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Abstract—Independent Component Analysis (ICA) is a power-
ful data-driven method that has been widely applied in functional
magnetic resonance imaging (fMRI) data analysis to uncover
underlying sources. An attractive way to boost ICA performance
is via constraints to guide ICA factors to be similar to user-
supplied “references”, allowing incorporation of prior-knowledge
into the factorization. However, most of existing constrained ICA
methods typically only impose source constraints and are unable
to impose constraints on the mixing matrix. With multi-subject
medical imaging datasets, constraining the mixing matrix with
subjects’ symptom-related measurements, such as clinical scores
or cognitive variables, enhances the algorithm’s ability to identify
brain activities associated with these symptoms. This offers a
novel perspective for understanding the pathologies underlying
various psychiatric disorders. Therefore, to overcome the lim-
itations of existing constrained ICA algorithms, we introduce
a new constrained ICA algorithm: adaptive-reverse constrained
matrix entropy bound minimization (arc-M-EBM), which im-
poses constraints on the mixing matrix and uses adaptive-reverse
thresholding to avoid overfitting or underfitting. This approach
ensures flexibility and leads to more accurate and interpretable
source separation. Simulations demonstrate that arc-M-EBM
outperforms traditional ICA methods. Application to resting-
state fMRI data from 176 subjects from healthy controls and
patients reveals significant relationships between constrained
components and clinical measures, enhancing our understanding
of brain-behavior relationships.

Index Terms— Constrained Independent Component Analysis,
Adaptive Reverse Scheme, fMRI Analysis

I. INTRODUCTION

Independent component analysis (ICA) is a powerful blind
source separation technique used to uncover hidden sources
from observed data [1], [2]. By assuming statistical indepen-
dence and a linear mixing model, ICA extracts latent variables,
i.e., sources, making it particularly useful for exploratory
data analysis. Its data-driven nature has made ICA highly
successful in analyzing functional Magnetic Resonance Imag-
ing (fMRI) data. Incorporating constraints based on reliable
prior information can significantly enhance the algorithm’s
separation performance when such data is available.

To address these limitations, constrained ICA (c-ICA) has
been developed [3]. Constrained ICA can integrate prior
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knowledge, enhancing accuracy and interpretability. For ex-
ample, by incorporating spatial constraints into fMRI data
analysis, c-ICA provides clearer insights into brain activity [4],
[5]. Subsequently, [6] proposed a framework that can extend
the existing c-ICA for the mixing matrix and [7] by using an
alternating scheme between constraints and demixing matrix,
both using the Infomax algorithm. Among existing c-ICA
methods, constrained Entropy Bound Minimization (c-EBM)
has proven particularly successful. EBM offers a flexible
approach to match source probability distributions and enables
the decoupling of the demixing matrix without requiring an or-
thogonality constraint [8]. In multi-subject resting-state fMRI
studies, c-EBM is shown to effectively identify subgroups and
reveal meaningful brain networks with significant differences
between them [9].

Despite its advantages, c-EBM lacks constraints on the
mixing matrix, which limits its integration of critical prior
knowledge such as cognitive or clinical measures. Applying
such constraints could improve the contextual relevance and
biological significance of the results. For example, linking
symptom severity to the mixing coefficients of components
facilitates the identification of symptom-specific components.

In this study, we develop adaptive-reverse constrained ma-
trix EBM (arc-M-EBM) algorithm to address this limita-
tion, which imposes constraints by encouraging the estimated
mixing matrix columns to be similar to supplied reference
columns, improving both separation performance and inter-
pretability. The arc-M-EBM algorithm utilizes an adaptive
thresholding strategy introduced by [10], dynamically adjust-
ing constraint thresholds to prevent overfitting and underfitting.
This ensures that the algorithm utilizes provided prior infor-
mation without forcing the similarity between the estimated
mixing matrix and the references to exceed a certain threshold.
Furthermore, arc-M-EBM allows for the estimation of free
components outside the provided references, offering flexibil-
ity while effectively capturing the underlying data structure.
The flexibility in constraint selection and the inclusion of
free components empower arc-M-EBM to effectively analyze
complex neuroimaging datasets.

