degradation matrices represent the spatial or
spectral responses of the sensors in a given mode. Inter-image
variability between the different acquisitions, represented in
Dk, originates from illumination or other acquisition differ-
ences between the images [10], [60].

The model in (8)–(12) considers that all factors of C are
coupled among the different datasets through the operators
Pk. However, when fusing heterogeneous datasets such as
EEG and fMRI data [61] or simulated and real metabolomics
datasets [62], where some tensor modes such as the time
dimension might not be necessarily aligned among datasets, a
more flexible approach in which such modes of the tensor are
left “un-coupled” (i.e., the coupling is enforced only in one or
two of the modes) might be desirable. We will introduce such
additional flexibility when presenting the optimization-based
CTD framework later in Section V-B.

In the following, we first study the uniqueness of this
decomposition in Section IV. Then, in Section V we develop
two algorithms to compute it, one being semi-algebraic, and
another being based on an alternating optimization approach.

IV. UNIQUENESS OF THE DECOMPOSITION

In this section, we provide both deterministic and generic
conditions under which the proposed coupled decomposition
model is unique, allowing the recovery of the common and
distinct tensors C and tDkuk from the measurements tYkuk.
Those results will also motivate the development of a semi-
algebraic algorithm to compute the decomposition.

A. Deterministic recoverability conditions

Considering the uniqueness and uni-mode uniqueness re-
sults for the CPD presented in Section II-C, the following
result concerning the recoverability of the proposed coupled
CPD-based model from Section III can be stated.

Theorem 3. Consider the measurement model (8), (9) and
the CPD model (10), (11), (12), (13). Then, if the following
conditions are satisfied:

A1: There exists an η P rKs such that Yη is fully unique.
A2: For each j P r3s there exists ξj P rKs such that Yξj

is mode-j unique and P ξj ,j has full column rank.
A3: There exists at least one j P r3s such that ξj ‰ η.

Moreover, for all such j, the Kruskal rank of ma-
trix

“

P η,jCj , P η,jP
:

ξj ,j
Dξj ,j , Dη,j

‰

is bigger than
one.

then the common and distinct tensors C and tDkuk can be
uniquely recovered from tYkuk.

Proof. Consider a decomposition for the coupled CPD model
in (8)–(13) given by tCj ,Dk,juk,j . Suppose that there exists
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an alternative decomposition
 

Ĉi, D̂k,i

(

i,k
that also satisfies

equations (8)–(13).
Step 1 (linking the recovered factors). Let us take a

j P r3s satisfying ξj ‰ η. Such a j is guaranteed to exist
due to hypothesis A3. The uniqueness of Yη and mode-j
uniqueness of Yξj from hypotheses A1 and A2 mean that
their decompositions

 

Ĉi, D̂η,i

(

i
and

 

Ĉj , D̂ξj ,j

(

j
satisfy:

“

P η,iĈi, D̂η,i

‰

“
“

P η,iCi, Dη,i

‰

ΠηΛη,i , (14)

which holds for i P r3s, and
“

P ξj ,jĈj , D̂ξj ,j

‰

“
“

P ξj ,jCj , Dξj ,j

‰

ΠξjΛξj ,j . (15)

where Πξj and Πη are permutation matrices, and Λξj ,j and
Λη,i are diagonal matrices, with Λη,1Λη,2Λη,3 “ I .

Moreover, hypothesis A2 means that P ξj ,j has full column
rank. This allows us to relate the common part of the mode-j
factor matrices of the tensor in measurements ξj and η as

P η,jĈj “
“

P η,jP
:

ξj ,j

‰

P ξj ,jĈj . (16)

Using (14) and (15) on the left- and right-hand side of
equation (16), respectively, we obtain:

´

P η,jCjΠ
p1q
η `Dη,jΠ

p2q
η

¯

Λ
p1q
η,j (17)

“ P η,jP
:

ξj ,j

´

P ξj ,jCjΠ
p1q
ξj

`Dξj ,jΠ
p2q
ξj

¯

Λ
p1q
ξj ,j

(18)

“

´

P η,jCjΠ
p1q
ξj

` P η,jP
:

ξj ,j
Dξj ,jΠ

p2q
ξj

¯

Λ
p1q
ξj ,j

, (19)

where

Πρ “

«

Πp1q
ρ Πp3q

ρ

Πp2q
ρ Πp4q

ρ

ff

, Λρ,j “

«

Λ
p1q
ρ,j 0

0 Λ
p2q
ρ,j

ff

, (20)

denote the partitions of Πρ and Λρ,j into blocks of appropriate
dimensions, for ρ P tξj , ηu. Matrices Πpiq

ρ , i “ 1, . . . , 4
are blocks of a permutation matrix, thus having at most
one element equal to one in each row or column, with the
remaining ones being equal to zero.

Step 2 (solving the ambiguities). In order to proceed, we
need to show that (19) yields a permutation that allows for
the correct recovery of the common part. We can now show
that the permutations will be block diagonal, and will not mix
the common and distinct parts of the factor matrices. Again,
let us consider a j P r3s satisfying hypothesis A3, such that
ξj ‰ η. Note that the columns of the matrices in the left- and
right-hand side of (17)–(19) can be expressed as:

αpa` bq “ βpa1 ` cq ‰ 0 , (21)

where a and b are either the zero vector or columns of P η,jCj

and Dη,j , respectively, and, similarly, a1 and c are either
the zero vector or columns of P η,jCj and P η,jP

:

ξj ,j
Dξj ,j .

Moreover, since Πρ is a permutation matrix, only one vector
at each side of (21) is different from zero; thus, one vector
among among ta, bu, and one vector among among ta1, cu

is equal to zero. Scalars α and β are scalings related to Λ
p1q
η,j

and Λ
p1q
ξj ,j

and different from zero.
Note that (21) implies that a ` b and a1 ` c

are proportional. However, since the Kruskal rank of

“

P η,jCj , P η,jP
:

ξj ,j
Dξj ,j , Dη,j

‰

is bigger than one due to
hypothesis A3, no two columns of the matrix are proportional,
which implies that (21) can only be satisfied if b “ c “ 0.
Since this holds for all columns of (17)–(19), we have that
Πp2q

η “ 0 and Π
p2q
ξj

“ 0. This implies that the blocks Πp1q
η

and Π
p1q
ξj

are themselves permutation matrices, and that Πξj

and Πη are block diagonal.

Step 3 (linking the three modes). Note that Yη is fully
unique due to hypothesis A1, and the above results showed
that Πη is block diagonal. We can also show that Πξj has a
block diagonal structure for j P r3s, not mixing common and
distinct parts of the factor matrices. Specifically, if ξj ‰ η,
then by the previous arguments we have directly that Πξj is
block diagonal with the desired structure. Otherwise, if ξj “ η,
then obviously Πξj “ Πη , thus being block diagonal with the
same structure. It remains to show that the permutations and
scalings are consistent across the three modes.

