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Abstract

We introduce generalized Demazure operators for the equivariant oriented cohomology of
the flag variety, which have specializations to various Demazure operators and Demazure—
Lusztig operators in both equivariant cohomology and equivariant K-theory. In the context of
the geometric basis of the equivariant oriented cohomology given by certain Bott—Samelson
classes, we use these operators to obtain formulas for the structure constants arising in
different bases. Specializing to divided difference operators and Demazure operators in sin-
gular cohomology and K-theory, we recover the formulas for structure constants of Schubert
classes obtained in Goldin and Knutson (Pure Appl Math Q 17(4):1345-1385, 2021). Two
specific specializations result in formulas for the the structure constants for cohomological
and K-theoretic stable bases as well; as a corollary we reproduce a formula for the struc-
ture constants of the Segre—Schwartz—MacPherson basis previously obtained by Su (Math
Zeitschrift 298:193-213,2021). Our methods involve the study of the formal affine Demazure
algebra, providing a purely algebraic proof of these results.
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1 Introduction

Flag varieties G /B are among the most studied varieties in topology and algebraic geometry.
They have a cellular decomposition by Schubert cells, whose closures are called Schu-
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bert varieties. Schubert varieties are invariant under a torus action and, consequently, their
torus-equivariant cohomology is spanned as a module by the Schubert classes. Throughout
this paper, “cohomology” (as opposed to “generalized cohomology”) refers to Borel-Moore
cohomology.

Other classes associated to Schubert varieties in the equivariant cohomology H7 and
equivariant K-theory K7 of the flag variety G/B include Chern—Schwartz—MacPherson
(CSM) classes and Motivic Chern (mC) classes, studied in [1, 2, 17-20, 22]. These classes
coincide with the corresponding stable bases of Maulik-Okounkov [16] for H. ; and K7, of the
Springer resolutions. Due to this fact, we always refer to the CSM classes as the cohomological
stable basis, and to the mC classes as the K-theoretic stable basis. These classes behave
like Schubert classes in their corresponding theories. Roughly speaking, Schubert classes
in H;(G/B) and K7(G/B) are constructed by Demazure operators (also called divided
difference operators), and elements of the stable bases are constructed by Demazure—Lusztig
operators. All these operators generate various Hecke-type algebras.

Structure constants of Schubert classes are central objects in Schubert calculus, appearing
in important questions of representation theory and combinatorics. In [11], the first author
and Knutson obtain formulas for the structure constants in H7(G/B) and K7(G/B) using
geometric properties of Bott—Samelson resolutions of Schubert varieties. They pull-back the
Schubert classes to the equivariant cohomology (or equivariant K-theory) of Bott—Samelson
variety, apply the cup product in this variety, then push-forward back to G/B. In [21],
Su generalized this method to the so-called Segre—Schwartz—MacPherson (SSM) classes, a
variant form of CSM classes.

We are interested in generalized cohomology theories, called oriented cohomology the-
ories, defined by Levine and Morel [15]. These cohomologies are contravariant functors
defined on the category of smooth projective varieties over a field k of characteristic O to the
category of commutative rings, such that for proper maps, there is a push-forward map on
cohomology groups. Examples include Chow rings (cohomology), K-theory and algebraic
cobordism. Chern classes are defined for each oriented cohomology theory h, and there is an
associated formal group law F defined over R = h(pt). The machinery works equivariantly
as well, resulting in a cohomology theory h7 with an associated formal group law F defined
over R = hr(pt).

For flag varieties, generalizing work of Kostant and Kumar [13, 14] on equivariant coho-
mology and equivariant K-theory of flag varieties, the ring h7 (G /B) has a nice algebraic
model, constructed in Hoffmann et al. in [12], and studied in [5-7] by Calmes, Zainoulline,
and the second author. One can define the (formal) Demazure operators X, associated to
each simple root . These operators generate a non-commutative algebra, called the formal
affine Demazure algebra D . Itis a free left hy (pt)-module with basis {X;, | w € W}, where
X, is, roughly speaking, a product of the operators X, with /,, indicating a reduced word
expression for w.

The algebra D is also a co-commutative co-algebra, where the coproduct comes from the
twisted Leibniz rule of the operator X,,. Taking the hr (pt)-dual, one obtains a commutative
ring D%, a free h7 (pt)-module isomorphic to hy (G / B), together with a dual basis {X * Jw e
W}. Indeed, for equivariant Chow group/cohomology/K-theory, X 7 coincides, up to various
normalizations, to the Schubert class associated with w. Then H} (G /B) and K7(G/B) are
achieved with the same module basis, and a restricted coefﬁ01ent ring: a polynomial ring for
H7(G/B) and Laurent polynomial ring for K7(G/B).

We notice that the product structure on D7 is obtained by dualizing the coproduct structure
of Dr. It follows that the structure constants of the basis X7 may be deduced from the twisted
Leibniz rule of the product Xg, Xg, - -- X, for a reduced ‘word sg, -5, of w € W. This
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is the main idea of the proof of Theorem 3.7, which implies the main result, Theorem 4.1.
Specializing h7 to equivariant cohomology and equivariant K-theory, we recover the formulas
of the first author and Knutson in [11].

In the case of H}(G/B) and K7(G/B), replacing the Demazure operators X, by the
Demazure-Lusztig operators 7, and 7, , one obtains the stable bases for H7(G/B) and
K71(G/B), respectively. Both the cohomology stable basis and the K-theory stable basis
can be described in an analogous fashion to the story for Schubert classes. That is, the
Demazure-Lusztig operators generate a degenerate affine Hecke algebra (for equivariant
cohomology) and an affine Hecke algebra (for equivariant K-theory). The dual elements to
products of these operators are essentially the cohomological/K-theoretic stable bases, so
their respective twisted Leibniz rules result in a formula for the structure constants of stable
bases. For instance, for cohomology, we recover the formula of Su [21] (see Remark 6.6).

To work with the Demazure operators X, and Demazure—Lusztig operators 7y, at the same
time, we define a general operator Z, (see Sect. 3) in a ring containing D, which can be
specialized to X, and 7. Our main results are Theorems 4.1 and 6.3, which state a formula
for structure constants of the basis determined by Z, and apply it to the cohomological stable
basis.

The paper is organized as follows: In Sect. 2 we recall necessary notation introduced by
the second author in [5-7]. We recall the definition of a Demazure element, the formal affine
Demazure algebra, its dual, and relation with hy(G/B). In Sect. 3 we prove the twisted
Leibniz rule for the operator Z,, which is used to derive the structure constants of the basis
VA }kw in Sect. 4. In Sect. 5, we specialize our result to Demazure operators in cohomology and
K-theory, and recover the formulas in [11]. In Sect. 6 we specialize our result to Demazure—
Lusztig operators in cohomology, which, as a by-product, recovers the formula due to Su in
[21]. In Sect. 7 we consider Demazure—Lusztig operators in K-theory and obtain a formula
for the structure constants of the K-theoretic stable basis. In Sect. 8, for equivariant oriented
cohomology, we generalize some results of Kostant-Kumar ([13, Proposition 4.32], [14,
Lemma 2.25]) by relating our formula for structure constants with a restriction formula of
Schubert classes.

