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1. Introduction

Among the most important properties of the cohomology rings of complex flag man-
ifolds is that they have a distinguished basis: the Schubert basis, {σv : v ∈ W}, indexed 
by the Weyl group W . The Schubert structure constants for the product in singular 
cohomology in this basis are positive, which means that all nonzero coefficients in the 
product expansion

σuσv =
∑

w∈W

cwuvσw

are positive. This is a consequence of transversality properties, as the coefficients cwuv
count the number of points in the intersection of three Schubert varieties translated 
in general (transversal) position. The study of positivity properties of these coefficients 
across a wide range of cohomology theories has spurred a large body of literature in 
algebraic geometry, representation theory, and combinatorics.

In the case of torus-equivariant cohomology, a conjecture by Peterson [43], proved 
by Graham [24], states that the Schubert structure constants for the torus equivariant 
cohomology rings of flag manifolds are polynomials in the simple roots with positive 
coefficients. Graham’s proof relies on refined transversality techniques (see also [2]), 
which are expected to be useful in analyzing the equivariant cohomology ring of varieties 
related to flag manifolds.

Hessenberg varieties form a remarkable family of subvarieties of flag manifolds, and 
appear across multiple disciplines within mathematics; see [3] for a recent survey. In this 
paper we focus on a particular class of regular nilpotent Hessenberg varieties, namely 
Peterson varieties.

Peterson varieties may also be realized as a flat degeneration of certain regular 
semisimple Hessenberg varieties such as the permutohedral variety; see e.g., [34,35,1]. 
Peterson varieties share many properties with flag varieties, and provide a fertile ground 
for exploration. They initially appeared in the study of the quantum cohomology ring of 
(generalized) flag manifolds G/B in [37,43].

The purpose of this paper is to prove a positivity property of the equivariant coho-
mology ring of Peterson varieties, similar to that of flag varieties. This may be seen as 
a step towards investigating positivity and transversality properties of the (equivariant) 
cohomology ring of the larger family of Hessenberg varieties, little of which is known. 
We give next a more precise account of our results.

Let G be a complex, semisimple Lie group, let B, B− ⊂ G be opposite Borel subgroups, 
and let T := B ∩ B− be the associated maximal torus. Let ∆ be the set of positive 
simple roots corresponding to the choice of B, and let e be a principal nilpotent element 
contained in 

⊕
α∈∆ gα, where gα is the root space in g := Lie(G) corresponding to 

the root α. Denote by W the Weyl group associated to (G, T ) with length function 
ℓ : W → N, and denote by w0 ∈ W the longest element. Let Ge be the centralizer of e
in G. The Peterson variety



R. Goldin et al. / Advances in Mathematics 455 (2024) 109879 3

P := Ge.w0B ↪→ G/B, (1)

is the closure of the Ge-orbit of w0B inside the flag manifold G/B. It admits an action of a 
one-dimensional torus S ⊂ T with finitely many fixed points. We denote by ι : P ↪→ G/B

the inclusion.
In this manuscript we investigate H∗

S(P) := H∗
S(P; Z), the integral S-equivariant 

cohomology ring of the Peterson variety. A presentation of H∗
S(P; Q) by generators and 

relations was given by Harada, Horiguchi and Masuda in [26].
Let σvI ∈ H∗

S(G/B) be a Schubert class indexed by some Coxeter element vI ∈ W

for I ⊂ ∆, let pI := ι∗(σvI ) be the pullback of σvI along the inclusion ι : P → G/B, 
and let m(vI) be the intersection multiplicity from Theorem 1.1 below. We show that {

pI

m(vI)

}

I⊂∆
is a H∗

S(pt)-basis of H∗
S(P), and that this basis is dual to the equivariant 

Borel-Moore homology basis constituted by the fundamental classes of Peterson varieties 
(see Section 2). In particular, while the class pI depends on the choice of vI , the class 

pI

m(vI) is independent of this choice.
In our main result we prove that the structure constants of multiplication are positive 

with respect to the basis 
{

pI

m(vI)

}
in the sense of Graham [24]. This generalizes recent 

results in Lie type A by Goldin and Gorbutt [21], who found manifestly positive combi-
natorial formulae for the structure constants in question. Special cases of such formulae 
were found earlier by Harada and Tymoczko [29], and by Drellich [16].

We now present a more precise version of our results. For I ⊂ ∆, let wI be the maximal 
element of the Weyl group of I, and let P◦

I := P ∩BwIB/B. Tymoczko [50] and Bălibanu 
[7] proved that P◦

I ≃ C|I|, and the cells P◦
I (called Peterson cells) form an affine paving 

of the Peterson variety. Consequently, the fundamental classes [PI ]S ∈ HS
2|I|(P), where 

PI = P◦
I , form a basis of HS

∗ (P) over H∗
S(pt).

For v ∈ W , let Xv := B−vB/B denote the (opposite) Schubert variety in G/B, and let 
σv ∈ H2ℓ(v)

S (G/B) be the corresponding Poincaré dual class, satisfying the equality σv ∩
[G/B]S = [Xv]S . Consider the pairing ⟨·, ·⟩ : H∗

S(P) ⊗HS
∗ (P) → H∗

S(pt) of equivariant 
cohomology and equivariant homology defined by ⟨a, b⟩ =

∫
P a ∩b; see §2. Our first result 

is the following (cf. Theorem 4.3 below):

Theorem 1.1 (Duality Theorem). Let I, J be subsets of the set of simple roots ∆ and let 
vI ∈ W be any Coxeter element for I. Then

⟨ι∗σvI , [PJ ]S⟩ = m(vI)δI,J ,

where m(vI) ∈ Z>0 is the multiplicity of the (unique) intersection point of XvI ∩ PI .

This follows because the varieties XvI and PI intersect at a unique point, namely 
wI , the longest element in the subgroup WI determined by I. The remaining part of the 
proof exploits the poset structure of the affine paving by Peterson cells, along with the 
duality of Schubert classes in G/B.
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A non-equivariant version of this theorem has appeared in the literature in type A in 
a recent preprint [4], and may be deduced in general Lie type from [32,31], where the 
intersection XvI∩P(I) was analyzed. Besides working non-equivariantly, a key restriction 
in all these papers is that the Coxeter elements vI are not arbitrary, but depend on a 
certain ordering of the simple roots. Our approach removes this restriction. In Section 7, 
we give algorithms to calculate the aforementioned multiplicities based on equivariant 
localization, and closed formulae for a particular basis; see also Theorem 1.3 below and 
the related discussion. A formula for m(vI) for any Coxeter element vI was recently 
obtained in [25]; see Equation (19) below.

The duality theorem has several consequences. For each Coxeter element vI for I, 
recall that pI := ι∗σvI ∈ H2|I|

S (P). Then the classes 
{

pI

m(vI)

∣∣∣ I ⊆ ∆
}

form a H∗
S(pt)-

basis of H∗
S(P); see Corollary 4.4. By the duality theorem, the equivariant push forward 

ι∗ : HS
∗ (P) → HS

∗ (G/B) is injective. Non-equivariantly, the injectivity was proved in 
[32].

The cocharacter h of T satisfying α(h) = 2 for all α ∈ ∆ determines a one dimensional 
subtorus S ⊂ T , satisfying α|S = α′|S for any α, α′ ∈ ∆; see Section 3.2. Consequently 
there is a well defined element t ∈ H∗

S(pt) given by t := α|S for α ∈ ∆.

Theorem 1.2 (Positivity). Let I, J, K be subsets of ∆. The structure constants of multi-
plication, cKI,J ∈ H∗

S(pt), given by

pI · pJ =
∑

K

cKI,JpK (2)

are polynomials in t with non-negative coefficients.

Theorem 1.2 (Theorem 5.3 below) generalizes several positivity statements to arbi-
trary Lie type, while providing a uniform proof in all cases. In the case where |I| = 1, 
i.e., pI is a divisor class, a positive Monk-Chevalley formula for the structure constants 
cKI,J was obtained by Harada and Tymoczko [29] in Lie type A, and in arbitrary Lie 
type by Drellich [16]. For general cKI,J , and in Lie type A, Goldin and Gorbutt [21]
found a manifestly positive combinatorial formula for all equivariant coefficients cKI,J
in the expansion (2). A different combinatorial model computing these coefficients in 
non-equivariant cohomology was recently obtained in [4].

The proof of Theorem 1.2 relies on the duality theorem, and on positivity statements 
proved by Graham [24]. The structure constants of the multiplication σu∪σv ∈ H∗

S(G/B)
are positive in the sense of Theorem 1.2. Hence it suffices to show that the coefficients 
bJw ∈ H∗

S(pt) of the restricted classes ι∗σw =
∑

J bJwpJ (w ∈ W arbitrary) satisfy the 
same positivity. By the duality theorem, the positivity of the coefficients bJw is equivalent 
to the positivity (in a suitable sense) of the coefficients cvI in the Schubert expansion

ι∗[PI ]S =
∑

v∈W

cvI [Xv]S ∈ HS
∗ (G/B), (3)
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where [Xv]S denotes the homology class of the Schubert variety Xv := BvB/B in G/B. 
In the non-equivariant case, this is clear. Indeed, by Kleiman transversality [33], the 
Schubert classes are a basis for the Chow group of G/B, and form a set of primitive 
generators for the cone of effective algebraic cycles. Since the Chow group is equal to 
H∗(G/B) (cf. [20, Ex. 19.1.11]), the claim follows. Equivariantly, we deduce the positivity 
of cvI from a general positivity result of Graham [24] for expansions of fundamental classes 
of torus invariant varieties; cf. Theorem 5.2. A different geometric approach to positivity 
(in the non-equivariant setting) was pursued in [4]; see Remark 5.4 below.

Using equivariant localization, we obtain formulae for the multiplicities m(vI) in the 
duality theorem, and an effective algorithm to find the Schubert expansion from Equa-
tion (3); see Section 4.2. Our algorithms for the coefficients cvI , and for the multiplicities 
m(vI), rely on the restriction of the Schubert classes σvI to the fixed points wJ in G/B

(see Section 2). These equivariant localizations may be calculated using formulae devel-
oped by Andersen, Jantzen, and Soergel [5] and Billey [8]).

Theorem 1.3.

