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ABSTRACT

Cloud computing is a significant and growing cause of car-
bon emissions. Understanding the energy consumption and
carbon footprints of cloud applications is a fundamental
prerequisite to raising awareness, designing sustainability
metrics, and creating targeted system optimizations. In this
paper, we address the challenges of providing accurate and
full-system (not just CPU) carbon footprints for serverless
(FaaS) functions. To the best of our knowledge, this is the
first work which develops an energy and carbon metrology
framework for FaaS.

Carbon footprints require a new approach to energy profil-
ing. We use FaaS workload properties such as locality to de-
velop a simple and practical online statistical disaggregation
approach. Our fine-grained per-invocation carbon footprints
also include shared hardware and software emissions, and
use insights from Shapley values to fairly account for both
operational and embodied emissions. Owing to the growing
importance of carbon measurement, we develop a new rig-
orous marginal energy based validation methodology which
results in accountable, complete, and fair footprints. Over a
wide range of FaaS workloads and hardware platforms, our
energy footprints have an accuracy of > 99%.
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1 INTRODUCTION

Energy and carbon are becoming key resources and opti-
mization targets in large scale distributed computing. Cloud
platforms consume a significant (> 1%) amount of global
energy [52, 100], and reducing it is a vital step in IT decar-
bonization efforts [13, 16, 18, 98]. With a growing awareness
and need for environmental sustainability, the energy and
carbon footprint of cloud applications is increasingly serv-
ing as the primary accounting and optimization metric [101],
complementing the traditional metrics such as monetary
cost and resource utilization (e.g., CPU). This requires en-
ergy and carbon accounting throughout the cloud computing
stack—hardware, resource allocation software, applications,
etc. However, cloud abstractions and applications are con-
tinuously evolving—making carbon observability and opti-
mization a moving target.

Serverless computing, or Functions as a Service (FaaS),
has emerged as a key cloud abstraction which is enabling
rapid application development and deployment [14, 25, 92].
Cloud functions are small, self-contained programs, whose
entire execution is managed by the cloud provider. They have
low cost, auto-scaling, and a “serverless” model where users
don’t have to worry about explicit resource management.
Serverless computing is a major and growing cloud work-
load [96], and serves as the resource abstraction for a wide
range of event-driven applications (such as web and API ser-
vices, IoT, and ML inference), workflows [27, 77], and even
throughput-intensive parallel workloads [23, 46, 47, 113].
FaaS is also an increasingly useful abstraction for harnessing
computational accelerators [40, 81, 115] and edge computing
resources [107]. While the performance of serverless func-
tions has received significant attention, in this paper we take
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the first step towards quantifying their energy and carbon
utilization and footprints.

Metrics for the carbon footprint of applications such as the
Software Carbon Intensity [48] have recently been adopted
as international standards [49]. These footprints consist of
operational and embodied emissions, which are in turn com-
puted using the application’s energy consumption and hard-
ware utilization. In multiplexed resource sharing environ-
ments, application-level energy consumption is estimated
using power profilers [67] such as Scaphandre [64] and Pow-
erAPI [41]. While application-level power measurement has
a long history, these tools have fundamental shortcomings
when used to estimate carbon footprints of applications in
general and serverless functions in particular. They rely on
CPU power measurements (e.g., RAPL) and do not consider
system-wide energy; do not account for shared resources;
do not scale well to large number of concurrent functions
and CPU cores; and are not sufficiently validated against
an external ground truth—rendering them inaccurate and
fragile. Given the rising importance and ubiquity of carbon
footprints for evaluating and optimizing cloud software sus-
tainability, we believe that a new approach to address the
above shortcomings is required.

In this paper, we develop the techniques for in-situ ac-
countable carbon (and energy) footprints of serverless func-
tions across four major contributions. First, we leverage the
workload locality prevalent in FaaS to develop a statistical
disaggregation technique which provides accurate estimates
of fine-grained full-system energy consumption of functions
running on a server. Our energy profiler seeks to provide a
complete footprint, including the energy consumed by shared
hardware and software resources such as the FaaS control
plane (such as OpenWhisk [7]). We develop a simple and
practical energy profiler capable of using a mix of stock hard-
ware and CPU power instrumentation capabilities (such as
plug-level power meters and RAPL [118]), and works across
a range of edge and server devices. By adapting a Kalman
filter inspired approach, we are able to provide online energy
estimates without offline pre-training, which allows it to be
used in diverse heterogeneous cloud environments.

Our second insight is that for serverless functions, and
other distributed applications, the energy and carbon foot-
print is diffused across many local and remote software and
hardware components. For instance, the FaaS control plane
which performs all the containerization and orchestration of
function invocations can itself be a significant energy con-
sumer. We thus develop fair energy and carbon attribution
methods for estimating the fair-share of a function’s contri-
bution to the energy consumption of shared software and
hardware. We provide the operational and embodied carbon
footprint of functions using the conceptual framework of
Shapley values [39, 110]. This approach provides a practical
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and theoretically grounded carbon footprint metric, and also
leads to many open questions about fairness in embodied
carbon accounting for the broader research community.

Our third major observation is that the “ground truth” for
application level power is crucial for validating energy and
carbon footprints. However, prior work on power profiling
has typically relied on proxy metrics such as the total hard-
ware power consumption and measuring application power
in isolation (without multi-tenancy). To address this funda-
mental gap in energy metrology, we develop a new approach
for empirical validation which uses the marginal energy con-
tribution of different functions. The marginal contribution is
computed by replaying the workload trace, and measuring
the server-level power after removing certain invocations.
This provides the ground truth for the function’s in-situ
power energy consumption, and we will release all our mar-
ginal energy ground truth data for facilitating development
and testing of accurate energy profilers.

Finally, our fourth contribution is the integration of energy
into the FaaS control plane, for which we use Iluvatar [50].
Our system is written in about 6,000 lines of Rust and Python
and is open sourced along with more than 100 workload
traces, all profiling features, power measurements, and ground
truth datal. To the best of our knowledge, this is the first
work to provide carbon and energy accounting for serverless
functions, and we make the following contributions:

(1) Our energy profiling combines direct and model-based
disaggregation to provide accurate and complete energy foot-
prints for functions. We provide a simple and practical tech-
nique for online and full-system energy estimates.

(2) We provide fair attribution of the operational and embod-
ied carbon emissions for functions, by leveraging Shapley
values.

(3) We have extensively evaluated the internal and external
validity of the energy footprints on multiple FaaS workloads
on three different hardware platforms. Our energy footprints
are accurate to within 99% of the marginal energy ground
truth.

2 BACKGROUND

2.1 Functions as a Service (FaaS)

FaaS$ allows users to register small snippets of function code
that get executed in response to some trigger (such as an
HTTP request, message queue event, etc.) [8-10, 92]. Func-
tions are executed inside virtual execution environments
such as lightweight hardware virtual machines [15] or OS
containers. Cloud functions are “pay for what you use”, and
their cost is a combination of their maximum memory alloca-
tion and their execution duration [8]. The goal of our work
is to additionally enable energy and carbon based pricing.

Ihttps://github.com/COS-IN/faasmeter-socc-artifact
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Faa$ control planes (such as OpenWhisk [7]) handle all
aspects of function execution. They manage the cluster of
servers to run functions on, and implement function sched-
uling, load-balancing, resource monitoring, function status
tracking, storing function results, logging, etc. Similar to
operating systems, they are an important shared resource
for functions. Current research and production FaaS con-
trol planes are energy-oblivious, and do not incorporate any
energy management functionality.