The application of arc-M-EBM to both simulated and real-
world datasets has yielded promising results. In simulations,
arc-M-EBM consistently outperforms traditional ICA tech-
niques such as FastICA, Infomax, and EBM. When applied



to real-world fMRI data, arc-M-EBM reveals significant as-
sociations between constrained components and clinical mea-
sures, highlighting its potential to uncover meaningful brain-
behavior interactions. Specifically, the cerebellum component
is associated with the Global Assessment of Functioning
(GAF) score [11], while the parietal component correlates with
the Montgomery-Asberg Depression Rating Scale (MADRS)
score [12]. The results align with previous studies, such as
those reporting the cerebellum’s role in schizophrenia and
the associated cognitive impairment [13] and the involvement
of parietal regions in depression pathophysiology [14]. These
findings suggest that arc-M-EBM is a valuable tool for both
theoretical and clinical applications, providing a robust frame-
work for analyzing complex datasets.

II. BACKGROUND

A. Independent Component Analysis

Consider N statistically independent, zero-mean, univariate
latent sources s = [sy,...,sx|’ and an unknown invertible
mixing matrix A € RY*N_ ICA assumes a linear mixture
model: x = As, where x € RY is the observable mixture
vector. Over V samples, the observed data matrix X € RV*V
and the underlying sources S € RV*V are related by the
equation X = AS.

The goal of ICA is to estimate a demixing matrix
W = [wi,...,wx]|? such that the estimated sources y =
[y1,...,yn]T = Wx are maximally statistically independent.
Over the V samples, our estimated sources are given by
Y =[y1,...,yn|T € RVXV,

A natural strategy for maximizing source independence is
minimizing their mutual information, expressed as a function
of W:

N
J(W) =" H(y,) —log|det W| — H(x), (1)
n=1

where H (y,) = —FE[log p,(yn)] represents the entropy of the
nth source (estimated using its realization over V' samples in
vn), and the term log | det W] is as a regularization term that
preserves volume across the directions of source estimation.
Estimation of the entropy is crucial in the ICA algorithm.

EBM is an ICA algorithm that estimates entropy by bound-
ing the entropy of the estimates using a numerical compu-
tational method [8]. The decoupling method introduced by
[15] allows for more flexible and realistic modeling of source
signals by relaxing the orthogonality constraint. This method
enables each row of the demixing matrix W to be individually
optimized, such that (1) can be expressed as a function of w,,,
the nth row of W:

T (W) = H(yn) — logld} w,| + C, )

where ||d,,|| = 1 and d,, is orthogonal to all rows of W except
for w,,, and C is a constant.

B. Constrained ICA

Given a reference r,, for the nth source y,,, c-ICA can be
formulated as:

minwnj(wn) s.t. G(Yn,rn) > Pn, 3)
where €(y,,,r,) represents a specific similarity measure be-
tween y, and r,, defined as €(y,,r,) = |yir,|. Let the

constraint function h,,(y,,, rn) = pn — €(¥,,, I'n). The problem
in (3) is a constrained optimization problem that can be solved
using a Lagrangian framework [3], [6].

C. Adaptive Reverse Scheme

In c-ICA, the threshold parameters p,, are often unknown
and need to be predetermined. If p, values are set too
high, the constraints become difficult to satisfy, leading to
an unpredictable solution. Conversely, if p,, values are too
low, the output may produce different components. To ad-
dress this issue, [10] proposed an adaptive-reverse scheme
to dynamically select variable thresholds for the constraints.
The adaptive-reverse scheme adjust the values of p,, based
on the similarity between the estimate y, and the reference
r,,: when the similarity is insufficient, the algorithm reduces
pn; conversely, if the similarity is too high, the algorithm
increases p,. This dynamic adjustment helps maintain an
optimal balance and improves the robustness of the solution.