2 Preliminary

We follow notation used in [5-7]. Let ¥ < A", @ > a" be a semi-simple root datum of
rank n. That is, X is the finite set of roots, A is the lattice and A" is its dual. Let {oq, . . ., o}
be the set of simple roots, £ and ¥~ be the set of positive and negative roots, respectively.

Let W be the Weyl group generated by the associated simple reflections s; := s4,. Denote
by < the Bruhat order, and let £(v) be the length of an element v € W. Note that W acts on A
since it preserves the root system. For each sequence I = (i1, ..., ix) with i; € [n], denote
the products;, - - -s;, € Wby [] 1, in which we keep track both of the concatenated sequence
of simple reflections and the resulting element of W. If ] I is a reduced word expression for
the resulting Weyl group element, we say that [ is a reduced sequence. Following [11, Sect.
1], define the Demazure product

1_[1:.8‘,'1 c S

subject to the braid relations and sl-2 = s; for all i. Observe that [[ ] = ]:[I when [ is a
reduced sequence. When [ is a reduced sequence for w, we may denote it by /,, and abuse
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notation by calling it a reduced word for w. Finally, let /™" denote the sequence obtained by
reversing the sequence /.

Let F be a formal group law over the coefficient ring R. Examples of formal group laws
include the additive formal group law F, = x + y and the multiplicative formal group law
F,, = x + y — xy. Suppose the root datum together with the formal group law satisfy the
regularity condition of [5, Lemma 2.7]. This guarantees that all the properties that we use
from [5-7] hold. Indeed, the regularity condition guarantees that the elements x,, ¢ € A
defined in $ below are non-zero-divisors. In particular, the Demazure operators X, for simple
roots o are well defined.

Let G be a split semi-simple linear algebraic group with maximal torus 7 and a Borel
subgroup B. Let the associated root datum of G be ¥ < AV, so A is the group of characters
of T.

Let h be an oriented cohomology theory of Levine and Morel. Roughly speaking, it is
a contravariant functor from the category of smooth projective varieties to the category of
commutative rings such that there is a push-forward map for any proper map. The Chern
classes of vector bundles are defined. Associated to h, there is a formal group law is F
defined over R = h(pt). That is, the first Chern class of line bundles over a smooth projective
variety X satisfies

MLy @ L2) = F(M (L), B(L2)).

For example, F, (resp. Fy,) is associated to the Chow group (or cohomology) (resp. K-
theory). Both can be extended to the torus equivariant setting. We assume the equivariant
oriented cohomology theory hr is Chern-complete over the point for 7, that is, the ring
hr (pt) is separated and complete with respect to the topology induced by the y-filtration
[5, Definition 2.2]. In particular, this includes the completed equivariant Chow ring, the
completed equivariant K-theory and equivariant algebraic cobordism.

Let S be the formal group algebra defined in [4]:

S = R[[A]lF := R[[xi|x € All/JF, ey

where Jr is the closure of the ideal generated by xo and x3y, — F(xy,x,), for all
A, € A. Indeed, if {t1,...,1,} is a basis of A, then § is (non-canonically) isomorphic
to R[[x, ..., x;,1]. According to [5, Sect. 3], S = hr (pt) with x; corresponding to c[;“(ﬁ;\)
where £; is the line bundle associated to A € A. Since x_j is the formal inverse of x;, i.e.
F(x;,x_;) =01n S, we may write

Xx_j = —x; + higher degree terms € S.

Define Q0 = S [éla € X]. We will frequently need the special element of Q given by

Ky = i + ﬁ Note that «; actually belongs to S. Note also that the action of W on A
induces an action of W on S.

Example 2.1 Two cases of the formal product appear widely in the literature [4, Sect. 2].

1. If F = F, with R = Z, then h is the cohomology/Chow groups, and S = Symy(A)” (
with x; > 1) is the completion of the polynomial ring at the augmentation ideal. In this
case x_; = —x; and k; = 0.

2. If F = F, with R = Z, then h is K-theory, and S = Z[A]" (with x; — 1 — e is
the completion of the Laurent polynomial ring at the augmentation ideal. In this case
X_) = xf%]’ andK)\ = 1.

To obtain equivariant cohomology H7 (X) and equivariant K-theory K7 (X), we restrict
the coefficient ring to S = Sym[A] and S™ = Z[A], respectively.

@ Springer



Structure constants in equivariant oriented cohomology. . . Page50f27 42

2.1 The operator algebras Qy and Df

This paper is concerned with various divided difference operators acting on hr (G/B), the
equivariant oriented cohomology of G/B. To create an algebraic framework for these oper-
ators, following [6, 7] we localize S at {x,} to create an algebra out of this localization and
the Weyl group, as follows.

Let S be the ring described in (1), and let Q := S[ila € X]. Define Qw := Q x R[W],
as a left Q-module with basis {§,,}, w € W.

We shall see that Qw acts on its dual space Q7,, which is identified with Q ®sh7(G/B),
the cohomlogy of G /B with inverted Chern classes.

We impose a product on Qw by

(p8)(P'8y) = pw(p)Syyy, forallp,p’ e Q, andw,w € W,

using the natural W action on Q induced from that on A and extending linearly. Note that Q
identified with Q6. is a subring of Qw under this product, where ¢ € W denotes the identity
element of W. We routinely abuse notation and write §, for §5,, and use 1 = §,. to denote
the identity element of Qw. The ring Qw acts on Q by

pdw - p' = pw(p’), forall p, p’ e Q.

The action of Qw on Q induces a coproduct structure on Qw as follows. Let n =

> quwéw € OQw. Then
weW

N (pg) =Y quw(pg) =Y _ quw(p)w(g) = Y qu®u - p)Gu - q).
w w w
This action factors through the coproduct A : Qw — Qw ®o Ow
A =D quAGu) =Y qudn ® du. ©)
w w

In other words, the coproduct structure on Q is induced from the Qw-action on Q.
For any simple root & we define the Demazure element X, and the push-pull element Y,
in Qw:
1 1

1
Xo=—(0—=6,) and Y, = + —6q.
Xo X_q Xg

We observe the relationship Y, = x4 — X. In particular, if F = F, (resp. F = F;,), then
Yo = —Xq (resp. Yo =1 — Xq).

The way Qw acts on Q implies that X, acts in a fashion similar to the Demazure operator
defined in [8] (and there denoted D, ). In particular, X, - S C Sand, foranyr € R, Xo-r =0
and 8y - r = s (r) =r.

Let Dr be the R-subalgebra of Qw

Dr = (S, Xays s X))

generated by S and the elements X, € Qyw for simple roots «, and call it the formal affine
Demazure algebra. It is also generated by S and {Y,, : o simple}. As a left S module, Dr is
also free with basis { X, }wew, or with basis {Y;, }wew; see [6, Proposition 7.7].