(a) Let I be a connected Dynkin diagram with the standard labelling, see [11], and set 
vI = s1s2 · · · sn. Then,

m(vI) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if I = An,

2n−1 if I = Bn, Cn,

2n−2 if I = Dn,

72 = 23 · 32 if I = E6,

m(vI) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

864 = 25 · 33 if I = E7,

51840 = 27 · 34 · 5 if I = E8,

48 = 24 · 3 if I = F4,

6 = 2 · 3 if I = G2.

(b) Let I1, · · · , Ik be the connected components of a Dynkin diagram I, and let v1, · · · , vk
be any Coxeter elements for I1, · · · , Ik respectively. Then v := v1 · · · vk is a Coxeter 
element for I, and m(v) =

∏
m(vj).

See Theorem 7.6 below. The factorization is related to the exponents of the Lie algebra 
of G, see §7 below, and also the recent paper [25]. Theorem 1.3 generalizes a result of 
Insko [31], who showed that when I = An, m(s1 · · · sn) = 1. More generally, the theorem 
addresses [32, Question 1] by providing an explicit formula for these multiplicities; in 
particular, it disproves the conjecture by Insko and Tymoczko that the multiplicities 
are always 1 or 2 in classical Lie types. The proof of part (a) of Theorem 1.3 utilizes 
equivariant localization, while the proof of part (b) utilizes the stability property of 
Peterson classes explained below. Using parts (a) and (b) concurrently allows us to 
compute m(vI) for some Coxeter element vI in each Dynkin diagram I, and hence allows 
us to construct the dual class ι∗σvI

m(vI) of any Peterson subvariety PI ⊂ P.
Consider I ⊂ ∆, a subset of the Dynkin diagram, and let GI be a semisimple group 

with Dynkin diagram I. Let GI/BI and P(I) denote the flag variety and the Peterson 
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variety of GI respectively, and let SI be the one-dimensional subtorus defined analogously 
to S, and acting on P(I). There is a natural closed embedding i : GI/BI ↪→ G/B, but 
unfortunately there may not be a morphism SI → S which is compatible with this 
embedding. This leads to some technical subtleties explained in Section 6.2. The upshot 
is that there is an algebra isomorphism H∗

S(pt; Q) ≃ H∗
SI

(pt; Q), and induced maps 
H∗

S(G/B; Q) i∗−→ H∗
SI

(GI/BI ; Q) and HSI
∗ (GI/BI ; Q) i∗−→ HS

∗ (G/B; Q). The stability 
theorem, proved in Proposition 6.5 and Theorem 6.6, is the following.

Theorem 1.4 (Stability). (a) i(P(I)) = P ∩ i(GI/BI) = PI , as subsets of G/B.
(b) For J ⊂ I, we have i∗([P(J)]SI ) = [PJ ]S, as classes in HS

∗ (P; Q).
(c) Let j : P(I) ↪→ P be the restriction of i : GI/BI → G/B. For K ⊂ ∆, we have

j∗(pK) =
{
pK if K ⊂ I,

0 otherwise,

as classes in H∗
SI

(P(I); Q).
Furthermore, in the non-equivariant case, the statements in (b) and (c) hold over Z.

The proof of the stability theorem utilizes a common alternate description of the 
Peterson variety, namely

P =
{
gB ∈ G/B

∣∣∣∣∣Ad(g−1)e ∈ b ⊕
⊕

α∈∆
g−α

}
, (4)

where b = Lie(B). In Appendix A, we take the opportunity to present a proof that the 
definitions (1) and (4) are equivalent, a matter of folklore implied by, and implicit in, 
Kostant’s original work [37].
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Conventions. We work over the field of complex numbers. By a variety we mean a 
reduced, irreducible scheme of finite type. Schemes defined as algebraic group orbits, and 
closures of group orbits, are always equipped with the induced reduced scheme structure; 
see, e.g., [46, tag 01IZ].

2. Equivariant (co)homology

Let X be a complex algebraic variety equipped with a left action of a torus T . We 
recall aspects of the T -equivariant homology and cohomology of X. We will use the Borel 
model of equivariant cohomology, and equivariant Borel-Moore homology, following the 
setup in Graham’s paper [24]. We refer to [20, Ch 19], [19, Appendix B], [14, §2.6] for 
more details about cohomology and Borel-Moore homology.

Since we are working with algebraic varieties, our statements and proofs could have 
been written using the language of equivariant Chow groups [17]. For full results, this re-
quires some additional properties of the operational Chow ring of linear varieties proved 
by Totaro [49]. Aware of this technicality, the reader may use the equivariant cycle map 
from [17] to freely swap between the Borel-Moore and Chow theories.

Fix an identification T ∼= (C∗)r and let ET = (C∞ \ 0)r be the universal T -bundle 
with classifying space BT = (P∞)r. The product ET ×X has a right T -action given by 
(e, y).t := (et, t−1y). The action is free, and the orbit space XT := (ET ×X)/T is called 
the Borel mixing space of X. The universal T -bundle ET → BT admits finite dimensional 
approximations ETn → BTn, where ETn = (Cn+1\0)r and BTn := (Pn)r. These induce 
finite dimensional approximations of the Borel mixing space XT,n := (ETn×X)/T , and 
inclusions XT,n1 ⊂ XT,n2 for n1 < n2.

We define the equivariant cohomology ring by H∗
T (X) := H∗(XT ); note that we 

have Hi
T (X) = Hi(XT,n) for sufficiently large n. The equivariant Borel-Moore homology 

groups are defined via a limiting property,

HT
i (X) := HBM

i+2nr(XT,n), for n ≫ 0

where the right hand side is the ordinary Borel-Moore homology. If V ⊂ X is a closed T -
stable subvariety of X of complex dimension d, its fundamental class [V ]T is an element in 
HT

2d(X). The cap product gives the (total) equivariant homology HT
∗ (X) =

⊕
i H

T
i (X)

a graded module structure over the equivariant cohomology ring H∗
T (X).

If X = pt, then H∗
T (pt) = H∗(BT ) is naturally identified with the symmetric algebra 

Sym X(T ) of the character group X(T ) := Hom(T, C∗) of T (written additively). For any 
map S → T of tori, we have a natural map of algebras H∗

T (X) → H∗
S(X), compatible 

with the algebra map H∗
T (pt) → H∗

S(pt) induced by X(T ) → X(S). Taking S to be the 
trivial subgroup in T , we obtain a ring homomorphism H∗

T (X) → H∗(X). (One can 
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show that this map is surjective for spaces with affine pavings in the sense of Lemma 2.1
below; we will not need this fact.)

The morphism XT → BT that projects onto the first factor gives the equivariant 
cohomology H∗

T (X) the structure of a graded algebra over H∗
T (pt). In addition, the cap 

product ∩ endows the equivariant homology HT
∗ (X) with a graded module structure 

over H∗
T (X). Equivalently, there is a compatibility of cap and cup products given by 

(a ∪ b) ∩ c = a ∩ (b ∩ c), for a, b ∈ H∗
T (X), c ∈ HT

∗ (X).
Each irreducible, T -stable, closed subvariety Z ⊂ X of complex dimension k has a 

fundamental class [Z]T ∈ HT
2k(X). If X is smooth and irreducible, then there exists a 

unique (Poincaré dual) class ηZ ∈ H2(dimX−k)
T (X) such that ηZ ∩ [X]T = [Z]T .

Any T -equivariant morphism of T -varieties f : X → Y induces a degree preserving 
pull-back morphism of H∗

T (pt)-algebras f∗ : Hi
T (Y ) → Hi

T (X). For a point x ∈ X fixed 
by the T action, the inclusion ιx : {x} → X induces a localization map ι∗x : H∗

T (X) →
H∗

T ({x}) = H∗
T (pt).

If f is proper then there is a push-forward f∗ : HT
i (X) → HT

i (Y ), defined as follows. 
Let Z ⊂ X be closed, irreducible and T -stable. Then f∗[Z]T = dZ [f(Z)]T if dim f(Z) =
dimZ, where dZ is the generic degree of the restriction f : Z → f(Z), and f∗[Z]T = 0 if 
dim f(Z) < dimZ. The push-forward and pull-back are related by the usual projection 
formula f∗(f∗(a) ∩ c) = a ∩ f∗(c).

An important particular case is when X is complete, thus f : X → pt is proper. For 
a homology class c ∈ HT

∗ (X), we denote by 
∫
X c the class f∗(c) ∈ HT

∗ (pt).1 Recall that 
the equivariant homology HT

∗ (pt) of a point is a free H∗
T (pt)-module with basis [pt]T . 

Therefore we identify H∗
T (pt) = HT

∗ (pt) via the map a 0→ a ∩ [pt]T . Then we may define 
a pairing,

⟨·, ·⟩ : H∗
T (X) ⊗

H∗
T (pt)

HT
∗ (X) → H∗

T (pt); ⟨a, c⟩ :=
∫

X

a ∩ c. (5)

We often abuse notation and for a cohomology class a ∈ H∗
T (X) we write 

∫
X a to mean ∫

X(a ∩ [X]T ).
Following [20, Ex 1.9.1] (see also [24]) we say that a T -variety X admits a T -stable 

affine paving if it admits a filtration X := Xn ⊃ Xn−1 ⊃ . . . by closed T -stable sub-
varieties such that each Xi \Xi−1 is a finite disjoint union of T -invariant varieties Ui,j

isomorphic to affine spaces Ai. The following has been proved by Graham; see [24, 
Prop 2.1].

Lemma 2.1. Assume X admits a T -stable affine paving, with cells Ui,j.

(a) The equivariant homology HT
∗ (X) is a free H∗

T (pt)-module with basis {[Ui,j ]T }.

1 We note that f∗(c) agrees with “integration over the fiber” when X is smooth, justifying the notation.
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(b) If X is complete, the pairing from Equation (5) is perfect, and so we may identify 
H∗

T (X) = HomH∗
T (pt)(HT

∗ (X), H∗
T (pt)).

3. Flag manifolds and Peterson varieties

In this section we recall some basic definitions about flag manifolds, Schubert varieties, 
and Peterson varieties. We mostly follow the setup in [50] and [7], from which we will 
need several important results.