Workloads. Functions are a common abstraction for access-
ing cloud resources, and are being used for diverse applica-
tions such as web-services, ML inference and training, data
analysis, parallel and scientific computing, etc [14, 25, 27, 77,
92]. This results in high workload diversity in all dimensions:
the CPU, memory requirements, and inter-arrival-times in
public clouds such as Azure are heavy tailed [96]. For exam-
ple, the inter-arrival times of functions in Azure can range
from 0.01 s—1 day, and their execution times can range from
0.1 s to 100 s. This also translates to diverse function energy
footprints. Functions are also popular in edge computing [2],
resulting in heterogeneous execution environments.

2.2 Energy in Cloud Computing

Energy as a first-class resource for operating systems is
a long-standing problem and vision [21, 43, 44, 116, 117].
Power virtualization entails accurate process or application
level energy measurement [99], and fair attribution of shared
energy consumers such as the OS [54, 55, 58].
Measurement and observability into energy usage of appli-
cations is the first step towards power virtualization, and is in-
creasingly important for environmentally sustainable cloud
systems design and implementation. Major public clouds
are now offering carbon footprint tools for certain cloud
applications [4, 5, 11]. Given this trend, fine-grained energy
footprints of serverless applications will be essential for de-
veloping energy-aware cloud applications.

Resource multiplexing is the main challenge for accurate
measurement of the power/energy footprint of applications.
Energy is a shared, global resource, and can often only be
measured at a coarse granularity both in space and time.
Hardware capabilities such as RAPL [71, 118], can provide
CPU energy (and in some cases, DRAM [36]). “Software
power meters” such as powertop and others [29, 37, 41, 42,
72, 84, 94, 106, 120], use statistical models to attribute total
CPU power to processes based on resource use (such as CPU
performance counters). Modern hardware still only has rudi-
mentary support for power measurement. Component-level
power (such as for network cards) is usually unavailable.
Full-system power can be obtained using server BMCs (base-
board management controllers), battery controllers in mobile
devices, external plug-level power meters, or special server
hardware [53, 75]. Power measurement and modeling thus
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Figure 1: Function power signatures cannot be captured
reliably by existing power profiling methods.

continues to be dominated by CPU-power, but even the ac-
curacy and fidelity of CPU power monitoring remains low,
with large jitter and temporal errors [17, 67, 71, 86].

2.3 Carbon Footprints

Owing to their significant and growing contribution, the
carbon emissions of cloud platforms and energy intensive
applications such as Al has been in the spotlight in recent
research [100, 112] and elsewhere [31]. The carbon footprint
of an application is the total emissions associated with its
execution, and these footprints can help quantify, highlight,
and optimize the sustainability of computing applications
under different execution scenarios.

The complete carbon footprint of an application, such as
the recent ISO standard SCI (Software Carbon Intensity)
comprises of two parts, the operational (O) and the embodied
emissions (M), and is defined as: SCI = OEM , where R is the
functional unit of work (such as a function invocation).

The operational emissions is the net energy consump-
tion multiplied by the carbon intensity of the energy source
(typically the grid) expressed in grams CO2 per kWh. The
grid carbon intensity depends on the mix of energy sources
and has significant spatio-temporal dynamics [80]. The sec-
ond part of the footprint, embodied emissions, reflects the
environmental cost of the computing hardware itself, and
comprises the emissions due to manufacturing, transporta-
tion, and in some cases recycling and disposal. Recent work
has highlighted the importance and significance of embod-
ied emissions, which may be as large as 20% of the total
lifetime emissions for servers and more than 80% for mobile
phones [59].
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Figure 2: Function energy per invocation, measured in isolation. Server load and concurrency levels significantly
impact the footprints, making this an unreliable method for energy measurement.

3 CHALLENGES AND GOALS

The high-level goal is to infuse energy and carbon accounting
and control into serverless computing. We accomplish this
by developing a new energy profiling methodology which
provides accurate, complete, and fairly attributed carbon foot-
prints for functions. In the rest of this section, we discuss
the key drawbacks and challenges with existing techniques
to achieve these three requirements.

3.1 Power Profiling Methods

The power consumption of an application is a key input for
computing its carbon footprint. However, existing power
profiling methods are both fundamentally and practically ill-
suited to provide fine-grained function-level measurement.
We can divide these methods into two broad classes:

3.1.1 Direct Attribution. In this approach, the hardware
power sensors are read periodically, and the power consumed
in the sampling interval is attributed to the software com-
ponents (such as processes and functions) running during
that interval. It is used by popular tools like Scaphandre [64],
which rely on high-frequency CPU power measurements
using RAPL. The fundamental challenge is attributing a sin-
gle power reading to a large number of concurrently exe-
cuting components (such as multiple processes). For this
power disaggregation, the total power is often evenly dis-
tributed [20, 83]. High sampling rates and accurate hardware
power sensors are vital: smaller sampling intervals (few mil-
liseconds) contain fewer concurrently running components,
which makes the disaggregation feasible. Thus the direct
attribution approach uses RAPL sensors which can be read
with high-frequency (100s of Hz). The overhead of power
profiling is also a concern with direct attribution: our evalu-
ation shows that the popular Scaphandre tool can increase
CPU and energy consumption by more than 5%.

Compared to CPU power sensors, system-level energy can
only be reliably obtained at low frequency, resolution, ac-
curacy, and has temporal skew. FaaS workloads compounds
the fundamental challenges and these measurement errors.
Functions can be very short lived (<1 s), and FaaS servers
run hundreds of functions concurrently. These issues are
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illustrated in Figure 1a, which shows system and CPU power
when a single compute-intensive ML training function is run
in a loop. The “Server” power is measured through the IPMI
and inbuilt chassis-level power sensor, and the “Desk(top)”
uses a plug-level power meter for full-system power. There
is a maximum of one active invocation at a given time, and
each “dip” in power corresponds to the gap between invoca-
tions. The system power on the server has poor resolution
and has large jumps. There are also large synchronization
differences between the system and RAPL power on both
platforms. On the desktop with a more accurate power-meter,
the resolution is higher and the function signatures are more
discernible, but the system power’s time-diffusion problem
persists even in this best-case and unrealistic scenario of se-
rial invocations. These issues are amplified in Faa$S servers
running large numbers of small concurrent functions.

3.1.2  Model-based Power Estimation. Power models of the
application and hardware [29, 94] are commonly used in
energy measurement. For example, power can be modeled
as a function of CPU utilization, which can be estimated
with hardware performance counters such as instructions re-
tired, cache misses, etc. For longer-lived entities like VMs, so-
phisticated ML models can be customized to the application
behavior [56]. Compared to power, performance measure-
ment can be done with high fidelity, using the wide variety
of fine-grained metrics are provided by the hardware and
virtualized by the OS. Once a power model for the server
(and workload) is built, it can be used to infer the power
consumption of individual software components based on
their resource consumption.

Existing profilers are not cognizant of function boundaries
and execution lifecycle. For example, FaaS control planes
employ keep-alive techniques [51] to reduce the cold-start
overheads, and keep the container resident in memory be-
tween invocations. The container only consumes CPU re-
sources when the function is invoked, which results in a
highly non-stationary resource consumption behavior. Exist-
ing power models work well for stationary workloads, but
highly “bursty” and concurrent FaaS workloads results in
inferior fidelity. To illustrate, the output of state of the art
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process-based accounting tool, PowerAPI [41] is shown in
Figure 1b. The server is running multiple concurrent invoca-
tions of a single function, representing the easiest disaggre-
gation case. The PowerAPI energy estimate of the function’s
containers and the number of “active” function invocations
are shown in the figure. When the function is not running,
we should expect its container’s power to be zero. How-
ever, we can see that the predicted energy is not correlated
with the number of function invocations, and has temporal
skew—making accurate energy footprints difficult to obtain.

3.2 Validation

Empirical validation of power profiling poses many funda-
mental and practical challenges. We find that prior work on
power profiling does not adequately compare against the
“ground truth”, resulting in uncertain validity of the measure-
ments. The predominant metric for evaluating the accuracy
of power profilers is difference between the measured power
and the total predicted power of all applications (used in [67]).
This metric, which we shall call the total power error, does not
capture the accuracy of the power footprints of the individual
applications, and is decoupled from any ground truth.