III. ADAPTIVE-REVERSE CONSTRAINED MATRIX EBM

In this study, we introduce arc-M-EBM, a novel method
that imposes constraints on mixing matrix columns using an
adaptive thresholding strategy. Given references r,, for rows
of mixing matrix w,,, we formulate the following constrained
optimization problem:

ming, J(W,) s.t. €(tn, W) > pn, 4)

where we assume that the columns of mixing matrices and
references are unit norm and zero mean, €(r,, w,) = [rZw,|.
Let hp(Wn,r,) = pn — €(Wy,1rp,). Following the approach
in [16], we address the problem in (4) using the augmented
Lagrangian optimization function:

T (W ttn) = T (W )+ (020, Yo (W, ) 117 }) 122,

29n
&)
where u,, is a Lagrangian multiplier, v,, > 0 is a scalar penalty
parameter. For n = 1,..., M, where M is the number of

constrained columns and M < N, we use the gradient method
to derive the update rules for w,, and wu,,:

8jc(wn7 un) T T dT
Aw, = 2" " o E(p, (Wl + -
W w, < EEn (W x)x7) dw, ()
+ unsign(l‘fwn)rm
W, < W, — NAW,, @)
Up, < max{0,v(pn — €(Wp, 1)) + un}, ®)

where 7 is the step size for each iteration.



Adaptive reverse scheme: According to (8), if we over
estimate the similarity between w,, and r, by choosing a
large threshold p,,, the constraint p, — €(w,,r,) becomes
difficult to satisfy. Consequently, the Lagrangian multiplier u,,
will tend to infinity. Conversely, underestimating the similarity
by choosing a small p,, causes u,, to decrease towards zero.
The adaptive-reverse scheme introduces two strategies for
dynamically adjusting the threshold value p, based on the
values of u,, in each iteration: (i) overshooting the similarity:
Choose the smallest p,, that satisfies the constraint:

Pn = argmin{P p> 6(rn7W”)}7 (9)

and (ii) undershooting the similarity: Choose the largest p,
that satisfies the constraint:

pn = argmax{p : p < e(r,, wp)}. (10)

In each iteration, for a predefined maximum value .y, if
u, < 0, we apply the overshooting strategy; if u, > Umax,
we apply the undershooting strategy.

While the cost function is based on r, and w,, prior
information about the mixing parameters typically pertains
to a single column of the mixing matrix. To bridge this
gap, it is necessary to transform the reference p,, for the
column of the mixing matrix into the reference r, for a
row of the demixing matrix w,,. This transformation can be
achieved using principal component analysis (PCA). PCA is
a commonly used technique for dimensionality reduction that
decreases the number of variables in a dataset while preserving
the most critical information. PCA reduces the dimensionality
of the original mixing matrix X ¢ RExN by projecting it
onto a lower-dimensional space using Q € RM-*X  where
K > Nj. After applying PCA, the transformed reference
r, for the row of the demixing matrix can be computed as

ry, = Qpn
IV. SIMULATION RESULTS

This section evaluates the performance of the proposed
method compared with existing ICA algorithms on two subsets
of the Labeled Faces in the Wild (LFW) dataset, using
simulated constraints for each source. In each subset, face
images are artificially mixed, and arc-M-EBM as well as four
ICA algorithms are applied for their separation.

The first subset contains data with high correlations among
sources, violating the independence assumption of sources
and leading to suboptimal separation performance by most
existing ICA methods. The second subset features low corre-
lations among sources, where current ICA methods demon-
strate improved performance. The study will illustrate how
incorporating constraints on the mixing matrix A enhances
the performance of the ICA algorithm.

The LFW dataset is a collection of face photographs de-
signed for research in unconstrained face recognition [17].
It comprises 13,233 images of 5,749 individuals, detected
and centered using the Viola-Jones face detector, and sourced
from the web. This dataset was created and maintained by re-
searchers at the University of Massachusetts, Amherst. Figures

(a) (b)

Fig. 1: (a) Two sets of true sources from LWF with (a) low
and (b) high correlation among sources. The histogram next
to each image represents the distribution of the gray levels in
that image.

1 and 2 display the selection of the two sets of sources along
with their corresponding correlation matrices.

(a) ()

Fig. 2: Cross-correlation values among face images for (a) the
low-correlation source set; (b) the high-correlation source set.

Mixing matrix: Given the selected seven face images in
each subset, let S € R7*? represent the face sources, where
P is the total number of pixels per image. The mixing matrix
before dimension reduction, denoted as A € REX7 with K >
7, is generated from a univariate Gaussian distribution for each
entry. The mixture data X € R *” is then created by X = AS.

