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Abstract—Matrix decomposition techniques have been success-
fully applied in the analysis of multi-subject functional magnetic
resonance imaging (fMRI) data. These data-driven approaches
that assume the linear blind source separation (BSS) problem
can yield an unsupervised and fully interpretable solution when
there is a good model match. However, selecting a suitable model
order that provides an accurate model match is an important
challenge. Replicability and computational reproducibility are
two key aspects that are also intimately related to interpretability.
Despite clear evidence that solutions with poor reproducibility
can lead to suboptimal results, the evaluation of reproducibility
in matrix decomposition techniques remains limited in the
existing literature. We propose the use of constrained independent
vector analysis (cIVA), a state-of-the-art joint BSS technique,
to assess the influence of model order selection for replicability
and reproducibility. We demonstrate the attractiveness of cIVA
for replicability by alleviating permutation ambiguity as well
as enabling additional quantification opportunities. Our results
show that highly reproducible model orders achieve a good model
match with highly interpretable and replicable solutions when
cIVA is applied to four different resting-state fMRI datasets.

Index Terms—independent vector analysis, reproducibility,
replicability, fMRI analysis.

I. INTRODUCTION

Data-driven approaches have been playing an important role
in the analysis of large-scale multi-subject functional magnetic
resonance imaging (fMRI) data, allowing us to study brain
functional connectivity and the subsequent identification of
biomarkers for different brain disorders such as schizophrenia
or bipolar disorder [1], [2]. However, unlike model-based
approaches, data-driven solutions often lack a clear connection
to a physical model. Therefore, an emphasis is placed on
the interpretability of the results [3]. Matrix decomposition
techniques, due to their connection with the linear blind source
separation (BSS) problem, provide an unsupervised solution
that is fully interpretable. In this regard, independent com-
ponent analysis (ICA), a popular BSS technique, assumes a
linear combination of latent variables in the observed data and
implements a matrix decomposition approach to extract the
variables of interest, where the rows/columns of the estimated
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factors can be associated with (physical) quantities of interest
[3]. In fMRI data, the rows/columns of the decomposed
matrices can be related to spatially independent functional
networks and their corresponding time courses [1], [4].

Reproducibility and replicability are two important consid-
erations that are closely tied to a good interpretation of the
results. According to the US National Academies of Sciences,
Engineering, and Medicine [5], (computational) reproducibil-
ity is defined as obtaining consistent results using the same
data and code. On the other hand, replicability is defined as
obtaining consistent results using the same code but different
data. Hence, if the results are not consistent and generalizable,
they will be hardly interpretable and of limited value.

When multi-subjects datasets are available, joint BSS
(JBSS) can be applied to obtain more effective decompositions
by exploiting the joint information across subjects [6]. Inde-
pendent vector analysis (IVA) is a JBSS technique that extends
ICA by leveraging statistical dependencies across multiple
datasets through a multivariate density model to achieve a
powerful and fully interpretable decomposition [4], [6], [7].
IVA has proved to be an effective technique for preserv-
ing inter-subject variability in the fMRI analysis [8]. Also,
IVA presents uniqueness guarantees under general conditions,
which is an important property to ensure interpretability [4].
However, IVA is computationally expensive and its perfor-
mance degrades as the number of datasets increases [9]. To
mitigate these drawbacks, constrained IVA (cIVA) was pro-
posed, which incorporates prior information to the analysis to
improve IVA performance in large-scale multi-subject datasets
while preserving the interpretability properties of IVA [9].
Additionally, cIVA alleviates the permutation ambiguity of
IVA by aligning the components and their estimations, which
facilitates the post-analysis of the results and allows us to
effectively conduct a replicability study across datasets [10].

Even though JBSS techniques have been successfully ap-
plied in neuroimaging analysis, the evaluation of their compu-
tational reproducibility has been limited [3], [11]. Considering
that the cost functions of most JBSS algorithms are non-
convex, convergence can only be guaranteed to a local op-
timum. Moreover, iterative methods, usually with random ini-
tializations, are often implemented since closed-form solutions
do not exist for these problems [3], [11], [12]. Hence, even



though all the algorithmic quantities are fixed, the obtained
results can be quite different due to the variability introduced
by the initialization. Therefore, to evaluate reproducibility, a
suitable metric must be selected to measure the consistency of
the results. Most reproducible solutions have been shown to
lead to results with better interpretability [3], [11].

Due to the bias and variance dilemma in estimation theory,
a reproducible solution with low variability might not have
enough flexibility to capture the important features of the
data and yield a high bias, and vice versa. In this regard,
cIVA introduces reliable prior information to the model which
guides the algorithms to avoid a suboptimal solution, hence,
achieving a good balance between bias and variance even when
used in conjunction with a flexible approach. Furthermore,
the model order and its complexity significantly influence the
quality and consistency of the results. The proper selection
of the model order is an important challenge that plays a
key role in model match, and an accurate model match that
properly represents the features of the observed data, enhances
the reproducibility and interpretability of the estimates [3].