Individual power footprints are sometimes validated using
isolated measurements. The different applications are run
individually, and the total system power can be attributed to
the application as the “ground truth” power consumption. A
major drawback of this approach is that is not “online”, and
does not capture the function’s energy footprint under real-
istic loads. To illustrate this, the energy footprints (energy
consumed by a function per invocation) for such isolated
measurements are shown in Figure 2. We show the average
energy per invocation over a 10 minute period where the
same function is invoked in a closed-loop. The hardware
power consumption is highly dependent on the system load
and the power states, and thus increasing the system load
by running more concurrent functions affects the footprints.
In the figure, we run 1, 4, and 8 concurrent invocations of
each function, and we can see that the footprints reduce with
load, as the shared and idle power is amortized across indi-
vidual invocations. Measuring energy in isolation is thus not
suitable for validating function-level profiling. We therefore
need a new validation methodology with additional metrics
and ground truth.

3.3 Shared Components

Measuring the energy of function invocations alone is in-
sufficient and does not provide complete accounting. The
FaaS control plane also performs many actions on behalf of
the functions and is a major shared resource with its own
energy footprint, which must be carefully attributed to the
individual functions. The sandboxing and management of
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functions imposes significant work on the control plane,
which also increases their energy footprint [97]. The time
spent by OpenWhisk for a single (warm) invocation can be
up to 600 milliseconds per invocation [50]. This is separate
from the actual function execution time (i.e., the “function
context”), and is a significant fraction of the total time (and
hence resource and energy) consumption of the function.

The control plane interposes on many aspects of function
execution asynchronously (such as dealing with the OS vir-
tualization layer, caching container state, etc.). This results
in a fuzzy boundary between the function execution and the
control plane, and exacerbates the challenges in system-level
energy measurement described previously. The boundary is
also fuzzy in time: since the function’s initialized sandboxed
is usually kept warm in memory [51], this results in a func-
tion’s memory-energy footprint outlasting the function exe-
cution. The control plane’s eviction and container life-cycle
management operations also consume CPU resources and
energy. The potentially large footprint of shared resources
such as the control plane raises new challenges in fair attri-
bution: How should we measure and divide the control plane
energy among the functions?

Due to these major challenges, existing energy profilers
are thus unable to provide the necessary input for carbon
footprinting. This is illustrated in illustrated in Figure 3
which shows the operational and embodied components
of our carbon footprints on desktop and server hardware.
For this figure, we assume hardware lifetimes of 5 years and
the 2024 average U.S emissions intensity of 386 g CO2 per
kWh. The server and desktop embodied emissions are 471
kg and 175 kg respectively and obtained from the manufac-
turer [33, 34]. The function’s “shared” individual footprint
comprises of the control plane and the server’s idle power
(multiplied by the grid carbon intensity), which can be sig-
nificant for larger servers.

The popular Scaphandre profiler only captures the CPU
power, and provides incomplete and inaccurate footprints
(and fails for the disk-intensive dd function). Experimental
details and further discussion for this figure are presented
later in Section 7.2.

4 ENERGY PROFILING DESIGN

We develop a simple and practical approach to energy mea-
surement based on the requirements and challenges identi-
fied in the previous section. In this section we focus on the
energy footprint, but our footprints are multi-dimensional
and provide the necessary input to computing the carbon
footprints, which is described in Section 5. The high level
flow is shown in Figure 4, and this section focuses on the
energy profiling component. Our insight is that a “residence
time” instead of a traditional utilization based modeling ap-
proach can provide complete and accurate footprints.
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Figure 3: Our carbon footprints consist of the func-
tion’s individual and shared operational emissions, and
hardware embodied emissions. Existing power profil-
ers like Scaphandre provide incomplete footprints. The
hatched bars on the right for each function are foot-
prints on a much larger server.

It is a server-level system which integrates with mon-
itoring infrastructure and the FaaS control plane such as
OpenWhisk or Iluvatar [50] (see Figure 4). Robustness to
measurement noise and workload dynamics is our key de-
sign requirement and influences our power modeling. We use
three broad categories of input: hardware power measure-
ments; OS and hardware level metrics (such as process-level
CPU utilization and CPU performance counters); and a trace
of function executions (start and end time of each invoca-
tion). The availability and resolution of input metrics can be
highly non-uniform (i.e., some hardware sensors may not
be available on all platforms). We are thus flexible about
input data availability, and can work with a small subset of
coarse-grained metrics if necessary.

Our power modeling is deliberately simple to be general-
izable and robust, and we prefer explainable linear models
to more complex “black box” models such as deep neural
networks. We combine both the direct attribution and model-
based techniques, and leverage temporal locality of repeated
function invocations for statistical disaggregation. We pro-
vide complete energy accounting of system-wide power by
using Shapley value principles of fair division. This provides
a wide spectrum of per-function energy footprints with dif-
ferent shared-energy contributions, which are suitable for
different tasks pertaining to energy accounting and pricing,
capping and control, etc. Figure 2 illustrates this energy spec-
trum: the function’s total energy profile comprises of its
“individual” contribution due to function execution, as well
as its share of the control plane energy and the idle energy
of the server.

Our power profiling has two major components. The input
power and workload measurements are disaggregated using
the statistical model (Section 4.1), which we augment with
a CPU power model (Section 4.3) when RAPL is available
to provide a finer-grained power profile. The footprints are
continuously updated based on a FaaS-tailored Kalman filter
approach (Section 4.2).
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Figure 4: Carbon footprints are a combination of the
function’s individual and shared energy and embodied
emissions.

4.1 Statistical Power Disaggregation

We use the repeated invocation of functions for statistical
power disaggregation among functions and shared resources
such as the FaaS control plane. The key idea is time-based
attribution: the total system power at various points in time
can be attributed among all the functions that are executing
in a time period of §. We then collect N such sequential sam-
ples (each over a small ¢ interval) for the various power and
workload metrics. M is the total number of unique functions
running on the server. The power measurement (W) can
be system-wide power, CPU power, or the “rest” of system
power which is total system power minus the CPU power.

The key parameter for disaggregation is the “function con-
tribution to power”, which is the matrix C with M columns
and N rows. We use function running times as proxy for the
contribution: C[j] is the total amount of time the function j
was running during the interval. Another useful parameter
is the number of invocations or activations of each func-
tion in the interval, stored in matrix A. The total number of
functions the server runs, M, is large, and the number of ac-
tive functions with non-zero entries in A and C is small. We
use simple linear regression for estimating the per-function
power consumption X:

Xpull = Irg}n CX-w (1)
This is the simplest case which does not consider control
plane or idle power, and the power values (X) obtained are
referred to as the full power. The per-invocation energy, J
in the interval is obtained by multiplying the power with
the average function latency 7: Jan = X 7. In some cases,
subtracting the idle server power provides more meaningful
footprints: Xno 1dle = miny CX — (W — Wgge).

The choice of the measurement interval § has important
tradeoffs. At small intervals (§ ~ 10ms), only a few functions
are active, which makes C sparse. In the extreme case, only
one function is active, and all system power can be attrib-
uted to it without any further disaggregation. However, in
practice, the noise in system-level power measurement in-
creases with the sampling frequency and increases the error.
Conversely, larger § values yield lower variance in power
measurements, but denser contributions matrices, which
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increases errors in the linear regression solution. We use
6 = 1second by default.

For heterogeneous hardware such as GPUs, the hardware

energy consumption is separately disaggregated only among
functions using the accelerator. Because these accelerators
provide a lower degree of statistical multiplexing, the disag-
gregation is simpler.
Shared Principals. As described in the previous section, the
FaaS control planes can also be a significant energy consumer,
along with other shared principals like the OS. We augment
the above statistical disaggregation to also include these
shared principals as additional columns in the contributions
matrix C.

