
Accountable Carbon Footprints and Energy Profiling
For Serverless Functions

Prateek Sharma

Indiana University Bloomington

prateeks@iu.edu

Alexander Fuerst

Indiana University Bloomington

alfuerst@iu.edu

ABSTRACT
Cloud computing is a significant and growing cause of car-

bon emissions. Understanding the energy consumption and

carbon footprints of cloud applications is a fundamental

prerequisite to raising awareness, designing sustainability

metrics, and creating targeted system optimizations. In this

paper, we address the challenges of providing accurate and

full-system (not just CPU) carbon footprints for serverless

(FaaS) functions. To the best of our knowledge, this is the

first work which develops an energy and carbon metrology

framework for FaaS.

Carbon footprints require a new approach to energy profil-

ing. We use FaaS workload properties such as locality to de-

velop a simple and practical online statistical disaggregation

approach. Our fine-grained per-invocation carbon footprints

also include shared hardware and software emissions, and

use insights from Shapley values to fairly account for both

operational and embodied emissions. Owing to the growing

importance of carbon measurement, we develop a new rig-

orous marginal energy based validation methodology which

results in accountable, complete, and fair footprints. Over a

wide range of FaaS workloads and hardware platforms, our

energy footprints have an accuracy of > 99%.

CCS CONCEPTS
• Software and its engineering→ Operating systems; •
Hardware→ Enterprise level and data centers power
issues; • Computer systems organization→ Cloud com-
puting.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1286-9/24/11. . . $15.00

https://doi.org/10.1145/3698038.3698531

KEYWORDS
Cloud computing, Functions as a Service, Energy measure-

ment, Carbon footprint, Sustainable computing

ACM Reference Format:
Prateek Sharma and Alexander Fuerst. 2024. Accountable Carbon

Footprints and Energy Profiling For Serverless Functions. In ACM
Symposium on Cloud Computing (SoCC ’24), November 20–22, 2024,
Redmond, WA, USA. ACM, New York, NY, USA, 20 pages. https:

//doi.org/10.1145/3698038.3698531

1 INTRODUCTION
Energy and carbon are becoming key resources and opti-

mization targets in large scale distributed computing. Cloud

platforms consume a significant (> 1%) amount of global

energy [52, 100], and reducing it is a vital step in IT decar-

bonization efforts [13, 16, 18, 98]. With a growing awareness

and need for environmental sustainability, the energy and

carbon footprint of cloud applications is increasingly serv-

ing as the primary accounting and optimization metric [101],

complementing the traditional metrics such as monetary

cost and resource utilization (e.g., CPU). This requires en-

ergy and carbon accounting throughout the cloud computing

stack—hardware, resource allocation software, applications,

etc. However, cloud abstractions and applications are con-

tinuously evolving—making carbon observability and opti-

mization a moving target.

Serverless computing, or Functions as a Service (FaaS),

has emerged as a key cloud abstraction which is enabling

rapid application development and deployment [14, 25, 92].

Cloud functions are small, self-contained programs, whose

entire execution is managed by the cloud provider. They have

low cost, auto-scaling, and a “serverless” model where users

don’t have to worry about explicit resource management.

Serverless computing is a major and growing cloud work-

load [96], and serves as the resource abstraction for a wide

range of event-driven applications (such as web and API ser-

vices, IoT, and ML inference), workflows [27, 77], and even

throughput-intensive parallel workloads [23, 46, 47, 113].

FaaS is also an increasingly useful abstraction for harnessing

computational accelerators [40, 81, 115] and edge computing

resources [107]. While the performance of serverless func-
tions has received significant attention, in this paper we take

522

https://doi.org/10.1145/3698038.3698531
https://doi.org/10.1145/3698038.3698531
https://doi.org/10.1145/3698038.3698531
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3698038.3698531&domain=pdf&date_stamp=2024-11-20

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

the first step towards quantifying their energy and carbon

utilization and footprints.

Metrics for the carbon footprint of applications such as the

Software Carbon Intensity [48] have recently been adopted

as international standards [49]. These footprints consist of

operational and embodied emissions, which are in turn com-

puted using the application’s energy consumption and hard-

ware utilization. In multiplexed resource sharing environ-

ments, application-level energy consumption is estimated

using power profilers [67] such as Scaphandre [64] and Pow-

erAPI [41]. While application-level power measurement has

a long history, these tools have fundamental shortcomings

when used to estimate carbon footprints of applications in

general and serverless functions in particular. They rely on

CPU power measurements (e.g., RAPL) and do not consider

system-wide energy; do not account for shared resources;

do not scale well to large number of concurrent functions

and CPU cores; and are not sufficiently validated against

an external ground truth—rendering them inaccurate and

fragile. Given the rising importance and ubiquity of carbon

footprints for evaluating and optimizing cloud software sus-

tainability, we believe that a new approach to address the

above shortcomings is required.

In this paper, we develop the techniques for in-situ ac-

countable carbon (and energy) footprints of serverless func-

tions across four major contributions. First, we leverage the

workload locality prevalent in FaaS to develop a statistical

disaggregation technique which provides accurate estimates

of fine-grained full-system energy consumption of functions

running on a server. Our energy profiler seeks to provide a

complete footprint, including the energy consumed by shared

hardware and software resources such as the FaaS control

plane (such as OpenWhisk [7]). We develop a simple and

practical energy profiler capable of using a mix of stock hard-

ware and CPU power instrumentation capabilities (such as

plug-level power meters and RAPL [118]), and works across

a range of edge and server devices. By adapting a Kalman

filter inspired approach, we are able to provide online energy
estimates without offline pre-training, which allows it to be

used in diverse heterogeneous cloud environments.

Our second insight is that for serverless functions, and

other distributed applications, the energy and carbon foot-

print is diffused across many local and remote software and

hardware components. For instance, the FaaS control plane

which performs all the containerization and orchestration of

function invocations can itself be a significant energy con-

sumer. We thus develop fair energy and carbon attribution

methods for estimating the fair-share of a function’s contri-

bution to the energy consumption of shared software and

hardware. We provide the operational and embodied carbon

footprint of functions using the conceptual framework of

Shapley values [39, 110]. This approach provides a practical

and theoretically grounded carbon footprint metric, and also

leads to many open questions about fairness in embodied

carbon accounting for the broader research community.

Our third major observation is that the “ground truth” for

application level power is crucial for validating energy and

carbon footprints. However, prior work on power profiling

has typically relied on proxy metrics such as the total hard-

ware power consumption and measuring application power

in isolation (without multi-tenancy). To address this funda-

mental gap in energy metrology, we develop a new approach

for empirical validation which uses themarginal energy con-
tribution of different functions. The marginal contribution is

computed by replaying the workload trace, and measuring

the server-level power after removing certain invocations.

This provides the ground truth for the function’s in-situ

power energy consumption, and we will release all our mar-

ginal energy ground truth data for facilitating development

and testing of accurate energy profilers.

Finally, our fourth contribution is the integration of energy

into the FaaS control plane, for which we use Iluvatar [50].

Our system is written in about 6,000 lines of Rust and Python

and is open sourced along with more than 100 workload

traces, all profiling features, powermeasurements, and ground

truth data
1
. To the best of our knowledge, this is the first

work to provide carbon and energy accounting for serverless

functions, and we make the following contributions:

(1) Our energy profiling combines direct and model-based

disaggregation to provide accurate and complete energy foot-

prints for functions. We provide a simple and practical tech-

nique for online and full-system energy estimates.

(2) We provide fair attribution of the operational and embod-

ied carbon emissions for functions, by leveraging Shapley

values.

(3) We have extensively evaluated the internal and external

validity of the energy footprints on multiple FaaS workloads

on three different hardware platforms. Our energy footprints

are accurate to within 99% of the marginal energy ground

truth.

2 BACKGROUND
2.1 Functions as a Service (FaaS)
FaaS allows users to register small snippets of function code

that get executed in response to some trigger (such as an

HTTP request, message queue event, etc.) [8–10, 92]. Func-

tions are executed inside virtual execution environments

such as lightweight hardware virtual machines [15] or OS

containers. Cloud functions are “pay for what you use”, and

their cost is a combination of their maximummemory alloca-

tion and their execution duration [8]. The goal of our work

is to additionally enable energy and carbon based pricing.

1
https://github.com/COS-IN/faasmeter-socc-artifact

523

https://github.com/COS-IN/faasmeter-socc-artifact

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

FaaS control planes (such as OpenWhisk [7]) handle all

aspects of function execution. They manage the cluster of

servers to run functions on, and implement function sched-

uling, load-balancing, resource monitoring, function status

tracking, storing function results, logging, etc. Similar to

operating systems, they are an important shared resource
for functions. Current research and production FaaS con-

trol planes are energy-oblivious, and do not incorporate any

energy management functionality.

Workloads. Functions are a common abstraction for access-

ing cloud resources, and are being used for diverse applica-

tions such as web-services, ML inference and training, data

analysis, parallel and scientific computing, etc [14, 25, 27, 77,

92]. This results in high workload diversity in all dimensions:

the CPU, memory requirements, and inter-arrival-times in

public clouds such as Azure are heavy tailed [96]. For exam-

ple, the inter-arrival times of functions in Azure can range

from 0.01 s–1 day, and their execution times can range from

0.1 s to 100 s. This also translates to diverse function energy

footprints. Functions are also popular in edge computing [2],

resulting in heterogeneous execution environments.

2.2 Energy in Cloud Computing
Energy as a first-class resource for operating systems is

a long-standing problem and vision [21, 43, 44, 116, 117].

Power virtualization entails accurate process or application

level energy measurement [99], and fair attribution of shared

energy consumers such as the OS [54, 55, 58].

Measurement and observability into energy usage of appli-

cations is the first step towards power virtualization, and is in-

creasingly important for environmentally sustainable cloud

systems design and implementation. Major public clouds

are now offering carbon footprint tools for certain cloud

applications [4, 5, 11]. Given this trend, fine-grained energy

footprints of serverless applications will be essential for de-

veloping energy-aware cloud applications.

Resource multiplexing is the main challenge for accurate

measurement of the power/energy footprint of applications.

Energy is a shared, global resource, and can often only be

measured at a coarse granularity both in space and time.

Hardware capabilities such as RAPL [71, 118], can provide

CPU energy (and in some cases, DRAM [36]). “Software

power meters” such as powertop and others [29, 37, 41, 42,

72, 84, 94, 106, 120], use statistical models to attribute total

CPU power to processes based on resource use (such as CPU

performance counters). Modern hardware still only has rudi-

mentary support for power measurement. Component-level

power (such as for network cards) is usually unavailable.

Full-system power can be obtained using server BMCs (base-

board management controllers), battery controllers in mobile

devices, external plug-level power meters, or special server

hardware [53, 75]. Power measurement and modeling thus

0 20 40 60
Time (s)

0

50

100

150

200

W
at

ts

Server Sys
Server RAPL

Desk Sys
Desk RAPL

(a) System and CPU power is
noisy and coarse-grained.

35
0

36
0

37
0

38
0

39
0

40
0

Time (s)

0

1

2

3

4

5

C
ou

nt

0

10

20

30

40

Po
w

er
 (W

at
ts

)

Function Invocations
PowerAPI Estimate

(b) Predicted function footprint
with PowerAPI [84] does not cor-
relate with use (i.e., function invo-
cations).

Figure 1: Function power signatures cannot be captured
reliably by existing power profiling methods.

continues to be dominated by CPU-power, but even the ac-

curacy and fidelity of CPU power monitoring remains low,

with large jitter and temporal errors [17, 67, 71, 86].

2.3 Carbon Footprints
Owing to their significant and growing contribution, the

carbon emissions of cloud platforms and energy intensive

applications such as AI has been in the spotlight in recent

research [100, 112] and elsewhere [31]. The carbon footprint

of an application is the total emissions associated with its

execution, and these footprints can help quantify, highlight,

and optimize the sustainability of computing applications

under different execution scenarios.

The complete carbon footprint of an application, such as

the recent ISO standard SCI (Software Carbon Intensity)

comprises of two parts, the operational (�) and the embodied

emissions (�), and is defined as: SCI = �+�
�

, where � is the

functional unit of work (such as a function invocation).

The operational emissions is the net energy consump-

tion multiplied by the carbon intensity of the energy source

(typically the grid) expressed in grams CO2 per kWh. The

grid carbon intensity depends on the mix of energy sources

and has significant spatio-temporal dynamics [80]. The sec-

ond part of the footprint, embodied emissions, reflects the

environmental cost of the computing hardware itself, and

comprises the emissions due to manufacturing, transporta-

tion, and in some cases recycling and disposal. Recent work

has highlighted the importance and significance of embod-

ied emissions, which may be as large as 20% of the total

lifetime emissions for servers and more than 80% for mobile

phones [59].

