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Abstract—Adolescence is a special period between childhood
and adulthood and constitutes a critical developmental stage for
humans. During adolescence, the brain processes various stimuli
to form a complete view of the world. This study highlights
the critical role of multisensory integration, where the brain
processes multiple senses together rather than focusing on just
one sensory modality at a time. Brain imaging modalities such
as magnetoencephalography (MEG) and functional magnetic
resonance imaging (fMRI) can be utilized to gain insights into
the non-additive effects of multisensory integration by fusing
data across different sensory stimuli in both time and space.
While MEG and fMRI are powerful tools, traditional approaches
to combining data from these modalities often ignore their
multisensory aspect, focusing instead on single tasks. To lever-
age their complementarity, we introduce a multitask learning
multimodal data fusion framework for joint learning of mul-
tisensory brain developmental patterns from MEG and fMRI
data through a novel application of coupled canonical polyadic
tensor decomposition. The multitask learning paradigm performs
multimodal fusion from multiple sensory stimuli using multitask
coupled tensor-tensor factorization (MCTTF). We demonstrate
that multitask multimodal fusion of MEG and fMRI data can
identify unique brain components, demonstrating a higher group-
level multisensory integration effect.

Index Terms—coupled tensor-tensor factorization, multimodal
data fusion, fMRI, MEG, brain function, multisensory integra-
tion, developmental neuroscience

I. INTRODUCTION

Neuroimaging research leverages the capabilities of multi-
task and multimodal data fusion to explore the complexities
of brain functionality and human cognition. Multitask learn-
ing, by integrating inputs from multiple senses, significantly
improves our understanding of the intricate patterns in brain
activity. Adolescence, a period of intense transformation, acts
as a bridge from childhood to adulthood, with its rapid devel-
opments profoundly influencing developmental trajectory. In
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this critical developmental stage, multisensory and multimodal
neuroimaging has become an essential tool, providing deep
insights into the neural bases of cognitive maturation and
learning in young populations. However, the complexity and
high dimensionality of neuroimaging data pose considerable
challenges, necessitating innovative approaches that combine
multiple senses and imaging techniques to capture the essence
of brain development accurately.

The forefront of multimodal brain imaging analysis is
marked by the development of methodologies such as joint
independent component analysis [1], coupled matrix/tensor
factorization (CMTF) [2], and coupled tensor-tensor factor-
ization (CTTD) [3]. These approaches have shown promising
results in extracting and characterizing developmental brain
patterns, particularly through the joint analysis of electroen-
cephalography (EEG), magnetoencephalography (MEG) and
functional magnetic resonance imaging (fMRI) data using
tensor factorizations [4], and in identifying developmental
features from pediatric EEG data [5]. Several studies have
employed multiway representations and the CMTF-like meth-
ods for a comprehensive analysis of neuroimaging data across
modalities [4], [6], [7].

Despite these advancements, only a few studies [8], [9]
have embraced a multitask approach that not only utilizes
multimodality but also encompasses the analysis of multiple
paradigms to probe into the intricate details of brain function
and structure. This paper introduces a new approach for
multitask brain pattern learning through a novel application
of coupled canonical polyadic (CP) tensor decomposition [10]
via multitask coupled tensor/tensor factorization (MCTTF),
specifically designed for the analysis of multisensory and
multimodal brain imaging data. By leveraging the power of
multimodal tensor fusion, our methodology facilitates simul-
taneous analysis of multiple sensing and imaging modalities.
It captures the complex interactions and inherent multidi-
mensional structure of brain imaging data, allowing for the



Fig. 1. Multitask generative model for multi-subject MEG and fMRI data via
multitask coupled tensor/tensor decomposition. (a) Multitask coupled MEG
and fMRI tensor/tensor model. MEG and fMRI tensor formation is achieved
by arranging the subject’s ERF responses and spatial maps derived from task-
related contrast along the subject and stimulus dimension. (b) The MEG and
fMRI tensors are decomposed into components, each of which is a rank-1
tensor. Each pattern is characterized by five key signatures: the weight of the
subject (ar), the temporal signature (br), the MEG spatial signature (cr), the
fMRI spatial signature (dr), and the stimulus condition signature (er).

exploration of multisensory integration effects (MSI) using
tensor-based group-level analysis [4]. This approach offers a
novel perspective on the underlying neural mechanisms that
support learning and development in children, and enhances
the prospective assessment of cognitive development.