Shared principals like the control plane and OS are al-
ways running, so unlike functions, we cannot simply use
running-time as their “contribution”. Instead, we use their
CPU utilization as an indicator of energy use. For the control
plane, we measure the CPU% of all its processes. Multiply-
ing this CPU% by the time-interval § gives the fraction of
time the control plane was running. However, this underesti-
mates the control plane overhead, since function executions
don’t necessarily consume 100% CPU. We thus normalize
the control plane’s contribution by the system-wide CPU:

control plane CPU%
@)

system-wide CPU% :
This yields x.p, the control plane power, which is then di-
vided among all functions using the Shapley value fair share
principles described later in this section. We can similarly
account for other shared components like the OS, by using
the kernel’s CPU-time and applying similar normalization.

4.2 Kalman-Filter Guided Online Profiling

We continuously update the function power estimates X
based on new measurements. For simple online footprints,
various techniques such as online least squares regression
and exponentially weighted moving averages can be used.
Our insight is that the Kalman filter framework [82, 109]
provides intuitive online estimates which are robust to mea-
surement noise and FaaS workload dynamics. For example,
we can capture the change in function input, running time,
and system load—all of which can affect the per-invocation
footprint.

The high-level intuition is to combine the previous es-
timates X;_; with the new measurements C;, W;, and also
account for the changes or variance in the new measure-
ments (i.e., the process and measurement noise). The outline
of our Kalman filtering algorithm is presented in Figure 5.
The filtered estimate is then given by:

Xi = O{Xi_l + ﬁUl +KZ,',

Cep =

®)
where a, § are tunable parameters. Z; is the error we get if
we use the previous estimate with the new measurements
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(also referred to as the “innovation” in standard Kalman
filtering). K is the Kalman gain, which is the main compo-
nent influencing how the innovation is distributed among
functions and how footprints evolve. Our intuition is that up-
dates to function footprints should be based on two factors:
i) the number of invocations in the interval (A), and ii) their
historical latency variance (o(T)). For instance, functions
not executed in the interval should see no changes in their
footprint. The latency variance is a factor because our foot-
prints are proportional to function latency (C), and functions
with higher latency variance should receive a smaller update.
The latency variance is cumulative and also updated in each
step (not shown in the algorithm), and y is the third tunable
parameter.

The Kalman gain consists of the overall change in the
state of the system and the measurement noise r, which is the
error in hardware power measurement due to high-frequency
sampling. Note that hardware power measurement is coarse-
grained [71], so a high sampling frequency leads to stale
measurements, which contribute to the measurement noise.
Thus based on the sampling tradeoffs, the measurement noise
is set proportional to 1/4.

The process noise (P) is updated after the Kalman step, and
reflects how much the workload (i.e., the state of the system)
has changed. We use the relative invocation frequencies (4;)
of the function in the new time period and compare it to
the historic frequencies to determine workload similarity
(used to set K in the algorithm in Figure 5). The intuition is
that if the workload changes significantly, then the historical
power estimates have less weight.

For new functions without any estimates, we set ¢ = 0, f =
1, and K = 0. The initial estimates X, are obtained using
statistical disaggregation on a large initial time-step (Nt ~
2minutes). Optionally, estimates from previous profiling runs
or other servers in the cluster can also be used as the initial
value. The subsequent Kalman steps are performed over the
time-step Nk in the range of 1 —2 minutes. The same sparsity
tradeoffs apply: smaller time-steps result in more sparsity
and frequent updates, but are impacted more by latency
variance and measurement noise.

Using the above Kalman-filter approach which incorpo-
rates noise and workload dynamics significantly improves
the accuracy and stability of the footprints, which is illus-
trated in Figure 6. The figure shows the energy per invoca-
tions of four functions over time. The “memoryless” policy
does not keep past history and runs a new power profiling
step every time-step (which is one minute in duration)—
resulting in high jitter. By contrast, the “cumulative” policy
uses all the past history to run the statistical disaggregation.
While this results in stable footprints, it does not adjust to
changing function workload, and yields different footprints
compared to the Kalman-filter approach—highlighting the
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o(T): variance of function latencies
A;: num fn invocations during interval i

r o 1/delta

def Kalman-step (X;—1,Ci, W;, Pi_1):
Ul' = minx(C[X - M)
Zi = Wi - CiXi1
P=aPj_1+yo(T)
K = PAT/A;PAT +r
Pi_1=(1-KA;)P
return X; = aXi_; +pU; +KZ;

Figure 5: Kalman filter-inspired approach for updating
function per-invocation power X over time.

importance of online adjustments. A more thorough evalu-
ation of the accuracy of the footprints is presented later in
Section 7.

4.3 CPU Power Modeling

The statistical disaggregation technique described above
has many advantages: it is simple, and requires only coarse
grained power and latency measurements. We combine this
phenomenological approach with more a causal CPU power
model for increased accuracy. We build on the plethora of
CPU power models [29] and use hardware performance coun-
ters to map function CPU usage to power consumption. A
CPU model Ocpy is built and used to predict the function’s
CPU-only power Xcpy over each time-step.

Xcpu = Ocpu(S), where S is a vector comprising of the
function’s performance counters, normalized by the system-
wide counters. Our approach is similar to PowerAPI and
SmartWatts [41], and uses the standard performance coun-

ters: UNHALTED_CORE_CYCLES, UNHALTED_REFERENCE_CYCLES,

LLC_MISSES, and INSTRUCTION_RETIRED. We use perf to
obtain the function-container counters and aggregate the
values for multiple concurrent containers of the same func-
tion. The model fcpy is trained using SVR with a linear kernel
during initial operation [95]. This model is stable as long as
the function execution footprint (CPU work done and IPC)
is stationary across invocations. We continuously monitor
the model error (difference between observed CPU power
and the sum of all predicted function powers), and retrain
the model if error exceeds a set threshold (default of 5%).

We can combine the CPU power and rest of the system
power estimates. The rest of the system power is obtained us-
ing the statistical disaggregation (and Kalman Filter): Xpest =
miny (CX — Wrest), Where Wrest = Wasys — Wepy. When RAPL
is available, the default is this combined mode, Xcombined =
Xcpu + XRest-
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5 FAIR ENERGY AND CARBON
ATTRIBUTION

Once the function-level power estimates (e.g., Xcombined) are
computed over some interval of time (N), we can use them
to compute different energy and carbon footprints.
Individual Footprint. In the simplest case, the function’s
average individual energy consumption is computed: Jindiv =
XNo 1dle T, Where 7 is the average function latency in the in-
terval. Note that X is dependent on the function code, and in
practice does not vary significantly since popular functions
such as ML inference and multimedia processing are fairly
deterministic [57]. Of course, the execution time 7 can vary
based on the input size and resource contention—we analyze
its effect on the energy in Section 7.

Shapley Footprint. The above individual footprint does
not take into account the power consumed by the shared
resources such as the control plane and server hardware.
Complete footprints require that we fairly dividing the en-
ergy (and carbon footprint) of these shared resources, for
which we use Shapley value principles [110] and techniques.
The Shapley value of each function would be it’s “true” en-
ergy footprint, and satisfy many desirable properties, and can
be considered the gold-standard of energy attribution [39]
in multi-tenant environments. Shapley values are also being
used for interpretability of machine learning models [102],
by attributing the importance of model features.

Unfortunately, computing Shapley values requires sam-
pling an exponential number of energy readings that cover
all the permutations of function invocations (i.e., entries of
the C matrix), and the true marginal energies for all function
combinations, which we have no way of obtaining accurately.
Exact Shapley values are thus infeasible and impractical, es-
pecially considering measurement noise and under an online
setting. Instead, we approximate the Shapley values by satis-
fying its four properties in a best effort manner:

(1) Efficiency: the sum of all function footprints should add
up to the total system-level energy. We try to achieve this
by minimizing net error in the Kalman filter.