Let w = s;, ---s;, be a reduced word decomposition and 1,, = (i, ..., i) the corre-
sponding sequence of reflections. Define

Xlw = XO[,'I T Xaik and Ylw = Yail e Yaik .
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In particular, X ;) = X4, and Y(;) = Yy, , though we eliminate parentheses when there is no
confusion. We write X, := 1 € Qw to indicate X; when / is the empty sequence.
The Demazure and push-pull elements have the following properties:

Lemma 2.2 [24, Proposition 3.2] Let o and 8 be simple roots. The following identities hold
in Qw.'

X2 =Ko Xy, Y2 =kyYy.

Xop =5¢(P)Xoa +Xo-p, peQ.

If(SaSﬁ)z =e, then Xy Xp = XgXq.

If(sas,g)3 =e, then Xg Xy Xp — X0 Xp Xy = kapXo — Kpa Xp, where

bl ol

1 1 1
Ko = - — .
op Xa+pXp  XatpX—a  XaXp

Furthermore, ko € S by [12, Lemma 6.7].
5. Suppose sysg has order m with m = 4 or 6, and I, is a choice of reduced word for
w e W. Then

XoXpXa - — XpXoaXp-- =Y c1, Xy,
veW

m m
where c;, = 0if v L 54888y - - . Moreover, c;, = 0ifL(v) =m — 1 orv =e.
v ﬁ v
———
m

Lemma 2.2 (4)—(5) imply that the operators X, (and similarly Y,,) do not satisfy braid relations
for general F. For F' = F, or F = F, they do; in these cases, the coefficients k45 and ¢,
all vanish. In general, X;, and Y;, depend on the choice of I, due to this failure of braid
relations.

For the purposes of this paper, we fix a reduced sequence I, of w for each w € W.
While the specific coefficients and calculations regarding X ;, and Y;, depend on this choice,
statements regarding bases and ring phenomena do not.

By construction, {§, : v € W} form a basis of Qw as a module over Q. In [6], and
extended in [7], the second author proves that {X; : v € W}and {Y;, : v € W} also
form bases of Qw as a module over Q, and that the change of basis matrix from {X,} (or
from (Y}, }) to {§,} consists of elements of S. In particular, {§,} are elements of Dr. The
lower-triangularity of the change of bases matrices is expressed in the following lemma.

Lemma 2.3 [7, Lemma 3.2, Lemma 3.3] For each v € W, choose a reduced decomposition
of v and let I, be its corresponding sequence. There exist elements a;i L EQforveW,

and bi,lv € S such that

X X
X1, =) ap 8. and 8, =) bX Xp,.

v=w v=w

Similarly, there exist a};’v € Q and brlx/),lu € § such that

Yy, = Zalyw,v 8y, and &, = Z b,);,,UYIV.

v<w v<w

Notice that nonzero coefficients bfﬁ 5, are elements of S with v < w.
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Example 2.4 Consider the root datum A,, with
W= {e, S1, 82,8182, $251, w()},

where wy is the longest element and s; is the reflection corresponding to «; fori = 1,2. We
fix the reduced sequence I,,, = (1, 2, 1) for wg. For simplicity, let 013 = o1 + or2. By direct
computation,

e = X Ssisy = 1 = x1X(1) = X3 X @) + Xery Xeri3 X (1,2)
S =1—xo X Ssas1 = 1 = X X@) = Xai3 X (1) + ¥2Xa3 X (2,1)
by =1—x0X0) Swp = 1 = Xay3X(2) = (Xay + Yo — Koy Xory Yo ) X (1)

+ Xoy Xa 3 X (1,2) + X Xa 3 X (2,1) = Xay X Xays Xlwo .

2.2 The dual operator algebras

The dual Q-module
Qj = Homgo(Qw, Q) = Hom(W, 0),

contains a natural basis { f, }wew dual to {6, }wew, defined by

1 ifw=uv;
(fwv5v> =

0 otherwise.

One may think of Q7, as the T-equivariant oriented cohomology of W with the trivial T
action, tensored with Q. In particular,

QW = 0 Qs hr(W) = Q ®shr(G/B).

The module QF, forms a ring with product f,, f, = 1 if an only if w = v, and O otherwise,
extended linearly to all elements of QF,, and unity 1 = 3" . f,». This product structure is
equivalent to the one induced from the coproduct structure (see Sect. 4 below).

The ring Qw acts on Q7, by

(z- f.2)=(f.22), forallz,z’ € Qw, f € Q.
In the bases {§,,} of Qw and { f,,} of Q%F,, the action has explicit formulation
Pduw - (@fy) = quw™ ' (p) fyy-t1, forall p,g € Q. 3)
Denote

pt, = (]_[xa) fo=w (Hxa> fu € Oy

a<0 a<0

Let D}, := Homs(Dr, S) C Qj, be the dual S-module to Df. It is proved in [7, Lemma
10.3] that pt,, € D7.. Let

EIX,,, = Xjrev - pt,, and
Y
&r, = Yo - pte.

Then {;,’;} forms a basis of D} over S, as does {{}L}.
Finally, let {X ;‘w}, (respectively {Yl*w}) be the bases dual to {X;,} (resp. {¥;,}) in D%,
which are also Q-basis of Q7.
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The classes X for each v € W are determined by duality. Under the dual pairing,

(Xz)’ (Sw> = <XZ, Z bi,luxlu> = blig,lv'

uew

Set X7 =3>_,ew M1,ufu, which implies

X[ s <Z mllufu, >=mlv,w7

uew

and thus Xj = D wew bi,lv Ju-

Example 2.5 Consider the root datum A,, with W = {e, sy, 52, 5152, 251, wo}. Fix the
reduced sequence wo = s1s2s1. The calculations from Example 2.4 imply

X: =1= Z Sw, Xzﬁl,z) = xalxa13(fvlsz + fwo)
weW
Zkl) = Xy (fSl + fSlsz) — Xag3 f52s1 - yfwos XZFQJ) = xotgxalg(fszsl + fwo)

* *
Q) = —Xa, (fsy + fsas1) — Xays (fsysy + Fuwo)s X1w0 = —Xo; Xay Xary3 Jwo s
where y = X¢, + Xoy — Ko Xay Xap- Incase F' = F, or Fy,, we have y = x4,;.

The following proposition explains the relationship between the algebraic construction above
and equivariant oriented cohomology of G/B.

For each reduced sequence I, let X7, — G /B denote the Bott—Samelson resolution. The
push-forward in hr of the fundamental class along this resolution is called the Bott—Samelson
class of I,, which we denote by n;, . Define a map

®:D% — hy(G/B)

given by @(;};) =1y, and ®(1) = [G/B], the fundamental class of G/B, and extended as
a module over S.

Proposition 2.6 The isomorphism ® satisfies the following properties:

1. [5, Theorem 8.2, Lemma 8.8] The map ® is a functorial isomorphism.

2. [7, Theorem 14.7] The basis {®(X} ) : w € W} (resp. {®(Y])) : w € W} is
dual to <I>(§I’;) (resp. CD({I);)) via the nondegenerate dual pairing on ht (G /B) given by
multiplying and pushing forward to a point.