II. MULTITASK TENSOR ANALYSIS AND MULTIMODAL
FUSION OF MEG AND FMRI DATA

A. Multisensory Experimental Paradigm

In our developmental cognitive study [11], participants
(N = 74) completed a multisensory task during MEG and
fMRI scanning, where they were instructed to press their
index finger upon seeing, hearing, or both seeing and hearing
stimuli. The sensory stimuli (auditory (AUD), visual (VIS),
or audio-visual (AV)) were presented for 800 ms each. MEG
epochs centered on the stimulus onset were averaged over
roughly 100 trials creating sensor-level event-related fields
(ERFs) time-locked to the the stimulus condition (AUD, VIS,
or AV). In analyzing the fMRI data, stimulus-related three-
dimensional (3D) contrast images were computed, temporally
aligned to each target stimulus using the general linear model.
Participants were categorized into high-performance (HP, n =
38) and low-performance (LP, n = 36) groups based on the
outcomes of neuropsychological assessments [4].

B. Generative Model for Multitask Tensor Fusion

We analyzed multitask MEG and fMRI data outlined in
Section II-A as a linear mixture of the underlying neural
sources. These sources were temporally synchronized across
participants within a specific target-related stimulus. It was
assumed that these neural sources were represented in both
imaging modalities. Our goal was to identify common neural
signatures triggered by multisensory stimuli (VIS, AUD, and

AV) across subjects. To achieve our objective, we formulated
the MCTTF method expanding upon the CMTF [2] and
CTTD [3], [10] methods. This development extends these
methodologies to a multisensory paradigm, enabling us to
simultaneously identify latent brain activity patterns triggered
by multiple stimuli. The multimodal data include MEG ERFs,
represented as XMEG ∈ RK×T×C×M , and fMRI spatial
contrast maps denoted as X fMRI ∈ RK×V×M , where K is
the number of subjects, T is the number of timepoints, C is
the number of MEG sensors, M is the number of stimulus
conditions, and V is the number of voxels. These observed
multimodal data are modeled using a linear combination of R
neural sources: XMEG =

∑R
r=1 λrar ◦br ◦cr ◦er, X fMRI =∑R

r=1 σrar ◦dr ◦er, where ar ∈ RK indicates the assignment
of subject weights to the rth source across K subjects. The
terms λr and σr denote normalization weights with a 2-unit
norm for the MEG and fMRI modalities, respectively. The
vector br ∈ RT reflects the temporal activity of the rth source
different timepoints T . Similarly, cr ∈ RC captures the spatial
source activity across different MEG sensors C. The spatial
sensitivity for fMRI contrast maps is captured by dr ∈ RV .
Lastly, the vector er ∈ RM , signifies the contribution of the
mth stimulus condition on the rth source. Fig. 1a illustrates
the generative model designed for the multimodal data fusion
of multitask data from MEG and fMRI recordings. In this
model, the MEG data is represented as a 4D tensor, while the
fMRI data is captured in a 3D tensor. The data fusion of MEG
and fMRI data is achieved through their coupling along the
common subject dimension.
C. Multitask Joint Tensor Factorization

The MCTTF for the generative model shown in Fig. 1 can
be written as

f(Λ,Σ,A,B,C,D,E) =

min
Λ,Σ,A,B,C,D,E

1

2
∥XMEG − [[Λ,A,B,C,E]]∥2F

+
1

2
∥X fMRI − [[Σ,A,D,E]]∥2F ,

s.t. ∥ar∥2 = ∥br∥2 = ∥cr∥2 = ∥dr∥2 = ∥er∥2 = 1, (1)

where ∥ · ∥F denotes the Frobenius norm, ar ∈ RK ,br ∈
RT , cr ∈ RC ,dr ∈ RV , er ∈ RM , are the columns of the
factor matrices A, B, C, D, E normalized to a 2-unit norm for
r = 1, · · · , R. The norms are absorbed into diagonal matrices
Λ ∈ RR×R, Σ ∈ RR×R. The matrices A ∈ RK×R, B ∈
RT×R,C ∈ RC×R, D ∈ RV×R, E ∈ RM×R correspond
to the factor matrices in the subject, time, sensor, voxel and
stimulus modes. This approach facilitates the assessment of
non-additive effects in the MSI and enables the investigation of
the relationship between MEG ERF and fMRI spatiotemporal
brain activation patterns [4].