(2) Null-player property requires functions not executing to
have 0 energy, which we get by construction of our C matrix.
(3) Symmetry: identical functions (both in their code and
invocation frequency) should have the same footprints.

(4) Linearity: the total shared-resource energy attributed
to a function should be the sum of the individual shared
resources.

Based on these principles, we divide the shared idle and
control plane energy among the functions. Idle power is a
“static” shared resource, and it must be evenly among all func-
tions (proof omitted, but follows similarly from [66] which
applies Shapley values to datacenter power). On the other
hand, the control plane energy is “dynamic” and depends on
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Figure 6: Change ine energy footprints over time. The Kalman-filter approach is able to adjust to changing workload

and system dynamics.

its use (i.e., how many functions are invoked), and it must be
divided proportionally among functions on a per-invocation
basis. The efficiency and linearity properties require that we
add the individual and static and dynamic energy shares to
obtain the total energy for each function:

_]Shap = Jindiv + Jshared = Jindiv + d)cp + ¢idle; (4)

where ¢p, didle are the shares of control plane and idle energy
respectively. Jidiv is obtained by discounting the idle power,
i.e., using Xno 1dle- ¢cp = JopAi/ 2. (A), where A; is the number
of invocations of function i, and A is the vector of A;. We
divide the control plane energy proportional to function
invocation frequency (over the time interval). ¢igle = Jidie /M,
where M is the number of unique active functions in the
interval, which is the number of non-zero entries in A. The
function footprints are then the per-invocation energy, which
is Jshap / A.

The Shapley footprint gives applications a full and com-
plete picture of their energy consumption. Since the energy
footprints are linear combinations of the individual, dynamic,
and static shared power, they can be combined in different
ways depending on the intended use-case. For example, when
developers are optimizing the energy footprint of their func-
tions, only the direct and individual energy (without any
control plane or idle overheads) is suitable.

Finally, our energy footprints are also designed to explore
the limits of a simple model and system-level power mea-
surements. If device-level (such as disks and NICs) power
can be instrumented (which it cannot in current commodity
hardware), then their power can be similarly disaggregated
using our techniques. While currently we use aggregate GPU
power, specialized power models for GPUs [63, 70] can also
be used, similar to how we use RAPL-based models. Without
any specialized models, fine-grained per-device footprints
can also be considered to be the “dynamic” shared power
and be part of the Shapley footprints.

Carbon Footprints are computed by combining the energy
footprints with the operational and embodied emissions:

C,Shap = k]Shap + e/M: (5)
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where k is the carbon intensity of the electricity source, and
e is the embodied emission “rate” during the period. The total
embodied cost of the server is &, which must be paid over
the lifetime £ of the server (typically 5 years). The embodied
rate e is then e = STN, where N is our original measurement
interval (typically 1 minute).

Note that the embodied fraction is based on whether a
function runs on the server or not (during the time interval),
irrespective of the number of invocations. Thus, all “active”
functions have equal embodied contribution. Since the server
is a static fixed cost, Shapley valuation dictates that it be
evenly shared among the active functions and irrespective
of how much of the server they use.

This subtle difference has important ramifications on the
footprints and incentives for providers and users to optimize
carbon. First, it strongly favors locality of execution and load
balancing policies which run functions on the same server
to reduce cold-starts. With the embodied carbon accounting,
there is even more incentive to retain locality. “Popular” func-
tions with higher invocation frequencies naturally have a
higher total operational footprint anyways, and thus this ap-
proach reduces their embodied burden. Finally, our proposed
carbon accounting scheme also imposes different incentives
on the function developers. If a larger function is split into
multiple (say two) smaller functions, then each smaller func-
tion invocation is required to pay the embodied “tax” and
also double the dynamic control plane cost. This also incen-
tivizes locality and performance, since it reduces additional
networking and sandboxing latency as well.

Comparison with SCI. We can also derive and adapt the
Software Carbon Intensity [48] metric in the context of FaaS.
The SCI can be simplified as : Cscy = kJpan + er, where r is
the resource usage fraction of the function. For function i,
ri = %. Compared to our Shapley value formulation,
the main difference in the SCI metric is that it considers em-
bodied emissions as a usage-based cost, whereas we believe
that embodied emissions are more appropriately viewed as
static sunk costs. Cscr & Jserver (k + €)r, where Jserver is the
empirically measured server energy. Finally, we note that
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“fairness issues” in carbon accounting and pricing (such as
who pays for past embodied emissions) continues to be a
highly globally vexing and subjective issue [30, 74], which
is well outside our scope.

5.1 Limitations

Some of the limitations of our energy profiling approach are
a result of our focus on simple and validatable footprints.
Our focus is also on individual functions. For multi-function
applications and workflows, the footprints are approximated
as the aggregation (sum) of the component functions. This
will not account for the shared networking and storage costs,
since we only consider server-level power. At a high-level,
we can view networking and distributed storage as shared re-
sources, and use our fair division techniques to disaggregate
their energy consumption among all the functions. Finer-
grained profiling will require additional storage and network-
ing power models along with distributed tracing to track
function resource usage. Nevertheless, networking and stor-
age are not power proportional and network elements like
switches can have a fairly “static” power consumption, which
will again require fair division. While these more “complete”
footprints can be obtained by applying our proposed tech-
niques, they are harder to validate against ground-truth, and
are part of our future work.

Our simple power models are complementary to finer-
grained deep neural network models trained on more hard-
ware performance counters and function inputs. Because
of our linear models, we do not need offline training, and
have better generalizability across hardware platforms and
workloads. Moreover, larger models do not address the main
challenges identified in the previous section such as shared
resources and diffused energy consumption.

6 IMPLEMENTATION AND VALIDATION
METHODS

Our energy profiler and carbon footprint estimation tech-
niques are implemented in the open source Iluvatar FaaS
control plane. The energy footprints are made available to
the control plane for internal power capping and control. Our
changes are implemented in Python and Rust in around 6,000
lines of code. We chose Iluvatar because it provides low la-
tency function invocations and has reduced jitter. Prior work
has shown that popular FaaS frameworks like OpenWhisk
can add 100s of milliseconds of latency even for warm invo-
cations [50]. Time-based energy attribution is a major com-
ponent of our power model, and OpenWhisk’s own power
consumption adds significant noise to the energy footprints.
Validating footprints in such excessively noisy conditions
was also a challenge (larger number of trials needed to obtain
a reasonable confidence interval of the marginal energies).
At a conceptual and implementation level, our techniques are
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Figure 7: System-level power can be synchronized us-
ing CPU power as a reference signal, reducing the er-
rors due to lag.

independent of the FaaS framework, but the tighter latency
bounds of luvatar aids in a more rigorous validation.

Different full-system power sources are supported. For

servers equipped with chassis-level current and power sen-
sors, we use IPMI to query the BMC (baseboard management
controllers). We also support external plug-level power me-
ters, and query their power via serial or telnet interfaces.
Many low-power edge devices also provide system-level
power. For example, the Nvidia Jetson Orin AGX has current
and power sensors which we query using tegrastats. Finally,
for laptops and other battery powered devices, the battery
charge controller can provide the energy discharge, which
we can obtain via ACPI interfaces, and obtain the power
consumption. We use the perf tool for both the system-wide
RAPL and per-function RAPL and per-function CPU perfor-
mance counters.
Power De-noising and Synchronization. We filter and
synchronize the raw power signals before using them for
disaggregation. “External” power using external plug-level
power meters and even BMC/IPMI can have a time-skew in
their measurement and reporting path. Synchronizing the
system-power is crucial—otherwise energy is attributed to
previous/future functions, reducing the footprint accuracy.
We correct the temporal skew (i.e., lag) by correlating (in
time) the power signal with some other reference.