To proceed, consider ξj , for each j P r3s. Due to the block
diagonal structure of Πξj , the mode-j uniqueness in (15), the
coupling between η and ξj in mode j, we have

P ξj ,jĈj “ P ξj ,jCjΠ
p1q
ξj

Λ
p1q
ξj ,j

, (22)

which, using the full column rank of P ξj ,j , leads to the
following condition:

Ĉj “ CjΠ
p1q
ξj

Λ
p1q
ξj ,j

. (23)

Due to the uniqueness of Yη , we can use the block diagonal
structure of Πη with equations (14) and (23) to obtain

P η,jĈj “ P η,jCjΠ
p1q
η Λ

p1q
η,j

“ P η,jCjΠ
p1q
ξj

Λ
p1q
ξj ,j

. (24)

Note that due to necessary conditions for the uniqueness of
the CPD, Yη being unique implies that P η,jCj does not have
proportional columns [50]. Since Λ

p1q
ξj ,j

and Λ
p1q
η,j are diagonal

and Πp1q
η and Π

p1q
ξj

are permutation matrices, this means that

equation (24) is only satisfied when Π
p1q
ξj

“ Πp1q
η and Λ

p1q
ξj ,j

“

Λ
p1q
η,j . This holds for all j P r3s. Thus, since Λ

p1q
η,1Λ

p1q
η,2Λ

p1q
η,3 “

I , the reconstructed tensor satisfies

Ĉ “
0

Ĉ1, Ĉ2, Ĉ3

8

“
0

C1Π
p1q
η Λ

p1q
η,1,C2Π

p1q
η Λ

p1q
η,2,C3Π

p1q
η Λ

p1q
η,3

8

“ C , (25)

which proves the recovery of C. The recovery of Dk follows
directly from (8), which concludes the proof.

Remark 2. Note that the conditions in Theorem 3 also imply
the uniqueness of the factors of the common tensor C. More-
over, conditions for the uniqueness of the factors of the distinct
tensors Dk can be obtained by analyzing each tensor sepa-
rately using Kruskal’s condition, since Dk “ Yk ´ PkpCq.

The conditions in Theorem 3 are mild and interpretable.
Condition A1 is equivalent to one of the measured tensors Yη

being fully unique. However, it does not require its factors
to be measured in full resolution (i.e., P η,j need not be
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full column rank). The full uniqueness of one tensor is used
to ensure consistent permutations and scalings among the
recovered common factors in the three modes.

Intuitively, condition A2 means that for each mode j P r3s
we need one of the measured tensors to be mode-j unique
and to have the corresponding degradation matrix P i,j with
full column rank. This means that the mode-j factor matrix
(containing both the common and distinct components) can be
recovered in full resolution from this tensor.

Finally, condition A3 is key to allow us to relate factor
matrices containing both common and distinct components
from two different measured tensors in order to find out which
of the components are the common ones.

B. Generic recoverability conditions

Based on Theorem 3 we can also derive generic uniqueness
results which give explicit conditions based on the rank of
the decomposition (i.e., the ranks of the common and distinct
tensors, given by R and Lk, respectively), on the measurement
matrices P k,j and on the tensor dimensions that guarantee that
a generic CTD following the model presented in Section III
is essentially unique. This result is given in the following
theorem.

Theorem 4. Consider the measurement model (8), (9) and
the CPD model (10), (11), (12), (13). Assume that all factors
tCj ,Dk,juk,j are drawn from some joint absolutely contin-
uous distribution w.r.t. the Lebesgue measure. Then, if the
following conditions are satisfied:

A4: (uniqueness of η): There exists an η P rKs such that
ÿ

jPr3s

mintrankpP η,jq, R` Lηu ě 2pR` Lηq ` 2 . (26)

A5: (uni-mode uniqueness of ξj) For each j P r3s there
exist a ξj P rKs such that P ξj ,j is full column rank
and the following condition is satisfied:

minpNξj ,j ,minpMj , Rq ` Lξj q`
ÿ

i‰j

mintrankpP ξj ,iq, R` Lξju ě 2pR` Lξj q ` 2 . (27)

A6: There exists at least one j P r3s such that ξj ‰ η.
then the common and distinct tensors C and tDkuk can be
uniquely recovered from tYkuk with probability one.

Before proceeding with the proof of Theorem 4, we need a
couple auxiliary results, provided in the following lemmas.

Lemma 1. Let the elements of matrices X1 P

RR1ˆS1 , . . . ,XK P RRKˆSK be drawn according to a
joint distribution that is absolutely continuous with respect
to the Lebesgue measure in RR1S1¨¨¨RKSK , and matrices
Q1 P RTˆR1 , . . . ,QK P RTˆRK be deterministic. If there
exist a full row rank matrix E P R rTˆT such that matrices
EQ1, . . . ,EQK also have full row rank, then the matrix
W “ rQ1X1, . . . ,QKXKs has Kruskal rank at least
mint rT ,

ř

k Rku with probability one.

Proof. Let us denote by tw1, . . . ,wiu a subset of i columns
of matrix W . Due to matrix E having full row rank, if

tEw1, . . . ,Ewiu are linearly independent vectors, this im-
plies that tw1, . . . ,wiu will also be linearly independent.
Since this holds for any subset of columns of W , it implies
that krpW q ě krpEW q.

We now aim to compute the Kruskal rank of EW “

rEQ1X1, . . . ,EQKXKs. Since EQi is assumed to be of
full row rank for all i, this implies that if tX1, . . . ,XKu

are jointly absolutely continuous, tEQiXiu
Ť

tXj : j ‰ iu
will be jointly absolutely continuous too (see Lemma 1
of [9]). Thus, noting that the above result holds when applying
the transformation EQi to each block of variables, we can
proceed recursively for each of the blocks i “ 1, . . . ,K
to show that the elements of matrix EW are also jointly
absolutely continuous. This, on the other hand, implies that
rankpEW q “ minp rT ,

ř

k Rkq with probability one. Since
the rank and Kruskal rank of generic matrices coincide, the
result follows.

Note that this lemma can be used to lower bound the generic
Kruskal rank of the factor matrices of Yk.

Corollary 1. Suppose Cj and Dk,j are distributed according
to a joint absolutely continuous measure, then

krprP k,jCj ,Dk,jsq ě mintrankpP k,jq, R` Lku .

Proof. Let us take Q1 “ P k,j , Q2 “ I , and con-
sider E P RrankpP k,jqˆNk,j to be the matrix which selects
the rankpP k,jq linearly independent rows of P k,j . Clearly,
rankpEq “ rankpEQ1q “ rankpEQ2q “ rankpP k,jq.
Applying Lemma 1 gives the desired result.