524

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Individual Control Plane Idle Threads-1 Threads-4 Threads-8

dd AES gzip json
0

20

40

60

80

En
er

gy
 p

er
 in

vo
ca

tio
n

(J
)

(a) Server-Small

image ml_train video cnn
0

250

500

750

1000

En
er

gy
 p

er
 in

vo
ca

tio
n

(J
)

(b) Server-Large

dd AES gzip json
0

2

4

6

En
er

gy
 p

er
 in

vo
ca

tio
n

(J
)

(c) Desktop-Small

image ml_train video cnn
0

50

100

150

En
er

gy
 p

er
 in

vo
ca

tio
n

(J
)

(d) Desktop-Large

Figure 2: Function energy per invocation, measured in isolation. Server load and concurrency levels significantly
impact the footprints, making this an unreliable method for energy measurement.

3 CHALLENGES AND GOALS
The high-level goal is to infuse energy and carbon accounting

and control into serverless computing. We accomplish this

by developing a new energy profiling methodology which

provides accurate, complete, and fairly attributed carbon foot-

prints for functions. In the rest of this section, we discuss

the key drawbacks and challenges with existing techniques

to achieve these three requirements.

3.1 Power Profiling Methods
The power consumption of an application is a key input for

computing its carbon footprint. However, existing power

profiling methods are both fundamentally and practically ill-

suited to provide fine-grained function-level measurement.

We can divide these methods into two broad classes:

3.1.1 Direct Attribution. In this approach, the hardware

power sensors are read periodically, and the power consumed

in the sampling interval is attributed to the software com-

ponents (such as processes and functions) running during

that interval. It is used by popular tools like Scaphandre [64],

which rely on high-frequency CPU power measurements

using RAPL. The fundamental challenge is attributing a sin-

gle power reading to a large number of concurrently exe-

cuting components (such as multiple processes). For this

power disaggregation, the total power is often evenly dis-

tributed [20, 83]. High sampling rates and accurate hardware

power sensors are vital: smaller sampling intervals (few mil-

liseconds) contain fewer concurrently running components,

which makes the disaggregation feasible. Thus the direct

attribution approach uses RAPL sensors which can be read

with high-frequency (100s of Hz). The overhead of power

profiling is also a concern with direct attribution: our evalu-

ation shows that the popular Scaphandre tool can increase

CPU and energy consumption by more than 5%.

Compared to CPU power sensors, system-level energy can

only be reliably obtained at low frequency, resolution, ac-

curacy, and has temporal skew. FaaS workloads compounds

the fundamental challenges and these measurement errors.

Functions can be very short lived (<1 s), and FaaS servers

run hundreds of functions concurrently. These issues are

illustrated in Figure 1a, which shows system and CPU power

when a single compute-intensive ML training function is run

in a loop. The “Server” power is measured through the IPMI

and inbuilt chassis-level power sensor, and the “Desk(top)”

uses a plug-level power meter for full-system power. There

is a maximum of one active invocation at a given time, and

each “dip” in power corresponds to the gap between invoca-

tions. The system power on the server has poor resolution

and has large jumps. There are also large synchronization

differences between the system and RAPL power on both

platforms. On the desktop with a more accurate power-meter,

the resolution is higher and the function signatures are more

discernible, but the system power’s time-diffusion problem

persists even in this best-case and unrealistic scenario of se-
rial invocations. These issues are amplified in FaaS servers

running large numbers of small concurrent functions.

3.1.2 Model-based Power Estimation. Power models of the

application and hardware [29, 94] are commonly used in

energy measurement. For example, power can be modeled

as a function of CPU utilization, which can be estimated

with hardware performance counters such as instructions re-

tired, cache misses, etc. For longer-lived entities like VMs, so-

phisticated ML models can be customized to the application

behavior [56]. Compared to power, performance measure-

ment can be done with high fidelity, using the wide variety

of fine-grained metrics are provided by the hardware and

virtualized by the OS. Once a power model for the server

(and workload) is built, it can be used to infer the power

consumption of individual software components based on

their resource consumption.

Existing profilers are not cognizant of function boundaries

and execution lifecycle. For example, FaaS control planes

employ keep-alive techniques [51] to reduce the cold-start

overheads, and keep the container resident in memory be-

tween invocations. The container only consumes CPU re-

sources when the function is invoked, which results in a

highly non-stationary resource consumption behavior. Exist-

ing power models work well for stationary workloads, but

highly “bursty” and concurrent FaaS workloads results in

inferior fidelity. To illustrate, the output of state of the art

525

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

process-based accounting tool, PowerAPI [41] is shown in

Figure 1b. The server is running multiple concurrent invoca-

tions of a single function, representing the easiest disaggre-

gation case. The PowerAPI energy estimate of the function’s

containers and the number of “active” function invocations

are shown in the figure. When the function is not running,

we should expect its container’s power to be zero. How-

ever, we can see that the predicted energy is not correlated

with the number of function invocations, and has temporal

skew—making accurate energy footprints difficult to obtain.

3.2 Validation
Empirical validation of power profiling poses many funda-

mental and practical challenges. We find that prior work on

power profiling does not adequately compare against the

“ground truth”, resulting in uncertain validity of the measure-

ments. The predominant metric for evaluating the accuracy

of power profilers is difference between the measured power

and the total predicted power of all applications (used in [67]).
This metric, which we shall call the total power error, does not
capture the accuracy of the power footprints of the individual
applications, and is decoupled from any ground truth.

Individual power footprints are sometimes validated using

isolated measurements. The different applications are run

individually, and the total system power can be attributed to

the application as the “ground truth” power consumption. A

major drawback of this approach is that is not “online”, and

does not capture the function’s energy footprint under real-

istic loads. To illustrate this, the energy footprints (energy

consumed by a function per invocation) for such isolated

measurements are shown in Figure 2. We show the average

energy per invocation over a 10 minute period where the

same function is invoked in a closed-loop. The hardware

power consumption is highly dependent on the system load

and the power states, and thus increasing the system load

by running more concurrent functions affects the footprints.

In the figure, we run 1, 4, and 8 concurrent invocations of

each function, and we can see that the footprints reduce with

load, as the shared and idle power is amortized across indi-

vidual invocations. Measuring energy in isolation is thus not

suitable for validating function-level profiling. We therefore

need a new validation methodology with additional metrics
and ground truth.

3.3 Shared Components
Measuring the energy of function invocations alone is in-

sufficient and does not provide complete accounting. The

FaaS control plane also performs many actions on behalf of

the functions and is a major shared resource with its own

energy footprint, which must be carefully attributed to the

individual functions. The sandboxing and management of

functions imposes significant work on the control plane,

which also increases their energy footprint [97]. The time

spent by OpenWhisk for a single (warm) invocation can be

up to 600 milliseconds per invocation [50]. This is separate

from the actual function execution time (i.e., the “function

context”), and is a significant fraction of the total time (and

hence resource and energy) consumption of the function.

The control plane interposes on many aspects of function

execution asynchronously (such as dealing with the OS vir-

tualization layer, caching container state, etc.). This results

in a fuzzy boundary between the function execution and the

control plane, and exacerbates the challenges in system-level

energy measurement described previously. The boundary is

also fuzzy in time: since the function’s initialized sandboxed

is usually kept warm in memory [51], this results in a func-

tion’s memory-energy footprint outlasting the function exe-

cution. The control plane’s eviction and container life-cycle

management operations also consume CPU resources and

energy. The potentially large footprint of shared resources

such as the control plane raises new challenges in fair attri-
bution: How should we measure and divide the control plane
energy among the functions?
Due to these major challenges, existing energy profilers

are thus unable to provide the necessary input for carbon

footprinting. This is illustrated in illustrated in Figure 3

which shows the operational and embodied components

of our carbon footprints on desktop and server hardware.

For this figure, we assume hardware lifetimes of 5 years and

the 2024 average U.S emissions intensity of 386 g CO2 per

kWh. The server and desktop embodied emissions are 471

kg and 175 kg respectively and obtained from the manufac-

turer [33, 34]. The function’s “shared” individual footprint

comprises of the control plane and the server’s idle power

(multiplied by the grid carbon intensity), which can be sig-

nificant for larger servers.

The popular Scaphandre profiler only captures the CPU

power, and provides incomplete and inaccurate footprints

(and fails for the disk-intensive dd function). Experimental

details and further discussion for this figure are presented

later in Section 7.2.

4 ENERGY PROFILING DESIGN
We develop a simple and practical approach to energy mea-

surement based on the requirements and challenges identi-

fied in the previous section. In this section we focus on the

energy footprint, but our footprints are multi-dimensional

and provide the necessary input to computing the carbon

footprints, which is described in Section 5. The high level

flow is shown in Figure 4, and this section focuses on the

energy profiling component. Our insight is that a “residence

time” instead of a traditional utilization based modeling ap-

proach can provide complete and accurate footprints.

526

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

dd img aes cnn
0

1

2

3

4

5
g

C
O

2

Oper. Indiv
Oper. Shared

Embodied Scaphandre

Figure 3: Our carbon footprints consist of the func-
tion’s individual and shared operational emissions, and
hardware embodied emissions. Existing power profil-
ers like Scaphandre provide incomplete footprints. The
hatched bars on the right for each function are foot-
prints on a much larger server.

It is a server-level system which integrates with mon-

itoring infrastructure and the FaaS control plane such as

OpenWhisk or Iluvatar [50] (see Figure 4). Robustness to

measurement noise and workload dynamics is our key de-

sign requirement and influences our power modeling.We use

three broad categories of input: hardware power measure-

ments; OS and hardware level metrics (such as process-level

CPU utilization and CPU performance counters); and a trace

of function executions (start and end time of each invoca-

tion). The availability and resolution of input metrics can be

highly non-uniform (i.e., some hardware sensors may not

be available on all platforms). We are thus flexible about

input data availability, and can work with a small subset of

coarse-grained metrics if necessary.

Our power modeling is deliberately simple to be general-

izable and robust, and we prefer explainable linear models

to more complex “black box” models such as deep neural

networks. We combine both the direct attribution and model-

based techniques, and leverage temporal locality of repeated

function invocations for statistical disaggregation. We pro-

vide complete energy accounting of system-wide power by

using Shapley value principles of fair division. This provides

a wide spectrum of per-function energy footprints with dif-

ferent shared-energy contributions, which are suitable for

different tasks pertaining to energy accounting and pricing,

capping and control, etc. Figure 2 illustrates this energy spec-

trum: the function’s total energy profile comprises of its

“individual” contribution due to function execution, as well

as its share of the control plane energy and the idle energy

of the server.

Our power profiling has twomajor components. The input

power and workload measurements are disaggregated using

the statistical model (Section 4.1), which we augment with

a CPU power model (Section 4.3) when RAPL is available

to provide a finer-grained power profile. The footprints are

continuously updated based on a FaaS-tailored Kalman filter

approach (Section 4.2).

Full Footprint SharedIndividual + Shapley
Fair Division

=

Fn Carbon

Time

CPU power
models (e.g.
PowerAPI)

Statistical
disaggregation

(Coarse-grained) Embodied

Control Plane

Idle/HardwareKalman
Filtering

Figure 4: Carbon footprints are a combination of the
function’s individual and shared energy and embodied
emissions.

4.1 Statistical Power Disaggregation
We use the repeated invocation of functions for statistical

power disaggregation among functions and shared resources

such as the FaaS control plane. The key idea is time-based

attribution: the total system power at various points in time

can be attributed among all the functions that are executing

in a time period of � . We then collect � such sequential sam-

ples (each over a small � interval) for the various power and

workload metrics.� is the total number of unique functions

running on the server. The power measurement (�) can

be system-wide power, CPU power, or the “rest” of system

power which is total system power minus the CPU power.

The key parameter for disaggregation is the “function con-

tribution to power”, which is the matrix � with� columns

and � rows. We use function running times as proxy for the

contribution: � [�] is the total amount of time the function �

was running during the interval. Another useful parameter

is the number of invocations or activations of each func-

tion in the interval, stored in matrix �. The total number of

functions the server runs,� , is large, and the number of ac-

tive functions with non-zero entries in � and � is small. We

use simple linear regression for estimating the per-function

power consumption � :

�Full = min

�
�� −� (1)

This is the simplest case which does not consider control

plane or idle power, and the power values (�) obtained are

referred to as the full power. The per-invocation energy, �
in the interval is obtained by multiplying the power with

the average function latency � : �full = �full� . In some cases,

subtracting the idle server power provides more meaningful

footprints: �No Idle = min� �� − (� −�idle).
The choice of the measurement interval � has important

tradeoffs. At small intervals (� ∼ 10ms), only a few functions

are active, which makes � sparse. In the extreme case, only

one function is active, and all system power can be attrib-

uted to it without any further disaggregation. However, in

practice, the noise in system-level power measurement in-

creases with the sampling frequency and increases the error.