For instance, we have observed that IPMI power has sig-
nificant lag, when compared to the RAPL power which is
much more “real-time”. This can be observed from Figure 7
which shows the difference between system-level and CPU
power. The workload is a CPU dominant application (ML
training), and the server has no other major dynamic power-
consuming devices (no GPU etc.). Thus we should expect
this difference to be constant. However, we see that the raw
difference shows significant variance, which we attribute to
the measurement lag in the IPMI power-sensor.
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We find and fix this lag using simple signal-shifting meth-
ods [88]. We find the time-offset s which minimizes the chi-
square difference between the power signal, W and the ref-
erence signal R, after normalizing by the average:

W(t+s)_@)2

W 7 (6)

® .
S = min
s

This can be solved using general optimization solvers such as
limited-memory BFGS [89], after setting bounds on s of a few
seconds. The difference in the power and reference signal
after time-skew correction is also shown in Figure 7, and we
can see a significant reduction in the variance (i.e., the noise).
We compute this skew both during an initialization phase,
and periodically, to capture any drift. The reference signal is
CPU power by default—other reliable load metrics like CPU
instruction and cycle counters are the fallback synchronizing
inputs.

6.1 Validation Methods and Metrics

We develop and use a range of metrics for energy and carbon
footprints. Given an energy footprint, we can compute the
operational and the total carbon footprint. Our metrics are
also applicable to carbon footprints, but we focus on energy
for simplicity.

Our methodology and metrics required for validating these
footprints fall into two broad classes. Through external vali-
dation, we compare the energy footprints with other reliable
energy measurement methods, and develop the primary ac-
curacy metrics. On the other hand, the internal validity looks
at the consistency of energy footprints with respect to each
other, or other system utilization and performance metrics.

External validity for energy disaggregation is challenging:
we want to estimate the function’s energy contribution in a
long and dynamic workload. Our primary benchmark and
“ground truth” for external validity is the marginal energy,
which we compute by running two nearly identical workload
traces, and subtracting their total energy consumption. A
workload trace (77) is characterized by the set of functions
(8S), their IAT CDFs, and the total duration. Even using ex-
tremely coarse-grained power measurements, we can obtain
J (T), the total energy consumption of running the work-
load trace on a server. The marginal energy of a function f
is obtained by running a new trace 7 (S — f) which does
not contain the function, and is given by:

J(T(S) -IJ(T(S-1)) @
number of invocations of fin S’

The marginal energy is thus the increase in total energy

consumption caused by the function. Note that it does not

account for the idle server energy, since it is present in both
the traces.

This marginal energy validation is essential, since energy

is highly sensitive to the system power states (such as CPU
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Metric Definition
Individual-Difference lJ=J1/T
Cosine-Similarity J- TN
Total-Error E[[W(t) -W()[/W(H) ]
Latency-normalized-Variance | o(J)/o(T)

Table 1: External and internal validity metrics. J and
W are profiler outputs, J* is ground truth, and T is
function latency.

frequency). Measuring the function energy footprints “in
isolation” is a simpler and alternative technique, where a
single function is run without any other function, and per-
invocation energy is obtained from the total system energy.
But because of the different power states, the per-function
energy footprints obtained through this conventional and
simpler method have a very high range, dependent on the
system load. Figure 2 shows the energy per invocation with
the isolated measurement technique when different num-
bers of the same function are executed concurrently, and we
can see significant differences (more than 10x) in footprints
based on the load.

Validation Metrics. Table 1 lists our external and internal
validation metrics. For external validity, we define and com-
pute different distance metrics between the energy profiler
output vector (J) and some reference ground-truth J* (e.g.,
marginal energy footprints). The first metric provides the
per-function individual difference to the ground truth. Since
the marginal per-invocation energy is obtained by running
a separate, smaller workload, it may not always reflect the
“live” online energy. These are primarily due to differences
in system power consumption and efficiency, and under-
lying hardware control. Deviations from the marginal can
also arise because of different attribution policies for idle
and other shared energy. To achieve “complete” energy ac-
counting, the footprints may be elevated for all functions.
To account for these issues, we use the cosine similarity be-
tween the energy footprints, to capture the ratios of energy
footprints among the different functions. Higher cosine sim-
ilarity (closer to 1) indicates that a closer footprint match.
Cosine similarity with the marginal energies is our primary
external validation metric.

The second category of metrics are for internal validity.
The conventional and popular metric for energy profilers
captures the “completeness” of accounting, by computing
the difference over time, between the observed (W (t)) and
predicted total power (W (t)). Optimizing solely for this total
error can be at the expense of the error in energy footprints.
This total power error is thus of secondary importance to us,
and is controllable via our Kalman filter parameters: higher
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values of f in Figure 5 reduce the total error but result in
higher variance in footprints.

Our primary internal validation metric is the variance in
the energy footprints, normalized to the variance in latency.
This helps use evaluate the precision and feasibility of our
footprints for energy pricing. Currently, cloud functions are
priced based on their execution time (i.e., latency), and thus
the latency variance serves as the baseline for comparison.

7 EXPERIMENTAL EVALUATION

Our evaluation is centered around two main questions, i)
How accurately can we obtain full-system energy profiles
of functions, and ii) What are the characteristics of energy
and carbon footprints? We empirically evaluate these foot-
prints on more than 100 workload traces (including marginal
energy traces) using seven external and internal validity
metrics. These workload and measurement traces and asso-
ciated ground truths are made publicly available [3], to help
build better energy profiling models and accelerate empirical
sustainability research.

Measurement Platforms. We use three different types of
hardware platforms:

(1) Server: Supermicro X11DPT-PS board with 2 48-core Intel
Xeon Platinum 8160 CPUs and 1TB of RAM, running Ubuntu
20.04. It idles at 95 Watts.

(2) Desktop: Dell Optiplex with 12th Gen Intel i5-12500 run-
ning Ubuntu 20.04.5. It has idle power of 15W. Power is being
measured using an external SpecPower-approved power-
meter (Instek GPM-8310) every 0.25 seconds through the
meter’s telnet/SCPI interface.

(3) Edge: Nvidia Jetson Orin AGX [12]. Power is measured
using inbuilt current sensors (via tegrastat) and also vali-
dated with an external power meter. We run a combination
of CPU and GPU functions on this edge device.

The grid carbon intensity (grams CO2 per kWh) varies
significantly by time and location [80], and we assume the
constant US average grid carbon intensity of 386 g CO2 per
kWh. Similarly, the embodied footprint also varies based
on hardware type and the carbon accounting methodology.
For our analysis, the embodied emissions of the server and
desktop are 471 kg and 175 kg respectively [32, 35], and all
devices are assumed to have a five year lifespan. Instead of
varying and controlling the above carbon parameters, we fix
them, and in some of our evaluation results, we omit them
and focus on the energy footprints. This reduces the number
of variables in the experiment design, and also helps reduce
the uncertainty, since many of the carbon parameters can
have a very high variance [22, 76]. For carbon footprints,
we will largely focus on the operational footprint, since the
embodied component can be significant in both magnitude
and variance, and can thus obscure the energy validation.
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Name Latency (s) | Description

dd 0.7 | Read and write local storage.

image 1.5 | Performs several transformations on an image.
video 7.8 | Download and grayscale a small video.

AES 1.4 | Encrypt and decrypt payload multiple times.

json 0.25 | Download, parse, and serialize a json blob.

CNN 1.3 | Inference on a TensorFlow model (CPU and GPU).
ml_train 5.1 | Train a regression model on a 20 MB dataset

Table 2: Super-set of functions used in our empirical
energy and carbon analysis. Latency is average warm
running time on the desktop.