In this work, we assess the replicability and computational
reproducibility of cIVA as a function of the model order. We
show that those model orders that offer the most consistent
results lead to better quality estimates and more interpretable
and replicable functional networks. Moreover, we also demon-
strate the effectiveness of cIVA to conduct a replicability
study, providing additional quantification opportunities when
applied to four different resting-state fMRI datasets. The rest
of this paper is organized as follows. Section II describes the
employed methods. Section III presents the obtained results
by the cIVA algorithm, and Section IV explains the main
conclusions of this study.

II. METHODOLOGY
A. Independent Vector Analysis (IVA)

Consider K datasets x*/(v) € RN composed by V
samples (v = 1...V) and where each dataset x!*l(v) =
[a:[lk] (v)y..., acy\c,] (v)] € RN is modeled as a linear mixture of
N latent sources s*l(v) = [s[lk] (v),. sy\?] (v)] e RV 1 <
k < K. Then, the IVA generative model is defined as

m[k]( )= AlFlg [k]( ), (1)

where Al ¢ RVXN s an invertible mixing matrix. IVA
estimates & demixing matrices W € RN*N to compute
the source estimates y[*!(v) = [ygk} (v),.. .,yg\lﬁ] (v)] € RV,
where yl*l(v) = WFzlFl (v).

By stacking the nth latent source across the K datasets,
we define a source component vector (SCV) s,(v) =
st (), ... st )]T. Hence, we also define y,(v) =
[yg](v),...,yLK](v)]T € RX as the nth estimated SCV.
Assuming the latent SCVs are independent, the goal of IVA is
to maximize the independence between the N SCVs by mini-
mizing the mutual information among the estimated SCVs. To
this end, to exploit the statistical dependencies across datasets,
IVA models each SCV with a multidimensional probability

density function (PDF). The IVA cost function is given as [4],
(6]

Jiva(W

=3 (Lwolh -

K
n>> =" tog |det(WH),

where W = {WII}J K| H(yilk]) denotes the entropy of the
nth source estimate for the kth dataset and Z(y,) denotes
the mutual information of the mth SCV. We can see that
the cost function simultaneously maximizes the independence
within a dataset with the entropy term and also maximizes
the dependence across datasets by maximizing the dependence
among components within each SCV.

Multivariate Gaussian distribution (MGD) is an attractive
solution for modeling the SCVs. In this case, the IVA algo-
rithm (IVA-G) [6], [13], only exploits second-order statistics
by minimizing the correlation between SCVs and maximizing
the correlation within each SCV. Multivariate Laplacian dis-
tributions have been shown to provide a better model match
with latent fMRI sources [9]. However, it is a computationally
expensive approach. Using cIVA we incorporate reference
signals into the IVA-G analysis to guide the decomposition,
limit the solution space, and maintain the model match while
providing a computationally efficient estimation [10], [14].

B. Constrained IVA

Consider a set of references {r,}*., c RY(M < N),
the main goal is to maximize the similarity between 7, and
the corresponding estimated SCV y,, while also minimizing
similarity with the other estimated SCV y,,, where n # m.
For this purpose, we employ the regularization as in [10]

M
209 = 323 ( 32 skl - k). @
=1k=1 \m=1
m#n
where € : RV x RY — [0, 1] is implemented as the absolute

value of the Pearson correlation. The augmented cost function
is a linear combination of the IVA-G cost function and the
regularization term

A
LA(W) = JvacWV) + E\Zef(W), 3)

where the regularization parameter A\ balances the impact
of the IVA-G cost Jiva.g and the regularization term. After
studying different A values, we decided to set A = 100 as the
value that provides more interpretable results. Thanks to the
regularization term, cIVA alleviates the permutation ambiguity
inherent in matrix decompositions and enhances replicability
when applied to different datasets, as each constrained source
is automatically aligned to its corresponding reference.

C. Cross-joint-ISI

Joint intersymbol interference (joint-ISI) [6] is a popular
metric to evaluate JBSS techniques when the ground truth
mixing matrices A[* are available. This is an extension
of the normalized ISI to the case of multiple datasets. Let
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Fig. 1: Comparison of different model orders for four real fMRI datasets. Only the 53 RSNs related to the references are
analyzed. The partial cross-joint-ISI (a) and runtime (b) are shown for 50 independent runs. Plot (c) shows the power ratio for
the most reproducible run and plot (d) shows the correlation of the mean component (across subjects) among the four datasets.