Conversely, larger � values yield lower variance in power

measurements, but denser contributions matrices, which

527

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

increases errors in the linear regression solution. We use

𝛿 = 1second by default.

For heterogeneous hardware such as GPUs, the hardware

energy consumption is separately disaggregated only among

functions using the accelerator. Because these accelerators

provide a lower degree of statistical multiplexing, the disag-

gregation is simpler.

Shared Principals.As described in the previous section, the
FaaS control planes can also be a significant energy consumer,

along with other shared principals like the OS. We augment

the above statistical disaggregation to also include these

shared principals as additional columns in the contributions

matrix 𝐶 .

Shared principals like the control plane and OS are al-

ways running, so unlike functions, we cannot simply use

running-time as their “contribution”. Instead, we use their

CPU utilization as an indicator of energy use. For the control

plane, we measure the CPU% of all its processes. Multiply-

ing this CPU% by the time-interval 𝛿 gives the fraction of

time the control plane was running. However, this underesti-

mates the control plane overhead, since function executions

don’t necessarily consume 100% CPU. We thus normalize

the control plane’s contribution by the system-wide CPU:

𝑐𝑐𝑝 =
control plane CPU%

system-wide CPU%

∗ 𝛿 (2)

This yields 𝑥cp, the control plane power, which is then di-

vided among all functions using the Shapley value fair share

principles described later in this section. We can similarly

account for other shared components like the OS, by using

the kernel’s CPU-time and applying similar normalization.

4.2 Kalman-Filter Guided Online Profiling
We continuously update the function power estimates 𝑋

based on new measurements. For simple online footprints,

various techniques such as online least squares regression

and exponentially weighted moving averages can be used.

Our insight is that the Kalman filter framework [82, 109]

provides intuitive online estimates which are robust to mea-

surement noise and FaaS workload dynamics. For example,

we can capture the change in function input, running time,

and system load—all of which can affect the per-invocation

footprint.

The high-level intuition is to combine the previous es-

timates 𝑋𝑖−1 with the new measurements 𝐶𝑖 ,𝑊𝑖 , and also

account for the changes or variance in the new measure-

ments (i.e., the process and measurement noise). The outline

of our Kalman filtering algorithm is presented in Figure 5.

The filtered estimate is then given by:

𝑋𝑖 = 𝛼𝑋𝑖−1 + 𝛽𝑈𝑖 + 𝐾𝑍𝑖 , (3)

where 𝛼, 𝛽 are tunable parameters. 𝑍𝑖 is the error we get if

we use the previous estimate with the new measurements

(also referred to as the “innovation” in standard Kalman

filtering). 𝐾 is the Kalman gain, which is the main compo-

nent influencing how the innovation is distributed among

functions and how footprints evolve. Our intuition is that up-

dates to function footprints should be based on two factors:

i) the number of invocations in the interval (𝐴), and ii) their

historical latency variance (𝜎 (𝑇)). For instance, functions
not executed in the interval should see no changes in their

footprint. The latency variance is a factor because our foot-

prints are proportional to function latency (𝐶), and functions

with higher latency variance should receive a smaller update.

The latency variance is cumulative and also updated in each

step (not shown in the algorithm), and 𝛾 is the third tunable

parameter.

The Kalman gain consists of the overall change in the

state of the system and the measurement noise 𝑟 , which is the

error in hardware powermeasurement due to high-frequency

sampling. Note that hardware power measurement is coarse-

grained [71], so a high sampling frequency leads to stale

measurements, which contribute to the measurement noise.

Thus based on the sampling tradeoffs, themeasurement noise

is set proportional to 1/𝛿 .
The process noise (𝑃) is updated after the Kalman step, and

reflects how much the workload (i.e., the state of the system)

has changed. We use the relative invocation frequencies (𝐴𝑖)

of the function in the new time period and compare it to

the historic frequencies to determine workload similarity

(used to set 𝐾 in the algorithm in Figure 5). The intuition is

that if the workload changes significantly, then the historical

power estimates have less weight.

For new functions without any estimates, we set𝛼 = 0, 𝛽 =

1, and 𝐾 = 0. The initial estimates 𝑋0 are obtained using

statistical disaggregation on a large initial time-step (𝑁Init ∼
2minutes). Optionally, estimates from previous profiling runs

or other servers in the cluster can also be used as the initial

value. The subsequent Kalman steps are performed over the

time-step 𝑁𝐾 in the range of 1−2minutes. The same sparsity

tradeoffs apply: smaller time-steps result in more sparsity

and frequent updates, but are impacted more by latency

variance and measurement noise.

Using the above Kalman-filter approach which incorpo-

rates noise and workload dynamics significantly improves

the accuracy and stability of the footprints, which is illus-

trated in Figure 6. The figure shows the energy per invoca-

tions of four functions over time. The “memoryless” policy

does not keep past history and runs a new power profiling

step every time-step (which is one minute in duration)—

resulting in high jitter. By contrast, the “cumulative” policy

uses all the past history to run the statistical disaggregation.

While this results in stable footprints, it does not adjust to

changing function workload, and yields different footprints

compared to the Kalman-filter approach—highlighting the

528

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

1 𝜎 (𝑇) : v a r i a n c e o f f u n c t i o n l a t e n c i e s

2 𝐴𝑖 : num fn i n v o c a t i o n s dur ing i n t e r v a l 𝑖

3 𝑟 ∝ 1/𝑑𝑒𝑙𝑡𝑎
4

5 def Kalman− s t e p (𝑋𝑖−1,𝐶𝑖 ,𝑊𝑖 , 𝑃𝑖−1) :
6 𝑈𝑖 = min𝑋 (𝐶𝑖𝑋 −𝑊𝑖)
7 𝑍𝑖 =𝑊𝑖 − 𝐶𝑖𝑋̂𝑖−1
8 𝑃 = 𝛼𝑃𝑖−1 + 𝛾𝜎 (𝑇)
9 𝐾 = 𝑃𝐴𝑇

𝑖
/𝐴𝑖𝑃𝐴

𝑇
𝑖
+ 𝑟

10 𝑃𝑖−1 = (1 − 𝐾𝐴𝑖)𝑃
11 return 𝑋̂𝑖 = 𝛼𝑋̂𝑖−1 + 𝛽𝑈𝑖 +𝐾𝑍𝑖

Figure 5: Kalman filter-inspired approach for updating
function per-invocation power 𝑋 over time.

importance of online adjustments. A more thorough evalu-

ation of the accuracy of the footprints is presented later in

Section 7.

4.3 CPU Power Modeling
The statistical disaggregation technique described above

has many advantages: it is simple, and requires only coarse

grained power and latency measurements. We combine this

phenomenological approach with more a causal CPU power

model for increased accuracy. We build on the plethora of

CPU powermodels [29] and use hardware performance coun-

ters to map function CPU usage to power consumption. A

CPU model 𝜃CPU is built and used to predict the function’s

CPU-only power 𝑋CPU over each time-step.

𝑋CPU = 𝜃CPU(𝑆), where 𝑆 is a vector comprising of the

function’s performance counters, normalized by the system-

wide counters. Our approach is similar to PowerAPI and

SmartWatts [41], and uses the standard performance coun-

ters: UNHALTED_CORE_CYCLES, UNHALTED_REFERENCE_CYCLES,
LLC_MISSES, and INSTRUCTION_RETIRED. We use perf to

obtain the function-container counters and aggregate the

values for multiple concurrent containers of the same func-

tion. Themodel𝜃CPU is trained using SVRwith a linear kernel

during initial operation [95]. This model is stable as long as

the function execution footprint (CPU work done and IPC)

is stationary across invocations. We continuously monitor

the model error (difference between observed CPU power

and the sum of all predicted function powers), and retrain

the model if error exceeds a set threshold (default of 5%).

We can combine the CPU power and rest of the system

power estimates. The rest of the system power is obtained us-

ing the statistical disaggregation (and Kalman Filter): 𝑋Rest =

min𝑋 (𝐶𝑋 −𝑊Rest), where𝑊Rest =𝑊Sys −𝑊CPU. When RAPL

is available, the default is this combined mode, 𝑋Combined =

𝑋CPU + 𝑋Rest.

5 FAIR ENERGY AND CARBON
ATTRIBUTION

Once the function-level power estimates (e.g., 𝑋Combined) are

computed over some interval of time (𝑁), we can use them

to compute different energy and carbon footprints.

Individual Footprint. In the simplest case, the function’s

average individual energy consumption is computed: 𝐽Indiv =

𝑋No Idle𝜏 , where 𝜏 is the average function latency in the in-

terval. Note that 𝑋 is dependent on the function code, and in

practice does not vary significantly since popular functions

such as ML inference and multimedia processing are fairly

deterministic [57]. Of course, the execution time 𝜏 can vary

based on the input size and resource contention—we analyze

its effect on the energy in Section 7.

Shapley Footprint. The above individual footprint does

not take into account the power consumed by the shared

resources such as the control plane and server hardware.

Complete footprints require that we fairly dividing the en-

ergy (and carbon footprint) of these shared resources, for

which we use Shapley value principles [110] and techniques.

The Shapley value of each function would be it’s “true” en-

ergy footprint, and satisfy many desirable properties, and can

be considered the gold-standard of energy attribution [39]

in multi-tenant environments. Shapley values are also being

used for interpretability of machine learning models [102],

by attributing the importance of model features.

Unfortunately, computing Shapley values requires sam-

pling an exponential number of energy readings that cover

all the permutations of function invocations (i.e., entries of

the𝐶 matrix), and the true marginal energies for all function

combinations, which we have no way of obtaining accurately.

Exact Shapley values are thus infeasible and impractical, es-

pecially considering measurement noise and under an online

setting. Instead, we approximate the Shapley values by satis-

fying its four properties in a best effort manner:

(1) Efficiency: the sum of all function footprints should add

up to the total system-level energy. We try to achieve this

by minimizing net error in the Kalman filter.

(2) Null-player property requires functions not executing to

have 0 energy, which we get by construction of our𝐶 matrix.

(3) Symmetry: identical functions (both in their code and

invocation frequency) should have the same footprints.

(4) Linearity: the total shared-resource energy attributed

to a function should be the sum of the individual shared

resources.

Based on these principles, we divide the shared idle and

control plane energy among the functions. Idle power is a

“static” shared resource, and it must be evenly among all func-

tions (proof omitted, but follows similarly from [66] which

applies Shapley values to datacenter power). On the other

hand, the control plane energy is “dynamic” and depends on

529

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

0 5 10 15 20 25
0

20

40

60

80

100
Pe

r-i
nv

oc
at

io
n

En
er

gy
 (J

)

kalman

0 5 10 15 20 25
Time-Steps

0

20

40

60

80

100 memoryless

0 5 10 15 20 25
0

20

40

60

80

100 cumulative
json ml_train video image

Figure 6: Change ine energy footprints over time. The Kalman-filter approach is able to adjust to changingworkload
and system dynamics.

its use (i.e., how many functions are invoked), and it must be

divided proportionally among functions on a per-invocation
basis. The efficiency and linearity properties require that we

add the individual and static and dynamic energy shares to

obtain the total energy for each function:

�Shap = �Indiv + �Shared = �Indiv + �cp + �idle, (4)

where�cp, �idle are the shares of control plane and idle energy

respectively. �Indiv is obtained by discounting the idle power,

i.e., using�No Idle. �cp = �cp��/
∑(�), where�� is the number

of invocations of function � , and � is the vector of �� . We

divide the control plane energy proportional to function

invocation frequency (over the time interval). �idle = �idle/� ,

where � is the number of unique active functions in the

interval, which is the number of non-zero entries in �. The

function footprints are then the per-invocation energy, which
is �shap/�.
The Shapley footprint gives applications a full and com-

plete picture of their energy consumption. Since the energy

footprints are linear combinations of the individual, dynamic,

and static shared power, they can be combined in different

ways depending on the intended use-case. For example, when

developers are optimizing the energy footprint of their func-

tions, only the direct and individual energy (without any

control plane or idle overheads) is suitable.

Finally, our energy footprints are also designed to explore

the limits of a simple model and system-level power mea-

surements. If device-level (such as disks and NICs) power

can be instrumented (which it cannot in current commodity

hardware), then their power can be similarly disaggregated

using our techniques. While currently we use aggregate GPU

power, specialized power models for GPUs [63, 70] can also

be used, similar to how we use RAPL-based models. Without

any specialized models, fine-grained per-device footprints

can also be considered to be the “dynamic” shared power

and be part of the Shapley footprints.