III. EXPERIMENTS

A. Multitask Component Extraction

The MEG ERFs and fMRI spatial contrast maps were
transformed into data tensors, with the MEG ERFs being



organized into a 4D tensor denoted by XMEG ∈ RK×T×C×M ,
and the fMRI data into a 3D tensor represented as X fMRI ∈
RK×V×M . This was achieved by arranging the subject ERFs
Sk ∈ RC×T , and the spatial maps from fMRI, sk ∈ RV ,
into a multidimensional structure where each dataset was
stacked across subject and stimulus condition modes. We
conducted MCTTF with a tensor rank R, identified using
the core consistency diagnostic (CCD) [12], and the average
congruence product (ACP) [13]. We selected the model with
the highest CCD and ACP values when evaluated for values of
tensor rank R = 1, · · · , 10. The fitted MCTTF model resulted
in the R-component factor matrices A, B, C, D, E that were
used to reconstruct joint group-level MEG ERF and fMRI
latent components for each stimulus condition (VIS, AUD,
and AV).

B. Statistical Analysis of Multisensory Integration

To examine the group-level MSI effect using MCTTF, we
calculated the SUM:(AUD + VIS) and DIFF: [AV − (AUD +
VIS)] stimulus types for each rth latent component, yielding
in R components for the SUM and DIFF stimulus types. The
components for the SUM and DIFF stimulus types represent a
linear combination of the estimated condition weights for the
AUD, VIS, and AV conditions found in the estimated factor
matrix E ∈ RM×R,m = 1, · · · 3. The multisensory integration
effect was analyzed by examining the differences between
multisensory and additive stimulus (AV vs. SUM) within
each component and subject group (HP vs. LP). Statistically
significant differences in the facilitation measure [AV − (AUD
+ VIS)] indicated multisensory facilitation, thereby suggesting
a physiological benefit from multisensory integration [14].

IV. RESULTS

The MCTTF method (1) was employed to extract joint
MEG ERF and fMRI components. This was followed by a
statistical assessment to identify the effects of the group-level
multisensory facilitation. The estimation of factor matrices for
the MCTTF model utilized the coupled CP Alternating Least
Squares (CP-ALS) method [10]. To ensure the reliability of
the model, it was fitted 100 times with random initialization,
from which the most stable iteration was selected for further
analysis. The stability analysis indicated that all runs at a fixed
R yielded similar the residual mean square values (RMSE),
with a standard error of the mean (SEM) of < 0.001. The final
model order was determined by the highest ACP and CCD
values across MEG and fMRI modalities, which resulted in
the lowest SEM for the RMSE metric. Consequently, a tensor
rank of 4 (R = 4) was selected for the MCTTF.

A. Multisensory Tensor Analysis of Multitask MEG and fMRI
Data Using MCTTF Model

In the tensor analysis employing the MCTTF model (1),
a total of 12 joint components were extracted across VIS,
AUD, and AV conditions. These components were charac-
terized by their major ERFs peaks and functional fMRI
activations. We show the joint components obtained from
the MCTTF decomposition for the audio-visual condition

Fig. 2. Group averaged results of the MCTTF MEG and fMRI decomposition
for the AV stimulus. Each identified joint component is depicted through the
ERF component and a corresponding fMRI component. (a) Joint VIS/M150
component. (b) Joint mSFG/M200 component. (c) Joint AUD/M300 compo-
nent. (d) Joint SM/M400 component. VIS: visual, mSFG: superior frontal
gyrus (medial part), AUD: auditory, SM: sensorimotor.

in Fig. 2, which had the most prominent brain patterns.
Each subfigure within Fig. 2 presents the fMRI component
activations and their corresponding ERF component. The ERF
components illustrate signal traces from all individual MEG
sensors, averaged across subject ERF components, with the
mean ERF component (averaged across sensors) depicted in
cyan. A visual component (VIS/M150) was identified with
an initial prominent peak at 150–155 ms shown in Fig. 2a.
A nonparametric permutation t-test (one-tailed, thresholded at
p < 0.05) revealed corresponding fMRI activation in the bi-
lateral cuneus (CUNC.L/R, Brodman Area (BA) 19), fusiform
gyrus (FFG.R, BA37), and lingual gyrus (LING.R, BA18). The
prefrontal mSFG/M200 component characterized by an early
peak at around 82 ms and a second peak at 175 ms is shown
in Fig. 2b. The fMRI activation areas corresponding to the
mSFG/M200 component were located in the medial superior
frontal gyrus (mSFG, BA9) and the precuneus (PCUN, BA7).
The auditory AUD/M300 component is shown in Fig. 2c
peaked at about 105–110 ms, and 310–323 ms. The associated
fMRI activations for the AUD/M300 component were found in
the bilateral superior temporal gyrus (STG.L/R, BA22) and the
bilateral Heschl’s gyrus (HES.L/R, BA41/42). The sensorimo-
tor SM/M400 component shown in Fig. 2d was characterized
by early sensory subcomponents occurring at approximately
100–110 ms, alongside a late latency subcomponent at around
390–400 ms. The fMRI activations within the SM/M400
component were observed in the secondary somatosensory
cortex (bilateral postcentral gyrus (Post.CG.L/R, BA1/2/3))
and in the primary motor cortex (the bilateral precentral gyrus
(Pre.CG.L/R, BA4)).