Lemma 2. Consider X1 P RMˆR and X2 P RNˆL

distributed according to a joint absolutely continuous measure,
and Q P RNˆM deterministic and full column rank. Then, for
Z “ rQX1,X2s, rankpZq “ minpN,minpM,Rq `Lq, with
probability one.

Proof. Consider the square matrix rQ “ rpQ:
qJ,QJ

Ks
J, where

Q: is the left pseudoinverse of Q and QK its orthogonal
complement. Since Q is full column rank, rQ is invertible,
and thus rankpZq “ rankprZq, where

rZ “ rQZ “

«

X1
ĂX2,1

0 ĂX2,2

ff

, (28)

where ĂX2,1 “ Q:X2 and ĂX2,2 “ QKX2. Note that since rQ

is deterministic, X1, ĂX2,1, and ĂX2,2 are jointly absolutely
continuous. We will consider two cases depending on the
shape of X1.

Case R ě M : In this case, X1 is generically full row
rank, and thus by results related to the Schur complement [63,
fact 6.5.6] the rank of the matrix is equal to

rankprZq “ rankpX1q ` rankpĂX2,2q ,

with the right hand side equal generically to M `minpN ´

M,Lq “ minpN,M ` Lq.
Case R ď M : Denote T “ minpN,R ` Lq. We know

that the rank is bounded by the dimensions of the matrix,
i.e., rankprZq ď T . To prove that the equality holds, we use
the standard argument that is often used for proving generic
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(holding with probability 1) properties [64]. We first show that
there exists a matrix rZ0 with the block-triangular form (28)
that has rank T . Such a matrix can be constructed as

rZ0 “

„

IT 0
0 0



. (29)

Note that this matrix is still in the same form as (28), although
the dimensions of the blocks are different. Then the existence
of such rZ0 implies that rankprZq “ T with probability 1.
Below we explain in detail why it is the case (although it can
be also deduced from the semicontinuity of the rank function).

By construction, detprrZ0s1:T,1:T q “ 1 ‰ 0, which is a mul-
tivariate polynomial in rZ. Since the zero set (set of solutions)
of a nonzero polynomial equation is necessarily of Lebesgue
measure zero [65], we conclude that detprrZs1:T,1:T q ‰ 0
with probability 1 for a matrix of the form (28), hence
rankprZq “ T with probability 1. Combining the two cases
gives the desired result.

Considering the results in Lemmas 1 and 2, as well as the
deterministic uniqueness result in Theorem 3, we can proceed
to prove the generic uniqueness case of Theorem 4.

Proof. Step 1 (full uniqueness). Let us consider the factor
matrix of the j-th mode of the k-th tensor. Due to the joint
absolute continuity of Cj and Dk,j , we can use Corollary 1
to show that the Kruskal rank of the j-th factor matrix of Yk

is lower bounded as

krprP k,jCj ,Dk,jsq ě mintrankpP k,jq, R` Lku

with probability one. Thus, for the tensor indexed by η,
condition (26) of A4 leads to
ÿ

jPr3s

krprP η,jCj ,Dη,jsq ě
ÿ

jPr3s

mintrankpP η,jq, R` Lηu

ě 2pR` Lηq ` 2 , (30)

which implies that the CPD of Yη is essentially unique.
This means that condition A1 of Theorem 3 is satisfied with
probability one.

Step 2 (uni-mode uniqueness). Moreover, for each ξj , j P
r3s, for which P ξj ,j is full column rank due to hypothesis A5,
we can use Lemma 2 to show that, with probability one, the
rank of the j-th factor matrix of Yξj is equal to

rankprP ξj ,jCj ,Dξj ,jsq “ minpNξj ,j ,minpMj , Rq ` Lξj q ,

and from Corollary 1 it has no zero columns. This, along with
condition (27) of hypothesis A5, leads to

rankprP ξj ,jCj ,Dξj ,jsq `
ÿ

i‰j

krprP ξj ,iCi,Dξj ,isq

ě minpNξj ,j ,minpMj , Rq ` Lξj q

`
ÿ

i‰j

mintrankpP ξj ,iq, R` Lξju

ě 2pR` Lξj q ` 2 , (31)

for all j P r3s. Combining this result with Theorem 2 means
that the mode-j factor matrix of Yξj is essentially unique.
This implies that condition A2 of Theorem 3 is satisfied with
probability one.

Step 3 (auxiliary results to solve the ambiguities). Using
hypothesis A6, let us choose a ξj P rKs satisfying ξj ‰ η.
Since rankpP η,jq ě 2 due to assumption A4, we can find
an E P R rTˆNη,j , rT ě 2 such that EP ηj ,j has full row
rank. Moreover, since P ξj ,j has full column rank due to
assumption A5, rankpP :

ξj ,j
q “ Mj , and due to the Sylvester

rank inequality, we have

rankpEP η,jP
:

ξj ,j
q ě rankpEP η,jq ` rankpP :

ξj ,j
q ´Mj

“ rankpEP η,jq , (32)

which implies EP η,jP
:

ξj ,j
also has full row rank. Thus, due

to the joint absolute continuity of Cj ,Dξj ,j ,Dη,j (a conse-
quence of η ‰ ξj), using Lemma 1 we have that with probabil-
ity one the Kruskal rank of

“

P η,jCj , P η,jP
:

ξj ,j
Dξj ,j , Dη,j

‰

is bigger than one. This holds for any ξj ‰ η. Thus, condition
A3 of Theorem 3 is satisfied with probability one. Since
A1, A2 and A3 are satisfied, Theorem 3 implies that tensors
C and tDkuk can be uniquely recovered from tYkuk with
probability one.

The generic uniqueness result in Theorem 4 allows us to
more clearly illustrate how considering conditions based on
uni-mode uniqueness can lead to more relaxed conditions for
the uniqueness of the full CTD. This can be illustrated by the
following example.

Example 4. Let us consider a common tensor C, with size
7ˆ 11ˆ 9, and distinct components Dk, with CP ranks of
R “ 5 and Lk “ 5 for all k, whose factor matrices are
drawn from some joint continuous distribution. Suppose we
have K “ 3 measured tensors Y1, Y2, Y3, with sizes
10ˆ5ˆ7, 5ˆ12ˆ7 and 5ˆ7ˆ10, respectively. The measured
tensors satisfy the model (8), (9) for some full rank matrices
P k,j of appropriate dimensions. This CTD is generically
unique according to Theorem 4. However, only tensor Y2

is guaranteed to be fully unique, satisfying condition (26).
Tensors Y1 and Y3 are only uni-mode unique, satisfying (27)
for modes j “ 1 and j “ 3, respectively. While our result
based on the uni-mode uniqueness allows us to consider ranks
R ` Lk ď 10, if we were to require Y1 and Y3 to be fully
unique instead (satisfying (26)), uniqueness would only hold
for ranks satisfying R` L1 ď 8 and R` L3 ď 9.