Carbon Footprints are computed by combining the energy

footprints with the operational and embodied emissions:

CShap = � �Shap + �/�, (5)

where � is the carbon intensity of the electricity source, and

� is the embodied emission “rate” during the period. The total

embodied cost of the server is E, which must be paid over

the lifetime L of the server (typically 5 years). The embodied

rate � is then � = E�
L , where � is our original measurement

interval (typically 1 minute).

Note that the embodied fraction is based on whether a

function runs on the server or not (during the time interval),

irrespective of the number of invocations. Thus, all “active”

functions have equal embodied contribution. Since the server

is a static fixed cost, Shapley valuation dictates that it be

evenly shared among the active functions and irrespective

of how much of the server they use.

This subtle difference has important ramifications on the

footprints and incentives for providers and users to optimize

carbon. First, it strongly favors locality of execution and load

balancing policies which run functions on the same server

to reduce cold-starts. With the embodied carbon accounting,

there is even more incentive to retain locality. “Popular” func-

tions with higher invocation frequencies naturally have a

higher total operational footprint anyways, and thus this ap-

proach reduces their embodied burden. Finally, our proposed

carbon accounting scheme also imposes different incentives

on the function developers. If a larger function is split into

multiple (say two) smaller functions, then each smaller func-

tion invocation is required to pay the embodied “tax” and

also double the dynamic control plane cost. This also incen-

tivizes locality and performance, since it reduces additional

networking and sandboxing latency as well.

Comparison with SCI.We can also derive and adapt the

Software Carbon Intensity [48] metric in the context of FaaS.

The SCI can be simplified as : CSCI = � �Full + �� , where � is

the resource usage fraction of the function. For function � ,

�� =
����∑

�<� ����
. Compared to our Shapley value formulation,

the main difference in the SCI metric is that it considers em-

bodied emissions as a usage-based cost, whereas we believe

that embodied emissions are more appropriately viewed as

static sunk costs. CSCI ≈ �Server (� + �)� , where �Server is the

empirically measured server energy. Finally, we note that

530

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

“fairness issues” in carbon accounting and pricing (such as

who pays for past embodied emissions) continues to be a

highly globally vexing and subjective issue [30, 74], which

is well outside our scope.

5.1 Limitations
Some of the limitations of our energy profiling approach are

a result of our focus on simple and validatable footprints.

Our focus is also on individual functions. For multi-function

applications and workflows, the footprints are approximated

as the aggregation (sum) of the component functions. This

will not account for the shared networking and storage costs,

since we only consider server-level power. At a high-level,

we can view networking and distributed storage as shared re-

sources, and use our fair division techniques to disaggregate

their energy consumption among all the functions. Finer-

grained profiling will require additional storage and network-

ing power models along with distributed tracing to track

function resource usage. Nevertheless, networking and stor-

age are not power proportional and network elements like

switches can have a fairly “static” power consumption, which

will again require fair division. While these more “complete”

footprints can be obtained by applying our proposed tech-

niques, they are harder to validate against ground-truth, and

are part of our future work.

Our simple power models are complementary to finer-

grained deep neural network models trained on more hard-

ware performance counters and function inputs. Because

of our linear models, we do not need offline training, and

have better generalizability across hardware platforms and

workloads. Moreover, larger models do not address the main

challenges identified in the previous section such as shared

resources and diffused energy consumption.

6 IMPLEMENTATION AND VALIDATION
METHODS

Our energy profiler and carbon footprint estimation tech-

niques are implemented in the open source Iluvatar FaaS

control plane. The energy footprints are made available to

the control plane for internal power capping and control. Our

changes are implemented in Python and Rust in around 6,000

lines of code. We chose Iluvatar because it provides low la-

tency function invocations and has reduced jitter. Prior work

has shown that popular FaaS frameworks like OpenWhisk

can add 100s of milliseconds of latency even for warm invo-

cations [50]. Time-based energy attribution is a major com-

ponent of our power model, and OpenWhisk’s own power

consumption adds significant noise to the energy footprints.

Validating footprints in such excessively noisy conditions

was also a challenge (larger number of trials needed to obtain

a reasonable confidence interval of the marginal energies).

At a conceptual and implementation level, our techniques are

14 12:25 14 12:30 14 12:35
Time

50

100

150

200

Sy
st

em
 m

in
us

 C
PU

 P
ow

er Raw
Time-Corrected

Figure 7: System-level power can be synchronized us-
ing CPU power as a reference signal, reducing the er-
rors due to lag.

independent of the FaaS framework, but the tighter latency

bounds of Iluvatar aids in a more rigorous validation.

Different full-system power sources are supported. For

servers equipped with chassis-level current and power sen-

sors, we use IPMI to query the BMC (baseboard management

controllers). We also support external plug-level power me-

ters, and query their power via serial or telnet interfaces.

Many low-power edge devices also provide system-level

power. For example, the Nvidia Jetson Orin AGX has current

and power sensors which we query using tegrastats. Finally,

for laptops and other battery powered devices, the battery

charge controller can provide the energy discharge, which

we can obtain via ACPI interfaces, and obtain the power

consumption. We use the perf tool for both the system-wide

RAPL and per-function RAPL and per-function CPU perfor-

mance counters.

Power De-noising and Synchronization. We filter and

synchronize the raw power signals before using them for

disaggregation. “External” power using external plug-level

power meters and even BMC/IPMI can have a time-skew in

their measurement and reporting path. Synchronizing the

system-power is crucial—otherwise energy is attributed to

previous/future functions, reducing the footprint accuracy.

We correct the temporal skew (i.e., lag) by correlating (in

time) the power signal with some other reference.

For instance, we have observed that IPMI power has sig-

nificant lag, when compared to the RAPL power which is

much more “real-time”. This can be observed from Figure 7

which shows the difference between system-level and CPU

power. The workload is a CPU dominant application (ML

training), and the server has no other major dynamic power-

consuming devices (no GPU etc.). Thus we should expect

this difference to be constant. However, we see that the raw

difference shows significant variance, which we attribute to

the measurement lag in the IPMI power-sensor.

531

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

We find and fix this lag using simple signal-shifting meth-

ods [88]. We find the time-offset 𝑠 which minimizes the chi-

square difference between the power signal,𝑊 and the ref-

erence signal 𝑅, after normalizing by the average:

𝑠∗ = min

𝑠

(
𝑊 (𝑡 + 𝑠)

𝑊̄
− 𝑅(𝑡)

𝑅

)
2

(6)

This can be solved using general optimization solvers such as

limited-memory BFGS [89], after setting bounds on 𝑠 of a few

seconds. The difference in the power and reference signal

after time-skew correction is also shown in Figure 7, and we

can see a significant reduction in the variance (i.e., the noise).

We compute this skew both during an initialization phase,

and periodically, to capture any drift. The reference signal is

CPU power by default—other reliable load metrics like CPU

instruction and cycle counters are the fallback synchronizing

inputs.

6.1 Validation Methods and Metrics
We develop and use a range of metrics for energy and carbon

footprints. Given an energy footprint, we can compute the

operational and the total carbon footprint. Our metrics are

also applicable to carbon footprints, but we focus on energy

for simplicity.

Ourmethodology andmetrics required for validating these

footprints fall into two broad classes. Through external vali-
dation, we compare the energy footprints with other reliable

energy measurement methods, and develop the primary ac-

curacy metrics. On the other hand, the internal validity looks

at the consistency of energy footprints with respect to each

other, or other system utilization and performance metrics.

External validity for energy disaggregation is challenging:

we want to estimate the function’s energy contribution in a

long and dynamic workload. Our primary benchmark and

“ground truth” for external validity is the marginal energy,
which we compute by running two nearly identical workload

traces, and subtracting their total energy consumption. A

workload trace (T) is characterized by the set of functions

(S), their IAT CDFs, and the total duration. Even using ex-

tremely coarse-grained power measurements, we can obtain

J (T), the total energy consumption of running the work-

load trace on a server. The marginal energy of a function 𝑓

is obtained by running a new trace T (S − 𝑓) which does

not contain the function, and is given by:

M𝑓 =
J (T (S)) − J (T (S − 𝑓))

number of invocations of f in S

. (7)

The marginal energy is thus the increase in total energy

consumption caused by the function. Note that it does not
account for the idle server energy, since it is present in both

the traces.

This marginal energy validation is essential, since energy

is highly sensitive to the system power states (such as CPU

Metric Definition

Individual-Difference |𝐽 − 𝐽 ∗ |/𝐽 ∗
Cosine-Similarity 𝐽 · 𝐽 ∗/| |𝐽 | | | |𝐽 ∗ | |
Total-Error 𝐸 [|𝑊 (𝑡) − 𝑊̂ (𝑡) |/𝑊 (𝑡)]
Latency-normalized-Variance 𝜎 (𝐽)/𝜎 (𝑇)

Table 1: External and internal validity metrics. 𝐽 and
𝑊̂ are profiler outputs, 𝐽 ∗ is ground truth, and 𝑇 is
function latency.

frequency). Measuring the function energy footprints “in

isolation” is a simpler and alternative technique, where a

single function is run without any other function, and per-

invocation energy is obtained from the total system energy.

But because of the different power states, the per-function

energy footprints obtained through this conventional and

simpler method have a very high range, dependent on the

system load. Figure 2 shows the energy per invocation with

the isolated measurement technique when different num-

bers of the same function are executed concurrently, and we

can see significant differences (more than 10×) in footprints

based on the load.

Validation Metrics. Table 1 lists our external and internal

validation metrics. For external validity, we define and com-

pute different distance metrics between the energy profiler

output vector (𝐽) and some reference ground-truth 𝐽 ∗ (e.g.,
marginal energy footprints). The first metric provides the

per-function individual difference to the ground truth. Since

the marginal per-invocation energy is obtained by running

a separate, smaller workload, it may not always reflect the

“live” online energy. These are primarily due to differences

in system power consumption and efficiency, and under-

lying hardware control. Deviations from the marginal can

also arise because of different attribution policies for idle

and other shared energy. To achieve “complete” energy ac-

counting, the footprints may be elevated for all functions.
To account for these issues, we use the cosine similarity be-

tween the energy footprints, to capture the ratios of energy

footprints among the different functions. Higher cosine sim-

ilarity (closer to 1) indicates that a closer footprint match.

Cosine similarity with the marginal energies is our primary
external validation metric.
The second category of metrics are for internal validity.

The conventional and popular metric for energy profilers

captures the “completeness” of accounting, by computing

the difference over time, between the observed (𝑊 (𝑡)) and
predicted total power (𝑊̂ (𝑡)). Optimizing solely for this total

error can be at the expense of the error in energy footprints.

This total power error is thus of secondary importance to us,

and is controllable via our Kalman filter parameters: higher

532

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

values of 𝛽 in Figure 5 reduce the total error but result in

higher variance in footprints.

Our primary internal validation metric is the variance in

the energy footprints, normalized to the variance in latency.

This helps use evaluate the precision and feasibility of our

footprints for energy pricing. Currently, cloud functions are

priced based on their execution time (i.e., latency), and thus

the latency variance serves as the baseline for comparison.

7 EXPERIMENTAL EVALUATION
Our evaluation is centered around two main questions, i)

How accurately can we obtain full-system energy profiles

of functions, and ii) What are the characteristics of energy

and carbon footprints? We empirically evaluate these foot-

prints on more than 100 workload traces (including marginal

energy traces) using seven external and internal validity

metrics. These workload and measurement traces and asso-

ciated ground truths are made publicly available [3], to help

build better energy profiling models and accelerate empirical

sustainability research.

Measurement Platforms.We use three different types of

hardware platforms:

(1) Server: Supermicro X11DPT-PS board with 2 48-core Intel

Xeon Platinum 8160 CPUs and 1TB of RAM, running Ubuntu

20.04. It idles at 95 Watts.

(2) Desktop: Dell Optiplex with 12th Gen Intel i5-12500 run-

ning Ubuntu 20.04.5. It has idle power of 15W. Power is being

measured using an external SpecPower-approved power-

meter (Instek GPM-8310) every 0.25 seconds through the

meter’s telnet/SCPI interface.

(3) Edge: Nvidia Jetson Orin AGX [12]. Power is measured

using inbuilt current sensors (via tegrastat) and also vali-

dated with an external power meter. We run a combination

of CPU and GPU functions on this edge device.

The grid carbon intensity (grams CO2 per kWh) varies

significantly by time and location [80], and we assume the

constant US average grid carbon intensity of 386 g CO2 per

kWh. Similarly, the embodied footprint also varies based

on hardware type and the carbon accounting methodology.