3.1. Flag manifolds and Schubert varieties

Fix a complex semisimple Lie group G, a Borel subgroup B ⊂ G, B− ⊂ G an opposite 
Borel subgroup, and let T := B ∩ B− be a maximal torus. Denote by ∆ the system of 
simple positive roots associated to (G, B, T ) and by Φ+

∆ ⊂ Φ∆ the set of positive roots 
included in the set of all roots. The Weyl group W := NG(T )/T is generated by simple 
reflections si := sαi where αi ∈ ∆. Let ℓ : W → Z≥0 be the length function and w0 the 
longest element in W . Then B− = w0Bw0.

Any subset I ⊂ ∆ determines a Weyl subgroup WI := ⟨si : αi ∈ I⟩ and a cor-
responding standard parabolic subgroup PI . We denote by wI the longest element of 
WI . The flag manifold G/B is a smooth algebraic variety of complex dimension ℓ(w0)
with a transitive action of G given by left multiplication. The flag manifold has a strat-
ification into finitely many B-orbits, respectively B−-orbits, called the Schubert cells: 
X◦

w := BwB/B ≃ Cℓ(w) and Xw,◦ := B−wB/B ≃ Cℓ(w0w); we have

G/B = ⊔
w∈W

X◦
w = ⊔

w∈W

Xw,◦. (6)

The closures Xw := X◦
w and Xw := Xw,◦ are called Schubert varieties and opposite 

Schubert varieties, respectively. The Bruhat order is a partial order on W characterized 
by inclusions of Schubert varieties and opposite Schubert varieties. In particular, Xv ⊂
Xw if and only if v ≤ w, and Xw ⊂ Xv if and only if v ≤ w. Following Lemma 2.1, the 
homology classes {[Xv]T | v ≤ w} form a basis of HT

∗ (Xw), while {[Xv]T |w ≤ v} form a 
basis of HT

∗ (Xw).
The cohomology classes σv ∈ H∗

T (X) Poincaré dual to the [Xv]T , i.e. characterized 
by the equation σv ∩ [G/B]T = [Xv]T , are called Schubert classes. Note that Lemma 2.1
also implies {σv | v ∈ W} is a basis of H∗

T (G/B) as a module over H∗
T (pt). Under the 

pairing in Equation (5), the basis {σv | v ∈ W} is dual to the basis {[Xv]T | v ∈ W}, i.e., 
we have ⟨σv, [Xw]T ⟩ = δv,w.

3.2. The Peterson variety and Peterson cells

The Peterson variety appeared in the unpublished work of Peterson [43], in relation 
to the quantum cohomology of G/B; we refer the reader to [37,45] for details.
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We recall the definition of the Peterson variety. Let g := Lie(G), h := Lie(T ), and 
consider the Cartan decomposition

g = h ⊕
⊕

α∈Φ∆

gα.

For each simple root α ∈ ∆, choose a root vector eα ∈ gα, and let

e :=
∑

α∈∆
eα.

The element e is a regular nilpotent element in the Lie algebra b of B; see [36] or [15, 
Thm 4.1.6]. Denote by Ge ⊂ G the stabilizer of e for the adjoint action of G on g. We 
have Ge = (Ge)◦ × Z(G), where (Ge)◦ is the identity component of Ge, and Z(G) the 
center of G. The identity component (Ge)◦ is a subgroup of the unipotent radical U of 
B, isomorphic to the affine variety Cn, where n := |∆| is the number of simple roots, i.e., 
the rank of G, cf. [36, Cor 5.3]. For instance, if G = SLn(C), then (Ge)◦ is the subgroup 
of upper triangular unipotent matrices with equal entries along each superdiagonal. The 
Peterson variety is defined by

P := Ge.w0B ⊂ G/B. (7)

This is an irreducible subvariety of G/B of dimension |∆|, singular in general.
For any ω ∈ h contained in the coroot lattice, the map ϕω : C → h defined by 

ϕω(z) = zω lifts to a cocharacter exp(ϕω) : C∗ → T . (Here the differential of exp(ϕω)
is equal to ϕω. In complex differential geometry, the map exp(ϕω) intertwines with the 
(non-algebraic) exponential maps exp : C → C∗ and exp : h → T ; the cocharacter 
exp(ϕω) is itself an algebraic map.) This identifies the coroot lattice of h with a subset 
of the cocharacters of T . See, e.g., [23, Ch. 3, Prop. 1.15] (in the algebraic setting), or 
[18, p. 373-4] (in the manifold setting).

We take h =
∑

α∈Φ+
∆
α∨ to be the sum of the positive coroots, and denote by S ⊂ T

the image of the cocharacter corresponding to h. Following [11, Ch 6, Prop 29], we have 
α(h) = 2 for all α ∈ ∆, because h is equal to twice the sum of the fundamental coweights. 
In particular, it follows that α|S = α′|S for any α, α′ ∈ ∆. We set t := α|S ∈ X(S) ⊂
H∗

S(pt).

Example 3.1. Consider G = SLn, and let T ⊂ G be the set of diagonal matrices:

T =

⎧
⎨

⎩

⎛

⎝
z1 0 0
0 . . . 0
0 0 zn

⎞

⎠

∣∣∣∣∣∣
z1 · · · zn = 1

⎫
⎬

⎭ .

The αi, 1 ≤ i ≤ n − 1, given by αi(diag(z1, · · · , zn)) 0→ zi/zi+1, form a set of simple 
roots. The coroot h corresponds to the one-dimensional subtorus S given by
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S =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

zn−1 0 0 0
0 zn−3 0 0
0 0 . . . 0
0 0 0 z−n+1

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
z ∈ C∗

⎫
⎪⎪⎬

⎪⎪⎭
.

The character t of S is the map given by diag(zn−1, zn−3, · · · , z−n+1) 0→ z2.

Remark 3.2. The element t need not be a generator of the ring H∗
S(pt). For example, if 

G = SL2, we have

S =
{(

z 0
0 z−1

) ∣∣∣∣ z ∈ C∗
}
, t :

(
z 0
0 z−1

)
0→ z2.

The character group X(S) is generated by t/2, which is the map
(
z 0
0 z−1

)
0→ z.

However, we always have either H∗
S(pt) = Z[t], or H∗

S(pt) = Z[t/2].

Since [h, eα] = 2eα for each simple root α, we have [h, e] = 2e, from which we observe 
that S normalizes Ge, cf. [37, Theorem 10], resulting in an action of the semidirect 
product S !Ge on the Peterson variety.

The following was proved in classical types by Tymoczko [50, Thm 4.3] and generalized 
to all Lie types by Precup [44].

Proposition 3.3. For I ⊂ ∆, let wI denote the longest element in the Weyl subgroup WI .

(a) The intersection P ∩ BwB/B is nonempty if and only if w = wI for some subset 
I ⊂ ∆.

(b) The set theoretic intersection P◦
I := P ∩ BwIB/B is an affine space of dimension 

|I|. In particular, its closure PI is an irreducible subvariety of XwI .

Some of the details proving part (b) are implicit in [7]. We take the opportunity to 
make these details explicit in Proposition A.1 below. We will refer to P◦

I as a Peterson 
cell; its closure PI ⊂ XwI is an irreducible variety, and the Schubert cell decomposition 
of Schubert varieties yields an affine paving

PI = ⊔
J⊂I

P◦
J .

Following [24, Prop 2.1(a)], the classes {[PI ]S | I ⊂ ∆} form a basis of HS
∗ (P). Observe 

that S ⊂ T is a regular subtorus, thus the fixed point loci for S and T in G/B coincide, 
i.e., (G/B)T = (G/B)S ; see e.g. [30, §24.2, §24.3]. It follows that
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PS = (G/B)S ∩ P = (G/B)T ∩P = {wI : I ⊂ ∆},

where we utilize the usual identification (G/B)T = W .
For I ⊂ ∆, an element v ∈ W is called a Coxeter element for I if v = sα1 · · · sαk for 

some enumeration α1, . . . , αk of I. Recall the following result, cf. [32, Lemma 7]:

Proposition 3.4. Let vI be a Coxeter element for some subset I ⊂ ∆. Then the intersec-
tion XvI ∩PI is the single (possibly non-reduced) point wI .

Proof. The intersection Y := XvI ∩ PI is proper and S-stable. Any fixed point in 
Y S ⊂ PS

I is of the form wJ , for some J ⊂ I. On the other hand, since wJ ∈ XvI , we 
have wJ ≥ vI . Since vI is a Coxeter element for WI , I ⊂ J , and so I = J . Thus Y
contains a unique S-fixed point; hence by [9, Prop 13.5], we have Y = {wI}. !

Corollary 3.5. Let ηI ∈ H∗
S(G/B) be the Poincaré dual of [PI ]S ∈ HS

∗ (G/B), vI a 
Coxeter element for I, and τwI the Poincaré dual of the point class [wI ]S. Then

σvI ∪ ηI = m(vI)τwI and
∫

G/B

σvI ∪ ηI = m(vI),

where m(vI) is the multiplicity of wI in the intersection XvI ∩ PI .

Proof. Observe from Lemma 2.1 that H∗
S(G/B) is torsion-free, and hence the localization 

map H∗
S(G/B) → ⊕

w∈W
H∗

S(w) is injective (over Z); see [22, Cor 1.3.2, Thm 1.6.2] and 

[28, Thm 3.1]. By Proposition 3.4, the only potentially non-zero localization of σvI ∪ηI is 
at wI , and therefore σvI∪ηI = m(vI)τwI for some integer m(vI). Under the specialization 
H∗

S(G/B) → H∗(G/B), the class τwI maps to 1 ∈ H∗(G/B). It now follows from [19, 
Eq (31)] that m(vI) is the multiplicity of the intersection XvI ∩PI . !

In Section 7, we provide a formula for m(vI) based on equivariant localization, and 
compute the value of m(vI) for certain Coxeter elements vI .

