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1. Introduction

Among the most important properties of the cohomology rings of complex flag man-
ifolds is that they have a distinguished basis: the Schubert basis, {c, : v € W}, indexed
by the Weyl group W. The Schubert structure constants for the product in singular
cohomology in this basis are positive, which means that all nonzero coefficients in the
product expansion

_ w
OuOy = E ConOw

weW

are positive. This is a consequence of transversality properties, as the coefficients c;y,
count the number of points in the intersection of three Schubert varieties translated
in general (transversal) position. The study of positivity properties of these coefficients
across a wide range of cohomology theories has spurred a large body of literature in
algebraic geometry, representation theory, and combinatorics.

In the case of torus-equivariant cohomology, a conjecture by Peterson [43], proved
by Graham [24], states that the Schubert structure constants for the torus equivariant
cohomology rings of flag manifolds are polynomials in the simple roots with positive
coefficients. Graham’s proof relies on refined transversality techniques (see also [2]),
which are expected to be useful in analyzing the equivariant cohomology ring of varieties
related to flag manifolds.

Hessenberg varieties form a remarkable family of subvarieties of flag manifolds, and
appear across multiple disciplines within mathematics; see [3] for a recent survey. In this
paper we focus on a particular class of regular nilpotent Hessenberg varieties, namely
Peterson varieties.

Peterson varieties may also be realized as a flat degeneration of certain regular
semisimple Hessenberg varieties such as the permutohedral variety; see e.g., [34,35,1].
Peterson varieties share many properties with flag varieties, and provide a fertile ground
for exploration. They initially appeared in the study of the quantum cohomology ring of
(generalized) flag manifolds G/B in [37,43].

The purpose of this paper is to prove a positivity property of the equivariant coho-
mology ring of Peterson varieties, similar to that of flag varieties. This may be seen as
a step towards investigating positivity and transversality properties of the (equivariant)
cohomology ring of the larger family of Hessenberg varieties, little of which is known.
We give next a more precise account of our results.

Let G be a complex, semisimple Lie group, let B, B~ C G be opposite Borel subgroups,
and let T := B N B~ be the associated maximal torus. Let A be the set of positive
simple roots corresponding to the choice of B, and let e be a principal nilpotent element
contained in P, ca 9o, Where g, is the root space in g := Lie(G) corresponding to
the root a. Denote by W the Weyl group associated to (G,T) with length function
{: W — N, and denote by wy € W the longest element. Let G¢ be the centralizer of e
in G. The Peterson variety
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P := Ge.woB — G/B, (1)

is the closure of the G®-orbit of wy B inside the flag manifold G/B. It admits an action of a
one-dimensional torus S C T with finitely many fixed points. We denote by ¢ : P — G/B
the inclusion.

In this manuscript we investigate H§(P) := H$(P;Z), the integral S-equivariant
cohomology ring of the Peterson variety. A presentation of H(P;Q) by generators and
relations was given by Harada, Horiguchi and Masuda in [26].

Let 0,, € H5(G/B) be a Schubert class indexed by some Coxeter element vy € W
for I C A, let p; := *(0,,) be the pullback of o, along the inclusion ¢ : P — G/B,
and let m(vy) be the intersection multiplicity from Theorem 1.1 below. We show that
{m’(’f”) }IcA is a H%(pt)-basis of H§(P), and that this basis is dual to the equivariant
Borel-Moore homology basis constituted by the fundamental classes of Peterson varieties

(see Section 2). In particular, while the class p; depends on the choice of vy, the class

m’(’; 3 is independent of this choice.

In our main result we prove that the structure constants of multiplication are positive
with respect to the basis {%} in the sense of Graham [24]. This generalizes recent
results in Lie type A by Goldin and Gorbutt [21], who found manifestly positive combi-
natorial formulae for the structure constants in question. Special cases of such formulae
were found earlier by Harada and Tymoczko [29], and by Drellich [16].

We now present a more precise version of our results. For I C A, let wy be the maximal
element of the Weyl group of I, and let P$ := PN Bw;B/B. Tymoczko [50] and Balibanu
[7] proved that P$ ~ C/l and the cells P$ (called Peterson cells) form an affine paving
of the Peterson variety. Consequently, the fundamental classes [P|s € Hfl 7(P), where
P; = P9, form a basis of H(P) over H%(pt).

Forv € W,let XV := B~vB/B denote the (opposite) Schubert variety in G/B, and let
oy €H ;z(v)(G /B) be the corresponding Poincaré dual class, satisfying the equality o, N
[G/B]s = [X"]s. Consider the pairing (-,-) : H5(P) ® HS(P) — H%(pt) of equivariant
cohomology and equivariant homology defined by (a,b) = [, anb; see §2. Our first result
is the following (cf. Theorem 4.3 below):

Theorem 1.1 (Duality Theorem). Let I, J be subsets of the set of simple roots A and let
vy € W be any Cozxeter element for I. Then

(*ov;, [Py]s) = m(vr)dr, s,
where m(vy) € Zsq is the multiplicity of the (unique) intersection point of X' N Py.

This follows because the varieties X% and P; intersect at a unique point, namely
wy, the longest element in the subgroup W; determined by I. The remaining part of the
proof exploits the poset structure of the affine paving by Peterson cells, along with the
duality of Schubert classes in G/B.
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A non-equivariant version of this theorem has appeared in the literature in type A in
a recent preprint [4], and may be deduced in general Lie type from [32,31], where the
intersection X ¥ NP (1) was analyzed. Besides working non-equivariantly, a key restriction
in all these papers is that the Coxeter elements v; are not arbitrary, but depend on a
certain ordering of the simple roots. Our approach removes this restriction. In Section 7,
we give algorithms to calculate the aforementioned multiplicities based on equivariant
localization, and closed formulae for a particular basis; see also Theorem 1.3 below and
the related discussion. A formula for m(v;) for any Coxeter element v; was recently
obtained in [25]; see Equation (19) below.

The duality theorem has several consequences. For each Coxeter element v; for I,
recall that pr := t*0,, € H;”l(P). Then the classes {% ’I C A} form a HZ(pt)-
basis of H§(P); see Corollary 4.4. By the duality theorem, the equivariant push forward
te : H¥(P) — HZ(G/B) is injective. Non-equivariantly, the injectivity was proved in
[32].

The cocharacter h of T satisfying a(h) = 2 for all « € A determines a one dimensional
subtorus S C T, satisfying «|S = o/|S for any a,a’ € A; see Section 3.2. Consequently
there is a well defined element ¢ € H§(pt) given by ¢ := «|S for o € A.

Theorem 1.2 (Positivity). Let I, J, K be subsets of A. The structure constants of multi-
plication, cfi] € Hi(pt), given by

props=Y_ctpk (2)
K

are polynomials in t with non-negative coefficients.

Theorem 1.2 (Theorem 5.3 below) generalizes several positivity statements to arbi-
trary Lie type, while providing a uniform proof in all cases. In the case where |I| = 1,
i.e., py is a divisor class, a positive Monk-Chevalley formula for the structure constants
cf ; was obtained by Harada and Tymoczko [29] in Lie type A, and in arbitrary Lie
type by Drellich [16]. For general c{f 7, and in Lie type A, Goldin and Gorbutt [21]
found a manifestly positive combinatorial formula for all equivariant coefficients cf J
in the expansion (2). A different combinatorial model computing these coefficients in
non-equivariant cohomology was recently obtained in [4].

The proof of Theorem 1.2 relies on the duality theorem, and on positivity statements
proved by Graham [24]. The structure constants of the multiplication ¢, Uo, € H{(G/B)
are positive in the sense of Theorem 1.2. Hence it suffices to show that the coefficients
b), € H5(pt) of the restricted classes (o, = Y., b)ps (w € W arbitrary) satisfy the
same positivity. By the duality theorem, the positivity of the coefficients b;, is equivalent
to the positivity (in a suitable sense) of the coefficients ¢} in the Schubert expansion

WPls = Y diXs € HE(G/B), (3)
veW
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where [X,]s denotes the homology class of the Schubert variety X, := BvB/B in G/B.
In the non-equivariant case, this is clear. Indeed, by Kleiman transversality [33], the
Schubert classes are a basis for the Chow group of G/B, and form a set of primitive
generators for the cone of effective algebraic cycles. Since the Chow group is equal to
H,.(G/B) (cf. [20, Ex. 19.1.11]), the claim follows. Equivariantly, we deduce the positivity
of ¢J from a general positivity result of Graham [24] for expansions of fundamental classes
of torus invariant varieties; cf. Theorem 5.2. A different geometric approach to positivity
(in the non-equivariant setting) was pursued in [4]; see Remark 5.4 below.