B. Statistical Group-level Analysis of Multisensory Integration
Effects

1) Group-level Sensitivity Analysis of Multisensory Facili-
tation: In this section, we present the group-level sensitivity
analyses outlined in Section III-B. The purpose of the analyses
is to evaluate the extent of multisensory facilitation from the
multisensory stimulus (AV), in contrast to the linear sum of
the AUD and VIS stimuli, termed as SUM stimulus: (AUD +
VIS). Additionally, we examine the differences in multisensory
gain measure ([AV − (AUD + VIS)]) between groups (HP
vs. LP). A three-way mixed-design ANOVA was conducted
to quantify the multisensory facilitation effect. The subject
group (HP vs. LP) served as the between-subjects factor,
while component (VIS/M150, mSFG/M200, AUD/M300, and
SM/M400) and stimulus type (AV vs. SUM) were within-
subjects factors. The results revealed a significant interac-
tion between stimulus type and group for the VIS/M150
(F1,144 = 12.0, p < 0.001, η2G = 0.08) and SM/M400
(F1,144 = 43.01, p < 0.001, η2G = 0.23) components, indicat-
ing differential multisensory facilitation for these components
between groups. No significant interaction was found for
mSFG/M200 and AUD/M300 components. Fig. 3a illustrates
the main effects of the multisensory enhancement (AV vs.
SUM) across these components.

Following the significant interaction, post-hoc two-tailed t-
tests (the false discovery rate (FDR) corrected, p < 0.05)
assessed differences in multisensory gain (DIFF: [AV −
(AUD + VIS)]) between groups for each component. These
tests revealed significant group differences (HP vs. LP) for
VIS/M150 (t74 = 5.92) and SM/M400 (t74 = 9.51) compo-
nents, indicating stronger multisensory facilitation in the HP
group (see Fig. 3b). Fig. 4 presents group-level discriminative
components with significant multisensory facilitation effect
(AV vs. AUD + VIS) for the VIS/M150 component within
each group (HP and LP). The results demonstrate multisensory
facilitation occurring at approximately 269 ms (Fig. 4a–b).
The thresholded group-level two-tailed T-maps (p < 0.05),
shown in Fig. 4c, indicate significant activity in the middle and
superior occipital gyri (MOG/BA18 and SOG/BA19), as well
as in the PCUN/BA7 and FFG/BA37. Notably, the HP group
demonstrated stronger facilitation in these regions compared
to the LP group. Furthermore, significant multisensory facilita-
tion was observed for the SM/M400 component, with stronger
activation in the HP group compared to the LP group (p <
0.001) peaking at around 240 ms. This activation involved
brain areas such as the superior parietal gyrus (SPG/BA7),
the secondary somatosensory cortex (Post.CG.L/R, BA1/2/3),
and the right insula (INS.R, BA13).

2) Multisensory Facilitation and Cognitive Performance:
We investigated the association between multisensory gain and
cognitive performance in the full sample (N = 74). Discrim-
inative multisensory components, VIS/M150 and SM/M400,
were correlated with nine age-adjusted neuropsychological
(T) scores. Two-tailed Pearson’s correlation tests with FDR
correction (p < 0.05) revealed significant associations be-
tween discriminative components and specific cognitive do-

Fig. 3. Main effect of the multisensory facilitaion (N = 74) estimated by
MCTTF method: AV vs. SUM: [(VIS + AUD)]. The boxplots summarize
the distribution of the mean component loading factors for the AV and SUM
stimilus type for the VIS, AUD, mSFG and SM components. The error bars
represent the standard error of the mean. Post hoc analyses with two tailed
t-tests (FDR corrected, p < 0.05) indicate that the mean of the components
extracted from the mutisensory AV condition was significantly higher than of
those computed using the SUM stimilus type. (***: p < 0.001).