For our analysis, the embodied emissions of the server and

desktop are 471 kg and 175 kg respectively [32, 35], and all

devices are assumed to have a five year lifespan. Instead of

varying and controlling the above carbon parameters, we fix

them, and in some of our evaluation results, we omit them

and focus on the energy footprints. This reduces the number

of variables in the experiment design, and also helps reduce

the uncertainty, since many of the carbon parameters can

have a very high variance [22, 76]. For carbon footprints,

we will largely focus on the operational footprint, since the

embodied component can be significant in both magnitude

and variance, and can thus obscure the energy validation.

Name Latency (s) Description

dd 0.7 Read and write local storage.

image 1.5 Performs several transformations on an image.

video 7.8 Download and grayscale a small video.

AES 1.4 Encrypt and decrypt payload multiple times.

json 0.25 Download, parse, and serialize a json blob.

CNN 1.3 Inference on a TensorFlow model (CPU and GPU).

ml_train 5.1 Train a regression model on a 20 MB dataset

Table 2: Super-set of functions used in our empirical
energy and carbon analysis. Latency is average warm
running time on the desktop.

FaaS workloads are generated using different combina-

tions of functions and inter arrival time (IAT) distributions.

We use different sizes and types of functions from function-

bench [73]—their characteristics are described in Table 2.

Recall from Equation 1 that the main variables determining

the power profiles (𝑋𝑖) are the latencies and popularities of

each function which make up its energy contribution (𝐶𝑖).

We test energy disaggregation with different combinations

(subsets) of functions in each trace. Our evaluation covers

a large multi-dimensional space of function-subsets, inter-

arrival-times, hardware platforms, and metrics. We cover a

sparse subset of this evaluation space, and use different types

of workloads to show the versatility and generalizability of

our approach. Since different metrics are analyzed using dif-

ferent traces, we also summarize the key metrics across all

traces towards the end of this section.

The arrival-rates are either determined by: i) the tradi-

tional exponential distribution, or ii) sampled from the Azure

trace [96], or iii) non-stationary bursty arrivals. For the Azure

sampling, we use a combination of random function sam-

pling and scaling the IATs to be suitable on a single server.

We use Iluvatar’s load generator [50] for generating thework-

load traces, which have arrival times for each function. We

use a sufficient keep-alive cache [51] to ensure > 99% warm

starts, and all the latency and energy footprints we report are

for warm starts. Cold-starts are tagged by the FaaS control

plane, and we can obtain separate cold and warm energy

fingerprints if necessary.

We use the Kalman filter with 𝛼 = 0.8, 𝛽 = 0.2, 𝛾 = 0.1,

with an initial window of 100 seconds, and subsequent in-

tervals of 60 seconds. Our empirical analysis has not found

the profiler output to be particularly sensitive to these pa-

rameters. We compare against Scaphandre [64], a popular

process-level CPU-only power profiler which uses the direct

disaggregation approach. We have implemented additional

post-processing for Scaphandre to turn the process-level

power output to per-function-invocation metrics, by corre-

lating the host process id with the function (Iluvatar runs

functions in containerd containers by default).

533

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

dd image AES cnn
0

10

20

30

40

En
er

gy
 p

er
 In

vo
c.

 (J
ou

le
s)

16.0
19.4 21.3

37.0

6.7

15.1
20.1

27.9

7.2

15.4
20.1

34.9

0.0

8.6
10.8

19.8

Desktop

dd image AES cnn
0

10

20

30

40

50

7.9
12.6

17.6

28.4

11.0

24.1
28.8

46.9

10.5

23.0
26.6

46.0

0.0 2.5 3.4
2.3

Server

dd image AES cnn cnn_gpu
0

10
20
30
40
50
60
70
80

24.0
29.8

36.0

51.6

38.2

8.1

29.9

40.7

73.8

60.3

Jetson

Ground Truth
Shared
CPU

Combined Disaggregation
Shared
CPU

Pure Disaggregation
Scaphandre

Figure 8: Energy-per-invocation for a four-function trace. Marginal energy serves as ground-truth. Our energy
footprintswith combined and pure disaggregation are accurate across all three hardware platforms. Scaphandre [64]
provides inaccurate footprints, especially for non-CPU-intensive functions (dd), and requires x86 RAPL counters
(not available on Jetson).

Platform Full Disagg. Combined Disagg. Scaphandre

Desktop 0.985 0.984 0.910

Server 0.998 0.998 0.623

Jetson 0.992 N/A N/A

Table 3: The high cosine similarity of footprints indi-
cates high accuracy with respect to ground truth.

7.1 Energy Profiler External Validity
We focus the first part of our evaluation on one heteroge-

neous trace with four functions, with the goal to understand

the accuracy and robustness of the energy profiling method.

The function IATs are scaled for the three hardware plat-

forms, such that the desktop and Jetson are at 80% utiliza-

tion, and the server is at 40%. The per-invocation individual

energy footprints (�Indiv) for each function are shown in Fig-

ure 8. We compare against the marginal energy as the ground

truth baseline, and also show the results of Scaphandre [64].

We evaluate two different profiler configurations. In the com-
bined mode, the CPU power is measured separately and

added to the rest of the system power using statistical disag-

gregation. In the pure disaggregation mode, only the coarse

grained statistical disaggregation is used on the full-system

power. In both cases, we subtract the idle hardware power,

and thus compute the �No idle described in Section 4.

On the desktop, both these approaches are within 1–40%

of the marginal energy (the Individual-Difference metric

in Table 1). Scaphandre measures only CPU power, and is

unable to attribute energy the disk-intensive dd function,

and has a 100-130% difference vs. marginal for the rest of the

functions on the desktop.

While marginal energy provides good ground truth, it may

be consistently higher or lower than our profiler estimates.

In Figure 8 the marginal energy of all desktop functions is

higher, and all server functions is lower than our estimates.

This is because the marginal footprints are affected by the

CPU power states and power non-linearities. On the lower-

utilization server with a large number of CPU cores (48),

because of the latency in switching to lower power states,

the additional fourth function can utilize the residual time

of the higher power states. This results in the reported mar-

ginal footprints to be lower, as seen in the figure. Conversely,

the desktop is at high utilization, and running the fourth

function consistently puts the CPUs into a higher frequency

state, which results in larger footprints since power is pro-

portional to the square of the frequency. Thus, the specific

power and workload characteristics in our marginal energy

calculation contribute to the perceived discrepancy in the

Individual-Difference metric in Figure 8. Finally, we note

that the consistent over or under prediction is also naturally

corrected by our Shapley footprints: the total power con-

sumption error is less than 10% on average (discussed in next

subsection in Figure 10).

We emphasize that individually comparing the energy es-

timates of different functions in Figure 8 provides an incom-

plete analysis of the profiler capabilities. For the individual

energy footprints, how proportional the estimates are rela-

tive to the marginal energy is more important. Our cosine

similarity metric captures this proportionality, and is shown

for this workload in Table 3. Using cosine similarity corrects
for the consistent over or under prediction, and we see that our
corrected individual energy footprints are within 98.4% and
99.8% of the ground truth.
Note that invocations of the same function can have dif-

ferent arguments, which naturally leads to variance in the

energy footprints and is the primary source of error, since

our model uses function latency as the key feature. However,

we are robust to such latency variance, as seen in Figure 9a,

which shows a lack of any significant correlation. On the

server with 40% load, the coefficient of variation of latency

534

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

0.0 0.2 0.4 0.6
σ(T) / E[T]

0

20

40

60

80

%
 In

di
vi

du
al

-D
iff

er
en

ce

Desktop
Server

cnn
dd

image
AES

(a) Function latency variance is uncor-
related with energy footprint error.

Function ID
0

25

50

75

100

En
er

gy
 (J

)

image
json
ml_train
video

(b) Energy of identical func-
tions can be clustered.

Figure 9: Energy footprints are robust to latency and
hence the function input variation. Similar functions
can be clustered based on their energy use.

is low, but the high idle energy results in the larger offset

vs. marginal. The desktop has a 80% load and higher latency

variance, but is closer to the marginal energy as a result. Thus,
even with variation in latency due to differences in function
input, contention, etc., we provide accurate energy footprints.
On the Jetson platform, we do not have access to a CPU

power model—but the pure disaggregation approach still

provides a high 99.2% cosine similarity. We are also able to

measure the GPU function’s footprint—highlighting its ef-

fectiveness on heterogeneous platforms without specialized

power measurement instrumentation. Scaphandre uses the

x86 RAPL counters, and is unable to work on the ARM Jet-

son platform. Its process-level direct attribution is unable to

account for all the CPU power on the x86 server, and has

an error of 10 × −23×. Moreover, it has a high profiler over-

head due to periodically scanning process info via procfs:
its CPU consumption on the server is more than 5%, causing

a 15 Watt (30%) increase in power consumption. For com-

parison, the combined CPU consumption of our profiler and

Iluvatar is 3%. Scaphandre’s high error on the server is also

due to its high profiling overhead: the high latency of syn-

chronously reading and disaggregating procfs information

for more than 1000 processes (corresponding to function

active and kept-alive containers) results in highly stale RAPL

readings (several seconds) and inaccurate disaggregation.

Using noisy system-level power is one of our system’s main
features, and these results illustrate its robustness and accuracy.
It provides more than an order of magnitude improvement in
accuracy compared to existing process- and CPU-based tools,
and is effective even on heterogeneous hardware.

7.2 Energy and Carbon Footprints
Having looked at the Individual-Error and the Cosine-Similarity

metrics, we now present the evaluation of other metrics and

properties. To illustrate generalizability, in some cases we

show results on different workload traces from the one pre-

sented in the previous subsection. The remaining evaluation

of the earlier four-function trace (dd, image, AES, CNN) is
included in Figure 11 and 13.

Full carbon footprint. The per-function operational car-

bon footprint (using the Shapley value approach) over a 15

minute interval is shown earlier in Figure 3. Because the

server is under-utilized and has a high idle power (95 vs. 15

W), the shared operational emissions for all functions are

close to 8x higher. The operational carbon footprint using

Scaphandre power estimates misses the I/O-bound dd com-

pletely, and significantly underpredicts the other functions

by an order of magnitude. This highlights the importance of
complete full-system footprints, since shared hardware and
software components can be a large source of emissions. These
footprints can be used by both FaaS users and operators to

quantify emissions. We now evaluate the feasibility to use

them in addition to traditional resource based accounting

and pricing.

Symmetry, a Shapley value property, requires that identical
functions have similar footprints. We run a large number (20)

of different functions, with each function belonging to the

one of four classes (image, json, ml_train, video). This
is different from the previous set of functions, and shows the

generalizability and ability to handle very small (json) and
large functions (ml_train, video). From the profiler’s per-

spective, these are 20 different functions, and their footprints

are shown in Figure 9b. We can see that the functions can

be clustered based on their energy footprints, i.e., the func-

tions running image processing have similar per-invocation

energy, thus exhibiting the symmetry property.

Next, we look at the Total-Error from Table 1, which

measures the difference in measured and the estimated total

energy/carbon footprint (which is the aggregation of indi-

vidual estimated footprints). This is also the efficiency prop-

erty of Shapley values: we want all the energy and carbon

accounted for. The (operational) carbon footprint of the func-

tions from the previous workload used in Figure 8 is shown

in Figure 10a. The figure shows the CO2 per invocation of

the functions over time, and also illustrates the smoothing

behavior of the Kalman filter.

Note that the actual footprint of a function also depends on

the number of its invocations. We show this in the stacked-

plots in Figure 10, which also illustrates a common use-case

for profiling tools for identifying “top” carbon producers and

their relative contributions. Figure 10b shows the carbon

contribution of four functions in a “bursty” workload on

the desktop, which also incorporates our largest function

video. We can see that the Kalman filter is able to track

the dynamics of the workload, since the sum of all function

contributions closely matches the empirical operational CO2

emissions.

Another challenging workload is when the functions are

dynamically introduced into the workload, and the “active

535

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

0 2 4 6 8 10
Time (mins)

0.000

0.002

0.004

0.006

g
C

O
2/

in
vo

ca
tio

n
image dd AES CNN

(a) CO2 footprints of functions over time.

0 5 10 15 20 25
Time (mins)

0

0.16

0.32

0.48

0.64

g
C

O
2/

m
in

image
video

AES dd System

(b) Bursty function invocations.

0 5 10 15 20 25 30
Time (mins)

0

0.16

0.32

0.48

0.64

gC
O

2/
m

in

cnn
dd

gzip
image

ml_train
AES

video
System

(c) New functions being added.