4. Poincaré duality and consequences

Let G be a complex semisimple group, and ι : P ↪→ G/B the corresponding Peterson 
variety, as in Section 3. In Theorem 4.3, we construct a basis {pI}I⊂∆ of H∗

S(P) dual 
(up to scaling) to the basis {[PI ]S}I⊂∆ of HS

∗ (P). Theorem 4.3 relates the Schubert 
expansion of a Peterson class [PI ]S to the expansion in the {pI} basis of the pull-backs 
ι∗σw; the latter can be computed using equivariant localization and Gaussian elimination. 
We sketch an example in Section 4.2.
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4.1. Peterson classes and duality

Lemma 4.1. Let I ⊂ ∆, and consider the expansion

ι∗[PI ]S =
∑

v∈W

cvI [Xv]S ∈ HS
∗ (G/B).

Then cvI = 0 unless v ≤ wI .

Proof. By Lemma 2.1, the equivariant homology HS
∗ (XwI ) has a H∗

S(pt)-basis given by 
the fundamental classes [Xv]S , where v ≤ wI . Since PI is a subvariety of XwI , we have 
ι∗[PI ]S =

∑
v≤wI

cvI [Xv]S , for some cvI ∈ H∗
S(pt). !

Lemma 4.2. Let I ⊂ ∆, and consider the expansion

ι∗[PI ]S =
∑

v∈W

cvI [Xv]S ∈ HS
∗ (G/B).

If v is a Coxeter element for J ̸= I, then cvI = 0.

Proof. Suppose v is a Coxeter element for some subset J ⊂ ∆ for which cvI ̸= 0. Following 
Lemma 4.1, we have v ≤ wI , hence J ⊂ I. On the other hand, since the expansion is 
homogeneous, we have |J | = ℓ(v) ≥ dimPI = |I|, and hence J = I. !

Theorem 4.3 (Duality Theorem). Let I, J be subsets of the set of simple roots ∆, and let 
vI be a Coxeter element for I. We have

⟨ι∗σvI , [PJ ]S⟩ = m(vI)δI,J ,

where m(vI) is the multiplicity of the (unique) intersection point of XvI ∩PI . In partic-
ular, m(vI) is a positive integer.

Proof. Consider the Schubert expansion ι∗[PJ ]S =
∑

cvJ [Xv]S . Then

⟨ι∗σvI , [PJ ]S⟩ = ⟨σvI , ι∗[PJ ]S⟩ = cvIJ ,

since the set {σv}v∈W forms a dual basis to the fundamental classes {[Xv]S}v∈W . It 
follows from Lemma 4.2 that cvIJ = 0 for I ̸= J . For J = I, Corollary 3.5 implies

cvII = ⟨σvI , ι∗[PI ]S⟩ =
∫

X

σvI ∪ ηI = m(vI) > 0.

Finally, m(vI) ∈ Z+ because the pairing (5) has values in integral cohomology. !
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We record the following consequence of the Duality theorem.

Corollary 4.4. For each I ⊂ ∆, fix a Coxeter element vI , and set pI := ι∗σvI ∈ H∗
S(P).

(a) The classes 
{

pI
m(vI)

∈ H∗
S(P)

∣∣∣∣ I ⊂ ∆
}

form a H∗
S(pt)-basis of H∗

S(P).

(b) The map ι∗ : HS
∗ (P) → HS

∗ (G/B) is injective.

Proof. By Theorem 4.3, the classes pI

m(vI) are dual to the classes [PI ]S , and part (a) 
follows from Lemma 2.1. For part (b), observe that the pairing

⟨σvJ , ι∗[PI ]S⟩ = m(vI)δI,J ,

along with the linear independence of the σvJ in H∗
S(G/B), implies that the ι∗[PI ]S are 

linearly independent. It follows that the map ι∗ : HS
∗ (P) → HS

∗ (G/B) is injective. !

Remark 4.5. Part (a) of Corollary 4.4 was proved in various generalities, and for partic-
ular choices of Coxeter elements vI , in [16,32,4]. The non-equivariant version of part (b) 
was proved in [32, Thm 2].

We also record the following immediate corollary, which will be utilized in the proof 
of the positivity statement Theorem 5.2.

Corollary 4.6. For each I ⊂ ∆, fix a Coxeter element vI , and set pI := ι∗σvI ∈ H∗
S(P). 

Consider the expansions

ι∗σw =
∑

J⊂∆
bJw pJ , ι∗[PI ]S =

∑

u∈W

cuI [Xu]S .

Then cuI = m(vI)bIu for all u, where m(vI) > 0 is the coefficient from the Duality 
Theorem 4.3.

Proof. Using Theorem 4.3 and the equality ⟨σv, [Xu]S⟩G/B = δu,v, we calculate,

cuI = ⟨σu, ι∗[PI ]S⟩G/B = ⟨ι∗σu, [PI ]S⟩P = m(vI)bIu.

Here the first equality follows from the definition of cuI , the second from the projection 
formula, and the third from Theorem 4.3 together with the definition of bIu. !

4.2. Schubert expansion of the Peterson classes

In their study of certain regular Hessenberg varieties, Abe, Fujita and Zeng [1] found a 
beautiful closed formula for the non-equivariant Schubert expansions of the fundamental 
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classes of these varieties. For the Peterson varieties discussed here, their formula states 
that

ι∗[P] =
∏

α∈Φ+
∆\∆

c1(G×B C−α) ∩ [G/B] ∈ H∗(G/B);

see Cor. 3.9 in [1]. However, since the line bundles G ×B C−α are not globally generated, 
this formula involves cancellations. A manifestly positive formula was recently found by 
Nadeau and Tewari [42], and further investigated by Horiguchi [27], in relation to mixed 
Eulerian numbers. The origins of this approach lie in the realization of the Peterson 
variety as a flat degeneration of a smooth projective toric variety, called the (generalized) 
permutohedral variety; see [1,42]. The permutohedral variety is a regular semisimple 
Hessenberg variety; its cohomology ring has been classically studied e.g. by Klyachko 
[34,35]. In this section we present a different algorithm, which calculates the equivariant 
Schubert expansion of ι∗[P]S . The algorithm is based on Corollary 4.6, and it depends 
on the multiplicities m(vI) for some choice of Coxeter elements vI , I ⊂ ∆. The values 
m(vI) for a particular such choice are computed in Theorem 7.6. It would be interesting 
to utilize this algorithm to extend the formulae from [1,42] to the equivariant setting; 
this will be left for elsewhere.

Proposition 4.7. Fix Coxeter elements vI for each subset I ⊂ ∆, and consider the ma-
trices,

Au,I = ι∗wI
σu, CI,J = ι∗wJ

σvI , MI,J = m(vI)δI,J .

Here A is a |W | × 2|∆| matrix, and C and M are 2|∆| × 2|∆| matrices. The fundamental 
classes [PI ]S and [Xu]S are related by the matrix equation,

([PI ]S)I⊂∆ = (AC−1M)T ([Xu]S)u∈W . (8)

Proof. Consider the commutative diagram,

H∗
S(G/B)

⊕
u∈W

H∗
S(u)

H∗
S(P)

⊕
I⊂∆

H∗
S(wI).

⊕ι∗u

ι∗

⊕ι∗wI

(9)

Let Q be the fraction field of the integral domain H∗
S(pt), and let RQ := R ⊗H∗

S(pt) Q
for any H∗

S(pt)-module R. The map H∗
S(P) →

⊕
I⊂∆

H∗
S(wI) induces an isomorphism 

H∗
S(P)Q ∼−→

⊕
I⊂∆

H∗
S(wI)Q; see [22, Cor 1.3.2, Thm 1.6.2, Thm 6.3]. Observe that H∗

S(P)
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is torsion-free, and is naturally identified as a lattice in the Q-vector space H∗
S(P)Q. Let 

τI denote a generator of H∗
S(wI), and consider the column vectors,

σ = (ι∗σu)u∈W , τ = (τI)I⊂∆ ,

p = (pI)I⊂∆ , q =
(

pI
m(vI)

)

I⊂∆
.

We have the following equalities in H∗
S(P)Q:

p = Mq, σ = Aτ , p = Cτ . (10)

The matrix C is invertible since both {pI}I⊂∆ and {τI}I⊂∆ are bases for H∗
S(P)Q. We 

deduce that σ = AC−1Mq. Equation (8) now follows from Corollary 4.6. !

Remark 4.8. The coefficients Aw,I and CI,J in Proposition 4.7 can be computed by 
composing the localization formula for the T -equivariant Schubert classes (cf. [5,8]) with 
the restriction map X(T ) → X(S) defined by λ 0→ λ|S.

Remark 4.9. The invertibility of the matrix C in Proposition 4.7 can be directly deduced 
from the observation that ι∗wJ

σvI ̸= 0 if and only if I ⊂ J , and hence C is upper triangular 
with respect to the partial order I ≤ J ⇐⇒ I ⊂ J .

Example 4.10. We use Proposition 4.7 to compute the Schubert expansion of [P]S in the 
case ∆ = B2, with v∆ = s1s2. Set

pφ = ι∗σid, p{1} = ι∗σ1, p{2} = ι∗σ2, p{1,2} = ι∗σ12.

Composing the localization formula for Schubert classes (cf. [5,8]) with the restriction 
map X(T ) → X(S), we obtain the S-equivariant localizations of the Schubert classes:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ι∗σid
ι∗σ1
ι∗σ2
ι∗σ12
ι∗σ21
ι∗σ121
ι∗σ212
ι∗σ1212

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
0 t 0 4t
0 0 t 3t
0 0 0 6t2
0 0 0 6t2
0 0 0 6t3
0 0 0 6t3
0 0 0 6t4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎝

τφ
τ1
τ2
τ12

⎞

⎟⎠ . (11)

The 8 × 4 matrix in Equation (11) corresponds to the matrix A in Equation (10), and 
the matrix C is precisely its top 4 ×4 submatrix. The multiplicities m(vI) are computed 
in Theorem 7.6; we have m(vI) = 1 for all I " B2 and m(v∆) = 2, i.e.,
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M =

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

⎞

⎟⎠ .

Applying Equation (8), we obtain

⎛

⎜⎝

ι∗[Pφ]S
ι∗[P{1}]S
ι∗[P{2}]S
ι∗[P]S

⎞

⎟⎠ =

⎛

⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 2 2 2t 2t 2t2

⎞

⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ι∗[Xid]S
ι∗[X1]S
ι∗[X2]S
ι∗[X12]S
ι∗[X21]S
ι∗[X121]S
ι∗[X212]S
ι∗[X1212]S

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In particular, we have ι∗[P]S = 2[X12]S +2[X21]S +2t[X121]S +2t[X212]S +2t2[X1212]S .