G = AW for k = 1,. K be the global mixing-
demixing matrlces and G =1 / K Z 1 |GI¥]| be their mean
absolute matrix. The joint-ISI of GI! f ., GI®] is defined as
the ISI of G, where

Y

N
al Zj:l |Gij| 1 al Zf\; |Gij‘
Z(max Gipl )+Z(max Gl
i=1 P p j=1 P y2)

2N(N —1) ’

ISI(G) =

where G;; is the (4, j)-entry of G. In the case of perfect source
separation, G is an identity matrix subject to permutation and
scaling ambiguities, thus achieving zero joint-ISI.

In practical problems where the ground truth is
unknown, cross-joint-ISI is proposed to measure the
consistency of the estimated components across R runs.

It is defined as cross-joint-ISI;; (Wl }T Lr=1)

joint-ISI(PY, ..., PIT) where Pi[f;] Al ]W[k]

A — (W=t s the inverse of the kth dem1x1ng
k]

matrix of the ith run, and Wj is the kth demixing matrix
of the jth run. The cross-joint-ISI of the :th run is computed
by averaging all its pairwise cross-joint-ISI values:

R

Z cross-joint-ISI; ;.
j=1.j#i

Values closer to zero will indicate a higher consistency
and reproducibility of the results. Note that by taking the M
rows/columns of Wl and A*], respectively, this method can
be partially computed for those M constrained components,
which we refer as partial cross-joint-ISI in the rest of the paper.

cross-joint-ISI, = —

“4)

III. EXPERIMENTAL RESULTS
A. Resting-State fMRI Data

This study analyzes resting-state fMRI data from four
different datasets. Three of them are part of the bipolar-
schizophrenia network on intermediate phenotypes (B-SNIP)
study [15], and the fourth dataset was collected by the Center
of Biomedical Research Excellence (COBRE) [16]. For B-
SNIP, data from healthy controls (HC) and schizophrenia
patients (SZ) in Baltimore, Hartford, and Chicago were em-
ployed. An open-eyes 5-minute run was captured for each

subject. The fMRI data were captured by a 3-Tesla Siemens
Triotim scanner with TE = 30 ms and voxel size = 3.4 X
3.4 x 3 mm?®. For Baltimore, 134 time points were captured
with TR = 2.21 s, while 201 time points were obtained in
Hartford and Chicago with TR = 1.5 s and TR = 1.775 s,
respectively. We removed the first 3 time points to address the
T-1 effect and data was preprocessed including motion and
slice-time correction. Data were resampled to 3 x 3 x 3 mm?®
isotropic voxels. Each subject image was masked, yielding an
observation vector of V' = 50223 voxels for each time point.

In the case of COBRE, an open-eyes 5-minute scan con-
sisting of 150 time points was obtained for each subject.
The fMRI data were captured in a 3-Tesla Siemens Trio
scanner with TE = 29 ms, TR = 2 s, and voxel size =
3.4 x 3.4 x 3 mm?>. The first 6 time points were removed
to address the T-1 effect and each subject’s image data was
preprocessed including motion and slice-time correction. Data
were resampled to 3 x3x 3 mm? isotropic voxels. Finally, each
subject’s data were masked obtaining an observation vector of
V' = 59255 voxels for each time point. The subject distribution
is as follows: Baltimore 49 HC and 49 SZ; Hartford 38 HC and
38 SZ; Chicago 30 HC and 30 SZ; and COBRE 49 HC and 49
SZ. For each dataset, we wanted to keep a balanced number
of subjects in each group to avoid bias in the conducted
experiments. Some datasets were composed of fewer subjects,
which limited the maximum number in the analysis.

B. Results and Discussion

In this section, we evaluate the reproducibility, replicability,
and interpretability of the results obtained by cIVA-G as a
function of the model complexity. To this end, the algorithm is
applied to four real fMRI datasets using various model orders.
Neuromark_fMRI_1.0 functional template [2] is employed
as the reference signals. It is composed of 53 resting-state
networks (RSNs) from seven different functional domains:
sub-cortical (SC, 5 RSNs), auditory (AUD, 2 RSNs), motor
(MQOT, 9 RSNs), visual (VIS, 9 RSNs), cognitive control (CC,
17 RSNs), default mode (DMN, 7 RSNs) and cerebellar (CB,
4 RSNs). All the RSNs from the templates were used as
references (M = 53), while the total number of estimated
components were in the range {53,131}. Notably, when
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Fig. 2: Difference mean FNC maps (HC-SZ). Pairwise Pearson correlation between estimated RSNs time courses are first
Fisher z-transformed and averaged across HC and SZ subjects, respectively. Positive values indicate higher connectivity in HC.