The works [9], [34] consider the uniqueness of models
related to the one in Section III. However, these results are
not directly comparable to ours. Flexible coupled decompo-
sitions with shared and distinct components were considered
in [34], but without a general measurement model like (8), (9).
Moreover, the uniqueness results in [34] are based on algebraic
and topological properties of matrices and a graph constructed
from the measured tensors and factor matrices, whereas the
conditions in Theorem 4 are directly based on the dimensions
of the tensor and on the ranks of P k,j . The results in [9], which
considers the spectral image fusion problem of Example 3, are
easier to compare to ours. However, although both our results
and those in [9] require one of the measured tensors to be
fully unique, [9] does not consider distinct components (i.e.,
Dk “ 0) and exploits the fact that several P k,j are identity
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matrices. This leads to conditions for the recovery of the “high
resolution” factor matrices that can be slightly weaker the uni-
mode uniqueness used in our results.

V. COMPUTING THE DECOMPOSITION

This section presents algorithms to compute the coupled
CP decomposition according to the model presented in Sec-
tion III. Two approaches are proposed. The first, presented in
Section V-A, is a semi-algebraic strategy, while the second,
presented in Section V-B uses an optimization algorithm.

A. A semi-algebraic solution

Algebraic algorithms can provide accurate solutions in low-
noise settings and constitute good quality initializations to
optimization strategies [66]. Theorem 3 provides a means of
devising a semi-algebraic algorithm. It requires the CPD of
at least two and at most four of the measured tensors, and
solutions to linear algebra and assignment problems, as will be
detailed in the sequence. The approach is referred to as semi-
algebraic because except for the computation of the CPDs,
which might involve the use of optimization algorithms, the
rest of the procedure is based on simple algebraic operations.
To this end, let us assume the conditions in Theorem 3 to hold.

Step 0 (measurements selection): Select an η P rKs and
ξj P rKs, j P r3s such that Yη is fully unique, Yξj is mode-j
unique, P ξj ,j has full column rank, and the cardinality of the
set tη, ξ1, ξ2, ξ3u is at least two. This ensures there exists a
ξj ‰ η. Note that there can be several possible choices of η
and ξj satisfying these conditions, introducing a measure of
user choice. First, since we will compute CPDs of the tensors
indexed by tη, ξ1, ξ2, ξ3u, the smaller the cardinality of this set
the smaller the number of CPDs to compute. Moreover, we can
also prioritize choices of η or ξj for tensors that are easier to
decompose. For example, for tensors of rank R`Lk, typically
the larger their dimensions Nk,j the easier it is to compute
its decomposition accurately (i.e., larger tensors might have
less collinearity between the columns of the factor matrices,
reducing convergence issues due to “swamping” [67]). In
addition, if Yk are contaminated by noise, we might prioritize
measurements with higher signal-to-noise ratio (SNR).

Step 1 (recovery of factors separately): Compute the
(unique) rank-R`Lη CPD of Yη . Denote the recovered factor
matrices by Uη,i, i P r3s.

Step 2 (recover a different uni-mode factor): Pick j
such that ξj ‰ η. Since Yξj is mode-j unique by assumption,
compute its CPD with rank R`Lξj , and denote the recovered
(unique) mode-j factor matrix by U ξj ,j , and the remaining
factors (not necessarily unique) by U ξj ,i, i ‰ j.

Step 3 (correcting ambiguities): We find the common
part of the factor by searching for an optimal assignment
between the transformed columns of Uη,j and U ξj ,j . More
precisely, we first map the factors to the same column space
using the transformation

V ξj ,j “ P η,jP
:

ξj ,j
U ξj ,j ,

recalling that P ξj ,j is left-invertible by assumption. Now
we find an optimal correspondence between R columns of

matrices V ξj ,j and Uη,j . To do this, we first construct a
matrix Z P RR`LηˆR`Lξj with the normalized inner product
between each pairs of columns form these matrices, that is,

Zn,m “
|xun,vny|

}un}2}vm}2
, (33)

where un is the n-th column of Uη,j , and vm is the m-th
column of V ξj ,j . Then, we find a partial permutation that
best aligns the common columns among these matrices, as the
binary matrix ∆ P t0, 1uR`LηˆR`Lξj that solves:

max
∆r,sPt0,1u

ÿ

r,s

∆r,s Zr,s (34a)

s.t. 1J∆1 “ R , ∆1 ď 1 , ∆J1 ď 1 . (34b)

Note that this is an unbalanced assignment problem with fixed
cardinality R, which can be solved efficiently [68].

From the solution p∆ to problem (34) we define two
matrices: Mη , equal to the identity matrix with the columns
corresponding to the indices of the all-zero rows of p∆ removed
(size RˆR`Lη), and M ξj , which is the matrix p∆ with the
all-zero rows removed (of size R ˆ R ` Lξj ). Now, we can
select the common parts and correct the permutations for all
factors of tensors η and ξj :

X̂C
η,i “ Uη,iMη , (35)

X̂C
ξj ,i “ U ξj ,iM

J
ξj . (36)

for i P t1, 2, 3u. Finally, we compute Ĉj by compensating the
scaling ambiguities as Ĉj “ P :

ξj ,j
X̂C

ξj ,j
Λj , where Λj is the

diagonal matrix solving

Λj “ argmin
diagonal matrix Λ

›

›X̂C
η,j ´ P η,jP

:

ξj ,j
X̂C

ξj ,jΛ
›

›

F
. (37)

This gives us the j-th common factor with permutation scaling
ambiguities matching those of tensor η. The solution to (37)
can be computed in a straightforward manner for each diagonal
element of Λj . Moreover, in a setting where X̂C

η,j and X̂C
ξj ,j

are not computed exactly, the solution to (37) will result in an
approximate scaling that best matches the two factor matrices.

Step 4 (computing the remaining factors): Let us now
consider the other modes, ` ‰ j. Let us consider the mea-
surements available for which the remaining modes are uni-
mode unique and observed with full resolution, tξ`, ` ‰ ju.
Depending on the value of ξj and η, we have two cases:

1) If ξ` P tη, ξju, then X̂C
ξ`,`

was computed in (35)
or (36) and the mode-` factor can be computed as Ĉ` “

P :

ξ`,`
X̂C

ξ`,`
Λ`, with Λ` computed similarly to (37).