FaaS workloads are generated using different combina-
tions of functions and inter arrival time (IAT) distributions.
We use different sizes and types of functions from function-
bench [73]—their characteristics are described in Table 2.
Recall from Equation 1 that the main variables determining
the power profiles (X;) are the latencies and popularities of
each function which make up its energy contribution (C;).
We test energy disaggregation with different combinations
(subsets) of functions in each trace. Our evaluation covers
a large multi-dimensional space of function-subsets, inter-
arrival-times, hardware platforms, and metrics. We cover a
sparse subset of this evaluation space, and use different types
of workloads to show the versatility and generalizability of
our approach. Since different metrics are analyzed using dif-
ferent traces, we also summarize the key metrics across all
traces towards the end of this section.

The arrival-rates are either determined by: i) the tradi-
tional exponential distribution, or ii) sampled from the Azure
trace [96], or iii) non-stationary bursty arrivals. For the Azure
sampling, we use a combination of random function sam-
pling and scaling the IATs to be suitable on a single server.
We use I[luvatar’s load generator [50] for generating the work-
load traces, which have arrival times for each function. We
use a sufficient keep-alive cache [51] to ensure > 99% warm
starts, and all the latency and energy footprints we report are
for warm starts. Cold-starts are tagged by the FaaS control
plane, and we can obtain separate cold and warm energy
fingerprints if necessary.

We use the Kalman filter with « = 0.8, = 0.2,y = 0.1,
with an initial window of 100 seconds, and subsequent in-
tervals of 60 seconds. Our empirical analysis has not found
the profiler output to be particularly sensitive to these pa-
rameters. We compare against Scaphandre [64], a popular
process-level CPU-only power profiler which uses the direct
disaggregation approach. We have implemented additional
post-processing for Scaphandre to turn the process-level
power output to per-function-invocation metrics, by corre-
lating the host process id with the function (Iluvatar runs
functions in containerd containers by default).
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Figure 8: Energy-per-invocation for a four-function trace. Marginal energy serves as ground-truth. Our energy
footprints with combined and pure disaggregation are accurate across all three hardware platforms. Scaphandre [64]
provides inaccurate footprints, especially for non-CPU-intensive functions (dd), and requires x86 RAPL counters

(not available on Jetson).

Platform | Full Disagg. | Combined Disagg. | Scaphandre
Desktop | 0.985 0.984 0.910
Server 0.998 0.998 0.623
Jetson 0.992 N/A N/A

Table 3: The high cosine similarity of footprints indi-
cates high accuracy with respect to ground truth.

7.1 Energy Profiler External Validity

We focus the first part of our evaluation on one heteroge-
neous trace with four functions, with the goal to understand
the accuracy and robustness of the energy profiling method.
The function IATs are scaled for the three hardware plat-
forms, such that the desktop and Jetson are at 80% utiliza-
tion, and the server is at 40%. The per-invocation individual
energy footprints (Jingiv) for each function are shown in Fig-
ure 8. We compare against the marginal energy as the ground
truth baseline, and also show the results of Scaphandre [64].
We evaluate two different profiler configurations. In the com-
bined mode, the CPU power is measured separately and
added to the rest of the system power using statistical disag-
gregation. In the pure disaggregation mode, only the coarse
grained statistical disaggregation is used on the full-system
power. In both cases, we subtract the idle hardware power,
and thus compute the Xy igle described in Section 4.

On the desktop, both these approaches are within 1-40%
of the marginal energy (the Individual-Difference metric
in Table 1). Scaphandre measures only CPU power, and is
unable to attribute energy the disk-intensive dd function,
and has a 100-130% difference vs. marginal for the rest of the
functions on the desktop.

While marginal energy provides good ground truth, it may
be consistently higher or lower than our profiler estimates.
In Figure 8 the marginal energy of all desktop functions is
higher, and all server functions is lower than our estimates.

534

This is because the marginal footprints are affected by the
CPU power states and power non-linearities. On the lower-
utilization server with a large number of CPU cores (48),
because of the latency in switching to lower power states,
the additional fourth function can utilize the residual time
of the higher power states. This results in the reported mar-
ginal footprints to be lower, as seen in the figure. Conversely,
the desktop is at high utilization, and running the fourth
function consistently puts the CPUs into a higher frequency
state, which results in larger footprints since power is pro-
portional to the square of the frequency. Thus, the specific
power and workload characteristics in our marginal energy
calculation contribute to the perceived discrepancy in the
Individual-Difference metric in Figure 8. Finally, we note
that the consistent over or under prediction is also naturally
corrected by our Shapley footprints: the total power con-
sumption error is less than 10% on average (discussed in next
subsection in Figure 10).

We emphasize that individually comparing the energy es-
timates of different functions in Figure 8 provides an incom-
plete analysis of the profiler capabilities. For the individual
energy footprints, how proportional the estimates are rela-
tive to the marginal energy is more important. Our cosine
similarity metric captures this proportionality, and is shown
for this workload in Table 3. Using cosine similarity corrects
for the consistent over or under prediction, and we see that our
corrected individual energy footprints are within 98.4% and
99.8% of the ground truth.

Note that invocations of the same function can have dif-
ferent arguments, which naturally leads to variance in the
energy footprints and is the primary source of error, since
our model uses function latency as the key feature. However,
we are robust to such latency variance, as seen in Figure 9a,
which shows a lack of any significant correlation. On the
server with 40% load, the coefficient of variation of latency
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hence the function input variation. Similar functions
can be clustered based on their energy use.

is low, but the high idle energy results in the larger offset
vs. marginal. The desktop has a 80% load and higher latency
variance, but is closer to the marginal energy as a result. Thus,
even with variation in latency due to differences in function
input, contention, etc., we provide accurate energy footprints.

On the Jetson platform, we do not have access to a CPU
power model—but the pure disaggregation approach still
provides a high 99.2% cosine similarity. We are also able to
measure the GPU function’s footprint—highlighting its ef-
fectiveness on heterogeneous platforms without specialized
power measurement instrumentation. Scaphandre uses the
x86 RAPL counters, and is unable to work on the ARM Jet-
son platform. Its process-level direct attribution is unable to
account for all the CPU power on the x86 server, and has
an error of 10 X —23X. Moreover, it has a high profiler over-
head due to periodically scanning process info via procfs:
its CPU consumption on the server is more than 5%, causing
a 15 Watt (30%) increase in power consumption. For com-
parison, the combined CPU consumption of our profiler and
Iluvatar is 3%. Scaphandre’s high error on the server is also
due to its high profiling overhead: the high latency of syn-
chronously reading and disaggregating procf's information
for more than 1000 processes (corresponding to function
active and kept-alive containers) results in highly stale RAPL
readings (several seconds) and inaccurate disaggregation.

Using noisy system-level power is one of our system’s main
features, and these results illustrate its robustness and accuracy.
It provides more than an order of magnitude improvement in
accuracy compared to existing process- and CPU-based tools,
and is effective even on heterogeneous hardware.

7.2 Energy and Carbon Footprints

Having looked at the Individual-Error and the Cosine-Similarity

metrics, we now present the evaluation of other metrics and
properties. To illustrate generalizability, in some cases we
show results on different workload traces from the one pre-
sented in the previous subsection. The remaining evaluation
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of the earlier four-function trace (dd, image, AES, CNN)is
included in Figure 11 and 13.

Full carbon footprint. The per-function operational car-
bon footprint (using the Shapley value approach) over a 15
minute interval is shown earlier in Figure 3. Because the
server is under-utilized and has a high idle power (95 vs. 15
W), the shared operational emissions for all functions are
close to 8x higher. The operational carbon footprint using
Scaphandre power estimates misses the I[/O-bound dd com-
pletely, and significantly underpredicts the other functions
by an order of magnitude. This highlights the importance of
complete full-system footprints, since shared hardware and
software components can be a large source of emissions. These
footprints can be used by both FaaS users and operators to
quantify emissions. We now evaluate the feasibility to use
them in addition to traditional resource based accounting
and pricing.