Only the 53 RSNs related to the references are analyzed.

N > M, the free components capture information due to
interference/noise as well as components that might not be
in the reference set.

Fifty independent runs with random initializations were
performed for each model order and dataset. The partial cross-
joint-IST values for those components associated with a refer-
ence signal are presented in Fig. 1-a. As can be appreciated,
the model order is closely related to the reproducibility of
the results, as the model order increases the partial cross-
joint-ISI decreases. This can be explained as fMRI data may
include unwanted signals like motion-related artifacts, scanner-
related noise, or magnetic resonance acquisition interference.
Hence, when the number of estimated components is higher,
we can capture the effect of interference and noise as well
as components that do not match with the templates thus
increasing the overall estimation performance, especially for
the networks that match to a functional template. As a conse-
quence, those components related to the references will show
lower variability and, therefore, more reproducible results. It
is important to note that this improvement in reproducibility
is tied to higher model complexity and a larger computational
cost, as can be observed in Fig. 1-b.

In fMRI data, low-frequency activity is typically linked to
BOLD (Blood Oxygen Level Dependent) signals, so a good
metric to assess the interpretability of the results is to analyze
the power spectra of the RSN time courses (columns of A*])
and the power ratio between low-frequency (< 0.1 Hz) and
high-frequency (> 0.15Hz) bands. A higher power ratio will
indicate brain activity. Conversely, lower power ratios will be
related to cardiac or respiratory activity [17]. Fig. 1-c shows
the power ratios of the most consistent run for each dataset and
model order. We can appreciate that as we increase the order,

the power ratio also increases. This improvement is more
significant in COBRE and Chicago, but the four datasets show
the same trend. We can also see that the mean power ratio
becomes more stable for higher orders and that after the order
100 there are no significant improvements. Fig. 1-d analyzes
the replicability of the results by showing the correlation of
the mean spatial maps between datasets. As observed, larger
orders present more replicable solutions, offering more stable
results with higher similarities between datasets.

Considering the obtained results, we can appreciate that
there is a trade-off between the computational cost and the re-
producibility, interpretability, and replicability of the estimates.
We consider that order 110 offers a suitable balance in this
trade-off, achieving a good model match with reproducible and
replicable solutions. Therefore, we further analyze the results
obtained by this model order. The functional network con-
nectivity (FNC) map shows the temporal correlation between
components. We expect HC to present higher connectivity than
SZ patients within each functional domain and also between
sensory-related areas such as VIS and MOT. Fig. 2 shows
the difference between the mean FNCs for each group (HC-
SZ) for the four datasets with orders 53 and 110. We can
appreciate higher similarities between FNC maps in the higher
order. Also, group differences are more notable and consistent
across datasets such as those found within MOT, SC, and CB
and between MOT and VIS, VIS and CB, MOT and CB, MOT
and SC, or CB and SC, which agree with previous studies [2],
[17]. This increases our confidence that a highly reproducible
model complexity will also achieve a better model match and,
as a consequence, more interpretable and replicable results.

For a more comprehensive analysis, we also assess the
replicability of the estimated spatial maps. Fig. 3-a shows
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Fig. 3: Mean component correlation and free-components spatial maps for order 110. Plot (a) shows the pairwise correlation
between datasets of each estimated component associated with a reference. Notice similar trends for the components. Plots (b)
and (c) show the average spatial maps for two estimated free components for the four datasets.

the pairwise correlation of each component between the four
datasets. We can see that cIVA-G obtains highly replicable
spatial maps, with correlations above 0.57 for all the esti-
mates associated with a reference signal. It is important to
highlight that for these components the algorithm achieves
interpretable and clear spatial maps, where the correlations
between individual subjects’ components and the reference
signals range from 0.3 to 0.7. We also analyze the spatial maps
of the free components. Fig. 3-b and 3-c show two commonly
estimated free components in the four datasets. These results
suggest that unconstrained IVA-G also achieves a replicable
and interpretable estimation and increases our confidence in
leaving free components in the analysis.

IV. CONCLUSIONS

We analyzed the reproducibility and replicability of a data-
driven technique, such as cIVA, as a function of the model
order when applied to four different fMRI datasets. We demon-
strate that cIVA is a powerful technique that allows us to
effectively assess replicability by alleviating the permutation
ambiguity as well as providing additional quantification op-
portunities. The results demonstrated that highly reproducible
model orders achieve a better model match with more inter-
pretable functional networks and more replicable solutions.
Future work will study the impact of the number of time points
and the sample size on the interpretability of the solutions
[18]. The FNC maps obtained by the two larger datasets show
more robust group differences than those achieved by the
two smaller sets. Hence, the sample size and its influence on
interpretability is a key aspect to be further analyzed.
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