2) If ξ` R tη, ξju, then let us compute the rank R ` Lξ`

CPD of Yξ` , and denote the recovered mode-` factor
matrix by U ξ`,`. Then, we repeat the same procedure as
in the Step 3, to find the optimal assignment between the
columns of matrices Ĉj and P :

ξ`,`
X̂C

ξ`,`
, which will give

us the corresponding matrices M ξ` and Λ`. This way,
we can recover Ĉ` as Ĉ` “ P :

ξ`,`
U ξ`,`M ξ`Λ`, which

matches the scaling ambiguities. This gives us the `-
th common factor with permutation scaling ambiguities
matching those of Ĉj .
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Algorithm 1: Semi-algebraic algorithm
1 Inputs: Data Yk , operators P k,j , ranks R, Lk , indices of unique

tensor η and mode-i unique tensors ξi, i P r3s.
2 Compute the CPD of Yη , with factors Uη,i, for i P r3s.
3 Take j P r3s such that ξj ‰ η, compute the mode-j CPD factor

matrix of Yξj , denoted by Uξj ,j .
4 Compute the optimal partial assignment between the columns of Uη

and Uξj according to Step 3, solving (34)–(37), and compute the
factor matrix Ĉj “ P :

ξj ,j
X̂C

ξj ,j
Λj .

5 for ` P t1, 2, 3uztju do
6 if ξ` P tη, ξju then
7 Ĉ` “ P :

ξ`,`
X̂C

ξ`,`
Λ`.

8 else
9 Compute rank R` Lξ` CPD of Yη` and denote the

recovered mode-` factor matrix by Uξ`,`.
10 Compute the optimal partial assignment between the

columns of Ĉj and P :

ξ`,`
X̂C

ξ`,`
and the corresponding

matrices as in line 4, and compute the factor Ĉ`

according to Step 4.
11 end
12 end
13 return Calg “

0

Ĉ1, Ĉ2, Ĉ3

8

, Dk “ Yk ´ Calg , k P rKs.

Step 5 (reconstruct the tensor): With the permutations
and scalings compatible across the three modes, we can recon-
struct the common tensor as Ĉ “ vĈ1, Ĉ2, Ĉ3w. The distinct
components D̂k are recovered as the CPD of Yk ´ PkppCq.

Note that, following the same arguments as in the proof of
Theorem 3, it can be shown that this recovers the true tensor.

B. An optimization-based solution

Let us consider the case when the tensors are measured with
noise. The CTD can be formulated as an optimization problem
by seeking the decomposition satisfying the model (8), (10),
(11) and (12) which is the closest to the measurements accord-
ing to some criterion. However, the computational complexity
can increase substantially when the number of measured ten-
sors K becomes large. To allow the computational complexity
to be reduced, we will propose a more flexible formulation in
which one can control which factors of the common tensor are
coupled to a given measurement in the optimization problem.
This is related to factorization frameworks with both shared
and unshared factors [1], [34]. To define this more precisely,
let us introduce some additional notation. First, we can write
the polyadic decomposition of tensor Yk as:

Yk “
ÿ

mPtC,Du

0

Xm
k,1,X

m
k,2,X

m
k,3

8

, (38)

where XC
k,j and XD

k,j are related to the factor matrices in (11)
and (12) through:

XC
k,j “ P k,jCj , XD

k,j “ Dk,j . (39)

Let Γj Ď rKs for j P r3s be the sets defining which
coupling constraints are enforced, i.e., k P Γj means that, for
mode-j factor Cj of the common tensor, the coupling (39)
in the k-the measurement is included as a constraint in the
optimization problem (leaving the possibility to relax some
of the constraints). Having more flexibility in the definition

of couplings was shown to be useful in prior works such
as in double coupled factorizations [20], [24], where the
factor matrix of a given measurement tensor can be coupled
to one among multiple common factors, instead of only a
single global factor. The flexible coupled tensor decomposition
considered in this work can be formulated as follows:

min
Φ

K
ÿ

k“1

›

›

›
Yk ´

ÿ

mPtC,Du

0

Xm
k,1,X

m
k,2,X

m
k,3

8

›

›

›

2

F
(40a)

s.t. XC
k,j “ P k,jCj , k P Γj , j P r3s , (40b)

where Φ “
 

Cj ,X
C
k,j ,X

D
k,j

(

. Note that the factor matrices
Dk,j are not included in the optimization problem since they
are equal to XD

k,j due to (39), and thus redundant. The
constraint (40b) links the mode-j factor of the common tensor
C among all measured datasets indexed in Γj . Note that we
do not require knowledge of P k,j for k R Γj . We also remark
that although the loss function in (40a) is based on the squared
loss, other loss functions can also be considered, such as the
Kullback-Leibler divergence or the logistic loss, which can be
more natural for count or binary tensors (see, e.g., [69]–[71]).

Remark 3. Note that following the same reasoning as for the
semi-algebraic algorithm developed in Section V-A, supposing
the conditions in Theorem 3 are satisfied, is is desired that: 1)
all common factors of the unique tensor are coupled, leading
to η P

Ş

jPr3s Γj; and 2) the uni-mode unique factors are
coupled, i.e., for each mode j P r3s, ξj P Γj . Moreover, for
all k there must be at least one mode j such that k P Γj ,
otherwise there is no coupling linking tensor Yk. However,
the uniqueness results in Theorems 3 and 4 concern the
model (8)–(12) and would have to be extended in order to
rigorously address the flexible coupling case in (40).

Remark 4. There is a trade-off between accuracy and compu-
tational cost in the selection of Γj . In case the measurements
Yk are contaminated by noise, one might want to couple
as many of the measurements as possible to aid in the
estimation of the common factor Cj , since this increases the
amount of available data and can improve accuracy. However,
including more measurements in the coupling (i.e., increasing
the cardinality of Γj) increases the computation cost, since
faster solvers are available for the case of |Γj | ď 2 as will be
discussed in detail in Appendix A.

To solve (40), different iterative approaches can be consid-
ered, such as the structured data fusion (SDF) framework [1],
among others [66]. In this work, we consider an ALS solution,
which is a common iterative approach to compute tensor
decompositions since each of the updates has an easy-to-find
solution [72]. We present the overall procedure in Algorithm 2.
The detailed derivations for the solution of the different
optimization subproblems are presented in Appendix A.