Using equivariant localization, we obtain formulae for the multiplicities m(v;) in the
duality theorem, and an effective algorithm to find the Schubert expansion from Equa-
tion (3); see Section 4.2. Our algorithms for the coefficients ¢, and for the multiplicities
m(vr), rely on the restriction of the Schubert classes o, to the fixed points w; in G/B
(see Section 2). These equivariant localizations may be calculated using formulae devel-
oped by Andersen, Jantzen, and Soergel [5] and Billey [8]).

Theorem 1.3.

(a) Let I be a connected Dynkin diagram with the standard labelling, see [11], and set
U7 = 8189 - Sn. Then,

1 if I = A,, 864 = 2° - 33 if I = E7,
on—1 if I = B, Cp, 51840 =27-3*.5 if I = Fg,
m(vy) = L ) m(vr) = 4 .
n if I = D,, 48 =2%-3 if I = Fy,
72=23.32 ifI = Eg, 6=2-3 if I = Gs.
(b) LetIy,--- I} be the connected components of a Dynkin diagram I, and let vy, --- vy
be any Cozeter elements for Iy,--- , Iy, respectively. Then v := vy --- vy is a Coxeter

element for I, and m(v) = [[m(v;).

See Theorem 7.6 below. The factorization is related to the exponents of the Lie algebra
of G, see §7 below, and also the recent paper [25]. Theorem 1.3 generalizes a result of
Insko [31], who showed that when I = A,,, m(s1 -+ $,) = 1. More generally, the theorem
addresses [32, Question 1] by providing an explicit formula for these multiplicities; in
particular, it disproves the conjecture by Insko and Tymoczko that the multiplicities
are always 1 or 2 in classical Lie types. The proof of part (a) of Theorem 1.3 utilizes
equivariant localization, while the proof of part (b) utilizes the stability property of
Peterson classes explained below. Using parts (a) and (b) concurrently allows us to
compute m(vy) for some Coxeter element v; in each Dynkin diagram I, and hence allows

us to construct the dual class "L;EZUII) of any Peterson subvariety P; C P.
Consider I C A, a subset of the Dynkin diagram, and let GG; be a semisimple group
with Dynkin diagram I. Let G;/B; and P(I) denote the flag variety and the Peterson
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variety of G respectively, and let St be the one-dimensional subtorus defined analogously
to S, and acting on P(I). There is a natural closed embedding i : G;/B; — G/B, but
unfortunately there may not be a morphism S; — S which is compatible with this
embedding. This leads to some technical subtleties explained in Section 6.2. The upshot
is that there is an algebra isomorphism H(pt; Q) ~ H, (pt;Q), and induced maps
H%(G/B;Q) 5 Hj (Gr/Br;Q) and HS (G;/Br;Q) = H5(G/B;Q). The stability
theorem, proved in Proposition 6.5 and Theorem 6.6, is the following.

Theorem 1.4 (Stability). (a) i(P(I)) = P Ni(G;/Br) = Py, as subsets of G/B.
(b) For J C I, we have i,([P(J)]s,) = [PJ]s, as classes in H? (P;Q).
(c) Let j : P(I) = P be the restriction of i : G;/Br — G/B. For K C A, we have

J*(pr) = .
0 otherwise,

as classes in Hg (P(I); Q).
Furthermore, in the non-equivariant case, the statements in (b) and (c) hold over Z.

The proof of the stability theorem utilizes a common alternate description of the
Peterson variety, namely

P:{gBEG/B

Ad(g™ecb @ @ ga} , (4)

aEA

where b = Lie(B). In Appendix A, we take the opportunity to present a proof that the
definitions (1) and (4) are equivalent, a matter of folklore implied by, and implicit in,
Kostant’s original work [37].
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Conventions. We work over the field of complex numbers. By a variety we mean a
reduced, irreducible scheme of finite type. Schemes defined as algebraic group orbits, and
closures of group orbits, are always equipped with the induced reduced scheme structure;
see, e.g., [46, tag 011Z].

2. Equivariant (co)homology

Let X be a complex algebraic variety equipped with a left action of a torus 7. We
recall aspects of the T-equivariant homology and cohomology of X. We will use the Borel
model of equivariant cohomology, and equivariant Borel-Moore homology, following the
setup in Graham’s paper [24]. We refer to [20, Ch 19], [19, Appendix B], [14, §2.6] for
more details about cohomology and Borel-Moore homology.

Since we are working with algebraic varieties, our statements and proofs could have
been written using the language of equivariant Chow groups [17]. For full results, this re-
quires some additional properties of the operational Chow ring of linear varieties proved
by Totaro [49]. Aware of this technicality, the reader may use the equivariant cycle map
from [17] to freely swap between the Borel-Moore and Chow theories.

Fix an identification T = (C*)" and let ET = (C* \ 0)" be the universal T-bundle
with classifying space BT = (P>°)". The product ET x X has a right T-action given by
(e,y).t := (et,t~'y). The action is free, and the orbit space Xt := (ET x X)/T is called
the Borel mixing space of X. The universal T-bundle ET" — BT admits finite dimensional
approximations ET,, — BT, where ET,, = (C"*\0)" and BT,, := (P™)". These induce
finite dimensional approximations of the Borel mixing space X, := (ET,, x X)/T, and
inclusions X7, C X7 p, for ny < no.

We define the equivariant cohomology ring by Hi(X) := H*(Xr); note that we
have Hi.(X) = H(Xr,,) for sufficiently large n. The equivariant Borel-Moore homology
groups are defined via a limiting property,

HI(X) = HEY, (X1.n), forn >0
where the right hand side is the ordinary Borel-Moore homology. If V' C X is a closed T-
stable subvariety of X of complex dimension d, its fundamental class [V]r is an element in
HI,(X). The cap product gives the (total) equivariant homology HI (X) = @, H! (X)
a graded module structure over the equivariant cohomology ring H;(X).

If X = pt, then Hx(pt) = H*(BT) is naturally identified with the symmetric algebra
Sym X(T) of the character group X(T") := Hom(T",C*) of T' (written additively). For any
map S — T of tori, we have a natural map of algebras H}(X) — HZ(X), compatible
with the algebra map Hi(pt) — H§(pt) induced by X(T') — X(S). Taking S to be the
trivial subgroup in 7', we obtain a ring homomorphism H3(X) — H*(X). (One can
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show that this map is surjective for spaces with affine pavings in the sense of Lemma 2.1
below; we will not need this fact.)

The morphism Xt — BT that projects onto the first factor gives the equivariant
cohomology H7.(X) the structure of a graded algebra over HZ.(pt). In addition, the cap
product N endows the equivariant homology HI (X) with a graded module structure
over H7(X). Equivalently, there is a compatibility of cap and cup products given by
(aub)Nnec=an(bne), for a,b € HL(X), c € HI' (X).

Each irreducible, T-stable, closed subvariety Z C X of complex dimension k has a
fundamental class [Z]r € HL (X). If X is smooth and irreducible, then there exists a
unique (Poincaré dual) class nz € H%(dimxfk) (X) such that nz N [X]r = [Z]r.

Any T-equivariant morphism of T-varieties f : X — Y induces a degree preserving
pull-back morphism of Hj(pt)-algebras f* : Hi(Y) — H%(X). For a point z € X fixed
by the T action, the inclusion ¢, : {x} — X induces a localization map ¢} : H}.(X) —
H; ({a}) = Hi(pt).

If f is proper then there is a push-forward f. : H (X) — H}'(Y), defined as follows.
Let Z C X be closed, irreducible and T-stable. Then f.[Z]r = dz[f(Z)]r if dim f(Z) =
dim Z, where dy is the generic degree of the restriction f : Z — f(Z), and f.[Z]r = 0 if
dim f(Z) < dim Z. The push-forward and pull-back are related by the usual projection
formula f.(f*(a) Nc) =an fi(c).

An important particular case is when X is complete, thus f : X — pt is proper. For
a homology class ¢ € HI (X), we denote by [, c the class f.(c) € HI (pt)." Recall that
the equivariant homology HI (pt) of a point is a free H}(pt)-module with basis [pt]r.
Therefore we identify Hx(pt) = HI' (pt) via the map a — a N [pt]7. Then we may define
a pairing,

(-, H(X) H%Q?pt) HI(X) = Hi(pt); (a,c) ::k/aﬁ c. (5)

We often abuse notation and for a cohomology class a € H5(X) we write fX a to mean
J(an [X]p).

Following [20, Ex 1.9.1] (see also [24]) we say that a T-variety X admits a T-stable
affine paving if it admits a filtration X := X,, D X,,_1 D ... by closed T-stable sub-
varieties such that each X; \ X;_; is a finite disjoint union of T-invariant varieties U; ;
isomorphic to affine spaces A?. The following has been proved by Graham; see [24,
Prop 2.1].

Lemma 2.1. Assume X admits a T-stable affine paving, with cells U; ;.

(a) The equivariant homology HT (X) is a free H(pt)-module with basis {[U; j]r}.