Symmetry, a Shapley value property, requires that identical
functions have similar footprints. We run a large number (20)
of different functions, with each function belonging to the
one of four classes (image, json, ml_train, video). This
is different from the previous set of functions, and shows the
generalizability and ability to handle very small (json) and
large functions (ml_train, video). From the profiler’s per-
spective, these are 20 different functions, and their footprints
are shown in Figure 9b. We can see that the functions can
be clustered based on their energy footprints, i.e., the func-
tions running image processing have similar per-invocation
energy, thus exhibiting the symmetry property.

Next, we look at the Total-Error from Table 1, which
measures the difference in measured and the estimated total
energy/carbon footprint (which is the aggregation of indi-
vidual estimated footprints). This is also the efficiency prop-
erty of Shapley values: we want all the energy and carbon
accounted for. The (operational) carbon footprint of the func-
tions from the previous workload used in Figure 8 is shown
in Figure 10a. The figure shows the CO2 per invocation of
the functions over time, and also illustrates the smoothing
behavior of the Kalman filter.

Note that the actual footprint of a function also depends on
the number of its invocations. We show this in the stacked-
plots in Figure 10, which also illustrates a common use-case
for profiling tools for identifying “top” carbon producers and
their relative contributions. Figure 10b shows the carbon
contribution of four functions in a “bursty” workload on
the desktop, which also incorporates our largest function
video. We can see that the Kalman filter is able to track
the dynamics of the workload, since the sum of all function
contributions closely matches the empirical operational CO2
emissions.

Another challenging workload is when the functions are
dynamically introduced into the workload, and the “active
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Figure 12: The three functions are co-located either
with dd or m1_train. This choice has negligible impact
on both the estimated footprints and ground-truth.

set” is dynamic. The total carbon breakdown of this workload
is shown in Figure 10c, where we also see low Total-Error.
As mentioned in Section 6.1, minimizing Total-Error is not
our primary objective, since it can often reduce the accuracy
(cosine similarity and other external validation metrics). Our
Total-Error across 35 workloads (with different functions
and IATs) on the three hardware platforms is shown in Fig-
ure 11. Because of the Kalman filter and continuous footprint
refinement, we see that the Total-Error is small, and less than
10% for more than 50% of the tested workload configurations.
Noisy neighbors: are function energy footprints impacted by
co-located functions? To answer this, we run functions with
different “neighbors”. Three functions (image, AES, and
video) are run together either with dd or ml_train as the
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co-located function in Figure 12. These functions are very
different: dd is short and disk-intensive, whereas ml_train
is long and cpu-intensive. Inspite of these differences, the
marginal energy in the two cases are nearly identical, and
differs by at most 5%. The footprints are also similar, and
vary by roughly 5-10% between the two cases. The lack
of significant noisy neighbor effect reduces the variance in
energy footprints.

For carbon-pricing, we want the footprints to be “stable”
and have low variance. Figure 13 (right) shows the coefficient
of variation (CoV = ¢ (J)/E[J]) for more than 50 workloads.
The CoV depends on the measurement noise of the underly-
ing hardware platform and the workload, and is the precision.
Here, we focus on the energy variance, so that we can ignore
the high operational carbon variance. The CoV is less than
0.3 on all three platforms for 60% of the traces, indicating
feasibility of using energy footprints as an accounting and
pricing measure. As noted before, the desktop energy vari-
ance is higher because its workloads are run at near-100%
load.

Finally, we look at the latency-normalized-variance
metric from Table 1. This metric is another proxy for the
stability of the carbon pricing, since it compares against
variance in currently used running-time based prices. Fig-
ure 13 (left) shows the CDF of the average normalized en-
ergy variance across all functions, for more than 50 workload
traces across the three platforms. This ratio is less than 40 for
more than 90% of the desktop and server workloads. Note
that Iluvatar provides extremely low variance in latency
which is 50 X —100x lower than OpenWhisk [50]. The vari-
ance in latency and pricing is also significant in public FaaS
clouds [91, 104]. Thus, if were to use our footprints with
the more widely used OpenWhisk, we achieve a latency-
normalized-variance ratio of close to 1, indicating that the
variance in energy price would be similar to the current vari-
ance in latency-based pricing. Thus, our energy footprints
have high precision (i.e., low variance) and can be used for
carbon-based pricing.
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Figure 13: Variance of energy footprints is low, making
carbon-based pricing feasible.

8 RELATED WORK

Our work is inspired and motivated by the quest to make
energy as the first-class resource [44] in many environments.
Sustainable Computing. The challenge of reducing the
carbon footprint of cloud systems and applications has led to
“carbon-first” system designs [18, 79, 101]. The operational
carbon footprint is computed by multiplying the energy con-
sumption and the grid carbon intensity [6, 80], which has led
to new energy tracking tools [28], but CPU power profiling
continues to dominate. [65] introduces fine-grained NUMA-
aware CPU energy measurement for individual applications.
Tools for tracking the carbon footprint of Al applications
mostly focus on large ML training batch jobs without multi-
tenancy [19, 62]. The emissions due to Al training and infer-
ence is significant [111, 112], but our work focuses on the
broader class of FaaS based applications.

Carbon Footprints. The server-level operational and em-
bodied carbon footprints can be used for scheduling [61],
load balancing [26, 79], and other resource management
operations in distributed computing. Tools like CloudCar-
bon [1] also provide these VM-level estimates for public
cloud VMs [38]. Disaggregating these for finer-grained ap-
plications is much more challenging as we have shown, and
our footprints are also applicable to other multiplexed sce-
narios. Tools like carbond [93] can also be integrated into
our framework for updating the operational grid intensity
in real-time for more accurate operational carbon footprints.
For embodied emissions, tools like ACT [59, 60] can provide
the hardware’s footprint based on its individual components
(CPU type, storage and memory capacity, etc.). Carbon ac-
counting at the grid level can also be tricky, with double
counting due to power purchase agreements (PPAs) leading
to incorrect estimates [78].

Energy Control. In the context of FaaS, [90] presents DAG
scheduling for functions with a purely CPU-model based
approach, but without any empirical power measurement or
validation. DVFaa$ [103] implements PID control for CPU
frequency for minimizing latency QoS violations for function
chains. More generally, a combination of hardware and soft-
ware techniques for energy capping can be effective [119].

537

Prateek Sharma and Alexander Fuerst

Due to hardware heterogeneity, we use a purely software
approach for controlling system-wide power, and focus on
empirical energy footprints of individual functions.

Fair Attribution. The problem of fairly sharing the en-
ergy consumption of shared resources occurs in many envi-
ronments such as VM hosting [66, 68] and datacenter cool-
ing [69, 108]. Shapley values [105] provide many desirable
properties such as linearity and envy-freeness, and have also
been used for energy accounting of mobile applications [39].
Mobile and embedded computing [45] faces similar en-
ergy measurement challenges. Disentangling shared OS and
hardware energy consumption for applications has been
done through tracing requests across various contexts and
carefully attributing async tasks [24, 85, 87, 114]. Along with
the uncertainty of the control plane, the highly dynamic
and non-stationary nature of function workloads, and high
degree of multiplexing makes such tracing challenging for
FaaS.

9 CONCLUSION

Given the increasing importance of sustainability, our pri-
mary goal is to initiate a deeper investigation of energy
metrology—especially full-system power measurements and
their external validation. Our approach allows easy com-
putation of carbon footprints. Using statistical disaggrega-
tion, Kalman filtering, and Shapley value principles, we pro-
vide full-spectrum carbon footprints with over 99% accuracy.
Serverless workloads permit the use of marginal energy con-
sumption for each function, which we use to develop new ex-
ternal validation metrics. This provides complete, validated,
and full-system energy and carbon footprints for serverless
functions, paving the way for carbon-based cloud pricing.
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