5. Positivity

We recall a theorem of Graham [24, Thm. 3.2], which plays a key role in the proof of 
our positivity results, Theorems 5.2 and 5.3.

Theorem 5.1. Let B′ be a connected solvable group with unipotent radical N ′, and let 
T ′ ⊂ B′ be a maximal torus, so that B′ = T ′N ′. Let α1, . . . , αd be the weights of T ′

acting on Lie(N ′). Let X be a scheme with a B′-action, and Y a T ′-stable subvariety of 
X. Then there exist B′-stable subvarieties D1, . . . , Dk of X such that in the equivariant 
homology HT ′

∗ (X),

[Y ]T ′ =
∑

fi[Di]T ′ ,

where each fi ∈ H∗
T ′(pt) is a linear combination of monomials in α1, . . . , αd with non-

negative integer coefficients.

Theorem 5.2. Let I be a subset of ∆, let ι : P ↪→ G/B be the inclusion, and consider the 
Schubert expansion,

ι∗[PI ]S =
∑

v∈W

cvI [Xv]S .

Then cvI ∈ H∗
S(pt) is a polynomial in t with non-negative coefficients.

Proof. We apply Graham’s positivity theorem to the following situation: Y = PI ⊂
X = G/B, T ′ = S, and B′ = SU , where U is the unipotent radical of B. We have 
U ⊂ B′ ⊂ B, and since the U -orbits and B-orbits in G/B coincide, the B′-orbits in G/B

are precisely the Schubert cells X◦
v .



18 R. Goldin et al. / Advances in Mathematics 455 (2024) 109879

Observe that the restriction map X(T ) → X(S) is given by α 0→ ht(α)t for α ∈ Φ+
∆, 

where ht(α) is the height of α. It follows that the weights for the S-action on Lie(U)
are positive integer multiples of t. It follows from Theorem 5.1 that each cvI ∈ H∗

S(pt) is 
a polynomial in t with non-negative coefficients. !

Theorem 5.3. Let pI := ι∗σvI ∈ H∗
S(P) for some Coxeter element vI , and consider the 

multiplication in H∗
S(P),

pI · pJ =
∑

K⊂∆
cKI,JpK .

The structure constants cKI,J ∈ H∗
S(pt) are polynomials in t with non-negative coefficients.

Proof. By Graham’s equivariant positivity theorem [24, Prop 2.2, Thm 3.2], the structure 
constants cwu,v in the expansion

σu · σv =
∑

cwu,vσw ∈ H∗
T (G/B)

are polynomials in the T -weights of Lie(U) with non-negative coefficients. Then

pI · pJ = ι∗σvI · ι∗σvJ =
∑

dwu,vι
∗σw,

where dwu,v is the image of cwu,v under the restriction map X(T ) → X(S); in particular, 
dwu,v is a polynomial in t with non-negative coefficients. The result now follows from 
Theorem 5.2 and Corollary 4.6, since the classes ι∗σw expand into the classes pK with 
coefficients having the same positivity property as the dwu,v. !

Remark 5.4. In the recent preprint [21], Goldin and Gorbutt found a manifestly positive 
formula for the coefficients cKI,J , in Lie type A, and for a particular choice of the Coxeter 
elements vI . While this paper was in preparation, a different combinatorial model, in the 
non-equivariant cohomology, appeared in the preprint [4] by Abe, Horiguchi, Kuwata 
and Zeng. They also provide a geometric proof of positivity (cf. Prop. 4.15 in [4]), which 
utilizes a ‘Giambelli formula’, writing the classes pI in terms of products of pull-backs 
of the (effective) line bundles GLn ×B C−ωi associated to the fundamental weights ωi. 
This argument should extend to arbitrary Lie type if one utilizes instead the more gen-
eral equivariant Giambelli formulae obtained by Drellich [16], specialized to ordinary 
cohomology.

6. Stability properties

In this section, we utilize a common alternate construction of the Peterson variety 
in order to prove a stability property of Peterson varieties. For each finite-type Dynkin 
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diagram ∆, we construct a variety P(∆) inside the flag manifold F l(∆) which is isomor-
phic to the Peterson variety P corresponding to any group G whose Dynkin diagram is 
∆. The equality P(∆) = P is well-known to experts; in Appendix A, we present a proof 
following Kostant [37].

For I ⊂ ∆, we show that there is a natural inclusion P(I) ↪→ P(∆) identifying 
P(I) with the Peterson cell closure PI . This implies that the fundamental classes [PK ]S
and the cohomology classes pK are stable for the inclusion P(I) ↪→ P(∆), and that the 
Peterson Schubert varieties of [32] are simply Peterson varieties corresponding to smaller 
groups.

6.1. The flag manifold of a Dynkin diagram

Let Φ∆ (resp. Φ+
∆, W∆) denote the root system (resp. positive roots, Weyl group) 

corresponding to a finite-type Dynkin diagram ∆. Following [48], let g∆ be the canonical 
complex semisimple Lie algebra associated to ∆. Recall that g∆ comes with elements 
{eα, hα}α∈Φ∆ , such that the hα span a Cartan subalgebra h∆ of g∆, and the (eα)α∈Φ∆

form a Chevalley system for (g∆, h∆); see [12, Ch 7, §2]. We denote by b∆ (resp. b−∆) the 
Borel subalgebra of g∆ spanned by h∆ and the set 

{
eα

∣∣α ∈ Φ+
∆
}

(resp. 
{
eα

∣∣α ∈ Φ−
∆
}
).

We fix a connected Lie group G with Lie(G) = g∆. The adjoint action of G on g∆
induces an action on the Grassmannian Gr(dim b∆, g∆). The orbit of b∆ is closed, and 
it gives the flag variety F l(∆); see [14, §3.1]. The Borel subalgebras of g are conjugate 
under the adjoint action giving the following description of the flag variety:

F l(∆) = {b ⊂ g∆ | b a Borel subalgebra of g∆} . (12)

The stabilizer of b∆ in G is the Borel subgroup B ⊂ G satisfying b∆ = Lie(B), hence 
we have the usual G-equivariant identification,

ϕ : G/B
∼→ F l(∆). (13)

For I ⊂ ∆, the subalgebra of g∆ spanned by {eα, hα}α∈ΦI is precisely the Lie algebra gI
associated to the Dynkin diagram I. We have hI = h ∩ gI and bI = b∆ ∩ gI . Let TI , BI , 
and GI be the connected subgroups of G corresponding to hI , bI and gI respectively. 
The induced map GI/BI → G/B corresponds to an embedding F l(I) → F l(∆) via 
Equation (13). In Equation (14), we give a characterization of this embedding in terms 
of Equation (12).

Lemma 6.1. If u ⊂ g∆ is a |Φ+
∆|-dimensional subalgebra containing only nilpotent ele-

ments, then its normalizer N(u) = {x ∈ g | ad(x)u ⊂ u} is a Borel subalgebra of g∆.

Proof. Following [12, p. 162, Cor 2], every subalgebra u containing only nilpotent ele-
ments is contained in some Borel subalgebra b, and further, u ⊂ [b, b] [12, p. 91, Prop 
5(b)]. Comparing dimensions, we deduce that u = [b, b], and hence N(u) = b. !
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Let b′I be any Borel subalgebra of gI . Observe that vI =
⊕

α∈Φ+
∆\Φ+

I

gα is gI -stable, 

and hence it is an ideal in the |Φ+
∆|-dimensional subalgebra [b′I , b′I ] ⊕ vI . By [10, p. 71, 

Lemma 1], we see that [b′I , b′I ] ⊕ vI is a |Φ+
∆|-dimensional subalgebra of g∆ containing 

only nilpotent elements. Following Lemma 6.1, we see that N([b′I , b′I ] ⊕ vI) is a Borel 
subalgebra of g∆. Hence we have an embedding,

i : F l(I) → F l(∆), b′I 0→ N([b′I , b′I ] ⊕ vI). (14)

The embedding i : F l(I) → F l(∆) is GI -equivariant, and sends bI to b∆. It follows 
that under the identifications F l(I) = GI/BI and F l(∆) = G/B of Equation (13), the 
map i is precisely the map GI/BI → G/B induced by the inclusion GI ↪→ G; observe 
that BI = B ∩GI follows from, e.g., [9, §11.2, Corollary and Thm. 11.16].

We will say that a map of Lie groups F : G1 → G2 lifts a Lie algebra map f : g1 → g2
if Lie(Gi) = gi for i = 1, 2, and f is the differential of F at the identity.

Remark 6.2. The inclusion i : F l(I) → F l(∆) is f -equivariant for any map f : G′
I → G

lifting the inclusion gI ↪→ g∆.

Lemma 6.3. Fix w ∈ WI , and let b′w = hI ⊕
⊕

α∈Φ+
I

gw(α), and bw = h∆⊕
⊕

α∈Φ+
∆

gw(α). 
Consider the Schubert varieties

XI
w = Ad(BI)b′w ⊂ F l(I) and Xw = Ad(B)bw ⊂ F l(∆).

Then i(b′w) = bw and i(XI
w) = Xw. We view the XI

w as B-varieties via this identification. 
Consider the Schubert classes σw ∈ H∗

T (F l(∆)) and σI
w ∈ H∗

T (F l(I)). We have

i∗[XI
w]T = [Xw]T , i∗σw = σI

w.

Proof. Since w ∈ WI , we have w(Φ+
∆\Φ+

I ) = Φ+
∆\Φ+

I , and hence
⊕

α∈Φ+
∆

gw(α) = vI ⊕
⊕

α∈Φ+
I

gw(α) = [b′w, b′w] ⊕ vI .

It follows that i(b′w) = bw. Next, since BI ⊂ B, we have i(XI
w) ⊂ Xw. Further, both 

varieties are irreducible of dimension l(w), hence they are equal. Consequently, we have 
i∗[XI

w]T = [Xw]T ; since the Schubert classes σw (resp. σI
w) are dual to the fundamental 

classes [Xw]T (resp. [XI
w]T ), we further obtain i∗σw = σI

w. !