3. [5, Corollary 6.4] Let iy, : wB < G/B be the inclusion of the T-fixed point corre-
sponding to w € W, and (i)« : hr(wB) — hr(G/B) be the pushforward map. Then
D(pt,,) = (uw)x(1).

4. There is a commutative diagram

D} Qw

l; ® i l;

weW

lh]T(G/B)% 0 ®shr (W),

where the top horizontal map is the embedding of the S-module into the Q-module Q7,.
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By specializing the formal group law to F, or F,, respectively, and restricting S to R[A]/JF,
we obtain a map &% : D} — H;(G/B)or ok . D} — K7 (G/B) to the equivariant coho-
mology or equivariant K-theory. The map remains an isomorphism over the corresponding
module. From now on we will not distinguish between D%, and h7(G/B).

Example 2.7 Let X(w) = BwB/B be the Schubert variety and Y (w) = B~wB/B be the
opposite Schubert variety. For H}(G/B) (with F = F,) or K1(G/B) (with F = F,,), we
write w for I, since X, and Y;, are independent of the reduced sequence.

1. [11, Sect. 1.2] For H;(G/B), ¢} = [X(w)], and ¢¥ = (—1)*™[X(w)], where each
homology class is identified with its dual cohomology class. Then Y,; = [Y(w)] and
similarly X = (= D)™ [y (w)].

2. [3,Sect.3]For K7 (G/B), {5 = [Ox(w)]is the class of the structure sheaf of X (w), Y5 =
[Oy ) (=Y )], & = (=D [Ox(u) (=3 X (w))], and X}, = (=) [Oy )]

3 Generalized Demazure operators and the generalized Leibniz rule

In this section, we generalize the operators X, and Y, on hy (G/B) to a more general class

of elements of Qw, and prove the generalized Leibniz rule for D acting on Q. We use this

result to compute the coproduct structure in Qw, and then the product structure in Q7.
Let {ay, by € Q : « € X} be a set of elements with the property that, for all w € W,

w(ay) = Aw(a), w(by) = by (), and by are all invertible in Q.
For any simple root «, define operators Z, € Qw by
Zo = dg + bydy.

Clearly X, and Y, result from Z, as special cases of a, and b,. For any sequence I =
(i], ey ik), define Z; € QW by

Zi = Zay Lo, Zosy -

We call Z; generalized Demazure operators.
As before, we choose a reduced word expression [, for each v € W.

Lemma 3.1 The set of generalized Demazure operators {Zy,} forms a basis of Qw as a
module over Q.

Proof This follows from the fact that b, € Q is invertible for all simple roots « (hence, for
all roots «). O

Remark 3.2 Note that Z, € Dp if and only it satisfies the residue condition [23, Definition
3.7]. If this is satisfied, then Z;, € D and equivalently, Z* € D7}.. Moreover, Z;, forms a

basis of D if and only if b € § for all «. For example, thls holds for X, Y, but fails for
T, considered in Sects. 6 and 7. This is precisely why the stable basis is only a basis after
localization.

Lemma 3.3 For any sequence J, define coefficients cj 1, € Q by

Zy=Ycru1,Z1, “

weW

Then cy. 1, = 0 unless w < ﬁ].
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Proof Clearly Z, = ay + by3, has support on {w : w < s4}. An immediate observation of
the product in Qw shows inductively that Z; may be expressed as a Q-linear combination
of &, forv < []J.

For any v € W and reduced sequence I, = (i, ..., i), let y; = 7y forj=1,...,k.
The coefficient of §, in Zj, is

by Sy, (b)) Sy Sy, (bys) <o Syy oSy (byy).

In particular, since by, is invertible, so is w(by,) for any Weyl group element w, and thus the
coefficient of 8, in Z;, is nonzero. B

Let A={we W:cy, #0andw £ [[J}, and assume A is nonempty. Pick v € A to
be a maximal element of A in the Bruhat order. By support considerations, the only terms
contributing to the coefficient of 8, in (4) is ¢y 1, Z},. Since the coefficient of §, in Z;, is a
unit, we conclude c; j, = 0, contrary to assumption. O

The structure constants ¢, j, reflect geometric properties in some special cases (see
Sect.5). When Z, = X, for all @ or Z, = Y, for all «, and F = F,, the coefficients
in the sum (4) vanish unless J is a reduced word for w, in which case c; ;, = 1; this reflects
the property that the pushforward map in homology sends the orientation class [BS;] to
the Schubert variety X (w) when J is a reduced word for w. When Z, = X, for all « or
Zy = Y, for all @, and F = F,, coefficients vanish except when the Demazure product
of J is w, which occurs exactly once and results in ¢y ;, = 1. In~this case, the K-theoretic
pushforward of [Ops, ] is the structure sheaf of X (w) when w = [[J. More generally, Z; is
an (equivariant) operator whose dual has support only on those fixed points in the Schubert
variety X (w), where w = []J.

We have the following lemma describing the action of Z, on a product.

Lemma 3.4 For a simple root o, and p, q € Q, we have

Ay (ag + by) a 1
Zoy (pq) = ———pqg — = [(Zoa PV g4+ PZa - D+ —(Za - P)(Za - q).
by by by
Proof One just has to plug in Z, = ay + be8s, and use the definition of the action 85, - p =
s« (p). A comparison of both sides yields the identity. O

The coefficients occurring in Lemma 3.4 may be generalized to the case of the action of
Zj on a product pq.

Definition 3.5 Foreach simpleroot«, let Z, = ay +by 8y Withay, by € Q and by, invertible.
Let I = (i1, ..., i) be a sequence of indices of simple roots, with y; := 7y corresponding
to the jthentry of I. For E, F C {1, ...k}, define the Leibniz coefficients CfE r € Qby

Clr=(B{BY---B)-1. 5)
where the operators B/.Z € Qw are given by

1 e
W‘SVJ’ ifjeENF,

BZ — —Z%SW, if j € E or F, but not both,
j

(6)

2

a
ay; + 518y, ifj¢ EUF.

J 17
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Example3.6 Lety; = «;; indicate the jthroot listed in the sequence /. If Z = X, then using
the specific choice of coefficients for the Demazure operator yields

—xy,8,,, ifje€ENF,

BX = .
I =)oy if j € E or F, but not both,

Xy, ifj¢ EUF.

Similarly, if Z = Y indicate the push-pull operators,

Xy; 8y, ifje ENF,
lef — xxfii 3y, if j € E or F, but not both,

1 Yy S
X—y; + (—y)27YI”

ifj¢ EUF.

Now we prove the main technical result of this paper, generalizing [6, Lemma 4.8].