Fig. 4. Group-level discriminative components with significant multisensory
facilitation effect for the VIS/M150 component. (a)–(b) HP (left) and LP
(right) AV and SUM [(AUD + VIS)] components averaged across all sensors.
Time interval of significant difference between stimuli (AV vs. SUM) (240–
272 ms) is indicated by the pink region between AV and SUM components.
(c) Group-level T-maps (p < 0.05) of the DIFF component [AV − (AUD
+ VIS)] show the multisensory gain in the bilateral CUN (BA19), PCUN
(BA7), and FFG gyri (BA37).

Fig. 5. Significant (FDR corrected, p < 0.05) two-tailed partial Pearson’s
correlations (correlation coefficient, r) between the SM/400 component ex-
tracted from the DIFF stimulus and ORRENG (T) score in the full (N = 74)
sample. The linear fit and 95% confidence intervals (CIs) are shown. (a) The
SM/400 component was positively correlated with the ORRENG (T) score. (b)
MANCOVA Z-maps (p < 0.05) show brain regions of discriminative SM/400
component significantly correlated with ORRENG (T) score. (c) Significant
main effect of subject group on ORRENG (T) score (p < 0.05).



mains. The SM/M400 component showed a positive corre-
lation with the ORRENG (T) score (language comprehen-
sion) (rSM/M400(74) = 0.301, p = 0.009). Conversely, the
VIS/M150 component had a negative correlation with the
Inattention score (rVIS/M150(74) = −0.274, p = 0.02). Fig. 5a
depicts the significant association of the SM/M400 component
with the ORRENG (T) score in the full sample. Further-
more, a multivariate analysis of covariance (MANCOVA)
was conducted to identify brain regions associated with the
significant cognitive domains. MANCOVAs generated voxel-
wise associations between fMRI components and cognitive
scores, which are shown as Z-maps (FDR corrected, p <
0.05). Follow-up MANCOVAs for the SM/M400 component
and ORRENG (T) score revealed positive activations (see
Fig. 5b) in the right insular cortex (INS.R/BA13) and right
inferior frontal gyrus (triangular part) (IFG.R/BA10/45/46).
These findings align with the ORRENG t-tests between par-
ticipant groups (HP vs. LP) shown in Fig. 5c, where the HP
group demonstrated better performance compared to the LP
group. Finally, the MANCOVA for the VIS/M150 component
revealed negative associations with the superior frontal gyrus
(SFG/BA32/10/11).

V. DISCUSSION AND CONCLUSION

In this study, we introduced the MCTTF method as a novel
approach for the analysis of multitask patterns, specifically
designed to analyze multisensory data from both MEG and
fMRI within multimodal data fusion. We utilized the MCTTF
(1) to investigate the neural correlates of MSI by comparing
responses to multisensory stimulus AV and the additive sum
of responses to unisensory stimuli (AUD + VIS). Analyzing
the AV condition alone cannot differentiate between response
differences due to inherent unisensory variations and true
multisensory processing. Therefore, the comparison with the
SUM stimulus isolates components specific to multisensory
integration. Through this comparative analysis, we were able
to identify specific sensory and sensorimotor components,
which were pinpointed differences in mid-latency at about
240–270 ms located in the higher visual cortices and in the
secondary somatosensory brain regions. Furthermore, group-
level analysis of MSI integration revealed a higher multi-
sensory gain in the HP group compared to the LP group.
These findings align with observed differences in cognitive
performance and multisensory facilitation and are consistent
with existing literature on adolescent MSI research [15], [16].
Additionally, we identified significant correlations between
discriminative components and specific cognitive domains.
Notably, the language domain correlated with activity in the
right insular cortex, a region recognized as a key hub during
multisensory integration [17], [18]. This research highlights
the potential of MCTTF for investigating complex multi-
sensory processes. Our findings provide novel insights into
the neural mechanisms underlying MSI, demonstrating its
sensitivity to individual cognitive differences and its potential
influence on cognitive performance. The MCTTF method of-
fers a powerful tool for future investigations into the complex

dynamics of multisensory processing in the brain, setting
the stage for further exploratory efforts to study cognitive
functions in adolescent cohorts.
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