6.2. The Peterson variety

Given a Borel subalgebra b ⊂ g∆, let h be a Cartan subalgebra of b, let Φh denote 
the root system of (g∆, h), and let ∆b ⊂ Φh be the set of simple roots for which b is the 
Borel subalgebra corresponding to the positive roots. We define
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H(b) = b ⊕
⊕

α∈∆b

g−α,h (15)

where gα,h is the root space corresponding to α ∈ h∗.
Observe that the subspace H(b) is independent of the choice of h. Indeed, any two 

Cartan subgroups h and h′ of b are conjugate via an inner automorphism of b [12, 
Ch 7, §3, Prop 5]. Since H(b) is stable under the adjoint action of b, the automorphism 
preserves H(b). (Alternatively, H(b) = [u, u]⊥, where u is the nilpotent radical of b, and 
⊥ is taken with respect to the Killing form.)

Definition 6.4. Let e :=
∑

α∈∆ eα. The Peterson variety P(∆) is defined by

P(∆) := {b ∈ F l(∆) | e ∈ H(b)} .

We recall that e is a regular nilpotent element of g∆. Under the G-equivariant isomor-
phism G/B

∼→ F l(∆) from Equation (13) we have

P(∆) = {gB ∈ G/B | e ∈ H(Ad(g)b∆)}

=
{
gB ∈ G/B

∣∣∣∣∣Ad(g−1)e ∈ H(b∆) = b∆ ⊕
⊕

α∈∆
Ce−α

}
.

(16)

Let G, GI , and φ : GI → G be as in Section 6.1, and let SI ⊂ TI be the one-
dimensional torus corresponding to hI =

∑

α∈Φ+
I

α∨.

Proposition 6.5. Consider the map i : F l(I) ↪→ F l(∆) from Equation (14). Then 
i(P(I)) = PI , as algebraic varieties. Furthermore, PI is also equal to the set theoretic 
intersection P(∆) ∩ F l(I).

Proof. Let eI =
∑

α∈I eα and eI =
∑

α∈∆\I eα, so that e = eI + eI . Recall that

P(I) = {b′I ∈ F l(I) | eI ∈ H(b′I)} .

Consider b′I ∈ F l(I), and set i(b′I) = b′. We see from Equations (14) and (15) that

H(b′I) ⊕ vI ⊂ H(b′).

Suppose b′I ∈ P(I). We have eI ∈ vI , and hence

eI ∈ H(b′I) =⇒ e = eI + eI ∈ H(b′I) ⊕ vI ⊂ H(b′) =⇒ b′ ∈ P(∆).

We deduce that i(P(I)) ⊂ P(∆).
Using the natural basis {eα, hα}α∈Φ∆ for g∆, and its sub-basis of gI , consider the 

gI -equivariant projection pr : g∆ → gI defined by:
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pr(eα) =
{
eα if α ∈ ΦI ,

0 otherwise.
pr(hα) =

{
hα if α ∈ ΦI ,

0 otherwise.

Now, suppose b′ ∈ P(∆). Then e ∈ H(b′), and hence

eI = pr(e) ∈ pr(H(b′)) = H(b′I).

It follows that F l(I) ∩ P(∆) = P(I). The equality P(I) = PI is a consequence of the 
observation that F l(I) = XwI , and the irreducibility of P(I); see Lemma A.3. !

We will denote by j : P(I) → P(∆) the inclusion induced by restricting i to P(I). 
In order to discuss stability for Peterson classes, we first need to construct algebra ho-
momorphisms H∗

S(F l(∆);Q) → H∗
SI

(F l(I);Q), compatible with restrictions to Peterson 
subvarieties. To this end, we replace SI and S by a C∗ ‘parameterizing’ (not necessarily 
injectively) these tori via the defining cocharacters hI : C∗ → SI and h : C∗ → S. This 
C∗ acts on F l(I), respectively on F l(∆), via its image SI ⊂ TI and S ⊂ T . The embed-
ding gI → g is C∗-equivariant, and hence so is the embedding F l(I) → F l(∆) described 
in (14). These facts are summarized in the diagram below. The question marks signify 
that a map may not exist; see Remark 6.7 below.

C∗

SI S

F l(I) F l(∆)

hI h

??

The cocharacter h induces an isomorphism Lie(C∗) → Lie(S), and hence a ring 
isomorphism H∗

S(pt; Q) → H∗
C∗(pt; Q). (In general the corresponding map over integer 

coefficients, H∗
S(pt; Z) → H∗

C∗(pt; Z), may not be an isomorphism.) The identity map 
F l(∆) → F l(∆) is equivariant with respect to the cocharacter h : C∗ → S, therefore 
by functoriality we have induced isomorphisms H∗

S(F l(∆); Q) → H∗
C∗(F l(∆); Q) and 

HC∗

∗ (F l(∆); Q) → HS
∗ (F l(∆); Q). Further, since P(∆) is S-stable, it inherits a C∗-

action through h, giving isomorphisms

H∗
S(P(∆);Q) ∼→ H∗

C∗(P(∆);Q) and HC∗

∗ (P(∆);Q) ∼→ HS
∗ (P(∆);Q).

All these isomorphisms are natural with respect to the closed embedding P(∆) ⊂ F l(∆). 
A similar discussion for the cocharacter hI yields isomorphisms

H∗
SI

(P(I);Q) ∼→ H∗
C∗(P(I);Q) and HC∗

∗ (P(I);Q) ∼→ HSI
∗ (P(I);Q),

natural with respect to P(I) ⊂ F l(I). Consequently, the C∗-equivariant inclusion j :
P(I) → P(∆) yields a pullback map,
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H∗
S(F l(∆);Q) → H∗

SI
(F l(I);Q)

compatible with the algebra isomorphism H∗
S(pt; Q) → H∗

SI
(pt; Q), and we obtain a 

commutative diagram,

H∗
S(P(∆);Q) H∗

SI
(P(I);Q)

H∗
C∗(P(∆);Q) H∗

C∗(P(I);Q).

j∗

∼= ∼= (17)

In a similar fashion, we also obtain a pushforward j∗ : HSI
∗ (P(I); Q) → HS

∗ (P(∆); Q).
The following is the main result of this section.

Theorem 6.6. Consider the map i : F l(I) ↪→ F l(∆) from Equation (14).

(a) For J ⊂ I, we have i∗[PJ ]SI = [PJ ]S in HS
∗ (F l(∆); Q).

(b) Let j∗ : H∗
S(P(∆); Q) → H∗

SI
(P(I); Q) denote the pullback induced from the inclu-

sion P(I) ↪→ P(∆). For K ⊂ ∆, we have

j∗pK =
{
pK if K ⊂ I,

0 otherwise.

In the non-equivariant case, the equalities in (a) and (b) hold with integral coefficients.

Proof. For J ⊂ I ⊂ ∆, the inclusions F l(J) i′

↪→ F l(I) i
↪→ F l(∆) are C∗-equivariant 

for the action given by the cocharacters hJ , hI and h, respectively. By Proposition 6.5, 
we have i′(P(J)) = PJ ⊂ P(I) and i(i′(P(J))) = PJ ⊂ P(∆), and consequently 
[PJ ]C∗ = i∗(i′∗([P(J)]C∗)) = i∗([PJ ]C∗) in HC∗

∗ (F l(∆)). Then part (a) follows because 
the C∗-equivariance may be replaced by the SI , respectively S-equivariance, as explained 
above. Part (b) follows from Lemma 6.3 and the commutativity of the diagram,

P(I) P(∆)

F l(I) F l(∆)

j

ι ι

i

utilizing again that all maps are C∗-equivariant.
In the non-equivariant case, all (co)homology morphisms are defined over Z, and the 

classes [PI ] and pI are integral, by their definition. This finishes the proof. !

Remark 6.7. The reader may wonder whether an algebra map H∗
S(F l(∆)) → H∗

SI
(F l(I))

may be directly constructed from the inclusion i : F l(I) → F l(∆), equivariant with 
respect to a map ϕI : SI → S. The requirement that i is ϕI -equivariant implies that 
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the differential dϕI : Lie(SI) → Lie(S) must send hI 0→ h. (Note that this is not the 
restriction of the natural map Lie(TI) ↪→ Lie(T ).) The existence of a lift SI → S of 
this Lie algebra map cannot be guaranteed. For instance, consider the inclusion GI :=
SL3 ⊂ G := SL4 given by the natural embedding of Dynkin diagrams A2 ⊂ A3. The 
tori SI and S are the images of cocharacters

hI(z) =

⎛

⎝
z2 0 0
0 1 0
0 0 z−2

⎞

⎠ and h(z) =

⎛

⎜⎝

z3 0 0 0
0 z 0 0
0 0 z−1 0
0 0 0 z−3

⎞

⎟⎠ ,

respectively. In this case there is no group homomorphism ϕI : SI → S satisfying 
ϕI(hI(z)) = h(z).

Corollary 6.8. Let I ⊂ ∆ and assume that the map Lie(SI) → Lie(S) sending hI 0→ h

lifts to a map ϕI : SI → S. Then the push-forward and pull-back maps

j∗ : H∗
S(P(∆)) → H∗

SI
(P(I)) and j∗ : HSI

∗ (P(I)) → HS
∗ (P(∆))

may be defined with Z coefficients. In particular, the statements in Theorem 6.6 also 
hold over Z.

Proof. The claim follows because the GI -equivariant map i : F l(I) → F l(∆) from (14)
restricts to the ϕI -equivariant map j : P(I) → P(∆). Then j∗ and j∗ may be defined 
over Z. !

Remark 6.9. The results of this section can be extended to the case of reductive groups 
G and a one-dimensional torus S ⊂ T satisfying α|S = β|S for all simple roots α, β. 
For G semisimple, there is a unique S ⊂ T satisfying this condition. For an arbitrary 
reductive group G, this may not determine S uniquely.

It is common in the literature on type A Peterson varieties to use the group 
G = GLn and the one-dimensional torus S = diag(zn, zn−1, . . . , z). In this case, we 
have an identification between the one dimensional subtori of GLn and GLn+1 given by 
diag(zn, zn−1, . . . , z) 0→ diag(zn+1, zn, . . . , z). Then the diagram in (17), and hence the 
statements in Theorem 6.6, hold over Z.