Theorem 3.7 (Generalized Leibniz Rule) Let Z; be a generalized Demazure operator for
I = (i1,...,ix), and let yj = aj; denote the jth simple root in the list. Then for any
p.q€Q,

Zi-(pg)= Y Cpp(Zg-p)Zr-q).
E,FC[k]

where CIIE F are the Leibniz coefficients defined in (5)

Proof For any simple root «, observe the following two identities:

2
ta(l = 8g) + LGt bad ey Gy s %
o by by
Zo - (pq) = aa(p — 50(P))q + 50 (P)(Za - q). 8)

We prove the theorem by induction on k. If k = 1, the theorem holds by Lemma 3.4.
Now assume it holds for all 7 with £(1) < k,andlet I = (i, ..., ir).LetJ = (ip, ..., ig)
and let ¢ = «;,. We have

Z1-(pq) = (ZouZy) - (pq) = Zo - (Z; - (pq))

=Zy- Z CLF(ZE -PIZF - q)
E,FC{2,...k}
= Y @[Chr-sChp| @ p(Zr-a)
E,FC{2,...k}
+ Y. 5u(CL ) Za - [(Ze - p)(ZF - @)] by Equation (8)
E,FC{2,...k}
= Y a[Chs-s(Chp| e pZF0)
E,FC{2,...k}
aq(ag + be)
+ Y s(CLp)=———(Ze - P)(ZF - q)

by
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— Y sa(Ch T ZaZe - U2 )+ (Ze - p)(ZaZr - )

E,FC{2,...k}
;1
+ > $a(C 1)~ (ZuZp - p)(ZaZF - q) by Lemma 3.4
E,FC{2,...k} o
a2
. [<aa+biaa>.cgf] (Ze - PZr - q)
E,FC{2,...k} o

8 Cg,p) [(ZoZi - P)(Zr - ) + (ZE - P)(ZaZr - )]

1
+ > <750, : Ch) (ZoZE - p)(Zo ZF - q) by Equation (7).
k)

Comparing the coefficients with B IZ . (Céy ) from (6), we see that they coincide. The proof
then follows by induction. m}

The following corollary follows immediately. We see in Sect. 8 that the Leibniz coefficients
C[’k] g arise as factors in summands of specific structure constants in Schubert calculus,
justifying the name. Here [k] = {1, 2, ..., k}.

Corollary 3.8 (Generalized Billey’s Formula) Let [ = (i1, .. ., ix) be a sequence of indices of
simple roots, and denote mj = s, siy - - - si;_, (ai;) andnj = sj;siy - - - si;_, (bi;). For E C [k],

we have
I I k—|E -1
Cluye = Chyg= DT my [T 07"
JEKNE JElk]
As a consequence of Theorem 3.7, [6, Proposition 9.5] and the coproduct defined in Eq.
(2), we obtain the following theorem.

Theorem 3.9 Let Zy, = ay + bydy € Qw with by invertible, then for any I = (iy, ..., i),
we have

AZy= ) CLpZp®Zr,
E,FClk]
where C%’F are defined in Definition 3.5.

We specialize Theorem 3.7 to the elements X; and Y;. For any index j, the operators B ]X

and BY preserve S under the action of Qw on Q, and thus BX,B ]y € Dr (see [6, Remark
7.8]). The first statement in the next corollary is the result [6, Proposition 9.5].

Corollary 3.10 For the Demazure elements X, and I = (iy, . . ., ix), we have
Xi-(pg)= Y ALp(Xe-p)(Xr-q),
E,FClk]

where Ag F= (BIXBzx e B]f) -1 with B}X € Dr defined in Example 3.6. Similarly, for the

push-pull elements Yo and I = (iy, ..., iy), we have
Yi-(pg)= Y. B p(Ye-p)(Yr-q)
E,FC[k]

where BIIE F= (BlYBg e B]Z) -1, and BJY € Dr is defined in Example 3.6.
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4 The structure constants of equivariant oriented cohomology of flag
varieties

In this section we prove the main result, i.e., the formulas of structure constants of Z;‘w in
hr (G/B), with resulting formulas for the structure constants of X7 and of Y*

Let {Z* } be the basis of QF, (as a module over Q) dual to ‘the basis {Z]w} of Qw
introduced in Sect. 3.

Theorem 4.1 For any u,v € W, the product Zj Zj is given by

* 7k
Z; z1 = ) el 2

w>u,v

where

Ly _ Ly
Clualu - Z CE,FcEaluch]v € Q7
E.FC[t(w)]

CIE“ 7 € Q are the Lel:bniz coefficients given in Definition 3.5. As before, the Q elements
cg,1, and cp 1, are defined as constants appearing in the expansion

Z-] = Z ijlu,' le ' (9)

weW

Example 4.2 Consider the Az-case. Consider I, = (2,3,1,2, 1), I, = (1,2,3,2, 1), then
o:g” L= 0 unless w = wy is the longest element. Fix I,, = (1,2, 3, 1,2, 1), in which case
we have

L ZnZpZpZnZnZ
C% 456112356 = Bi By By By Bs B - 1

Ao Aoy

3

bal bozz ba, +an baz +a3 bal +az+a3
and ¢(2,3,4,5,6),1, = €{1,2,3,5.6).1, = 1. Therefore,

Ao lay *

R S S W S Ty
a1 Yo Vot Par+a3 Yoy +az+as 0

Proof of Theorem 4.1 The coproduct structure A on Qw (Eq. (2)) naturally induces a product
on QF,.Forall f,g e O}, and Y .y qudw € Ow,

<fngCIw w> f®g,A(qu w))

weW weW

= (f ® g, Z QU)SU) ® Bw)
weW

= D qulf du)(g. ).

weW
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Note that this product corresponds to the product on Q7F, introduced at the beginning of
Sect. 2.2 since

(fu for D qudu)

weW

{m, Y gwdu) =Y qulfu Su)y  ifu=1v;

0, otherwise,

) u. ifu=v;
N 0, otherwise.

From Theorem 3.9 we have

AZy)= Y. CPrZe®Zr

E,FC[t(w)]
Iy
= Z CE,F [(Z cEquZlu> ® (Z CF!’UZII}>]
E,FC[t(w)] ueW veW

171,'
> > CEperacr, | Zi, ®Z,
uveW | E.FCle(w)]

— Ly
- Z CILnIv ZI“ ® ZIU.
u,veW

Finally we obtain the coefficient by calculating the pairing:
(2}, 2}, 21,) = \Z}, ® 2. AZ1,)) = <! .

Let I,,| £ be the subsequence obtained from restricting 7, to E. Since w = ﬁlw > ]:[(leg)
forany E C [£(w)], by Lemma 3.3, Cﬁ:JJv =Qunlessu <wandv < w. ]

The coproduct structure on the left O-module Qw restricts to a coproduct structure on
the left S-module Dr [6, Theorem 9.2]. Consequently, the embedding D’; C QS‘ZV is an
embedding of subrings. So the structure constants of the S-bases {X ’;w} and {Y,’; }in DY, are
precisely those of the Q-bases {X7 } and {Y} }in QF,.