! We note that f.(c) agrees with “integration over the fiber” when X is smooth, justifying the notation.
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(b) If X is complete, the pairing from Equation (5) is perfect, and so we may identify
H(X) = Homp oy (H! (X), H (pt)).

3. Flag manifolds and Peterson varieties

In this section we recall some basic definitions about flag manifolds, Schubert varieties,
and Peterson varieties. We mostly follow the setup in [50] and [7], from which we will
need several important results.

3.1. Flag manifolds and Schubert varieties

Fix a complex semisimple Lie group G, a Borel subgroup B C G, B~ C G an opposite
Borel subgroup, and let T := BN B~ be a maximal torus. Denote by A the system of
simple positive roots associated to (G, B,T) and by @X C @, the set of positive roots
included in the set of all roots. The Weyl group W := Ng(T)/T is generated by simple
reflections s; := s,, where a; € A. Let £ : W — Zx( be the length function and wq the
longest element in W. Then B~ = woBwyg.

Any subset I C A determines a Weyl subgroup W := (s; : «; € I) and a cor-
responding standard parabolic subgroup P;. We denote by w; the longest element of
W;. The flag manifold G/B is a smooth algebraic variety of complex dimension ¢(wy)
with a transitive action of G given by left multiplication. The flag manifold has a strat-
ification into finitely many B-orbits, respectively B~ -orbits, called the Schubert cells:
X2 := BwB/B ~ C'™ and X"° := B~wB/B ~ C*(“o"); we have

G/B= || x3= || xv°. (6)

weWw weWw

The closures X,, := Xg and X% := Xw:° are called Schubert varieties and opposite
Schubert varieties, respectively. The Bruhat order is a partial order on W characterized
by inclusions of Schubert varieties and opposite Schubert varieties. In particular, X, C
X if and only if v < w, and X C X"V if and only if v < w. Following Lemma 2.1, the
homology classes {[X,]r |v < w} form a basis of HX (X,,), while {[X?]7 |w < v} form a
basis of HI' (X™).

The cohomology classes o, € H5(X) Poincaré dual to the [XV]r, i.e. characterized
by the equation o, N[G/B]r = [X"]r, are called Schubert classes. Note that Lemma 2.1
also implies {0, |v € W} is a basis of H5(G/B) as a module over H}(pt). Under the
pairing in Equation (5), the basis {0, |v € W} is dual to the basis {[X,]r |v € W}, i.e.,
we have (o, [Xu]r) = 0y 0.

3.2. The Peterson variety and Peterson cells

The Peterson variety appeared in the unpublished work of Peterson [43], in relation
to the quantum cohomology of G/B; we refer the reader to [37,45] for details.
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We recall the definition of the Peterson variety. Let g := Lie(G), b := Lie(T), and
consider the Cartan decomposition

g=ho @ Ja-

acePa

For each simple root o € A, choose a root vector e, € g, and let
e:= Z €a-

The element e is a regular nilpotent element in the Lie algebra b of B; see [36] or [15,
Thm 4.1.6]. Denote by G¢ C G the stabilizer of e for the adjoint action of G on g. We
have G¢ = (G®)° x Z(@G), where (G°)° is the identity component of G¢, and Z(G) the
center of G. The identity component (G¢)° is a subgroup of the unipotent radical U of
B, isomorphic to the affine variety C™, where n := |A| is the number of simple roots, i.e.,
the rank of G, cf. [36, Cor 5.3]. For instance, if G = SL,,(C), then (G¢)° is the subgroup
of upper triangular unipotent matrices with equal entries along each superdiagonal. The
Peterson variety is defined by

P :=GcwyB C G/B. (7)

This is an irreducible subvariety of G/B of dimension |A|, singular in general.

For any w € h contained in the coroot lattice, the map ¢, : C — b defined by
vw(z) = zw lifts to a cocharacter exp(p,) : C* — T. (Here the differential of exp(p,,)
is equal to ¢,,. In complex differential geometry, the map exp(p,,) intertwines with the
(non-algebraic) exponential maps exp : C — C* and exp : h — T the cocharacter
exp(pw) is itself an algebraic map.) This identifies the coroot lattice of h with a subset
of the cocharacters of T'. See, e.g., [23, Ch. 3, Prop. 1.15] (in the algebraic setting), or
[18, p. 373-4] (in the manifold setting).

We take h = ZO&E‘I’X a" to be the sum of the positive coroots, and denote by S C T
the image of the cocharacter corresponding to h. Following [11, Ch 6, Prop 29], we have
a(h) =2 for all « € A, because h is equal to twice the sum of the fundamental coweights.
In particular, it follows that «|S = &/|S for any o, o’ € A. We set ¢t := «|S € X(S) C

H3(pt).

Example 3.1. Consider G = SL,,, and let T' C G be the set of diagonal matrices:

z1 0 0
0 0 =z,
The oy, 1 < i < n—1, given by a;(diag(z1,-+,2n)) = 2zi/zit1, form a set of simple

roots. The coroot h corresponds to the one-dimensional subtorus S given by
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Znt 0 0 0
0 2"3 0 0
S = . zeC”
0 0 " 0
0 0 0 z "l
The character ¢ of S is the map given by diag(z"~ 1,273, ... 27"+ s 22,

Remark 3.2. The element ¢ need not be a generator of the ring H§(pt). For example, if

G = SL,, we have
" 0
ZE(C}, t:(é Z_1>n—>z2.

{6 )

The character group X(.5) is generated by ¢/2, which is the map

However, we always have either HZ(pt) = Z[t], or H§(pt) = Z[t/2].

Since [h, eq] = 2e, for each simple root «, we have [h, e] = 2e, from which we observe
that S normalizes G¢, cf. [37, Theorem 10|, resulting in an action of the semidirect
product S x G° on the Peterson variety.

The following was proved in classical types by Tymoczko [50, Thm 4.3] and generalized
to all Lie types by Precup [44].

Proposition 3.3. For I C A, let w; denote the longest element in the Weyl subgroup Wy.

(a) The intersection P N BwB/B is nonempty if and only if w = wy for some subset
I CA.

(b) The set theoretic intersection P$ :== P N Bw;B/B is an affine space of dimension
|I|. In particular, its closure Py is an irreducible subvariety of X, .

Some of the details proving part (b) are implicit in [7]. We take the opportunity to
make these details explicit in Proposition A.1 below. We will refer to P§ as a Peterson
cell; its closure Py C X, is an irreducible variety, and the Schubert cell decomposition
of Schubert varieties yields an affine paving

P;=| |PS.
JCI
Following [24, Prop 2.1(a)], the classes {[P]s | C A} form a basis of HZ(P). Observe
that S C T is a regular subtorus, thus the fixed point loci for S and T in G/B coincide,
ie, (G/B)T = (G/B)%; see e.g. 30, §24.2, §24.3]. It follows that
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P° = (G/B)*NP = (G/B)TNP = {w;: I C A},

where we utilize the usual identification (G/B)T = W.
For I C A, an element v € W is called a Cozeter element for I if v = sq, + -+ Sq, for
some enumeration «j, ..., a; of I. Recall the following result, cf. [32, Lemma 7]:

Proposition 3.4. Let v; be a Cozxeter element for some subset I C A. Then the intersec-
tion XV NPy is the single (possibly non-reduced) point wry.

Proof. The intersection Y := X" N P; is proper and S-stable. Any fixed point in
Y9 Pf is of the form wy, for some J C I. On the other hand, since w; € X!, we
have wjy > wvy. Since vy is a Coxeter element for Wy, I C J, and so I = J. Thus Y
contains a unique S-fixed point; hence by [9, Prop 13.5], we have Y = {w;}. O

Corollary 3.5. Let n; € H%(G/B) be the Poincaré dual of [Prls € H?(G/B), v; a
Cozxeter element for I, and 7, the Poincaré dual of the point class [wr]s. Then

Oy, Unr = m(vr)Tw, and / oy, Unr = m(vy),
G/B

where m(vy) is the multiplicity of wy in the intersection X' N Py.

Proof. Observe from Lemma 2.1 that H§(G/B) is torsion-free, and hence the localization
map H(G/B) — w?W H§(w) is injective (over Z); see [22, Cor 1.3.2, Thm 1.6.2] and
[28, Thm 3.1]. By Proposition 3.4, the only potentially non-zero localization of o,,, Un; is
at wr, and therefore o, Uny = m(vr)7,, for some integer m(vr). Under the specialization
H{(G/B) - H*(G/B), the class 7, maps to 1 € H*(G/B). It now follows from [19,
Eq (31)] that m(vr) is the multiplicity of the intersection X*’ NPr. O

In Section 7, we provide a formula for m(vy) based on equivariant localization, and
compute the value of m(vy) for certain Coxeter elements v;.