7. Intersection multiplicities

Different choices of Coxeter elements vI lead to different bases {pI = ι∗σvI} for 
H∗

S(P; Q). By Theorem 4.3, the transition matrix between two such bases {pI} and {p′I}
is diagonal, with entries given by ratios

m(vI)
m(v′I)

= ⟨pI , [PI ]S⟩
⟨p′I , [PI ]S⟩

.
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Table 1
The exponents of Dynkin Diagrams; see [13, Ch. 10].

Diagram Exponents Diagram Exponents
An 1, 2, · · · , n F4 1, 5, 7, 11
Bn, Cn 1, 3, · · · , 2n − 1 E6 1, 4, 5, 7, 8, 11
Dn 1, 3, · · · , 2n − 3, n − 1 E7 1, 5, 7, 9, 11, 13, 17
G2 1, 5 E8 1, 7, 11, 13, 17, 19, 23, 29

It is natural to ask whether there are choices for the Coxeter elements vI for which 
m(vI) = 1, and more generally, to ask for formulae for the m(vI). In Proposition 7.3, we 
give a formula for m(vI) in terms of the localization of the Schubert variety XvI at the 
point wI , and in Theorem 7.6, we use this formula to compute m(vI) for certain Coxeter 
elements vI . Theorem 7.6 settles Question 1 of [32] for all classical types. As a further 
application of Proposition 7.3(b), we show in Example 7.4 that not all choices of vI lead 
to m(vI) = 1 in type A, and in Example 7.5 that for I ∈ {B2, C2}, there is no Coxeter 
element vI for which m(vI) = 1.

7.1. The exponents of a Dynkin diagram

Let ∆ be a Dynkin diagram with n nodes. The exponents m1, · · · , mn of ∆ are 
fundamental invariants, appearing in many contexts. We will utilize the following two 
characterizations found in [13, Ch. 10]; see also [36]:

(1) Let g be the Lie algebra with Dynkin diagram ∆, and let {e, f, h} be an sl2-triple in 
g, such that e is a regular nilpotent element in g; see [40,15]. The sl2-decomposition 
of g is precisely ⊕V (2mi), where V (k) denotes the irreducible finite dimensional 
sl2-representation with highest weight k.

(2) Let ai be the number of roots of height i in Φ+
∆. Then (a1, · · · , ak) is a partition, 

and the conjugate partition is precisely (m1, · · · , mn).

Throughout this section, we will denote by m1, · · · , mn, the exponents of ∆.

Lemma 7.1. The weights for the S-action on Lie(Ge) are precisely m1t, · · · , mnt.

Proof. Recall that S ⊂ T corresponds to the cocharacter h satisfying α(h) = 2 for all 
α ∈ ∆, and that [h, e] = 2e. Identifying X(S) as a lattice in Lie(S)∗, we view t as an 
element of Lie(S)∗. Let ϖ ∈ Lie(S)∗ be the fundamental weight dual to h, i.e., given 
by ϖ(h) = 1. Comparing the weights of the h-action and S-action on e, we deduce that 
t = 2ϖ.

Consider now an sl2-triple in g, with e (resp. h) as the nilpositive (resp. neutral) 
element. Since e is a principal nilpotent element of g, the decomposition of g as an 
sl2-representation is given by g = ⊕V (2miϖ) = ⊕V (mit). Now, simply observe that

Lie(Ge) = {x ∈ Lie(U) | [e, x] = 0} = ker(ad(e))
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is spanned by the highest weight vectors in g, whose weights are precisely m1t, · · · ,
mnt. !

Lemma 7.2. The S-equivariant Euler class of the tangent space TwIF l(I) is (
∏

mi!) tN , 
where N = dimF l(I).

Proof. Observe that the map X(T ) → X(S) is given by α 0→ t, for all α ∈ ∆. Conse-
quently, the T -weight space gα, for α ∈ Φ+

I , is an S-weight space of weight ht(α)t. The 
tangent space at wI admits a T -decomposition,

TwI (G/B) =
⊕

α∈Φ+
I

gα;

hence the S-equivariant Euler class of TwI (G/B) is ta1(2t)a2 . . . (kt)ak , where ai is the 
number of roots of height i in Φ+

I . Following Section 7.1, the partition (a1, . . . , ak) is 
conjugate to (m1, . . . , mn); consequently, the S-equivariant Euler class of TwI (G/B) is 
precisely m1! m2! · · ·mn! tN . !

We are now ready to calculate the multiplicities m(vI) using the map in cohomology 
obtained by restricting to the fixed point set.

Proposition 7.3. Let ι∗w : H∗
S(G/B) → H∗

S(w) be the map induced by the inclusion 
wB/B ↪→ G/B. Define b ∈ Z by ι∗wI

σvI = btn.

(a) We have m(vI) =
b

m1 · . . . ·mn
.

(b) Suppose XvI is smooth at wI . Let {β1, · · · , βn} =
{
α ∈ Φ+

I

∣∣ sα ̸≤ vIwI

}
. Then

m(vI) = ht(β1) · . . . · ht(βn)
m1 · . . . ·mn

.

Proof. Recall from Corollary 3.5 that

σvI ∪ ηI = m(vI)τwI , (18)

where ηI and τwI are Poincaré dual to [PI ]S and [wI ]S , respectively, in H∗
S(G/B).

We restrict both sides to wI under the map ι∗wI
: H∗

S(G/B) → H∗
S(wI). By The-

orem 6.6, we may assume ∆ = I, so that the tangent space TwIPI = Lie(Ge)
has S-weights m1t, · · · , mnt as described in Lemma 7.1. Following Proposition A.1
and Lemma 7.2, we see that the S-equivariant Euler class at wI of the normal bun-
dle of P is m1!m2! · . . . ·mn!tN

m1m2 · . . . ·mntn
. Applying ι∗wI

to both sides of Equation (18) yields

m1!m2! · . . . ·mn!tN
m1m2 · . . . ·mntn

ι∗wI
σvI = m(vI)ι∗wI

τwI .
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Using Lemma 7.2, we have ι∗wI
τwI = m1!m2! · · ·mn!tN , and part (a) follows.

For part (b), since XvI is smooth at wI , the normal space of XvI at wI is spanned by
{
gα

∣∣α ∈ Φ+
I , sαwI ̸≥ vI

}
=

{
gα

∣∣α ∈ Φ+
I , sα ̸≤ vIwI

}
;

see [38, Cor 12.1.10]. Part (b) now follows from (a), along with the observation that the 
map X(T ) → X(S) is given by β 0→ ht(β)t. !

Example 7.4. Let I = A3, and vI = s1s3s2. Then m(vI) = 2.

Example 7.5. For I ∈ {B2, C2}, we have m(vI) = 2 for every Coxeter element vI .

In [32, Question 1], Insko and Tymoczko conjecture that m(vI) = 1 for certain Coxeter 
elements, when I is contained in some sub-diagram of type A, and that m(vI) = 2
otherwise. As an application of Proposition 7.3, we compute m(vI) for one Coxeter 
element in each Dynkin diagram; this formula proves their conjecture in type A, and 
disproves it in other cases.

Theorem 7.6.

(a) Let I be a connected Dynkin diagram with the standard labelling (see [11]), and set 
vI = s1s2 · · · sn. Then,

m(vI) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if I = An,

2n−1 if I = Bn, Cn,

2n−2 if I = Dn,

72 = 23 · 32 if I = E6,

m(vI) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

864 = 25 · 33 if I = E7,

51840 = 27 · 34 · 5 if I = E8,

48 = 24 · 3 if I = F4,

6 = 2 · 3 if I = G2.

(b) Let I1, · · · , Ik be the connected components of a Dynkin diagram I, and let v1, · · · , vk
be Coxeter elements for I1, · · · , Ik respectively. Then v := v1 · · · vk is a Coxeter 
element for I, and m(v) =

k∏
j=1

m(vj).

Proof of Theorem 7.6. If I is a diagram of classical type, the variety XvI is smooth at 
wI , cf. [32, Thm 3]. Consequently, we can use Proposition 7.3(b) to compute m(vI). We 
show the details of the calculations in Appendix B. For the exceptional cases, a computer 
calculation suffices: we use the localization formula (cf. [5,8]) to compute ι∗wI

σvI , and 
apply Proposition 7.3(a).

Following Theorem 6.6, we may assume ∆ = I. The integer m(v) is the multiplicity 
of the intersection of Xv with P. We have

F l(I) =
∏

F l(Ij), Xv =
∏

Xvj , P(I) =
∏

P(Ij),
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and hence the multiplicity m(v) is the product of the multiplicities m(vj). !

Remark 7.7. We conjecture for all Coxeter elements vI a type-independent formula for 
the intersection multiplicity, namely:

m(vI) = |R(vI)||WI |
|I|! det(CI)

= R(vI)
∏

α∈I

aα. (19)

Here R(vI) is the set of reduced expressions for vI , WI is the Weyl group of I, CI is 
the Cartan matrix of the Dynkin diagram I, and the integers aα are the coefficients of 
the highest root θI =

∑
α∈I aαα of I. The second equality follows from [11, p. 297]. For 

the Coxeter elements in Theorem 7.6, we have verified this formula with type-by-type 
calculations. For a type-independent proof, see [25].

Remark 7.8. The formula m(vI) = 1 for I = An was first obtained by Insko in [31], who 
proved that the scheme-theoretic intersection XvI ∩ PI is reduced.

Corollary 7.9. Suppose I is contained in some sub-diagram J of type A, and let v be the 
Coxeter element of I obtained by multiplying the simple reflections in increasing order 
(for the standard type A labelling of nodes in J). Then m(v) = 1.

Proof. Observe that each connected component Ij ⊂ I is of type A. Let vj be the Coxeter 
element of Ij obtained by multiplying the simple reflections in increasing order (for the 
standard type A labelling of nodes in Ij), so that v =

∏
vj . Following Theorem 7.6, we 

have m(vj) = 1, and m(v) =
∏

m(vj) = 1. !