Constraint construction: After generating the original mix-
ing matrix A, we construct constraints for the sources using:

I, = V1 — a?a; + ae;, (1

where a; is the ith column of A, and e; € RX is a vector
with entries drawn from a normal distribution with zero mean
and unit variance. The parameter o controls the noise level in
the references r;. A larger a increases uncertainty about r;,
reducing its quality.

Scenarios: We evaluate the performance of our proposed
method, arc-M-EBM, under two distinct scenarios and com-
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Fig. 3: Scenario 1: ISI for different methods, including arc-M-
EBM with fixed constraint uncertainty (o = 0.2) and varying
numbers of constraints for (a) the low-correlation source set
and (b) the high-correlation source set. Numbers in parentheses
after arc-M-EBM indicate the number of constraints used.

pare it with four competing ICA methods: Infomax, FastICA,
EFICA, and EBM.

Scenario 1: Varying number of constrained columns

We fix the uncertainty level « = 0.2 and incrementally
increase the number of constraints from three to seven for
arc-M-EBM. This allows us to assess how the method’s
performance changes as more constraints are introduced.

Scenario 2: Varying uncertainty level

We fix the number of constrains to four and gradually
increase the uncertainty level o from 0.2 to 0.8 for arc-
M-EBM. This helps us understand the impact of varying
uncertainty on the performance of arc-M-EBM.

Evaluation metric: To evaluate the performance of arc-
M-EBM and other algorithms, we use the inter-symbol-
interference (ISI) metric. ISI assesses how well the original
independent components (ICs) are separated after the unmix-
ing process. A lower ISI indicates nearly perfect separation,
while a higher ISI suggests poorer performance [18].

Results for Scenario 1: Fig. 3 presents the ISI outcomes
for Scenario 1, demonstrating the effects of incorporating prior
information regarding the columns of the mixing matrix in
both highly dependent and weakly dependent source datasets.
With a fixed constraint noise level of a = 0.2, the ISI
decreases as the number of constrained columns increases.
Notably, even with only three column references for the
mixing matrix, arc-M-EBM consistently outperforms all com-
peting ICA algorithms. This result highlights that integrating
more prior information enhances the algorithm’s ability to
effectively separate the underlying latent sources.

Results for Scenario 2: Fig. 4 illustrates the simulation
results under varying noise levels for a fixed number of
constrained columns. The box plot shows that our method
achieves the lowest ISI at low noise levels compare with
unconstrained ICA algorithms. Moreover, arc-M-EBM contin-
ues to outperform most traditional ICA algorithms even when
the noise level reaches approximately 60%. This demonstrates
that incorporating references for the columns of the mixing
matrix A significantly enhances the separation performance of
ICA methods, even when the references are of lower quality.
This robustness underscores the effectiveness of arc-M-EBM
in challenging conditions.
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Simulation results show that arc-M-EBM outperforms other
ICA methods across various conditions. Even with nearly
independent sources, incorporating reference information for
the mixing matrix improves separation quality.

Traditional methods perform well at low source corre-
lations but degrade as correlation increases. Arc-M-EBM,
however, maintains strong performance in both low- and
high-correlation scenarios. This robustness to deviations from
the independence assumption highlights our approach’s effec-
tiveness and reliability in handling diverse levels of source
dependence.

V. APPLICATION
A. fMRI Feature Dataset

The study used resting-state fMRI (rs-fMRI) datasets from
the Bipolar and Schizophrenia Network for Intermediate Phe-
notypes (B-SNIP) project [19], [20], involving 176 patients
with schizophrenia (SZs). For further details, see [21].

In this study, we used the max-TP feature, a recently
proposed fMRI feature for capturing temporal peaks, which
has shown promising results in differentiating between healthy
controls and SZs. Max-TP features were calculated by av-
eraging the 10 maximum values across all time points for
each brain voxel [22]. A two-dimensional feature dataset
was formed by concatenating the max-TP features across all
subjects, resulting in a 176 x 40401 matrix, where rows
correspond to subjects and columns to voxels.