4. Poincaré duality and consequences

Let G be a complex semisimple group, and ¢ : P < G/B the corresponding Peterson
variety, as in Section 3. In Theorem 4.3, we construct a basis {pr}rca of H{(P) dual
(up to scaling) to the basis {[P7]s}rca of HZ(P). Theorem 4.3 relates the Schubert
expansion of a Peterson class [P;]s to the expansion in the {p;} basis of the pull-backs
t*o4,; the latter can be computed using equivariant localization and Gaussian elimination.
We sketch an example in Section 4.2.
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4.1. Peterson classes and duality

Lemma 4.1. Let I C A, and consider the expansion

wWPls =Y ¢j[X.,]Js €H(G/B).
veW

Then c§ = 0 unless v < wy.

Proof. By Lemma 2.1, the equivariant homology H?(X,,,) has a H}(pt)-basis given by
the fundamental classes [X,]g, where v < w;. Since Py is a subvariety of X,,,, we have
w[Prls = > ¢} [Xy]s, for some ¢} € Hi(pt). O

v<wy

Lemma 4.2. Let I C A, and consider the expansion

WPls =Y ¢[X.,]s €HG/B).
veW

If v is a Cozxeter element for J # I, then cj = 0.

Proof. Suppose v is a Coxeter element for some subset J C A for which ¢} # 0. Following
Lemma 4.1, we have v < wy, hence J C I. On the other hand, since the expansion is
homogeneous, we have |J| = ¢(v) > dimP; = |I|, and hence J =1. O

Theorem 4.3 (Duality Theorem). Let I,.J be subsets of the set of simple roots A, and let
vy be a Cozxeter element for I. We have

<L*UU17 [PJ]S> - m(vI)él,Ja

where m(vy) is the multiplicity of the (unique) intersection point of X' NPy. In partic-
ular, m(vr) is a positive integer.

Proof. Consider the Schubert expansion ¢,[P j]g =Y ¢[X,]s. Then
<L*O-Un [PJ]S> = <JU17L*[PJ]S> = 0317

since the set {0, }yew forms a dual basis to the fundamental classes {[X,]s}vew. It
follows from Lemma 4.2 that ¢’/ = 0 for I # J. For J = I, Corollary 3.5 implies

c})l = <0v1aL*[PI]5’> = /UUI Unr = m(vl) > 0.
X

Finally, m(vy) € Z+ because the pairing (5) has values in integral cohomology. O
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We record the following consequence of the Duality theorem.
Corollary 4.4. For each I C A, fix a Cozxeter element vr, and set pr = 1*o,, € H§(P).

(a) The classes {% € Hi(P) ‘I C A} form a H§(pt)-basis of H(P).
1
(b) The map v, : HZ(P) — HZ(G/B) is injective.

Proof. By Theorem 4.3, the classes ml(jf”) are dual to the classes [Pj]g, and part (a)
follows from Lemma 2.1. For part (b), observe that the pairing

(0w, tx[Pr]s) = m(vr)or,,

along with the linear independence of the o, in H(G/B), implies that the ¢.[P]g are
linearly independent. It follows that the map ¢, : H?(P) — H2(G/B) is injective. 0O

Remark 4.5. Part (a) of Corollary 4.4 was proved in various generalities, and for partic-
ular choices of Coxeter elements vy, in [16,32,4]. The non-equivariant version of part (b)
was proved in [32, Thm 2].

We also record the following immediate corollary, which will be utilized in the proof
of the positivity statement Theorem 5.2.

Corollary 4.6. For each I C A, fix a Cozeter element vy, and set p; := 1*o,, € H5(P).
Consider the expansions

vow=> bips,  wlPils= ) ct[Xus.

JCA ueWw

Then ¢¢ = m(vr)bl for all u, where m(vy) > 0 is the coefficient from the Duality
Theorem 4.5.

Proof. Using Theorem 4.3 and the equality (o, [Xu]s)a/B = 0u,», We calculate,
¢ = (ou, t[P1]s)a/p = (t*0u, [P1]s)p = m(v)b}.

Here the first equality follows from the definition of c¥, the second from the projection
formula, and the third from Theorem 4.3 together with the definition of b.. O

4.2. Schubert expansion of the Peterson classes

In their study of certain regular Hessenberg varieties, Abe, Fujita and Zeng [1] found a
beautiful closed formula for the non-equivariant Schubert expansions of the fundamental
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classes of these varieties. For the Peterson varieties discussed here, their formula states
that

wPl= J[ a(Gx®C_.)N[G/B] e H.(G/B);

a€PL\A

see Cor. 3.9 in [1]. However, since the line bundles G' xZ C_,, are not globally generated,
this formula involves cancellations. A manifestly positive formula was recently found by
Nadeau and Tewari [42], and further investigated by Horiguchi [27], in relation to mized
Eulerian numbers. The origins of this approach lie in the realization of the Peterson
variety as a flat degeneration of a smooth projective toric variety, called the (generalized)
permutohedral variety; see [1,42]. The permutohedral variety is a regular semisimple
Hessenberg variety; its cohomology ring has been classically studied e.g. by Klyachko
[34,35]. In this section we present a different algorithm, which calculates the equivariant
Schubert expansion of ¢,[P]s. The algorithm is based on Corollary 4.6, and it depends
on the multiplicities m(vy) for some choice of Coxeter elements vy, I C A. The values
m(vy) for a particular such choice are computed in Theorem 7.6. It would be interesting
to utilize this algorithm to extend the formulae from [1,42] to the equivariant setting;
this will be left for elsewhere.

Proposition 4.7. Fix Coxeter elements vy for each subset I C A, and consider the ma-
trices,

)

* *
Aur = Uy, Ou, Cr,0 = Ly, 0u, My, ;= m(vr)dr, ;.

Here A is a |W| x 2|81 matriz, and C and M are 212! x 2181 matrices. The fundamental

classes [Prls and [X,]s are related by the matriz equation,

([P1]s)ca = (ACTM)T ([Xu]$) yew - (8)

Proof. Consider the commutative diagram,

H3(G/B) —2 @ Hi(u)

ueW
o ®

Sl
Hg(P) —— @ Hi(wi).
Ica

Let Q be the fraction field of the integral domain Hg(pt), and let Rg := R ®pz(pr) Q

for any H%(pt)-module R. The map H{(P) — € Hi(wr) induces an isomorphism
ICA

H%(P)g — @ Hi(wr)o; see [22, Cor 1.3.2, Thm 1.6.2, Thm 6.3]. Observe that Hj(P)
ICA
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is torsion-free, and is naturally identified as a lattice in the Q-vector space H§(P)g. Let
71 denote a generator of H(wr), and consider the column vectors,

o= (L*O'u)uewa T = (TI)IcA )

P=(Pr)ica> q= (%>m'

We have the following equalities in H§(P)g:
p = Maq, o= AT, p=Cr. (10)

The matrix C' is invertible since both {pr};ca and {77};ca are bases for H(P)o. We
deduce that o0 = AC~'Mq. Equation (8) now follows from Corollary 4.6. 0O

Remark 4.8. The coefficients A,, ; and Cr ; in Proposition 4.7 can be computed by
composing the localization formula for the T-equivariant Schubert classes (cf. [5,8]) with
the restriction map X(T') — X(S) defined by A — A|S.

Remark 4.9. The invertibility of the matrix C' in Proposition 4.7 can be directly deduced
from the observation that ¢}, o, # 0ifand only if I C J, and hence C is upper triangular
with respect to the partial order I < .J <— I C J.

Example 4.10. We use Proposition 4.7 to compute the Schubert expansion of [P]g in the
case A = By, with va = s159. Set

Py = L 0ia, pp1y = o1, P2y = L7032, P12y = L7012,

Composing the localization formula for Schubert classes (cf. [5,8]) with the restriction
map X(T) — X(S5), we obtain the S-equivariant localizations of the Schubert classes:

) 111 1
i‘;d 0 t 0 4t
1
e 0 0 t 3t T
L*O'12 _ 0 0 0 6t2 7'1 (11)
Lo 0 0 0 6t 2
Lo 0 0 0 664 | \T2
t* 0212 3
ooty 0 0 0 6t
0 0 0 6t

The 8 x 4 matrix in Equation (11) corresponds to the matrix A in Equation (10), and
the matrix C is precisely its top 4 x 4 submatrix. The multiplicities m(v;) are computed
in Theorem 7.6; we have m(v;) =1 for all I C By and m(va) = 2, i.e.,
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10 00

01 00

M=10 01 0

0 0 0 2

Applying Equation (8), we obtain

L*[Xid]s
L*[XI]S
t[Pols 100 00 0 0 O 1| X2ls
t«[P1y]s 01000 0 0 O 1| X12]s
L*[P{Q}]S o 00 1 0O 0 0 0 L*[Xgl}s
L*[P]S 00 0 2 2 2t 2t 2t2 L*[Xlgl]s
14 [Xo12]5
L[ X1212] 5

In particular, we have 1,[P]s = 2[X12]s + 2[Xa1]s + 2t[X121]s + 2t[ Xo12]5 + 2t2[ X1212] 5.
5. Positivity

We recall a theorem of Graham [24, Thm. 3.2], which plays a key role in the proof of
our positivity results, Theorems 5.2 and 5.3.