Figure 10: The misprediction of total carbon footprint is small, even for dynamic and non-stationary workloads.

0 4 8 12 16 20 24 28 32 36
Trace ID

0

5

10

15

20

To
ta

l-E
rro

r %

Figure 11: The Total-Error captures how much of the
total server energy/carbon footprint is over or under-
estimated, and is less than 20% across a range of work-
loads.

AES video image dd ml_train
0

20

40

60

En
er

gy
 p

er
 in

vo
ca

tio
n

(J
)

Measured
dd
ml_train

Ground Truth
dd
ml_train

Figure 12: The three functions are co-located either
with dd or ml_train. This choice has negligible impact
on both the estimated footprints and ground-truth.

set” is dynamic. The total carbon breakdown of this workload

is shown in Figure 10c, where we also see low Total-Error.

As mentioned in Section 6.1, minimizing Total-Error is not
our primary objective, since it can often reduce the accuracy

(cosine similarity and other external validation metrics). Our

Total-Error across 35 workloads (with different functions

and IATs) on the three hardware platforms is shown in Fig-

ure 11. Because of the Kalman filter and continuous footprint
refinement, we see that the Total-Error is small, and less than
10% for more than 50% of the tested workload configurations.
Noisy neighbors: are function energy footprints impacted by
co-located functions? To answer this, we run functions with

different “neighbors”. Three functions (image, AES, and
video) are run together either with dd or ml_train as the

co-located function in Figure 12. These functions are very

different: dd is short and disk-intensive, whereas ml_train
is long and cpu-intensive. Inspite of these differences, the

marginal energy in the two cases are nearly identical, and

differs by at most 5%. The footprints are also similar, and

vary by roughly 5–10% between the two cases. The lack

of significant noisy neighbor effect reduces the variance in

energy footprints.

For carbon-pricing, we want the footprints to be “stable”

and have low variance. Figure 13 (right) shows the coefficient

of variation (�
� = � (�)/
 [�]) for more than 50 workloads.

The CoV depends on the measurement noise of the underly-

ing hardware platform and the workload, and is the precision.
Here, we focus on the energy variance, so that we can ignore

the high operational carbon variance. The CoV is less than

0.3 on all three platforms for 60% of the traces, indicating

feasibility of using energy footprints as an accounting and

pricing measure. As noted before, the desktop energy vari-

ance is higher because its workloads are run at near-100%

load.

Finally, we look at the latency-normalized-variance
metric from Table 1. This metric is another proxy for the

stability of the carbon pricing, since it compares against

variance in currently used running-time based prices. Fig-

ure 13 (left) shows the CDF of the average normalized en-

ergy variance across all functions, for more than 50 workload

traces across the three platforms. This ratio is less than 40 for

more than 90% of the desktop and server workloads. Note

that Iluvatar provides extremely low variance in latency

which is 50 × −100× lower than OpenWhisk [50]. The vari-

ance in latency and pricing is also significant in public FaaS

clouds [91, 104]. Thus, if were to use our footprints with

the more widely used OpenWhisk, we achieve a latency-

normalized-variance ratio of close to 1, indicating that the

variance in energy price would be similar to the current vari-

ance in latency-based pricing. Thus, our energy footprints
have high precision (i.e., low variance) and can be used for
carbon-based pricing.

536

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

0 40 80 120 160 200
σ(J) / σ(T)

0.00

0.25

0.50

0.75

1.00

C
D

F

0.0 0.4 0.8 1.2 1.6
σ(J) / E[J]

0.00

0.25

0.50

0.75

1.00

C
D

F

Desktop Server Jetson

Figure 13: Variance of energy footprints is low, making
carbon-based pricing feasible.

8 RELATEDWORK
Our work is inspired and motivated by the quest to make

energy as the first-class resource [44] in many environments.

Sustainable Computing. The challenge of reducing the

carbon footprint of cloud systems and applications has led to

“carbon-first” system designs [18, 79, 101]. The operational

carbon footprint is computed by multiplying the energy con-

sumption and the grid carbon intensity [6, 80], which has led

to new energy tracking tools [28], but CPU power profiling

continues to dominate. [65] introduces fine-grained NUMA-

aware CPU energy measurement for individual applications.

Tools for tracking the carbon footprint of AI applications

mostly focus on large ML training batch jobs without multi-

tenancy [19, 62]. The emissions due to AI training and infer-

ence is significant [111, 112], but our work focuses on the

broader class of FaaS based applications.

Carbon Footprints. The server-level operational and em-

bodied carbon footprints can be used for scheduling [61],

load balancing [26, 79], and other resource management

operations in distributed computing. Tools like CloudCar-

bon [1] also provide these VM-level estimates for public

cloud VMs [38]. Disaggregating these for finer-grained ap-

plications is much more challenging as we have shown, and

our footprints are also applicable to other multiplexed sce-

narios. Tools like carbond [93] can also be integrated into

our framework for updating the operational grid intensity

in real-time for more accurate operational carbon footprints.

For embodied emissions, tools like ACT [59, 60] can provide

the hardware’s footprint based on its individual components

(CPU type, storage and memory capacity, etc.). Carbon ac-

counting at the grid level can also be tricky, with double

counting due to power purchase agreements (PPAs) leading

to incorrect estimates [78].

Energy Control. In the context of FaaS, [90] presents DAG

scheduling for functions with a purely CPU-model based

approach, but without any empirical power measurement or

validation. DVFaaS [103] implements PID control for CPU

frequency for minimizing latency QoS violations for function

chains. More generally, a combination of hardware and soft-

ware techniques for energy capping can be effective [119].

Due to hardware heterogeneity, we use a purely software

approach for controlling system-wide power, and focus on

empirical energy footprints of individual functions.

Fair Attribution. The problem of fairly sharing the en-

ergy consumption of shared resources occurs in many envi-

ronments such as VM hosting [66, 68] and datacenter cool-

ing [69, 108]. Shapley values [105] provide many desirable

properties such as linearity and envy-freeness, and have also

been used for energy accounting of mobile applications [39].

Mobile and embedded computing [45] faces similar en-

ergy measurement challenges. Disentangling shared OS and

hardware energy consumption for applications has been

done through tracing requests across various contexts and

carefully attributing async tasks [24, 85, 87, 114]. Along with

the uncertainty of the control plane, the highly dynamic

and non-stationary nature of function workloads, and high

degree of multiplexing makes such tracing challenging for

FaaS.

9 CONCLUSION
Given the increasing importance of sustainability, our pri-

mary goal is to initiate a deeper investigation of energy

metrology—especially full-system power measurements and

their external validation. Our approach allows easy com-

putation of carbon footprints. Using statistical disaggrega-

tion, Kalman filtering, and Shapley value principles, we pro-

vide full-spectrum carbon footprints with over 99% accuracy.

Serverless workloads permit the use of marginal energy con-

sumption for each function, which we use to develop new ex-

ternal validation metrics. This provides complete, validated,

and full-system energy and carbon footprints for serverless

functions, paving the way for carbon-based cloud pricing.

Acknowledgements. Abdul Rehman helped develop the

power measurement and experimentation infrastructure.

This paper has greatly benefited from the comments and feed-

back from our shephered Dmitrii Ustiugov, and the anony-

mous conference reviewers. This work is supported in part by

an NSF CAREER award CNS-2340722 and NSF grant OAC-

2112606. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the Na-

tional Science Foundation.

REFERENCES
[1] Cloud Carbon Footprint - An open source tool to measure and analyze

cloud carbon emissions. https://www.cloudcarbonfootprint.org/.

[2] Cloudflare workers. https://blog.cloudflare.com/introducing-

cloudflare-workers/.

[3] Data and code for faasmeter. https://github.com/COS-IN/faasmeter-

socc-artifact.

[4] Google cloud carbon Footprint. https://cloud.google.com/carbon-

footprint.

[5] Microsoft Sustainability Calculator helps enterprises an-

alyze the carbon emissions of their IT infrastructure.

537

https://www.cloudcarbonfootprint.org/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://github.com/COS-IN/faasmeter-socc-artifact
https://github.com/COS-IN/faasmeter-socc-artifact
https://cloud.google.com/carbon-footprint
https://cloud.google.com/carbon-footprint

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

https://azure.microsoft.com/en-us/blog/microsoft-sustainability-

calculator-helps-enterprises-analyze-the-carbon-emissions-of-

their-it-infrastructure/.

[6] Watttime – The Power to Choose Clean Energy. https://www.

watttime.org/.

[7] Apache OpenWhisk: Open Source Serverless Cloud Platform. https:

//openwhisk.apache.org/, 2020.

[8] AWS Lambda. https://aws.amazon.com/lambda/, 2020.

[9] Azure Functions. https://azure.microsoft.com/en-us/services/

functions/, 2020.

[10] Google Cloud Functions. https://cloud.google.com/functions, 2020.

[11] Customer Carbon Footprint Tool | AWS News Blog. https://aws.

amazon.com/blogs/aws/new-customer-carbon-footprint-tool/, Mar.

2022. Section: Announcements.

[12] Jetson AGX Orin Developer Kit User Guide. https:

//developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-

user-guide/index.html, Mar. 2022.

[13] Acun, B., Lee, B., Kazhamiaka, F., Maeng, K., Chakkaravarthy,

M., Gupta, U., Brooks, D., and Wu, C.-J. Carbon Explorer: A Holis-

tic Approach for Designing Carbon Aware Datacenters, May 2022.

arXiv:2201.10036 [cs, eess].

[14] Adzic, G., and Chatley, R. Serverless computing: economic and

architectural impact. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (2017), pp. 884–889.

[15] Agache, A., Brooker,M., Iordache, A., Liguori, A., Neugebauer, R.,

Piwonka, P., and Popa, D.-M. Firecracker: Lightweight virtualization

for serverless applications. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (2020), pp. 419–434.

[16] Agarwal, A., Sun, J., Noghabi, S., Iyengar, S., Badam, A., Chandra,

R., Seshan, S., and Kalyanaraman, S. Redesigning Data Centers for

Renewable Energy. HotNets (2021), 8.
[17] Anand, V., Xie, Z., Stolet, M., De Viti, R., Davidson, T., Karim-

ipour, R., Alzayat, S., and Mace, J. The Odd One Out: Energy is

not like Other Metrics. HotCarbon 2022: 1st Workshop on Sustainable
Computer Systems Design and Implementation (July 2022).

[18] Anderson, T., Belay, A., Chowdhury, M., Cidon, A., and Zhang,

I. Treehouse: A Case For Carbon-Aware Datacenter Software.

arXiv:2201.02120 [cs] (Jan. 2022). arXiv: 2201.02120.
[19] Anthony, L. F. W., Kanding, B., and Selvan, R. Carbontracker:

Tracking and Predicting the Carbon Footprint of Training Deep

Learning Models. ICML Workshop on Challenges in Deploying and
monitoring Machine Learning Systems (July 2020). arXiv:2007.03051

[cs, eess, stat].

[20] Babakol, T., Canino, A., Mahmoud, K., Saxena, R., and Liu, Y. D.

Calm energy accounting for multithreaded Java applications. In

Proceedings of the 28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event USA, Nov. 2020), ACM, pp. 976–988.

[21] Bellosa, F. The benefits of event: driven energy accounting in power-

sensitive systems. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating
system (2000), pp. 37–42.

[22] Bhagavathula, A., Han, L., and Gupta, U. Understanding the Im-

plications of Uncertainty in Embodied Carbon Models for Sustainable

Computing. HotCarbon (2024).

[23] Carreira, J., Fonseca, P., Tumanov, A., Zhang, A., and Katz, R.

Cirrus: a Serverless Framework for End-to-end ML Workflows. In

Proceedings of the ACM Symposium on Cloud Computing - SoCC ’19
(Santa Cruz, CA, USA, 2019), ACM Press, pp. 13–24.

[24] Carroll, A., and Heiser, G. An analysis of power consumption in a

smartphone. In 2010 USENIX Annual Technical Conference (USENIX
ATC 10) (2010).

[25] Castro, P., Ishakian, V., Muthusamy, V., and Slominski, A. The

rise of serverless computing. Communications of the ACM 62, 12
(2019), 44–54.

[26] Chadha, M., Subramanian, T., Arima, E., Gerndt, M., Schulz,

M., and Abboud, O. GreenCourier: Carbon-Aware Scheduling for

Serverless Functions. In Proceedings of the 9th International Workshop
on Serverless Computing (Bologna Italy, Dec. 2023), ACM, pp. 18–23.

[27] Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A., Blaiszik,

B., Foster, I., and Chard, K. Funcx: A federated function serving

fabric for science. In Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing (New York,

NY, USA, 2020), HPDC 20, Association for Computing Machinery,

pp. 65–76.