Appendix A. Two definitions of the Peterson variety

In this section we recall the affine paving of the Peterson variety (Appendix A.1), and 
we show in Proposition A.4 that the two definitions of the Peterson variety,

P := Ge.w0B ,

P(∆) :=
{
gB ∈ G/B

∣∣∣∣∣Ad(g−1)e ∈ Lie(B) ⊕
⊕

α∈∆
Ce−α

}
,

(20)

agree. These results are well-known to experts, but either some statements are only im-
plicitly present in the literature, or we present slightly different proofs. A key point is the 
irreducibility of P(∆), which we prove utilizing results of Kostant [37]. We also present in 
Remark A.5 an alternate proof following [6,44,1], as explained to us by Bălibanu. Their 
arguments extend to the wider setting of regular Hessenberg varieties.



R. Goldin et al. / Advances in Mathematics 455 (2024) 109879 29

A.1. Paving by affines

For I ⊂ ∆, let P(I)◦ be the Peterson cell, P(I)◦ = P(I)\ ∪J!I P(J). Let UI be the 
unipotent Lie group corresponding to the Dynkin diagram I, and let AI be the centralizer 
of eI in UI ; see [48].

The following proposition was proved in various cases by Tymoczko [50, Theorem 4.3]
and Bălibanu [7, Section 6]. Following the exposition in [7], we recall the main steps in 
the proof.

Proposition A.1.

(a) The group AI acts transitively and faithfully on P(I)◦.
(b) P(∆) = ⊔

I⊂∆
P(I)◦ is a paving by affines.

(c) The intersection P(∆) ∩ X◦
w is nonempty if and only if w = wI for some subset 

I ⊂ ∆.

Proof. Following [7, Prop 6.3], we have P(I)◦ = AIwIB/B, i.e., AI acts transitively 
on P(I)◦. Further, UI acts faithfully on the Schubert cell X◦

wI
, and hence the action of 

AI ⊂ UI is faithful at the point wI . Next, observe that P(I)◦ is a principal space for 
AI , hence is an affine space. Finally, the observation P(I)◦ ⊂ X◦

wI
, along with part (b) 

implies that P(∆) ∩X◦
w is empty unless w = wI for some I. !

A.2. Equivalence of two definitions of the Peterson variety

Lemma A.2. ([37]) The variety P(∆) is locally irreducible at the point 1B.

Proof. Let U− be the unipotent radical of the opposite Borel subgroup B−, and let 
N be the variety of nilpotent elements in g. Consider the map η : U− → g given by 
u 0→ Ad(u−1)e. Following [37, Thm. 17], the map η induces an isomorphism,

η : U− ∼→ (e + b−) ∩N ,

where b− = Lie(B−). Recall that the U−-orbit of 1B is an open set (namely the opposite 
Schubert cell) in G/B. Hence Z := P(∆) ∩ U−B/B is an open neighborhood of 1B in 
P(∆), and it suffices to show that Z is irreducible. Let f =

⊕
α∈∆

g−α, and let N reg denote 

the set of regular nilpotent elements in g. Since the intersection U− ∩ B is trivial, it 
follows that Z = η−1(b ⊕ f). Then

Z = η−1(b ⊕ f) ∼= (b ⊕ f) ∩ (e + b−) ∩N

= (e + h + f) ∩N = (e + h + f) ∩N reg,
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where the last equality is from [37, §3.2]. The result now follows from the irreducibility 
of (e + h + f) ∩N reg, cf. [37, Thm. 6]. !

Lemma A.3. The variety P(∆) is irreducible.

Proof. Let Y be an irreducible component of P(∆). Recall from Appendix A.1 that the 
(connected) group A∆ = StabU (e) acts on P(∆), hence it acts on Y . Since Y is a closed 
(hence projective) subvariety of G/B and since A∆ is solvable, Y admits an A∆-fixed 
point by [9, Thm.10.4]. This point must necessarily be 1B, as this is the unique A∆-
fixed point in G/B. In other words, every irreducible component of P(∆) contains 1B; 
the irreducibility of P(∆) now follows from the local irreducibility of P(∆) at 1B; see 
Lemma A.2. !

Proposition A.4. The two definitions of the Peterson variety in Equation (20) agree, i.e., 
P = P(∆).

Proof. Observe that Ge = A∆ × Z(G), where Z(G) is the center of G, cf. [37, p. 9]. 
Since Z(G) ⊂ B, we have an equality A∆.w0B = Ge.w0B ⊂ P ∩ P(∆). It follows from 
Proposition A.1 that Ge.w0B is an open subset of P(∆), and since P(∆) is irreducible 
by Lemma A.3, P = P(∆). !

Remark A.5. We recall an alternate proof of the irreducibility of the variety P(∆), 
following Precup [44, Cor 14] and [6, Lemma 7.1], as explained to us by Bălibanu.

Let H = b ⊕ (⊕α∈∆g−α), and consider the variety Z = G ×B H, equipped with the 
map Z → g given by (g, x) 0→ Ad(g)x. For x a regular semisimple element of g, the 
fiber Zx has dimension |∆|; see [44, Cor 3]. Since regular semisimple elements are dense 
in g, it follows from [41, Ch. 1, §8, Thms. 2, 3] that each irreducible component of the 
fiber Ze = P(∆) has dimension greater than or equal to |∆|, and hence P(∆) is pure-
dimensional. Following [20, §1.5], the fundamental classes of the irreducible components 
of P(∆) freely generate the top Chow group of P(∆). Since there is a unique top-
dimensional cell in the affine paving of Proposition A.1(b), it follows that P(∆) has a 
unique irreducible component.

Appendix B. Intersection multiplicities for classical diagrams

We present here the details of our calculation in Theorem 7.6 of the intersection 
multiplicities m(vI) for classical Dynkin diagrams.

B.1. Type A

Let V be a vector space with orthonormal basis ϵ1, · · · , ϵn. The vectors {ϵi − ϵj}
form a root system with Dynkin diagram An−1. A choice of simple roots is αi = ϵi −
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ϵi+1 for 1 ≤ i < n, and the Weyl group is naturally identified with the symmetric 
group on {ϵ1, · · · , ϵn}. We calculate vIwI = [1, n, · · · , 2], and 

{
α ∈ Φ+

I

∣∣ sα ̸≤ vIwI

}
=

{ϵ1 − ϵi | 2 ≤ i ≤ n}. Now, ht(ϵ1 − ϵi) = i − 1. Consequently Proposition 7.3 and Table 1
yield m(vI) = 1.

B.2. Type B

Let V be a vector space with orthonormal basis ϵ1, · · · , ϵn. The vectors {±ϵi ± ϵj} ∪
{±ϵi} form a root system with Dynkin diagram Bn. A choice of simple roots is αi =
ϵi − ϵi+1 for i < n, and αn = ϵn.

Let S2n be the symmetric group on the letters {1, · · · , n, n, · · · , 1}, and let ri j ∈ S2n
be the transposition switching the letters i and j. The Weyl group W can be viewed as 
the subgroup of S2n generated by the reflections,

sϵi−ϵj = ri jri j , sϵi+ϵj = ri jri j , sϵi = ri i, 1 ≤ i < j ≤ n.

Given v, w ∈ W , if v ≤ w in the Bruhat order on W , then v ≤ w in the Bruhat order on 
S2n; see [39, §6.1.1]. We calculate

vIwI = [2, · · · , n, 1, 1, n, · · · , 2]

and 
{
α ∈ Φ+

I

∣∣ sα ̸≤ vIwI

}
= {ϵ1 + ϵi | 2 ≤ i ≤ n} ∪ {ϵ1}. Now, ht(ϵ1) = n, and ht(ϵ1 +

ϵi) = 2n + 1 − i. Following Proposition 7.3 and Table 1, we have

m(vI) = n(n + 1) · · · (2n− 1)
(1)(3) · · · (2n− 1) = 2n−1.

B.3. Type C

Let V be a vector space with orthonormal basis ϵ1, · · · , ϵn. The set of vectors {±ϵi ±
ϵj} ∪ {±2ϵi} forms a root system with Dynkin diagram Cn. A choice of simple roots is 
αi = ϵi − ϵi+1 for i < n, and αn = 2ϵn. The Weyl group of Cn is isomorphic the Weyl 
group of Bn. We calculate 

{
α ∈ Φ+

I

∣∣ sα ̸≤ vIwI

}
= {ϵ1 + ϵi | 2 ≤ i ≤ n} ∪ {2ϵ1}. Now, 

ht(2ϵ1) = 2n − 1, and ht(ϵ1 + ϵi) = 2n − i, for 2 ≤ i ≤ n. Following Proposition 7.3
and Table 1, we have

m(vI) = n(n + 1) · · · (2n− 1)
(1)(3) · · · (2n− 1) = 2n−1.

B.4. Type D

Let V be a vector space with orthonormal basis ϵ1, · · · , ϵn. The set of vectors {±ϵi±ϵj}
forms a root system with Dynkin diagram Dn. A choice of simple roots is αi = ϵi − ϵi+1
for i < n, and αn = ϵn−1 + ϵn+1.
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Let S2n be the symmetric group on the letters {1, · · · , n, n, · · · , 1}, and let ri j ∈ S2n
be the transposition switching the letters i and j. The Weyl group W can be viewed as 
the subgroup of S2n generated by the reflections,

sϵi−ϵj = ri j , sϵi+ϵj = ri jri, j , 1 ≤ i < j ≤ n.

Given v, w ∈ W , if v ≤ w in the Bruhat order on W , then v ≤ w in the Bruhat order on 
S2n; see [39, §7.1.1]. A simple computation yields

vIwI =
{[

2, · · · , n− 1, 1, n
]

if n is even,
[
2, · · · , n− 1, 1, n

]
if n is odd.

Observe that 
{
α ∈ Φ+

I

∣∣ sα ̸≤ vIwI

}
= {ϵ1 + ϵi | 2 ≤ i ≤ n}∪{ϵ1−ϵn}. Now ht(ϵ1−ϵn) =

n − 1, and ht(ϵ1 + ϵi) = 2n − 1 − i, for 2 ≤ i ≤ n. Consequently, we deduce from 
Proposition 7.3 and Table 1 that

m(vI) = (n− 1) (n− 1)n · · · (2n− 3)
(1)(3) · · · (2n− 3) (n− 1) = (n− 1) · · · (2n− 3)

(1)(3) · · · (2n− 3) = 2n−2.
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