Theorem 5.1. Let B’ be a connected solvable group with unipotent radical N', and let
T' C B’ be a mazimal torus, so that B’ = T'N’. Let ay,...,aq be the weights of T’
acting on Lie(N'). Let X be a scheme with a B'-action, andY a T'-stable subvariety of
X. Then there exist B'-stable subvarieties D1, ..., Dy of X such that in the equivariant
homology HT' (X),

Y]r = Z fil Dilrr,

where each f; € Hx (pt) is a linear combination of monomials in aq,...,aq with non-
negative integer coefficients.

Theorem 5.2. Let I be a subset of A, let v : P < G /B be the inclusion, and consider the
Schubert expansion,

L*[P[}S = Z C? [Xv]s.
veW

Then ¢ € H§(pt) is a polynomial in t with non-negative coefficients.

Proof. We apply Graham’s positivity theorem to the following situation: ¥ = P; C
X =G/B, T" = S, and B' = SU, where U is the unipotent radical of B. We have
U C B’ C B, and since the U-orbits and B-orbits in G/B coincide, the B’-orbits in G/B
are precisely the Schubert cells X .
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Observe that the restriction map X(T) — X(9) is given by a — ht(a)t for a € @1,
where ht(a) is the height of a. It follows that the weights for the S-action on Lie(U)
are positive integer multiples of ¢. It follows from Theorem 5.1 that each ¢} € HE(pt) is
a polynomial in ¢ with non-negative coefficients. 0O

Theorem 5.3. Let p; := t*0,, € H5(P) for some Cozeter element vy, and consider the
multiplication in H(P),

pr-pj= Z Cf{,JpK-
KcA

The structure constants cﬁ] € Hi(pt) are polynomials in t with non-negative coefficients.

Proof. By Graham'’s equivariant positivity theorem [24, Prop 2.2, Thm 3.2], the structure
constants ¢, in the expansion

U,v

Oy - Oy = Zcivaw € H;(G/B)

are polynomials in the T-weights of Lie(U) with non-negative coefficients. Then

% * _ w ok
Pr-py =10y L0y, = E dyy ot O

w
U,v

where d¥, is the image of ¢

u,v

d¥ is a polynomial in ¢ with non-negative coefficients. The result now follows from

u,v

under the restriction map X(7") — X(S); in particular,

Theorem 5.2 and Corollary 4.6, since the classes t*0,, expand into the classes px with
coeflicients having the same positivity property as the dy . O

Remark 5.4. In the recent preprint [21], Goldin and Gorbutt found a manifestly positive
formula for the coefficients cf 7, in Lie type A, and for a particular choice of the Coxeter
elements v;. While this paper was in preparation, a different combinatorial model, in the
non-equivariant cohomology, appeared in the preprint [4] by Abe, Horiguchi, Kuwata
and Zeng. They also provide a geometric proof of positivity (cf. Prop. 4.15 in [4]), which
utilizes a ‘Giambelli formula’, writing the classes p; in terms of products of pull-backs
of the (effective) line bundles GL,, xB C_,, associated to the fundamental weights w;.
This argument should extend to arbitrary Lie type if one utilizes instead the more gen-
eral equivariant Giambelli formulae obtained by Drellich [16], specialized to ordinary
cohomology.

6. Stability properties

In this section, we utilize a common alternate construction of the Peterson variety

in order to prove a stability property of Peterson varieties. For each finite-type Dynkin
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diagram A, we construct a variety P(A) inside the flag manifold FI(A) which is isomor-
phic to the Peterson variety P corresponding to any group G whose Dynkin diagram is
A. The equality P(A) = P is well-known to experts; in Appendix A, we present a proof
following Kostant [37].

For I C A, we show that there is a natural inclusion P(I) — P(A) identifying
P(I) with the Peterson cell closure P;. This implies that the fundamental classes [Px]s
and the cohomology classes py are stable for the inclusion P(I) < P(A), and that the
Peterson Schubert varieties of [32] are simply Peterson varieties corresponding to smaller
groups.

6.1. The flag manifold of a Dynkin diagram

Let & (resp. @X, Wa) denote the root system (resp. positive roots, Weyl group)
corresponding to a finite-type Dynkin diagram A. Following [48], let ga be the canonical
complex semisimple Lie algebra associated to A. Recall that ga comes with elements
{€a, ha}acw,, such that the h, span a Cartan subalgebra ha of ga, and the (eq)aca,
form a Chevalley system for (ga,ba); see [12, Ch 7, §2]. We denote by ba (resp. b ) the
Borel subalgebra of ga spanned by ha and the set {ea | a € @z} (resp. {ea | a € @Z}).

We fix a connected Lie group G with Lie(G) = ga. The adjoint action of G on ga
induces an action on the Grassmannian Gr(dim ba,ga). The orbit of b is closed, and
it gives the flag variety FI(A); see [14, §3.1]. The Borel subalgebras of g are conjugate
under the adjoint action giving the following description of the flag variety:

FI(A) = {b C ga | b a Borel subalgebra of ga} . (12)

The stabilizer of ba in G is the Borel subgroup B C G satisfying ba = Lie(B), hence
we have the usual G-equivariant identification,

¢:G/B S FlI(A). (13)

For I C A, the subalgebra of ga spanned by {eq, ho }acs, is precisely the Lie algebra gy
associated to the Dynkin diagram I. We have hy = hNgy and by = ba Ngs. Let 17, By,
and G be the connected subgroups of G corresponding to by, by and g; respectively.
The induced map G;/B;r — G/B corresponds to an embedding FI(I) — FI(A) via
Equation (13). In Equation (14), we give a characterization of this embedding in terms
of Equation (12).

Lemma 6.1. If u C ga is a |(I>Z|-dimensional subalgebra containing only nilpotent ele-
ments, then its normalizer N(u) = {z € g|ad(z)u C u} is a Borel subalgebra of ga.

Proof. Following [12, p. 162, Cor 2|, every subalgebra u containing only nilpotent ele-
ments is contained in some Borel subalgebra b, and further, u C [b,b] [12, p. 91, Prop
5(b)]. Comparing dimensions, we deduce that u = [b, b], and hence N(u) =b. O
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Let b} be any Borel subalgebra of g;. Observe that v; = @ g, is gs-stable,
acdf\ @}
and hence it is an ideal in the |®|-dimensional subalgebra [b}, b}] @ v;. By [10, p. 71,
Lemma 1], we see that [b,b}] @ v; is a |®%|-dimensional subalgebra of ga containing
only nilpotent elements. Following Lemma 6.1, we see that N([b’,b}] & v;) is a Borel
subalgebra of ga. Hence we have an embedding,

i FI(I) = FUA), b — N([b},0}] @ o). (14)

The embedding i : FI(I) — FI(A) is Gr-equivariant, and sends by to ba. It follows
that under the identifications FI(I) = G;/Br and FI(A) = G/B of Equation (13), the
map ¢ is precisely the map G;/B; — G/B induced by the inclusion G; < G; observe
that By = B N Gy follows from, e.g., [9, §11.2, Corollary and Thm. 11.16].

We will say that a map of Lie groups F' : G; — G lifts a Lie algebra map [ : g1 — go
if Lie(G;) = g; for i = 1,2, and f is the differential of F' at the identity.

Remark 6.2. The inclusion i : FI(I) — FI(A) is f-equivariant for any map f: G; — G
lifting the inclusion g5 < ga.

Lemma 6.3. Fiz w € Wy, and let b], = h[@@ae‘b? Guw(a), and by = ba @@ae‘bz Fu(a)-
Consider the Schubert varieties

X! = Ad(Br)bl, c FI(I) and X, = Ad(B)b,, C FI(A).

Then i(bl,)) = by, andi(X]) = X,,. We view the XL as B-varieties via this identification.
Consider the Schubert classes o, € H3(FI(A)) and ol € H3(FI(I)). We have

Z*[Xi]T = [Xw]T, i*Uu, = O'i).

Proof. Since w € Wy, we have w(®{\®F) = ®{\®, and hence

@ Juw(a) = vy & @ Juw(a) = [b/unb/w] Dor.

ozECDZ ae‘b?’