Specializing Theorem 4.1 to the X-operators, we have

X;<H X7U = Z 05';' IU X}<UJ ’
w>v,w=>u
with
Iy Iy
0= D A ECLIe L Clylr gy (10)
E,FC[t(w)]

where ¢y ;, are the coefficients that occur in the expansion X; = ZU cr,1,X1,. It follows
from [6, Theorem 9.2 and Proposition 7.7] that AIE"’ p € S,thatcy g, € S, 50 02:’ I € S.
Similarly, specializing to the Y-operators, the structure constants for Y,*w are denoted by

b’ and can be expressed as
Iy, 1y
Iy I
[blu,lv = § : By pClylp 1 Clulp Iy
E.FC[t(w)]

where now the coefficients ¢/ j, are those appearing in the expansion of Y;. As before,
Bé" r €Sandcyy, €,50 [bi': ;, €5-In Sect. 5 we show that these coefficients simplify in
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the case that F' = F, or F' = F,,, resulting in Theorem 1 from [11]. It is worth noting that
the formula (10) can be used to prove the Leray-Hirsch Theorem for flag varieties (see [9]).

Example 4.3 Assume the root datum is of type Ay, then W = {e, s1}. We calculate the basis
change explicitly:

XZ = fe+ fsls szl) = _xoqfsla

and then we may obtain the products directly:
X: X=X, X XE“I) :XE“I), XZ"I) X = —xalXZ“I),
and note that it agrees with Theorem 4.1 with Z = X.

Example 4.4 Consider therootdatum A,, with W = {e, s1, 52, 5152, $251, wo}. For the longest
element wy, we fix the reduced sequence /,,, = 515251.

We use the calculation in Example 2.5, and the product structure on Q7 to obtain the
multiplication table for {X; }. Recall that f, f, = 1 if u = v and O otherwise, and that

X: = fe+ fs + fso + fsiso + Sosy + fuwo- If X, = Zu ay fu, we have

X:)X: = <Zaufu> (Z fv) = Zaufu = X;Z
u v u
for all w € W. Similarly,

X?uf() XE‘I,Z) = (—Xa; Xar Xay3 fug) (xotlxotls(fS1Sz + fwo))

2 2
_xoqxa2xa]3 wa

— *
= xalxanxlwo :

The other products are as follows:

;kwo 7“’0 = —xlxsz,BX}ka X}kwo sz2,l) = x2xa13X}kmO
XX = Xagp+XontaXp, Xiuy X0 = Xy,
X0y X = xali._xz X{1.0) = ¥2X(y) Xon Xe = nxa3Xy
XonXoy = WX Xy Xluo X0 = X,
Xy X = SmXp TR, Xy Xhy = WxeX(y

+x1y+x§|3—xma13 —y2 *
X1X2Xo 3 Twy*

Here y was defined in Example 2.5.
One can check that the above coefficients mﬁr” 5, agree with the formula (10). Note that

. I . .
when computing o'}, one needs to compute the following coefficients:

Al

Ly Ly Ly
Al ay, A A5} 130,013}

(31,031 “H{13L{3) T{3}.{1.3p
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As an application, we consider the case of a partial flag variety. Let K be a subset of
[n]. Let Pk be the standard parabolic subgroup, Wx < W the corresponding subgroup, and
WK < W be the set of minimal length representatives of W /W . We say a set of reduced
sequences [, is K-compatible if for each w = uv, u € WX, v e Wg,wehave I, = I, U1,
i.e., I, is the concatenation of /,, with I,.

Theorem 4.5 Suppose the set {I,,} is K -compatible. Then for any v,u € WX, we have

?M X}(U = Z 05;”! IU X}<II,’ °
weWkK w>v,w>u

Proof It follows from [7, Corollary 8.4] that X , u € WK is a basis of (Q%,)"%. Moreover,
from Lemma 4.3 of loc.it., we know 8y, - (ff') = (8y - f)(8w - f’). Therefore, X}*u XZ €
(Q}"V)W’(, so is a linear combination of X*w, we WK, O

Geometrically, under the assumption of this theorem, it follows from [7, Corollary 8.4]
that {qu}wewl( is a basis of (D’;)WK = hr(G/Pk). So the product XZ XZ, u,ve wkis
a linear combination of X }*w, we WK,

Corollary 4.6 Let F = F, or Fy,, and suppose u € W satisfies that u € WX for some K
and u is the longest element in WX . Then for any v € WX, 0.y = 0forany w € W, unless
w=u.

Proof In these cases, the braid relations are satisfied, so the structure constants do not depend
on the choice of reduced sequences. In other words, fixing # and K, we can assume we have
chosen K -compatible reduced sequences. Then Theorem 4.5 applies, which implies that for
any v € WK, w e W, we have o,y = O unless w € WX and w > u. Since u is maximal in
WK sow = u. o

5 Structure constants in cohomology and K-theory

We restrict our attention to H7(G/B) and K7(G/B) to recover formulas in [11] of structure
constants of Schubert classes for cohomology (F = F,) and K-theory (F = F,). We first
simplify the coefficients c}’{ 5, and c{ 5, In these two cases. Recall that, when the formal
group law is F = F, or F = F,, the braid relations are satisfied for Z, = X, and
Zy = Y,. We consider the equivariant oriented cohomology together with either the additive
or multiplicative formal group law, and restrict the coefficient ring to S or S™.

Lemma 5.1 Let J be a word in the Weyl group. As in Lemma 3.3, define coefficients ¢y 1, by

Zy= Z cin,Zr,-
weW

1. Let F = Fy. If Zy = Xo or Zy = Yy, then

1, if Jis a reduced word forw;
Cl. L, =
0, else.

2. Let F = Fy. If Zoy = Xo 0r Zy = Yy, then
!l, ifw:ﬁ];
cJ, I, =

0, else.
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Proof When F = F, or F = F,,, it is well-known that the braid relations are satisfied. We
write ¢, for the coefficient c; ;,. When F = F, Zg =0, so if J is not reduced, Z; = 0.
If Jisreduced and [[ J = w, then Z; = Zyy, 80 ¢y = land ¢y = 0 for v # w.

When F = F,,, we have Zi = Zy and thus Z; = Z,, where w := []J. It follows that
cjw=1andcy, =0forv # w. ]

Example 5.2 For H*(G/B) and F = F,, as described in Example 2.7 and Proposition 2.7,
the element ¢ in D% corresponds under a natural isomorphism

t —> hr(G/B)

to the equivariant cohomology class Poincaré dual to [ X (w)], where [ X (w)] is the homology
class of the Schubert variety. Furthermore, the first Chern classes of the corresponding line
bundles are x, = « for all simple roots «.

For each w € W, fix a reduced sequence /,,. From the specialization of Theorem 4.1, we
have defining relations

YiYi= ) by

w=u,w=v
for [b,l)’fu. Then
[b;f’v = Z BI“’ cE I cF 1, by Theorem 4.1,
E.FC[t(w)]

Z BE r» by Lemma 5.1(1)
EF reduced
for u,v

where the second sum is over E, F whose corresponding products of reflections are reduced
and equal to u, v respectively. Recall that

Y
BEF = (B{ By - “ Byy) - 1

with
xp;8p;, fjEENF,
B ={dg;, ifj € EorF, butnotboth,
Ys,, ifj¢EUF.
with 8; = a;;.
The coefficients [bu » coincide with the structure constants ¢, in [11, Theorem 1]. Note
that in this case, Y, = — X, SO ;’u{ = (—l)z(w);’u)f, and thus X = (=1t Y. Therefore,

Gliljjv — (_1)€(w)+€(u)+€(v)[bli%.