VI. NUMERICAL EXPERIMENTS

We evaluate the performance of the proposed decomposition
methods using synthetic and real data. As a quantitative
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Algorithm 2: ALS solution to problem (40)
1 Inputs: Data Yk , operators P k,j , ranks R, Lk , couplings Γj .
2 Initialize the factors (e.g., randomly or using Algorithm 1) ;
3 while not converged do
4 Compute C1 by solving (48) ;
5 Compute XC

k,1 using (51) and (53) ;
6 Compute C2 by solving (49) ;
7 Compute XC

k,2 using (51) and (54) ;
8 Compute C3 by solving (50) ;
9 Compute XC

k,3 using (51) and (55) ;
10 Compute XD

k,1, XD
k,2 and XD

k,3 using (57), (58) and (59) ;
11 end
12 return C “

0

C1,C2,C3

8

, Dk “
0

XD
k,1,X

D
k,2,X

D
k,3

8

, k “ rKs.

metric, we considered the normalized root mean square er-
ror (NRMSE) between the estimated and the true common
component, defined as NRMSE “ }Ĉ ´ C}F {}C}F . The ac-
curate recovery of C also means an accurate reconstruction
of Dk « Yk ´ PkpCq if the SNR is not too low. In all
experiments, we computed the average NRMSE results over 20
Monte Carlo runs. The CPDs required by the semi-algebraic
algorithms were computed using Tensorlab [73].

A. Synthetic data

1) Performance as a function of the SNR: This experiment
evaluates the performance of the proposed semi-algebraic and
optimization algorithms when decomposing noisy data.

Data generation: We generated synthetic data following
model (8), (9), (10), and (11). To this end, we generated
common tensor C, distinct tensors Dk and K “ 3 mea-
surements Y1, Y2, Y3, all with the same sizes and rank
values as in Example 4. The factor matrices of C and Dk

(generated according to (10) and (11)) were randomly sampled
from a standard Gaussian distribution. To generate matrices
P i,j (of appropriate dimensions), we sampled each of their
elements from an uniform distribution over the interval r0, 1s.
The measurements Y1, Y2 and Y3 were generated as

Yk “ PkpCq `Dk `N k , (41)

where N k denotes white Gaussian noise, with SNR given by

SNR “ 10 log10

ˆ

E
 

}PkpCq `Dk}
2
F

(

E
 

}N k}
2
F

(

˙

, (42)

with Et¨u denoting the expectation operator. Note that from
the SNR in (42) the noise variance is adjusted according to the
energy of the full tensor PkpCq`Dk, which is different from
the energy of the common tensor C evaluated in the NRMSE.
As explained in Example 4 this CTD is generically unique
in the noiseless case, but only tensor Y2 is guaranteed to be
fully unique, with Y1 and Y3 being only uni-mode unique.
Moreover, the rank of each measured tensor is larger than the
dimension of two of its modes, making this a numerically
challenging example.

Algorithms setup: We compared the semi-algebraic algo-
rithm with the optimization algorithm following two different
initialization options, with “init. 1” being the solution from the
semi-algebraic method, and “init. 2” being a uniform random

Figure 3. NRMSE for different SNRs for the example with synthetic data.

initialization. We ran the optimization algorithms for at most
1000 ALS iterations. To mitigate the random effect of the
initialization, we ran all the algorithms using 50 independent
initializations (including the initialization of the CPD used in
the semi-algebraic approach) and picked the solution which
had the lowest reconstruction errors,

ř

k }Yk ´ Ŷk}
2
F , with

Ŷk being the reconstructed tensor.
Results: The NRMSE results are shown in Figure 3. It

can be seen that the errors are very low for high SNRs (indi-
cating a correct recovery of the true factorization) but increase
approximately linearly with the noise intensity. Moreover,
although the semi-algebraic solution achieved low NRMSEs
for high SNRs, its performance was consistently worse than
that of the optimization-based solutions. The two initializations
options (init. 1 and init. 2) performed similarly for high (ě 40
dB) SNRs, but the random initialization (init. 2) achieved
lower NRMSEs compared to the semi-algebraic one (init. 1)
for lower SNRs, particularly for the case of 20 dB. However,
since the NRMSE values for this SNR are large, they do not
provide a meaningful way to compare the quality of different
solutions; thus, their interpretation must be performed with
proper care.

2) Ablation experiment 1: This experiment evaluates the
performance of the proposed algorithms when there is vari-
ability in the common tensor between different datasets.

Experimental setup: We consider the same general set-
ting as in Section VI-A1 with an SNR fixed at 30 dB. We
generate the measured tensors as

Yk “ PkpCkpαqq `Dk `N k , (43)

where Ckpαq represents a “noisy” version of the common ten-
sor in the k-th dataset, computed as Ckpαq “ p1´αqC`αEk.
Tensor C, which is the same for all datasets, is generated
randomly as in Section VI-A1, while Ek, which is generated
in the same way as C, is independent for each dataset. The
contribution of each term is controlled by α P r0, 1s. We de-
compose Yk using the proposed optimization-based algorithm
with random initialization (init. 2) for different values of α.

Results: The NRMSE, defined for this example as
NRMSE “ 1

K

ř

k }Ckpαq ´ Ĉ}F {}Ckpαq}F for the recovery
of Ckpαq, is shown as a function of α (averaged over 20
Monte Carlo runs) in Figure 4. It can be seen that the NRMSE
increases with α, which is expected since this reduces the
amount of information shared among datasets. Nonetheless,
the performance degradation occurs smoothly, indicating the
proposed method is not overly sensitive to this type of mis-
modeling effect when α is small.
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Figure 4. NRMSE (between Ckpαq and pC) of the solutions from the
optimization algorithm (init. 2) as a function of α.
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Figure 5. NRMSE of the solution given by the proposed optimization-based
algorithm (init. 2) as a function of the ranks of the decomposition R and Lk .
The true ranks of the tensors are given by Rtrue “ 5 and Ltrue

k “ 5.

3) Ablation experiment 2: This experiment evaluates the
performance of the proposed algorithm when the rank of the
decomposition is misspecified.

Experimental setup: We generate sets of measurements
Yk following the same setup as in Section VI-A1, fixing the
SNR at 30 dB. Thus, the data are generated from a (noisy)
CTD model with ranks Rtrue “ 5 and Ltrue

k “ 5. We then aim
to recover the common tensor C using the optimization-based
algorithm with random initialization (init. 2), but specifying
different values of ranks in the range R,Lk P t3, 4, 5, 6, 7u to
evaluate the impact of rank misspecification.

Results: The NRMSE (}C´ Ĉ}F {}C}F ) as a function of
R and Lk (averaged over 20 Monte Carlo runs) is shown in
Figure 5. It can be seen that as the differences between the
ranks specified to the algorithm and the true ones increase,
so does the NRMSE. Nonetheless, even when the specified
ranks are considerably different than the true ones the NRMSE
performance is still reasonable (e.g., for R “ 3, Lk “ 3 the
NRMSE increases 30% compared to the optimal value). This
indicates that the proposed method is not overly sensitive to
the choice of the ranks.