It follows that i(b/)) = b,. Next, since B C B, we have i(X]

w

) C Xy. Further, both
varieties are irreducible of dimension [(w), hence they are equal. Consequently, we have
ix[XL]r = [Xy]r; since the Schubert classes 7, (resp. o) are dual to the fundamental
classes [X,]r (resp. [XI]r), we further obtain i*o,, = 0. O

6.2. The Peterson variety

Given a Borel subalgebra b C ga, let h be a Cartan subalgebra of b, let ®, denote
the root system of (ga,h), and let Ay C @y, be the set of simple roots for which b is the
Borel subalgebra corresponding to the positive roots. We define
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H(b)=bD P g-ap (15)

aEAy

where g, is the root space corresponding to a € h*.

Observe that the subspace H(b) is independent of the choice of h. Indeed, any two
Cartan subgroups h and b’ of b are conjugate via an inner automorphism of b [12,
Ch 7, §3, Prop 5]. Since H(b) is stable under the adjoint action of b, the automorphism
preserves H(b). (Alternatively, H(b) = [u,u]*, where u is the nilpotent radical of b, and
1 is taken with respect to the Killing form.)

Definition 6.4. Let e := > €a- The Peterson variety P(A) is defined by

aEA
P(A) := {b € FI(A)|e € H(b)}.

We recall that e is a regular nilpotent element of ga. Under the G-equivariant isomor-
phism G/B = FI(A) from Equation (13) we have

P(A) ={9B € G/B|e € H(Ad(g)ba)}

(16)
= {gB €G/B|Ad(g " )e € H(bp) =ba @ EB (Cea} .
aEA
Let G, Gy, and ¢ : Gy — G be as in Section 6.1, and let S; C T; be the one-
dimensional torus corresponding to hy = > aV.
ae@f

Proposition 6.5. Consider the map i : FI(I) — FI(A) from Equation (14). Then
i(P(I)) = Py, as algebraic varieties. Furthermore, Py is also equal to the set theoretic
intersection P(A) N FI(I).

Proof. Let e =) .;eq and e7 = ZaeA\l €q, 50 that e = ey + e7. Recall that
P(I) = {b} € FI(I)|er € H(b])}.
Consider b} € Fi(I), and set i(b}) = b’. We see from Equations (14) and (15) that
H(bT) @ oy C H(Y).
Suppose b} € P(I). We have e; € vy, and hence
e; €EH()) = e=er+er € H(b}) o CH(V) = b/ € P(A).

We deduce that i(P(I)) C P(A).
Using the natural basis {eq, o taco, for ga, and its sub-basis of g;, consider the
gr-equivariant projection pr: ga — g defined by:
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eq ifae @y, he ifaedy,
pr(e(x) = . pr(ha) = .
0  otherwise. 0 otherwise.

Now, suppose b’ € P(A). Then e € H(b'), and hence
er = pr(e) € pr(H(b")) = H(b7).

It follows that FI(I) " P(A) = P(I). The equality P(I) = P; is a consequence of the
observation that FI(I) = X,,,, and the irreducibility of P(I); see Lemma A.3. O

We will denote by j : P(I) — P(A) the inclusion induced by restricting i to P(I).
In order to discuss stability for Peterson classes, we first need to construct algebra ho-
momorphisms Hg(FI(A); Q) — Hg (FI(I); Q), compatible with restrictions to Peterson
subvarieties. To this end, we replace S; and S by a C* ‘parameterizing’ (not necessarily
injectively) these tori via the defining cocharacters hy : C* — Sy and h : C* — S. This
C* acts on FI(I), respectively on FI(A), via its image S; C Tt and S C T. The embed-
ding g; — g is C*-equivariant, and hence so is the embedding FI(I) — FI(A) described
in (14). These facts are summarized in the diagram below. The question marks signify
that a map may not exist; see Remark 6.7 below.

Fl(I) —— FIUA)

The cocharacter h induces an isomorphism Lie(C*) — Lie(S), and hence a ring
isomorphism H(pt; Q) — HE. (pt; Q). (In general the corresponding map over integer
coefficients, H§(pt; Z) — H¢. (pt; Z), may not be an isomorphism.) The identity map
FI(A) — FI(A) is equivariant with respect to the cocharacter h : C* — S, therefore
by functoriality we have induced isomorphisms H¢(FI(A); Q) — HE.(FI(A); Q) and
HE (FI(A); Q) — HS(FI(A); Q). Further, since P(A) is S-stable, it inherits a C*-
action through h, giving isomorphisms

H5(P(A);Q) 3 He.(P(A); Q) and  HE (P(A);Q) 3 HI(P(A);Q).

All these isomorphisms are natural with respect to the closed embedding P(A) C FI(A).
A similar discussion for the cocharacter h; yields isomorphisms

H; (P(1);Q) 5 H&.(P(1);Q)  and  HE (P(1);Q) 5 HI'(P(1);Q),

natural with respect to P(I) C Fi(I). Consequently, the C*-equivariant inclusion j :
P(I) — P(A) yields a pullback map,
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H(FI(A); Q) = Hg, (FU(I); Q)

compatible with the algebra isomorphism Hg(pt; Q) — Hg, (pt;Q), and we obtain a
commutative diagram,

(17)

%
IR
%
14

H¢. (P(A);Q) —— HEL(P(I);Q).

In a similar fashion, we also obtain a pushforward j. : H1(P(I); Q) — HZ (P(A); Q).
The following is the main result of this section.

Theorem 6.6. Consider the map i : FI(I) — FI(A) from Equation (14).

(a) For J C I, we have i.[Ps]s, = [Ps]s in HS(FI(A); Q).
(b) Let j* : H5(P(A); Q) — Hg, (P(I); Q) denote the pullback induced from the inclu-
sion P(I) — P(A). For K C A, we have

J Pk = .
0 otherwise.

In the non-equivariant case, the equalities in (a) and (b) hold with integral coefficients.

Proof. For J C I C A, the inclusions FI(J) <i> FI(I) < FI(A) are C*-equivariant
for the action given by the cocharacters hj, h; and h, respectively. By Proposition 6.5,
we have ¢/(P(J)) = P; C P(I) and i(¢'(P(J))) = P; C P(A), and consequently
[Pslc- = in(i’([P(J)]c+)) = ix([PJ]c-) in HE (FI(A)). Then part (a) follows because
the C*-equivariance may be replaced by the Sy, respectively S-equivariance, as explained
above. Part (b) follows from Lemma 6.3 and the commutativity of the diagram,

P(I) —L— P(A)

[ [

FI(I) —— FI(A)

utilizing again that all maps are C*-equivariant.
In the non-equivariant case, all (co)homology morphisms are defined over Z, and the
classes [P;] and p; are integral, by their definition. This finishes the proof. O

Remark 6.7. The reader may wonder whether an algebra map H§(FI(A)) — Hg, (FI(I))
may be directly constructed from the inclusion ¢ : FI(I) — FI(A), equivariant with
respect to a map @y : Sy — S. The requirement that i is gj-equivariant implies that
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the differential dy; : Lie(S;) — Lie(S) must send hy — h. (Note that this is not the
restriction of the natural map Lie(T;) < Lie(T').) The existence of a lift S — S of
this Lie algebra map cannot be guaranteed. For instance, consider the inclusion Gy :=
SLs C G := SLy4 given by the natural embedding of Dynkin diagrams As C As. The
tori Sy and S are the images of cocharacters

3
2000 220 o
hi(z)=10 1 (_)2 and h(z) = 00 ' o |
0 0 =z 0 0 0 =23

respectively. In this case there is no group homomorphism ¢; : S; — S satisfying

pr(hi(2)) = h(z).

Corollary 6.8. Let I C A and assume that the map Lie(Sy) — Lie(S) sending hy — h
lifts to a map @y : Sy — S. Then the push-forward and pull-back maps

J* HE(P(A)) — Hy, (P(1)) and j, - HS'(P(I)) — HS (P(A))

may be defined with 7 coefficients. In particular, the statements in Theorem 6.6 also
hold over Z.

Proof. The claim follows because the Gj-equivariant map 4 : FI(I) — FI(A) from (14)
restricts to the pr-equivariant map j : P(I) — P(A). Then j, and j. may be defined
over Z. 0O

Remark 6.9. The results of this section can be extended to the case of reductive groups
G and a one-dimensional torus S C T satisfying «|S = f|S for all simple roots «, j3.
For G semisimple, there is a unique S C T satisfying this condition. For an arbitrary
reductive group G, this may not determine S uniquely.

It is common in the literature on type A Peterson varieties to use the group
G = GL, and the one-dimensional torus S = diag(z™,2""1,...,2). In this case, we
have an identification between the one dimensional subtori of GL, and GL, 41 given by
diag(z™, 2" 1, ..., 2) — diag(z" ', 2", ..., 2). Then the diagram in (17), and hence the
statements in Theorem 6.6, hold over Z.