Example 5.3 For K7(G/B) (and F = F,,), we have x, = 1 — ¢~%. The action of X, (resp.
Y_q) on K7 (pt) corresponds to the action of the ordinary (resp. isobaric) Demazure operator
n[11].

Fixing a reduced sequence I, for each w, we have

X5 X* = Z ol X7 = Z ZA;;{FX*

w>u,w>v w>v,w>u E F

@ Springer



42 Page 18 0f 27 R. Goldin, C. Zhong

where by Lemma 5.1(2), the second sum is over all £, F C [£(w)] such that ﬁE = u and
[1F = v. Here, we have

—(1—e Py, if je ENF,
B}( =1 88 if j € E or F, but not both,
Xg;. ifj¢ EUF,

where B = a;;.

The classes {§&, : w € W} in [11] are defined as the dual basis to [Ox ) (=0 X (w))]
under the pairing obtained by taking the equivariant cap product and pushing forward to a
point. Each &,, coincides with the Poincaré dual class to [Oyy)]. In Example 2.7 we note
that X¥ = (= D*™@[Oy ], and thus &, = (—=1)* ™ X* . Therefore,

'i:u 51} — (_1)Z(u)+l(v)+2(w) Z (Dlw éu)
u,vSw-

w>u,v

It follows that the coefficients (—1)¢W @+ W) gy 1“’ coincide with a;;, in [11], as is clear
from the formula.

With the observation that the classes {£, : w € W} defined in [11] satisfy £y = Yy, a
similar argument implies that b}, coincide with the structure constants &y, defined in [11].

Example 5.4 Let F = F,. Consider the A, case. If I, = 515251, u = s1, v = 5152, then

05151 52 Y1
+81 82 1

S1,5152 {1},{

bi1s2st — BSlS2Sl +B?§2S1 3 = ( > S 1=0+1=1.

Similarly,

§1 62 61
vl vzvl S1 vzvl
[b;i?;sll = B +B 123 = ( Y1 5 181) -1=1—-1=0.

For the A3 case, one can also compute

51525385152 5152535152 5152835152
Boysisa.sisosi = Bi2.3.5),(1,2,4) T B235),2.4,5)

_( 01 m&d3a &\
o +Y1 05282 53 51 0{252

= (a1 + o) + a3.

Example 5.5 Let F = F,,. Consider the A3 case, with I, = s152535152, U = 528352,V =
s15251. We have

5152535152 __ AS152535182 5152535152 5152535182
sas3sas10s1 = Aasni2.4 T AR5 245 T AR5 (12,45

81 —x28283 81 O2
= | +X1 —x282 83 81 —x262 | - 1
X14243X2 — X243X142

= —X142+ < + X243X142
1

= Xay — Xay+2az+a3 -
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6 Structure constants of cohomological stable bases

In this section, we let F = F, and R = R = Z[h]. We recall the definition of the cohomo-
logical stable basis of Maulik-Okounkov, and generalize Su’s formula of structure constants
for Segre—Schwartz—MacPherson classes (Theorem 6.3). We use the twisted group algebra
language for cohomology, whose K -theory version was given in [22]. As the framework and
proofs are very similar to earlier sections, we will only review essential properties. Some of
the notation introduced below is restricted to this section only.

Let R* = Z[h], $* = Sympa(A) and Q¢ = Frac(S“). Define

= Q0 Xpe R/ [W]

with Q%-basis §,,, w € W. For simplicity we introduce the following notation:

da=h—a, otwozl_[a, Ay = H(h—a).

a>0 a>0

Finally, for any simple root «, define an operator associated to this root by
1 h a a
To = —h—(1—=384) — 8¢ = —— + =64 € OF.
o a o

By direct computation, the set {Ty}oe(a,....a,) Satisfies the braid relations, and TO[2 = 1.
Indeed, the algebra generated by {7} is called the degenerate (or graded) Hecke algebra.
Note that T, is a special case of Z,, occurring over R = R“.

For any sequence I = (iy, ..., i¢) (not necessarily reduced), we define the Demazure—
Lusztig operator

Tr =Ty, ... T,

in cohomology to be the product of the operators indicated in the list /. It follows from the
relations that, if 7 and I’ are two sequences with w := [[I =[] 1’, then Ty = T/, and we
denote it Ty,. The set {T}y| w € W} is a basis of QF,.

Let (Qf,)* be the Q“-dual of Qf,, and let {T;;} S (QF,)* be the dual basis. Denote the
basis of (QF,)* dual to {8, € QF,} by {fu}, as in Sect. 2. The identity of the ring (Qf,)* is
denotedby 1 =3 _ fu- Thering O, acts on (Q$,)* via the --action, given as before by

(z-q*,2)=(q*.7'2) forz,z' € Qf,.q" € (O5)"
Itinduces a W-action on (Q¢,)* via the embedding W C Qf,. Let ((Q?)V)*)W denote the

Weyl-invariant subgroup of (Qf,)*.
In this section only, denote by Y € Qf, the element

st = = st OOl(h—Ol)

Ay X
weW WOREWo e

The map Y- _ (O — ((Q?/V)*)W = (0“1 is the algebraic analogue of the composition
of the map

0" ®se Hyyc+(T*G/B) = Q° ®sa Hyc+(G/B) — Q“ ®sa Hyyc+(pU),

where the last map is the equivariant pushforward of cohomology class on G/ B to a point on
the second term. The proofs in [7, Lemma 7.1] and [22, Lemma 5.1] easily extend to show
that, for any f, g € (QF)",

Y - (Ty-f)-e)=Y-(f(Ty - 2)).
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Definition 6.1 We define two bases of (Qf,)* as a module over Q“. Let
stab) = T,,-1 - (e, f), and
staby, = (=1 ™0 T, 10+ (g fug)-

Then {stab$ : w e W}and {stab, : w € W} each form a basis for (Qf,)* as a module over
0“. We call these bases the cohomological stable bases. See [20] for more details.

It is immediate from the definition that stab, has support on {f, : v < w} and stab,, has
supporton { fy, : v > w}.

The following lemma is the analogue of Theorem 5.7 and Lemma 5.6 in [22]. The first
identity was due to Maulik-Okounkov originally.

Lemma 6.2 We have
Y - [stab) -staby | = (=105, 1, Y - [stab} @y T,"] = 8u.ul.
Define structure constants b, € Q“ by the equation

stab,, - stab, = Z [tffiv stab,, .
weW

We now present the main result about the stable basis {stab,,}.

Theorem 6.3 The classes stab,, and the coefficients b}, satisfy the following properties:

1. We have stab,, = (—1)* @0, T
2. Foreach w € W, fix a reduced sequence I,,. Then

woo_ ~2
”:u,v - Z awotEqu’
E,F C [((w)]
[TUwlg) = u. [TUwlp) =v
where tg’jF = (BITBZT cee BkT) -1 with

o .