[28] CNCF. Kepler: Kubernetes Efficient Power Level Exporter. https:

//sustainable-computing.io/.

[29] Colmant, M., Rouvoy, R., Kurpicz, M., Sobe, A., Felber, P., and

Seinturier, L. The next 700 CPU power models. Journal of Systems
and Software 144 (Oct. 2018), 382–396.

[30] Cramton, P., MacKay, D. J., Ockenfels, A., and Stoft, S. Global
carbon pricing: the path to climate cooperation. The MIT Press, 2017.

[31] Crawford, K. Generative AI’s environmental costs are soaring — and

mostly secret. Nature 626, 8000 (Feb. 2024), 693–693. Bandiera_abtest:
a Cg_type: World View Publisher: Nature Publishing Group Sub-

ject_term: Machine learning, Computer science, Technology, Policy.

[32] Dell. Dell Desktop Carbon Footprint. https://i.dell.com/sites/

content/corporate/corp-comm/en/Documents/dell-desktop-carbon-

footprint-whitepaper.pdf.

[33] Dell. Dell server carbon footprint. https://i.dell.com/sites/content/

corporate/corp-comm/en/documents/dell-server-carbon-footprint-

whitepaper.pdf.

[34] Dell. Dell server carbon footprint. https://i.dell.com/sites/

content/corporate/corp-comm/en/Documents/dell-desktop-carbon-

footprint-whitepaper.pdf.

[35] Dell. Dell Server Carbon Footprint. https://i.dell.com/sites/content/

corporate/corp-comm/en/documents/dell-server-carbon-footprint-

whitepaper.pdf.

[36] Desrochers, S., Paradis, C., and Weaver, V. M. A Validation of

DRAM RAPL Power Measurements. In Proceedings of the Second
International Symposium on Memory Systems (Alexandria VA USA,

Oct. 2016), ACM, pp. 455–470.

[37] Do, T., Rawshdeh, S., and Shi, W. pTop: A Process-level Power

Profiling Tool. HotPower (2009), 5.
[38] Dodge, J., Prewitt, T., Tachet des Combes, R., Odmark, E.,

Schwartz, R., Strubell, E., Luccioni, A. S., Smith, N. A., DeCario,

N., and Buchanan, W. Measuring the Carbon Intensity of AI in

Cloud Instances. In 2022 ACM Conference on Fairness, Accountabil-
ity, and Transparency (Seoul Republic of Korea, June 2022), ACM,

pp. 1877–1894.

[39] Dong, M., Lan, T., and Zhong, L. Rethink energy accounting with

cooperative game theory. In Proceedings of the 20th annual interna-
tional conference on Mobile computing and networking (Maui Hawaii

USA, Sept. 2014), ACM, pp. 531–542.

[40] Du, D., Liu, Q., Jiang, X., Xia, Y., Zang, B., and Chen, H. Serverless

computing on heterogeneous computers. In Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne Switzerland, Feb.
2022), ACM, pp. 797–813.

[41] Fieni, G., Rouvoy, R., and Seinturier, L. SmartWatts:

Self-Calibrating Software-Defined Power Meter for Containers.

arXiv:2001.02505 [cs] (Jan. 2020). arXiv: 2001.02505.
[42] Fieni, G., Rouvoy, R., and Seiturier, L. SelfWatts: On-the-fly Se-

lection of Performance Events to Optimize Software-defined Power

538

https://azure.microsoft.com/en-us/blog/microsoft-sustainability-calculator-helps-enterprises-analyze-the-carbon-emissions-of-their-it-infrastructure/
https://azure.microsoft.com/en-us/blog/microsoft-sustainability-calculator-helps-enterprises-analyze-the-carbon-emissions-of-their-it-infrastructure/
https://azure.microsoft.com/en-us/blog/microsoft-sustainability-calculator-helps-enterprises-analyze-the-carbon-emissions-of-their-it-infrastructure/
https://www.watttime.org/
https://www.watttime.org/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://aws.amazon.com/blogs/aws/new-customer-carbon-footprint-tool/
https://aws.amazon.com/blogs/aws/new-customer-carbon-footprint-tool/
https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-guide/index.html
https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-guide/index.html
https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-guide/index.html
https://sustainable-computing.io/
https://sustainable-computing.io/
https://i.dell.com/sites/content/corporate/corp-comm/en/Documents/dell-desktop-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/Documents/dell-desktop-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/Documents/dell-desktop-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/documents/dell-server-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/documents/dell-server-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/documents/dell-server-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/Documents/dell-desktop-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/Documents/dell-desktop-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/Documents/dell-desktop-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/documents/dell-server-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/documents/dell-server-carbon-footprint-whitepaper.pdf
https://i.dell.com/sites/content/corporate/corp-comm/en/documents/dell-server-carbon-footprint-whitepaper.pdf

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

Meters. In 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid) (Melbourne, Australia, May

2021), IEEE, pp. 324–333.

[43] Flinn, J., and Satyanarayanan, M. Energy-aware adaptation for

mobile applications. ACM SIGOPS Operating Systems Review (1999),

16.

[44] Flinn, J., and Satyanarayanan, M. PowerScope: a tool for profiling

the energy usage of mobile applications. In Proceedings WMCSA’99.
Second IEEE Workshop on Mobile Computing Systems and Applications
(Feb. 1999), pp. 2–10.

[45] Fonseca, R., Dutta, P., Levis, P., and Stoica, I. Quanto: Tracking

Energy in Networked Embedded Systems. OSDI (2008), 16.
[46] Fouladi, S., Romero, F., Iter, D., Li, Q., and Chatterjee, S. From

Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-

sient Functional Containers. USENIX Annual Technical Conference
(2019), 15.

[47] Fouladi, S., Wahby, R. S., Shacklett, B., Balasubramaniam, K. V.,

Zeng, W., Bhalerao, R., Sivaraman, A., Porter, G., and Winstein,

K. Encoding, fast and slow: Low-latency video processing using

thousands of tiny threads. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17) (2017), pp. 363–376.

[48] Foundation, G. S. Software Carbon Intensity (SCI) Specification.

https://sci.greensoftware.foundation/.

[49] Foundation, G. S. SCI Specification Achieves ISO Standard

Status. https://greensoftware.foundation/articles/sci-specification-

achieves-iso-standard-status, Apr. 2024.

[50] Fuerst, A., Rehman, A., and Sharma, P. Ilúvatar: A fast control plane

for serverless computing. In Proceedings of the 32nd International
Symposium on High-Performance Parallel and Distributed Computing
(June 2023), HPDC ’23, Association for Computing Machinery.

[51] Fuerst, A., and Sharma, P. Faascache: Keeping serverless computing

alive with greedy-dual caching. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (NewYork, NY, USA, 2021), ASPLOS

2021, Association for Computing Machinery, pp. 386–400.

[52] Garcia, C. Data Center Energy Use - AKCPMonitoring. https://www.

akcp.com/blog/the-real-amount-of-energy-a-data-center-use/, July

2023.

[53] Ge, R., Feng, X., Song, S., Chang, H.-C., Li, D., and Cameron, K. W.

PowerPack: Energy Profiling and Analysis of High-Performance Sys-

tems and Applications. IEEE Transactions on Parallel and Distributed
Systems 21, 5 (May 2010), 658–671. Conference Name: IEEE Transac-

tions on Parallel and Distributed Systems.

[54] Ghanei, F., Tipnis, P., Marcus, K., Dantu, K., Ko, S., and Ziarek, L.

OS-based Resource Accounting for Asynchronous Resource Use in

Mobile Systems. In Proceedings of the 2016 International Symposium
on Low Power Electronics and Design (San Francisco Airport CA USA,

Aug. 2016), ACM, pp. 296–301.

[55] Ghanei, F., Tipnis, P., Marcus, K., Dantu, K., Ko, S. Y., and Ziarek,

L. OS-Based Energy Accounting for Asynchronous Resources in IoT

Devices. IEEE Internet of Things Journal 6, 3 (June 2019), 5841–5852.
Conference Name: IEEE Internet of Things Journal.

[56] Guan, X., Bashir, N., Irwin, D., and Shenoy, P. WattScope: Non-

intrusive application-level power disaggregation in datacenters. Per-
formance Evaluation 162 (Nov. 2023), 102369.

[57] Gujarati, A., Karimi, R., Alzayat, S., Hao, W., Kaufmann, A., Vig-

fusson, Y., and Mace, J. Serving {DNNs} like clockwork: Perfor-
mance predictability from the bottom up. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20) (2020),
pp. 443–462.

[58] Guo, L., Xu, T., Xu, M., Liu, X., and Lin, F. X. Power sandbox:

power awareness redefined. In Proceedings of the Thirteenth EuroSys

Conference (Porto Portugal, Apr. 2018), ACM, pp. 1–15.

[59] Gupta, U., Elgamal, M., Hills, G., Wei, G.-Y., Lee, H.-H. S., Brooks,

D., and Wu, C.-J. ACT: designing sustainable computer systems

with an architectural carbon modeling tool. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (New York

New York, June 2022), ACM, pp. 784–799.

[60] Gupta, U., Kim, Y. G., Lee, S., Tse, J., Lee, H.-H. S., Wei, G.-Y., Brooks,

D., and Wu, C.-J. Chasing Carbon: The Elusive Environmental Foot-

print of Computing, Oct. 2020. arXiv:2011.02839 [cs].

[61] Hanafy, W. A., Liang, Q., Bashir, N., Irwin, D., and Shenoy, P.

Carbonscaler: Leveraging cloud workload elasticity for optimizing

carbon-efficiency. Proceedings of the ACM on Measurement and Anal-
ysis of Computing Systems 7, 3 (2023), 1–28.

[62] Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., and

Pineau, J. Towards the Systematic Reporting of the Energy and

Carbon Footprints of Machine Learning. Journal of Machine Learning
Research 21 (2020), 1–43.

[63] Hong, S., and Kim, H. An integrated GPU power and performance

model. In Proceedings of the 37th annual international symposium
on Computer architecture (New York, NY, USA, June 2010), ISCA ’10,

Association for Computing Machinery, pp. 280–289.

[64] Hubblo. Scaphandre. https://github.com/hubblo-org/scaphandre,

July 2023.

[65] Hè, H., Friedman, M., and Rekatsinas, T. EnergAt: Fine-Grained

Energy Attribution for Multi-Tenancy. HotCarbon (2023).

[66] Islam, M. A., and Ren, S. A new perspective on energy accounting

in {Multi-Tenant} data centers. In USENIX Workshop on Cool Topics
on Sustainable Data Centers (CoolDC 16) (2016).

[67] Jay, M., Ostapenco, V., Lefevre, L., Trystram, D., Orgerie, A.-C.,

and Fichel, B. An experimental comparison of software-based power

meters: focus on CPU and GPU. In 2023 IEEE/ACM 23rd International
Symposium on Cluster, Cloud and Internet Computing (CCGrid) (May

2023), pp. 106–118.

[68] Jiang, W., Liu, F., Tang, G., Wu, K., and Jin, H. Virtual Machine

Power Accounting with Shapley Value. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS) (Atlanta, GA,
USA, June 2017), IEEE, pp. 1683–1693.

[69] Jiang, W., Ren, S., Liu, F., and Jin, H. Non-IT Energy Accounting

in Virtualized Datacenter. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS) (Vienna, July 2018), IEEE,

pp. 300–310.

[70] Kandiah, V., Peverelle, S., Khairy, M., Pan, J., Manjunath, A.,

Rogers, T. G., Aamodt, T. M., and Hardavellas, N. AccelWattch:

A Power Modeling Framework for Modern GPUs. In MICRO-54: 54th
Annual IEEE/ACM International Symposium onMicroarchitecture (New
York, NY, USA, Oct. 2021), MICRO ’21, Association for Computing

Machinery, pp. 738–753.

[71] Khan, K. N., Hirki, M., Niemi, T., Nurminen, J. K., and Ou, Z. RAPL

in Action: Experiences in Using RAPL for Power Measurements. ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems 3, 2 (June 2018), 1–26.

[72] Khan, K. N., Nyback, F., Ou, Z., Nurminen, J. K., Niemi, T., Eulisse,

G., Elmer, P., and Abdurachmanov, D. Energy Profiling Using

IgProf. In 2015 15th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (Shenzhen, China, May 2015), IEEE,

pp. 1115–1118.

[73] Kim, J., and Lee, K. FunctionBench: A Suite of Workloads for Server-

less Cloud Function Service. In 2019 IEEE 12th International Confer-
ence on Cloud Computing (CLOUD) (July 2019), pp. 502–504. ISSN:

2159-6182.