7. Intersection multiplicities
Different choices of Coxeter elements vy lead to different bases {p; = t*o,,} for

HE(P; Q). By Theorem 4.3, the transition matrix between two such bases {p;} and {p}}
is diagonal, with entries given by ratios
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Table 1
The exponents of Dynkin Diagrams; see [13, Ch. 10].
Diagram  Exponents Diagram  Exponents
A, 1,2, ,n Fy 1,5,7,11
Bn, Cn  1,3,---,2n—1 Es 1,4,5,7,8,11
D 1,3,---,2n—3,n—1 E, 1,5,7,9,11,13,17
Ga 1,5 Es 1,7,11,13,17, 19, 23, 29

It is natural to ask whether there are choices for the Coxeter elements vy for which
m(vr) = 1, and more generally, to ask for formulae for the m(vy). In Proposition 7.3, we
give a formula for m(vy) in terms of the localization of the Schubert variety X** at the
point wy, and in Theorem 7.6, we use this formula to compute m(vy) for certain Coxeter
elements vr. Theorem 7.6 settles Question 1 of [32] for all classical types. As a further
application of Proposition 7.3(b), we show in Example 7.4 that not all choices of v; lead
to m(vy) = 1 in type A, and in Example 7.5 that for I € {Bg, C5}, there is no Coxeter
element vy for which m(vr) = 1.

7.1. The exponents of a Dynkin diagram

Let A be a Dynkin diagram with n nodes. The exponents mq,---,m, of A are
fundamental invariants, appearing in many contexts. We will utilize the following two
characterizations found in [13, Ch. 10]; see also [36]:

(1) Let g be the Lie algebra with Dynkin diagram A, and let {e, f, h} be an sly-triple in
g, such that e is a regular nilpotent element in g; see [40,15]. The sl-decomposition
of g is precisely ®V(2m;), where V (k) denotes the irreducible finite dimensional
slo-representation with highest weight k.

(2) Let a; be the number of roots of height i in ®£. Then (a1, ,a) is a partition,
and the conjugate partition is precisely (mq,- -, my).

Throughout this section, we will denote by my,--- ,m,, the exponents of A.
Lemma 7.1. The weights for the S-action on Lie(G¢) are precisely mit, -, mpyt.

Proof. Recall that S C T corresponds to the cocharacter h satisfying a(h) = 2 for all
a € A, and that [h,e] = 2e. Identifying X(S) as a lattice in Lie(S)*, we view ¢ as an
element of Lie(S)*. Let w € Lie(S)* be the fundamental weight dual to h, i.e., given
by w(h) = 1. Comparing the weights of the h-action and S-action on e, we deduce that
t = 2w.

Consider now an sly-triple in g, with e (resp. h) as the nilpositive (resp. neutral)
element. Since e is a principal nilpotent element of g, the decomposition of g as an
slo-representation is given by g = &V (2m,;w) = &V (m;t). Now, simply observe that

Lie(G®) = {x € Lie(U) | [e, ] = 0} = ker(ad(e))
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is spanned by the highest weight vectors in g, whose weights are precisely mit,--- ,
myt. O

Lemma 7.2. The S-equivariant Euler class of the tangent space Ty, FI(I) is ([T ms!) tV,
where N = dim Fi(I).

Proof. Observe that the map X(T) — X(S) is given by a — ¢, for all & € A. Conse-
quently, the T-weight space gq, for a € ®, is an S-weight space of weight ht(a)t. The
tangent space at w; admits a T-decomposition,

T, (G/B) = @ ga:

+
aed]

hence the S-equivariant Euler class of Ty, (G/B) is t**(2t)*2 ... (kt)*, where a; is the

number of roots of height 7 in <I>I+. Following Section 7.1, the partition (aq,...,ax) is
conjugate to (mq,...,my,); consequently, the S-equivariant Euler class of T,,,(G/B) is
precisely mi!ms!---m,tN. O

We are now ready to calculate the multiplicities m(v;) using the map in cohomology
obtained by restricting to the fixed point set.

Proposition 7.3. Let ¢}, : H5(G/B) — HE(w) be the map induced by the inclusion
wB/B — G/B. Define b€ Z by i, o, = bt"™.

wr

b

(a) We have m(vy) = — e

(b) Suppose X1 is smooth at wy. Let {81, - ,0Bn} = {a € ‘I)}" | Sq & vIwI}. Then

ht(By) ... - ht(B,)

m('UI): my ... -Mpy '
Proof. Recall from Corollary 3.5 that
oy, Unr = m(UI)T’UJI7 (18)

where nr and 7, are Poincaré dual to [P;]s and [wr]g, respectively, in H§(G/B).

We restrict both sides to w; under the map v, : H§(G/B) — Hg(wr). By The-
orem 6.6, we may assume A = I, so that the tangent space T,,,P; = Lie(G®)
has S-weights mqt, -+ ,m,t as described in Lemma 7.1. Following Proposition A.l
and Lemma 7.2, we see that the S-equivariant Euler class at w; of the normal bun-

mo! ... my, 1tV
dle of P is A2 Mnt Applying ¥ = to both sides of Equation (18) yields
mims - ... mpt” I
mylmeo! - mp itV

*
Ly Ouy = m(vr)Ly, T, -
mimsg - ... -mptt T (V1) s
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Using Lemma 7.2, we have ¢, Ty, = mq!ma!---m,!t"N, and part (a) follows.

For part (b), since X! is smooth at wy, the normal space of X "I at wy is spanned by

{ga|ae@]+asawlzvl}:{ga{aeq);ra Sa$v1w1}§

see [38, Cor 12.1.10]. Part (b) now follows from (a), along with the observation that the
map X(T) — X(95) is given by S — ht(f8)t. O

Example 7.4. Let [ = A3, and v = s18382. Then m(vy) = 2.
Example 7.5. For I € {Bsy, Cs}, we have m(vy) = 2 for every Coxeter element v;.

In [32, Question 1], Insko and Tymoczko conjecture that m(vy) = 1 for certain Coxeter
elements, when I is contained in some sub-diagram of type A, and that m(v;) = 2
otherwise. As an application of Proposition 7.3, we compute m(vy) for one Coxeter
element in each Dynkin diagram; this formula proves their conjecture in type A, and
disproves it in other cases.

Theorem 7.6.

(a) Let I be a connected Dynkin diagram with the standard labelling (see [11]), and set
V7 = 8189 - Sn. Then,

1 if I = A,, 864 = 2° .33 if I = Er,
on—1 if I = B,,Chy, 51840 =27-3%*.5 if I = Fg,
m(vr) =4 ) m(vr) = . )
2m if I = D, 48 =2%-3 if I = Fy,
72=23.32 ifI = Eg, 6=2-3 if I = Gs.
(b) LetIy,--- Iy be the connected components of a Dynkin diagram I, and let vy, -+ vy
be Cozeter elements for Iy,--- I respectively. Then v := vy ---v is a Coxeter
k
element for I, and m(v) = [[ m(v;).
j=1

Proof of Theorem 7.6. If I is a diagram of classical type, the variety X7 is smooth at
wr, cf. [32, Thm 3|. Consequently, we can use Proposition 7.3(b) to compute m(vr). We
show the details of the calculations in Appendix B. For the exceptional cases, a computer
calculation suffices: we use the localization formula (cf. [5,8]) to compute ¢y, 0y,, and
apply Proposition 7.3(a).

Following Theorem 6.6, we may assume A = I. The integer m(v) is the multiplicity
of the intersection of X with P. We have

FuI) = [[ 7)), XU =][xv, P(I)=]][P)).



28 R. Goldin et al. / Advances in Mathematics 455 (2024) 109879

and hence the multiplicity m(v) is the product of the multiplicities m(v;). O

Remark 7.7. We conjecture for all Coxeter elements vy a type-independent formula for
the intersection multiplicity, namely:

R(vp)||W,

acl

Here R(vy) is the set of reduced expressions for vy, Wy is the Weyl group of I, Cy is
the Cartan matrix of the Dynkin diagram I, and the integers a,, are the coefficients of
the highest root 07 =3 .,
the Coxeter elements in Theorem 7.6, we have verified this formula with type-by-type

aqa of 1. The second equality follows from [11, p. 297]. For
calculations. For a type-independent proof, see [25].

Remark 7.8. The formula m(vy) = 1 for I = A,, was first obtained by Insko in [31], who
proved that the scheme-theoretic intersection X%’ NP7 is reduced.

Corollary 7.9. Suppose I is contained in some sub-diagram J of type A, and let v be the
Cozeter element of I obtained by multiplying the simple reflections in increasing order
(for the standard type A labelling of nodes in J). Then m(v) = 1.