4) Computation time and comparison to SDF: This experi-
ment compares the execution times of the proposed algorithms,
and provides comparisons to the SDF framework of [1].

Experimental setup: We consider the same general ex-
perimental setup as in Section VI-A1 while fixing the SNR
at 30 dB. The SDF framework [1] was implemented to
solve problem (40) using Tensorlab [73]. All algorithms were
implemented on MatlabTM and run on a MacBook Pro M1
with 16GB RAM.

Results: The NRMSE and execution times (averaged
over 20 Monte Carlo runs) can be seen in Table I. It can be
seen that the proposed optimization-based approach (with both
random and semi-algebraic initializations) and SDF obtain
very similar NRMSEs, whereas the semi-algebraic approach
present a higher NRMSE. In terms of computation times, the
fastest approach was Algorithm 2 with random initialization
(init. 2), followed by the semi-algebraic solution, whose exe-

Figure 6. Illustration of common component C and of the high resolution
image reconstructed by the proposed method and by CB-STAR (the best
performing competing method). The cloudy image X 1 (underlying the HSI)
for the different cloud contamination levels is shown on top (the top-left
corresponds to the ground truth). The percentages on top read as CC% (CP%).

cution is slightly slower due to an iterative optimization proce-
dure being used to compute the CPDs. The SDF framework,
although very flexible to tackle different types of problems,
presented the longest execution time, significantly higher than
the proposed algorithms.

Table I
NRMSE AND COMPUTATION TIME COMPARISON WITH SYNTHETIC DATA.

Semi-algebraic Opt. (init. 1) Opt. (init. 2) SDF [1]
NRMSE 0.9088 0.0770 0.0767 0.0765
Time [s] 2.776 6.531 1.026 23.553

B. Real data

For the experiments with real data, we consider the problem
of imaging a given scene subject to cloud contamination. Two
distinct acquisitions of this scene are obtained, one yielding an
HSI and one an MSI, each of which is subject to some random
cloud contamination (which are independent and identically
distributed across the images). This results in image-specific
variability affecting both the HSI and the MSI. The objective
is to recover an uncontaminated high-resolution image (HRI)
of the scene by fusing the acquired HSI and MSI.

Experimental setup: We consider an underlying high-
resolution image C P R145ˆ145ˆ200 as the Indian Pines image,
with 145 ˆ 145 pixels and 200 spectral bands. Cloud cover
maps (i.e., percentage of clouds per pixel) were then generated
randomly using a nonlinear transformation of a Gaussian
random field, which led to realistic cloud distribution (see the
first row of Figure 6) and allowed the intensity and spatial
extent of the clouds to be adjusted. Specifically, we generated
two cloud cover maps, S1 and S2 (P R145ˆ145) to represent
the cloud cover underlying the HSI and MSI, respectively.
Then, cloud-corrupted images X 1 and X 2 were generated as
a convex combination between the ground image and a cloud
spectral signature as

rX ksx,y,λ “ rCsx,y,λ
`

1´ rSksx,y
˘

` gλrSksx,y , (44)

for k P r2s, where gλ P R is the cloud spectral reflectance
at band index λ, which was computed from a real cloud
signature presented in [74], and x, y is the pixel indices.
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Table II
AVERAGE NRMSE RESULTS FOR FUSING AN HSI AND AN MSI WITH
DIFFERENT AMOUNTS OF CLOUD CONTAMINATION ON BOTH IMAGES.

Cloud cover (CC) % 0% 1.1% 2% 4% 9.7%
Corrupted pixels (CP) % 0% 3.7% 4.8% 5.7% 13.8%

STEREO 0.035 0.082 0.146 0.222 0.386
SCOTT 0.038 0.088 0.147 0.280 0.436

CT-STAR 0.054 0.094 0.154 0.291 0.450
CB-STAR 0.037 0.081 0.100 0.182 0.371

Proposed (semi-algebraic) 0.079 0.102 0.125 0.189 0.297
Proposed (optimization) 0.052 0.055 0.073 0.134 0.251

Note that decomposing X 1 and X 2 into common and distinct
components is challenging since, due to the model (44),
neither the common nor the distinct components will have
low CP rank. Thus, the data do not really follow the model
in (10), (11), leading to an approximation problem rather than
an exact decomposition.

From the cloudy high-resolution images X 1 and X 2 we
generated the HSI and the MSI, respectively, using degradation
operators P k,j as described in Example 3 of Section III.
We used a spatial decimation factor of four for the HSI and
the spectral response of the Sentinel-2A sensor for the MSI
(leading to a spectral decimation factor of 10 for the MSI).
The HSI Y1 P R36ˆ36ˆ200 and the MSI Y2 P R145ˆ145ˆ10

were then generated as

Yk “ PkpX kq `N k (45)

for k P t1, 2u, where Pk is as defined in (9) and N k are
white Gaussian noise tensors whose variance is adjusted to
obtain an SNR of 30 dB, which is here defined as

SNR “ 10 log10

ˆ

E
 

}PkpX kq}
2
F

(

E
 

}N k}
2
F

(

˙

. (46)

For more details on the measurement model for this applica-
tion, see, e.g., [8], [9], [75].

We adjusted the cloud cover generation setup to obtain
images with a desired amount of cloud contamination, which
was kept the same for the HSI and MSI and was measured
using two metrics. The first metric is the cloud cover (CC)
percent, defined as the mean percentage of clouds per pixel
and computed as CC “ 1

Z

ř

k,x,yrSksx,y , in which Z “

2 ˆ 1452 is a normalization equal to the total number of
terms the summation. The second metric is the percent of
corrupted pixels (CP), defined as the mean percentage of pixels
with more than 15% of cloud presence, and computed as
CP “ 1

Z

ř

k,x,y ι
`

rSksx,y ą 0.15
˘

, where ιp¨q is an indicator
function and Z is defined as before. Note that the CC and CP
metrics shown in the experiments are also averaged among all
Monte Carlo runs.

Algorithms setup: We compare the proposed method
with the state-of-the-art CTD approaches STEREO [9],
SCOTT [8], and with CT-STAR and CB-STAR [10], the latter
two which consider an image specific component in one of the
images (the MSI). The ranks of all methods were adjusted to
maximize performance in a separate independently generated
dataset. We implement the optimization algorithm initialized
with the algebraic approach, and considered up to 50 ALS
iterations. For this example, we implemented a modification
on the semi-algebraic algorithm to simplify it and improve its

robustness inspired by TenRec in [9]. Specifically, we follow
the steps 1 through 4 detailed in Section V-A, and exploited
the fact that P 2,1 “ P 2,2 “ I to compute Ĉ1 and Ĉ2 from
the common parts of the factors obtained through the CPD of
the MSI Y2. However, to compute the final factor Ĉ3 we use
a different approach by just solving the linear regression prob-
lem on the HSI as minC3

}Y1 ´ vP 1,1Ĉ1,P 1,2Ĉ2,C3w}F .
This showed better performance than recovering C3 through
the separate CPD of the HSI Y1.