[74] Klenert, D., Mattauch, L., Combet, E., Edenhofer, O., Hepburn,

C., Rafaty, R., and Stern, N. Making carbon pricing work for

539

https://sci.greensoftware.foundation/
https://greensoftware.foundation/articles/sci-specification-achieves-iso-standard-status
https://greensoftware.foundation/articles/sci-specification-achieves-iso-standard-status
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://github.com/hubblo-org/scaphandre

Accountable Carbon Footprints and Energy Profiling For Serverless Functions SoCC ’24, November 20–22, 2024, Redmond, WA, USA

citizens. Nature Climate Change 8, 8 (2018), 669–677.
[75] Lee, S., Kim, H., Park, S., Kim, S., Choe, H., and Yoon, S. CloudSocket:

Fine-Grained Power Sensing System for Datacenters. IEEE Access 6
(2018), 49601–49610. Conference Name: IEEE Access.

[76] Li, A., Liu, S., and Ding, Y. Uncertainty-Aware Decarbonization for

Datacenters. HotCarbon (2024).

[77] Mahgoub, A., Yi, E. B., Shankar, K., Minocha, E., Elnikety, S.,

Bagchi, S., and Chaterji, S. WISEFUSE: Workload Characterization

and DAG Transformation for Serverless Workflows. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 6, 2
(May 2022), 1–28.

[78] Maji, D., Bashir, N., Irwin, D., Shenoy, P., and Sitaraman, R. K.

Untangling Carbon-free Energy Attribution and Carbon Intensity

Estimation for Carbon-aware Computing, Feb. 2024. arXiv:2308.06680

[cs].

[79] Maji, D., Pfaff, B., P R, V., Sreenivasan, R., Firoiu, V., Iyer, S.,

Josephson, C., Pan, Z., and Sitaraman, R. K. Bringing Carbon

Awareness to Multi-cloud Application Delivery. In Proceedings of
the 2nd Workshop on Sustainable Computer Systems (jul 2023), ACM,

pp. 1–6.

[80] Maji, D., Shenoy, P., and Sitaraman, R. K. Carboncast: multi-day

forecasting of grid carbon intensity. In Proceedings of the 9th ACM
International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation (2022), pp. 198–207.

[81] Maschi, F., Korolija, D., and Alonso, G. Serverless FPGA: Work-

In-Progress. In Proceedings of the 1st Workshop on SErverless Systems,
Applications and MEthodologies (Rome Italy, May 2023), ACM, pp. 1–4.

[82] Meinhold, R. J., and Singpurwalla, N. D. Understanding the

Kalman filter. The American Statistician 37, 2 (1983), 123–127.
[83] Mukhanov, L., Petoumenos, P., Wang, Z., Parasyris, N.,

Nikolopoulos, D. S., De Supinski, B. R., and Leather, H. ALEA: A

Fine-Grained Energy Profiling Tool. ACMTransactions on Architecture
and Code Optimization 14, 1 (Apr. 2017), 1–25.

[84] Noureddine, A., Rouvoy, R., and Seinturier, L. A review of energy

measurement approaches. ACM SIGOPS Operating Systems Review
47, 3 (2013), 42–49.

[85] Oliner, A. J., Iyer, A. P., Stoica, I., Lagerspetz, E., and Tarkoma,

S. Carat: Collaborative energy diagnosis for mobile devices. In

Proceedings of the 11th ACM conference on embedded networked sensor
systems (2013), pp. 1–14.

[86] Ournani, Z., Belgaid, M. C., Rouvoy, R., Rust, P., Penhoat, J., and

Seinturier, L. Taming energy consumption variations in systems

benchmarking. In Proceedings of the ACM/SPEC International Confer-
ence on Performance Engineering (2020), pp. 36–47.

[87] Pathak, A., Hu, Y. C., and Zhang, M. Where is the energy spent

inside my app? fine grained energy accounting on smartphones with

eprof. In Proceedings of the 7th ACM european conference on Computer
Systems (2012), pp. 29–42.

[88] Pearson, K. A., Griffith, C. A., Zellem, R. T., Koskinen, T. T., and

Roudier, G. M. Ground-based spectroscopy of the exoplanet xo-2b

using a systematic wavelength calibration. The Astronomical Journal
157, 1 (2019), 21.

[89] Pedregosa, F., Varoqaux, G., Gramfort, A., Michel, V., Thirion,

B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,

V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,M., Perrot,

M., and Duchesnay, E. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research 12 (2011), 2825–2830.
[90] Rastegar, S. H., Shafiei, H., and Khonsari, A. EneX: An Energy-

Aware Execution Scheduler for Serverless Computing. IEEE Transac-
tions on Industrial Informatics (2023), 1–13.

[91] Schirmer, T., Japke, N., Greten, S., Pfandzelter, T., and Bermbach,

D. The Night Shift: Understanding Performance Variability of Cloud

Serverless Platforms. In Proceedings of the 1st Workshop on SErverless
Systems, Applications andMEthodologies (Rome Italy, May 2023), ACM,

pp. 27–33.

[92] Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J.,

Yadwadkar, N. J., Popa, R. A., Gonzalez, J. E., Stoica, I., and Pat-

terson, D. A. What serverless computing is and should become:

The next phase of cloud computing. Commun. ACM 64, 5 (Apr. 2021),
76–84.

[93] Schmidt, A., Stock, G., Ohs, R., Gerhorst, L., Herzog, B., and

Hönig, T. carbond: An Operating-System Daemon for Carbon Aware-

ness.

[94] Schmitt, N., Iffländer, L., Bauer, A., and Kounev, S. Online Power

Consumption Estimation for Functions in Cloud Applications. In

2019 IEEE International Conference on Autonomic Computing (ICAC)
(June 2019), pp. 63–72. ISSN: 2474-0756.

[95] Scikit-learn. Support vector regression. https://scikit-learn/stable/

modules/generated/sklearn.svm.SVR.html.

[96] Shahrad, M., Fonseca, R., Goiri, , Chaudhry, G., Batum, P., Cooke,

J., Laureano, E., Tresness, C., Russinovich, M., and Bianchini, R.

Serverless in the Wild: Characterizing and Optimizing the Serverless

Workload at a Large Cloud Provider. In 2020 USENIX annual technical
conference (USENIX ATC 20) (2020), pp. 205–218.

[97] Sharma, P. Challenges and opportunities in sustainable serverless

computing. HotCarbon 2022: 1st Workshop on Sustainable Computer
Systems Design and Implementation (July 2022).

[98] Sharma, P., Pegus, P. I., Irwin, D., Shenoy, P., Goodhue, J., and

Culbert, J. Design and operational analysis of a green data center.

IEEE Internet Computing 21, 4 (2017), 16–24.
[99] Shen, K., Shriraman, A., Dwarkadas, S., Zhang, X., and Chen, Z.

Power containers: an OS facility for fine-grained power and energy

management on multicore servers. ASPLOS (2013), 12.
[100] Siddik, M. A. B., Shehabi, A., and Marston, L. The environmental

footprint of data centers in the united states. Environmental Research
Letters 16, 6 (may 2021), 064017.

[101] Souza, A., Bashir, N., Murillo, J., Hanafy, W., Liang, Q., Irwin, D.,

and Shenoy, P. Ecovisor: A virtual energy system for carbon-efficient

applications. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (2023), pp. 252–265.

[102] Sundararajan, M., and Najmi, A. The many shapley values for

model explanation. In International conference on machine learning
(2020), PMLR, pp. 9269–9278.

[103] Tzenetopoulos, A., Masouros, D., Soudris, D., and Xydis, S. DV-

FaaS: Leveraging DVFS for FaaS workflows. IEEE Computer Architec-
ture Letters (2023), 1–4.

[104] Ustiugov, D., Amariucai, T., and Grot, B. Analyzing Tail Latency

in Serverless Clouds with STeLLAR. In 2021 IEEE International Sym-
posium on Workload Characterization (IISWC) (Storrs, CT, USA, Nov.
2021), IEEE, pp. 51–62.

[105] Vergara, E. J., Nadjm-Tehrani, S., and Asplund, M. Sharing the

Cost of Lunch: Energy Apportionment Policies. In Proceedings of the
11th ACM Symposium on QoS and Security for Wireless and Mobile
Networks (Cancun Mexico, Nov. 2015), ACM, pp. 91–97.

[106] Wagner, L., Mayer, M., Marino, A., Soldani Nezhad, A., Zwaan, H.,

and Malavolta, I. On the Energy Consumption and Performance of

WebAssembly Binaries across Programming Languages and Runtimes

in IoT. In Proceedings of the 27th International Conference on Evaluation
and Assessment in Software Engineering (Oulu Finland, June 2023),

ACM, pp. 72–82.

[107] Wang, B., Ali-Eldin, A., and Shenoy, P. Lass: Running latency sen-

sitive serverless computations at the edge. In Proceedings of the 30th
international symposium on high-performance parallel and distributed

540

https://scikit-learn/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn/stable/modules/generated/sklearn.svm.SVR.html

SoCC ’24, November 20–22, 2024, Redmond, WA, USA Prateek Sharma and Alexander Fuerst

computing (2021), pp. 239–251.

[108] Wang, R., Van Le, D., Tan, R., Wong, Y.-W., and Wen, Y. Real-Time

Cooling Power Attribution for Co-Located Data Center Rooms with

Distinct Temperatures. In Proceedings of the 7th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Trans-
portation (Virtual Event Japan, Nov. 2020), ACM, pp. 190–199.

[109] Welch, G., Bishop, G., et al. An introduction to the Kalman filter.
Chapel Hill, NC, USA, 1995.

[110] Winter, E. The shapley value. Handbook of game theory with eco-
nomic applications 3 (2002), 2025–2054.

[111] Wu, C.-J., Acun, B., Raghavendra, R., and Hazelwood, K. Beyond

Efficiency: Scaling AI Sustainably. IEEE Micro (2024), 1–8.
[112] Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N.,

Maeng, K., Chang, G., Behram, F. A., Huang, J., Bai, C., Gschwind,

M., Gupta, A., Ott, M., Melnikov, A., Candido, S., Brooks, D.,

Chauhan, G., Lee, B., Lee, H.-H. S., Akyildiz, B., Balandat, M.,

Spisak, J., Jain, R., Rabbat, M., and Hazelwood, K. Sustainable

AI: Environmental Implications, Challenges and Opportunities. Pro-
ceedings of the 5th MLSys Conference, Santa Clara, CA, USA (2022),

19.

[113] Xu, F., Qin, Y., Chen, L., Zhou, Z., and Liu, F. 𝜆-dnn : Achieving

predictable distributed dnn training with serverless architectures.

IEEE Transactions on Computers (2021).
[114] Yoon, C., Kim, D., Jung, W., Kang, C., and Cha, H. AppScope:

Application Energy Metering Framework for Android Smartphones

using Kernel Activity Monitoring. USENIX ATC (2012), 14.

[115] Yu, M.,Wang, A., Chen, D., Yu, H., Luo, X., Li, Z., Wang,W., Chen, R.,

Nie, D., and Yang, H. FaaSwap: SLO-Aware, GPU-Efficient Serverless

Inference via Model Swapping, June 2023. arXiv:2306.03622 [cs].

[116] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A. ECOSystem:

Managing Energy as a First Class Operating System Resource. ASP-
LOS (2002), 10.

[117] Zeng, H., Ellis, C. S., Lebeck, A. R., and Vahdat, A. Currentcy: A

Unifying Abstraction for Expressing Energy Management Policies.

USENIX ATC (2003), 14.

[118] Zhang, H., and Hoffmann, H. A Quantitative Evaluation of the

RAPL Power Control System. Feedback computing (2015), 6.

[119] Zhang, H., and Hoffmann, H. Maximizing Performance Under

a Power Cap: A Comparison of Hardware, Software, and Hybrid

Techniques. ASPLOS (2016), 15.
[120] Zhang, X., Shen, Z., Xia, B., Liu, Z., and Li, Y. Estimating Power

Consumption of Containers and Virtual Machines in Data Centers. In

2020 IEEE International Conference on Cluster Computing (CLUSTER)
(Sept. 2020), pp. 288–293. ISSN: 2168-9253.

541

	Abstract
	1 Introduction
	2 Background
	2.1 Functions as a Service (FaaS)

	3 Challenges and Goals
	3.2 Validation
	3.3 Shared Components

	4 Energy Profiling Design
	4.2 Kalman-Filter Guided Online Profiling
	4.3 CPU Power Modeling

	5 Fair Energy and Carbon Attribution
	6 Implementation and Validation Methods
	6.1 Validation Methods and Metrics

	7 Experimental Evaluation