B. Behavior Measures

Symptom ratings were collected using the Montgomery-
Asberg Depression Rating Scale (MADRS) [12] and the
Global Assessment of Functioning (GAF) [11]. The MADRS
assesses depressive symptom severity, with higher scores in-
dicating more severe depression. The GAF rates social, oc-
cupational, and psychological functioning, with higher scores
indicating better functioning.

Cognitive assessments were conducted using the Wide
Range Achievement Test-IV (WRAT-1V) [23] and the Brief
Assessment of Cognition in Schizophrenia (BACS) [24]. The
WRAT-IV Spelling and Reading subtests (WRATSG) evaluate
reading and math abilities, while the Token Motor Task



(BACS-Tok-Mot), a BACS subtest, measures motor speed and
coordination.

In this study, MADRS, GAF, WRATSG, and BACS-Tok-
Mot scores are utilized.

C. Implementation of arc-M-EBM

We applied arc-M-EBM to the max-TP feature dataset,
using behavioral measures (MADRS, GAF, WRATSG, and
BACS-Tok-Mot) as constraints on the mixing matrix columns.
These constraints helped to integrate the subjects’ clinical and
cognitive profiles, assisting in identifying ICs whose mixing
profiles are similar to these constraints. In our analysis, we
constrained four columns of the mixing matrix while leaving
the remaining columns unconstrained, allowing for a balanced
approach between guided and exploratory data analysis.

To determine the suitable model order for arc-M-EBM, we
used the cross-ISI metric [9], [25], [26]. Cross-ISI assesses
component consistency across multiple runs, with smaller
values indicating greater consistency and better model match.
In contrast to ISI, cross-ISI does not rely on the true values
of the mixing matrix A, which enhances its practicality for
real-world data analysis.

We determined model order through the following steps:

1) Conduct 30 runs of arc-M-EBM for each model order,

ranging from 4 to 20 with a step size of 1, and then
from 20 to 100 with a step size of 10;
2) Calculate the cross-ISI for all runs and visualize the
distribution for each model order (Fig. 5);
3) Select model orders with small median values and low
variance of cross-ISI.
Model order 12 exhibited the smallest median and relatively
lower variance of cross-ISI (Fig. 5), making it the most
appropriate choice. The final results were derived from the
most consistent run with the smallest cross-ISI, using a model
order of 12. The results remained consistent across different
model orders.

D. Results

Fig. 6 displays the spatial maps of the constrained com-
ponents and their correlations with behavioral measures for
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model order 12. IC1 is located in the cerebellum, IC2 in the
parietal cortex, IC3 at the brain edges (likely representing
motion artifacts), and IC4 within the ventricles (non-neural
regions).

IC1 showed a significant correlation with the GAF score,
aligning with the finding in [13], which highlighted the
cerebellum’s role in schizophrenia and associated cognitive
impairment. IC2 correlated significantly with the MADRS
score, consistent with the finding on the parietal cortex’s
involvement in depression reported in [14]. IC3 exhibited a
significant correlation with WRATSG, while IC4, constrained
to BACS-Tok-Mot, did not show a significant correlation.

Notably, meaningful ICs were significantly associated with
symptom measures (MADRS and GAF) but not with cognitive
measures (WRATSG and BACS-Tok-Mot). This distinction
may be due to the nature of the measures. Symptom measures
like MADRS and GAF are more directly related to the
clinical presentation of schizophrenia, assessing the severity
of depressive symptoms and overall functioning. Cognitive
measures like WRATSG and BACS-Tok-Mot focus on spe-
cific cognitive functions and may not capture broader neural
changes associated with the disorder.

VI. CONCLUSION

In this study, we introduced arc-M-EBM, a novel method
that enhances ICA by incorporating prior knowledge into the
mixing matrix with an adaptive-reverse thresholding strategy.
Simulations demonstrate that when the constraints correspond
to the true generative model, arc-M-EBM is able to sig-
nificantly outperform other ICA-based methods, in terms of
source separation and source interpretability: the sources’
contextual meaning used to develop a greater understanding of
the data. When applied to real-world fMRI data, arc-M-EBM
revealed significant relationships between constrained com-
ponents and clinical measures. These findings highlight the
biological relevance and interpretability of the results, making
arc-M-EBM a valuable tool for both theoretical exploration
and clinical applications.
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