Results: Quantitative results are shown in Table II along
with the CC and CP percentages. Visual results of the two
overall best performing methods (the proposed optimization-
based algorithm and CB-STAR) corresponding to the run
with the median performance difference between them are
shown in Figure 6. It can be seen that the proposed methods
perform slightly worse when there are no clouds, which is
natural as the models in the competing methods (without
personalized components) match the dataset better. However,
as soon as cloud cover is present (even for 1.1%) the proposed
optimization-based approach gets considerably lower NRMSE
then the other algorithms. The semi-algebraic algorithm per-
formed considerably worse than the optimization one for
low CC percentages, with their relative performances getting
better as the cloud contamination increases. The visual results
also corroborate these findings, with the reconstruction by
CB-STAR showing more artifacts compared to the proposed
method reconstruction. The artifacts also get increasingly
strong as the cloud contamination increases, being subtle for
a CC of 1.1% but very strong for a CC of 9.7%.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, a personalized CTD framework was proposed.
A flexible model was presented representing the datasets as the
sum of two components, each admitting a low-rank CPD. The
first component was linked to a common tensor through a mul-
tilinear measurement model, while the second component was
distinct and captured dataset-specific information. This model
generalized several existing CPDs. The generic uniqueness of
the decomposition was shown to hold under mild conditions
that highlighted the influence of the measurement model and
of “weaker” uni-mode uniqueness of individual datasets on
the uniqueness of the full decomposition. Assuming the ranks
of the common and distinct components to be known, two
algorithms were proposed to compute the decomposition. The
first was semi-algebraic, performing well for high SNRs but
being less robust in low-SNR settings. The second was based
on an optimization procedure and showed better performance,
especially on noisy and real data. Experiments illustrated the
advantage of the proposed framework compared with the state
of the art methods.

An important issue related to the practical use of the pro-
posed CTD framework is the estimation of its ranks, R and Lk.
While several strategies have been investigated to estimate the
number of common components in statistical models involving
multiple datasets (see, e.g., [76]–[78]), these approaches are
based on a very different set of model assumptions. Thus, in
future work we aim to investigate the order selection problem
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for CTDs with common and distinct components from both
theoretical and experimental perspectives.

APPENDIX A
SOLUTION TO THE OPTIMIZATION PROBLEM (40)

Optimization w.r.t. Cj: Let us first consider the solution
for C1. Incorporating the equality constraint (40b) directly in
the cost function, this problem can be written as:

min
C1

ÿ

kPΓ1

›

›

›

rYk ´
0

P k,1C1,X
C
k,2,X

C
k,3

8

›

›

›

2

F
(47)

where rYk “ Yk ´
0

XD
k,1,X

D
k,2,X

D
k,3

8

. Note that this is
equivalent to a coupled CP decomposition without distinct
components. Using the properties of the mode-1 matricization,
it can be shown that the critical points of (47) satisfy
ÿ

kPΓ1

`

JJ
k,1Jk,1

˘

CJ
1

`

PJ
k,1P k,1

˘

´ JJ
k,1

rYkx1yP k,1 “ 0 , (48)

where Jk,1 “ XC
k,3 dXC

k,2. Note that the product JJ
k,1Jk,1

can be computed using mixed product properties (see, e.g.,
[47, eq. 2.2]). Since (48) is linear in C1 P RM1ˆR, it can be
solved with a complexity of at most O

`

pM1Rq3
˘

operations.
However, since this consists in a generalization of the Sylvester
equation, when |Γ1| ď 2 specialized solvers can be much
faster: the complexity of solving the generalized Sylvester
equation in this case is OpM3

1 ` R3q operations when using
the Hessenberg-Schur or Bartels-Stewart methods [79]–[82].

Optimizing the cost function w.r.t. C2 and C3 can be done
similarly by using the mode-2 and mode-3 tensor matriciza-
tions, which leads to the following equations:
ÿ

kPΓ2

`

JJ
k,2Jk,2

˘

CJ
2

`

PJ
k,2P k,2

˘

´ JJ
k,2

rYkx2yP k,2 “ 0 , (49)

ÿ

kPΓ3

`

JJ
k,3Jk,3

˘

CJ
3

`

PJ
k,3P k,3

˘

´ JJ
k,3

rYkx3yP k,3 “ 0 , (50)

where Jk,2 “ XC
k,3 dXC

k,1 and Jk,3 “ XC
k,2 dXC

k,1.
Optimization w.r.t. XC

k,j: The solution to this problem
depends on whether XC

k,j is included in the set of equality
constraints (40b). If k P Γj , then the solution is direct:

XC
k,j “ P k,jCj , k P Γj , j P r3s . (51)

On the other hand, if k R Γj , the optimization problem for the
mode j “ 1 will be:

min
XC

k,1

›

›rYk ´
0

XC
k,1,X

C
k,2,X

C
k,3

8
›

›

2

F
, (52)

where rYk “ Yk ´
0

XD
k,1,X

D
k,2,X

D
k,3

8

. The solution to this
problem is given by:

XC
k,1 “

“`

XC
k,3 dXC

k,2

˘:
rYkx1y

‰J
, k R Γ1 . (53)

The same steps can be used to compute the solutions for modes
j “ 2 and j “ 3:

XC
k,2 “

“`

XC
k,3 dXC

k,1

˘:
rYkx2y

‰J
, k R Γ2 , (54)

XC
k,3 “

“`

XC
k,2 dXC

k,1

˘:
rYkx3y

‰J
, k R Γ3 . (55)

Optimization w.r.t. XD
k,j: This problem is given by

min
XD

k,1,X
D
k,2,X

D
k,3

›

›Yk ´
0

XD
k,1,X

D
k,2,X

D
k,3

8
›

›

2

F
, (56)

where Yk “ Yk´
0

XC
k,1,X

C
k,2,X

C
k,3

8

. Problem (56) consists
of computing a rank-Lk CPD of Yk. Following the ALS
strategy, we update XD

k,j sequentially over j P r3s. Using
the mode-j matricization and proceeding in the same way as
in the previous problem, the solutions are given by:

XD
k,1 “

“`

XD
k,3 dXD

k,2

˘:
Ykx1y

‰J
, (57)

XD
k,2 “

“`

XD
k,3 dXD

k,1

˘:
Ykx2y

‰J
, (58)

XD
k,3 “

“`

XD
k,2 dXD

k,1

˘:
Ykx3y

‰J
. (59)
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