Proof. Observe that each connected component I; C I is of type A. Let v; be the Coxeter
element of I; obtained by multiplying the simple reflections in increasing order (for the
standard type A labelling of nodes in I;), so that v = [[ v;. Following Theorem 7.6, we
have m(v;) =1, and m(v) = [[m(v;) =1. O

Appendix A. Two definitions of the Peterson variety

In this section we recall the affine paving of the Peterson variety (Appendix A.1), and
we show in Proposition A.4 that the two definitions of the Peterson variety,

P .= Ge.woB 5

P(A) = {gB € G/B

Ad(g1)e € Lie(B) @ @ Ce_a} , (20)

a€A

agree. These results are well-known to experts, but either some statements are only im-
plicitly present in the literature, or we present slightly different proofs. A key point is the
irreducibility of P(A), which we prove utilizing results of Kostant [37]. We also present in
Remark A.5 an alternate proof following [6,44,1], as explained to us by Bélibanu. Their
arguments extend to the wider setting of regular Hessenberg varieties.
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A.1. Paving by affines

For I C A, let P(I)° be the Peterson cell, P(I)° = P(I)\ Ujc; P(J). Let Uy be the
unipotent Lie group corresponding to the Dynkin diagram I, and let A; be the centralizer
of ey in Ur; see [48].

The following proposition was proved in various cases by Tymoczko [50, Theorem 4.3]
and Balibanu [7, Section 6]. Following the exposition in [7], we recall the main steps in
the proof.

Proposition A.1.

(a) The group Ay acts transitively and faithfully on P(I)°.
(b) P(A) = || P(I)° is a paving by affines.
ICcA
(¢) The intersection P(A) N X, is nonempty if and only if w = wy for some subset
I CA.

Proof. Following [7, Prop 6.3], we have P(I)° = Ajw;B/B, i.e., A; acts transitively
on P(I)°. Further, Uy acts faithfully on the Schubert cell X7, , and hence the action of
Ar C Uy is faithful at the point w;. Next, observe that P(I)° is a principal space for
Ay, hence is an affine space. Finally, the observation P(I)° C X¢

wr?

along with part (b)
implies that P(A) N X, is empty unless w = wy for some I. O

A.2. Equivalence of two definitions of the Peterson variety

Lemma A.2. ([37]) The variety P(A) is locally irreducible at the point 1B.

Proof. Let U™ be the unipotent radical of the opposite Borel subgroup B~, and let
N be the variety of nilpotent elements in g. Consider the map n : U~ — g given by
u — Ad(u1)e. Following [37, Thm. 17], the map 7 induces an isomorphism,

n:U" S (e+b7)NN,

where b~ = Lie(B™). Recall that the U~ -orbit of 1B is an open set (namely the opposite
Schubert cell) in G/B. Hence Z := P(A) N U~ B/B is an open neighborhood of 1B in

P(A), and it suffices to show that Z is irreducible. Let f = € g_q, and let A% denote
a€cA
the set of regular nilpotent elements in g. Since the intersection U™ N B is trivial, it

follows that Z = n~1(b & ). Then

Z=ntbo)2OboHn(e+b )NN
=(e+bh+H NN =(e+bh+f)NN"Y,
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where the last equality is from [37, §3.2]. The result now follows from the irreducibility
of (e+bh+f)NN", cf. [37, Thm. 6]. O

Lemma A.3. The variety P(A) is irreducible.

Proof. Let Y be an irreducible component of P(A). Recall from Appendix A.1 that the
(connected) group Aa = Staby(e) acts on P(A), hence it acts on Y. Since Y is a closed
(hence projective) subvariety of G/B and since Aa is solvable, ¥ admits an Aa-fixed
point by [9, Thm.10.4]. This point must necessarily be 1B, as this is the unique Aa-
fixed point in G/B. In other words, every irreducible component of P(A) contains 1B;
the irreducibility of P(A) now follows from the local irreducibility of P(A) at 1B; see
Lemma A.2. O

Proposition A.4. The two definitions of the Peterson variety in Equation (20) agree, i.e.,
P=P(A).

Proof. Observe that G¢ = Ax x Z(G), where Z(G) is the center of G, cf. [37, p. 9].
Since Z(G) C B, we have an equality Ax.woB = G¢.woB C P NP(A). It follows from
Proposition A.1 that G®.wgB is an open subset of P(A), and since P(A) is irreducible
by Lemma A.3, P=P(A). O

Remark A.5. We recall an alternate proof of the irreducibility of the variety P(A),
following Precup [44, Cor 14] and [6, Lemma 7.1], as explained to us by Balibanu.

Let H =10 (Pacag_a), and consider the variety Z = G x? H, equipped with the
map £ — g given by (g,z) — Ad(g)x. For x a regular semisimple element of g, the
fiber Z, has dimension |Al; see [44, Cor 3]. Since regular semisimple elements are dense
in g, it follows from [41, Ch. 1, §8, Thms. 2, 3] that each irreducible component of the
fiber Z. = P(A) has dimension greater than or equal to |A|, and hence P(A) is pure-
dimensional. Following [20, §1.5], the fundamental classes of the irreducible components
of P(A) freely generate the top Chow group of P(A). Since there is a unique top-
dimensional cell in the affine paving of Proposition A.1(b), it follows that P(A) has a
unique irreducible component.

Appendix B. Intersection multiplicities for classical diagrams

We present here the details of our calculation in Theorem 7.6 of the intersection
multiplicities m(vy) for classical Dynkin diagrams.

B.1. Type A

Let V' be a vector space with orthonormal basis €1, ,€,. The vectors {¢; — ¢;}
form a root system with Dynkin diagram A, _;. A choice of simple roots is a; = ¢; —
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€41 for 1 < i < n, and the Weyl group is naturally identified with the symmetric
group on {ey, - ,€,}. We calculate vywy = [1,n,---,2], and {a € @}r | Sa L vle} =
{e1 — €12 <i < n}. Now, ht(e; —¢;) =i — 1. Consequently Proposition 7.3 and Table 1
yield m(vy) = 1.

B.2. Type B

Let V' be a vector space with orthonormal basis €1, - - -, €,. The vectors {+e; £¢;} U
{+e€;} form a root system with Dynkin diagram B,. A choice of simple roots is a; =
€ — €41 for i < n, and oy, = €,.

Let S2, be the symmetric group on the letters {1,--- ,n,m, -+ ,1}, and let Tij € Sop
be the transposition switching the letters ¢ and j. The Weyl group W can be viewed as
the subgroup of S,,, generated by the reflections,

861'—6]' = Tij’r.

i3 Seite; = Ti5T7 45 Se; =Ti7s 1<i<j<n.

Given v, w € W, if v < w in the Bruhat order on W, then v < w in the Bruhat order on
San; see [39, §6.1.1]. We calculate

vrwy = [27 7ﬁ71317n7"' 32]

and {a € @}”‘ ‘ Sa £ vIwI} ={e1+¢]2<i<n}U{e}. Now, ht(e1) = n, and ht(e; +
€;) = 2n + 1 — i. Following Proposition 7.3 and Table 1, we have
nn+1)---(2n—1)

m(vr) = =21

(1)B) -+ (2n—-1)

B.3. Type C

Let V be a vector space with orthonormal basis €1, - , €,. The set of vectors {£e; +
€j} U{%2¢;} forms a root system with Dynkin diagram C,,. A choice of simple roots is
a; = €; — €;41 for i < n, and a,, = 2¢,. The Weyl group of (), is isomorphic the Weyl
group of B,,. We calculate {a € <I>}" | Sq % vIwI} ={e1+¢€|2<i<n}U{2;}. Now,
ht(2€1) = 2n — 1, and hit(ey + €;) = 2n — 4, for 2 < ¢ < n. Following Proposition 7.3
and Table 1, we have

mvy) = nn+1)---(2n—1) _gn-1

(D) (2n—1)

B.4. Type D

Let V be a vector space with orthonormal basis €1, - - - , €,. The set of vectors {:I:ei:tej}
forms a root system with Dynkin diagram D,,. A choice of simple roots is a; = €; — €;41
for i < n, and o, = €1 + €ny1-
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Let S, be the symmetric group on the letters {1,--- ,n,m,---, 1}, and let r;; € S,
be the transposition switching the letters ¢ and j. The Weyl group W can be viewed as
the subgroup of Sy, generated by the reflections,

Sei—e; = Tijs Seite; = Ti5T5, i 1<i<yi<n.

Given v,w € W, if v < w in the Bruhat order on W, then v < w in the Bruhat order on
San; see [39, §7.1.1]. A simple computation yields

[2,---,n—1,1,n] ifniseven,
VW = _ -
[2,---,n—1,1,n] ifnisodd.
Observe that {a € (ID;r | Sa & vle} ={e1+¢€|2<i<n}U{e;—e,}. Now ht(e;—€,) =
n—1, and ht(e; + ¢) = 2n — 1 — 4, for 2 < i < n. Consequently, we deduce from
Proposition 7.3 and Table 1 that
m—)(n—Lmn---2n—-3) (n—1)---(2n—3)

m) = TG @B D) OB @3
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