37;51'1-, ifje ENF,
BJ.T: 3%8,‘./., if j € E or F, but not both,
2 . .
_£+rﬁm_a,~j, ifj¢ EUF.
J J

Proof (1). This follows from Lemma 6.2 above.
(2). For each w € W, we fix a reduced decomposition. We have

stab;, - stab, = (=) 0@, T - (=D&, T =a,, T, T}

Therefore, it suffices to consider the structure constants for 7. But the elements 7, are an
instantiation of Zj, with the coefficient ring RY, with ay,, = —h/o; ; and baij =q; ; /o I
Thus Theorem 4.1 indicates how to multiply the corresponding dual elements, resulting in
B/r defined as above. O

When h = —1, the Demazure Lusztig operator T, specializes to the operator considered

by Su in [21], allowing us to recover his formula for the structure constants from the SSM
classes from Theorem 6.3.
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Example 6.4 Consider the Aj-case. If I, = 515251, u = v = s1, then

S 3w 121 121
BIE = @@ () o) + b3y + i) e

h h "2 h
§51 —072 + aidz& o;rl&
I s
= 0102013 ard! + g ardi -1
a1 g L W s _h o h g
@ 12 _az azaz 2 o T aa 0!
_h h h o
atamt Tmtame &

If I, = s1s281, u = 51, v = 5152, then

18281 o (’im(t 41,2+ t{3} })

$1,5182
T
=aas | 9 ! % +011011 Hor=rtta.
57181 a232 ;7151

Similarly, for v = sps1, we have

ESs2st — (t?lszl +t?1Y2Y1 )

S1,5281 31{2,3}

P L8 Ay 5
= Q1003 s o) -1
- + 751 252 a(Sl

a1

=n - h2a13 = h (a1 + a2).

Example 6.5 Consider the A3 case. For I, = s1s0838152, 4 = $28352,V = s1828], with

ajj=a; +---+aj_forl <i < j<4,wehave

51528385152 — 5152535152 5152535152
birsasa.sisost = Qwo (82351 (12,4y T 423 5),2.4,5))

_ L8 B8 £ A8 A8
= Gy W o ars hs hs -1
- + a0l 5502 703 761 78

Cll]Oll

= h4az(a1 + @) + W@ (has + aran + oF + ar03)

= 1P@3(h + @) (o) + @ + a3).

12312 12312 12312

33,1 —O‘wo(t{235}{1}+t{235 14))
=K (@ + 2a3).

12312 _ ~ 412312 12312

1357 = Qw, (833 5) ) + 4235).(5))

= h*(3h® + has + (a24)@14).

Remark 6.6 In [21, Theorem 1.1], the authors find a formula for the structure constants of

ou € (0%)*, where

1+«

Q;

o =

S eQW

This is equal to our —T;, with h = —1.
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7 Structure constants for K-theoretic stable bases

In this section, we give a formula of the structure constants of the K-theory stable basis.
Similar to our strategy in Sect. 6, we use the twisted group algebra method. This method was
introduced by Su, Zhao and the second author in [22]; we only recall the definitions below.
Here weuse F = F,, and R = R™ = Z[ql/z, q_l/z].
Let S = R™[A]. We use the following notation in this section:
Xig =1—¢T¢, Xa=1—ge™™, Xy= l—[ e qw=4q

a>0,wla<0

£(w)

Let Q™ = Frac(S™) and apply the twisted group algebra construction to obtain the module
o= Q" xgn R"[W].

Define the operator 7, by

—o

—1 1 —qge
Ta__q n q

m
Tl — e 1 —ev % € Q-

Observe that 7 is a special case of Z, when Q = Q™.
A simple calculation shows that (7, )2 = (g — )t + g, and that {r,} satisfies the braid
relations. It follows that the K-theoretic Demazure—Lusztig operator 7, , given by the product

Ty = Ta,-l rotl-z e Tot,-k. ’

is independent of choice of reduced word s;, s;, - - - 5;, for w. The set {r,;, w € W}isa Q™-
basis of Q7.

For each not-necessarily reduced sequence I = (i1, ..., i¢), let T; be the concatenation
Tog, " Ty, and define the structure constants cfjw € R™ by the equations
=) ChTe- (11)
weW

Lemma 7.1 The coefficients c}iw € R™ in (11) satisfy the following:

1. Forall w € W and sequences I, c}fw = 0 unless w < ﬁl.
2. If I is reduced, then

o w11

C
Fv =1 ifw=T]1I.

Proof Statement (1) follows from the quadratic relation (t, )2 = (g — D7y, +gq.
Statement (2) follows from the braid relations satisfied by the 7 . O

The analogous statement to Theorem 3.7 is the following proposition.

Proposition 7.2 (K-Stable Leibniz Rule) If I = (i1, ..., i;), we have

o p) = Y Pip(u-p)q), p.geQ.
E,FClk]
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where P, p = (Bf By ---B{ )-1with B € Qf, defined by

1‘_;_;}_ 8i;. ifje ENF,

BT = 172%_ 8 if j € E or F, but not both,
1—ge
Sl by HTEEUF,

Similar to Sect. 6, we take the dual (Q%,)*, and Qf, acts on (QY,)* via the --action.
Indeed, we have

QW) = 0" ®sn Kerx1(G/B) = Q" ®sm Kerx1(T*G/B).

Definition 7.3 [22, Definition 5.3, Theorem 5.4] The K-theoretic stable basis elements are
defined by

staby, = Gug @y (Toy) ™ ([T =€) fuy) € Q).

a>0
Moreover, by [22, Theorem 5.4, Theorem 6.5], we have
stab,, = qu/z)?wo (t,)".

The following theorem gives a formula for the structure constants of the K-theory stable
basis:

Theorem 7.4 Let {stab, | w € W} denote the K-theory stable basis of (Q%,)*. Define coef-
ficients p);, € Q™ by the equation

stab,, - stab, = Z Puy Staby,

w>u,w>v

Then
L@ +ew)—tw)) o Ly .t~ -
p;f)’v — qz( (u) (v (w))xwo Z PE,FC;M,|E,uC;w\F,U’

where the sum is over all E, F C [£(w)] such that ]:[(IwIE) > u and ﬁ(lwlF) > v, and
coefficients CZU‘F , are given in Lemma 7.1

Proof The proof follows a similar argument as that of Theorem 6.3. O
Remark 7.5 Due to the quadratic relation (t, 2= (g— 1), +q,itis difficult to express the
sum in terms of formulas in Sects. 5 and 6. Indeed, this is also the reason why it is difficult to

express the restriction formula of stab,, in [22] in terms of an AJS-Billey-Graham-Willems
type formula.

8 The restriction formula
In this section we relate the structure constants of Z7 * with its restriction coefficients. This

generalizes such relations in cohomology and K- theory due to Kostant and Kumar in [13,
Proposition 4.32] and [14, Lemma 2.25].
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Let Z,, be given in Definition 3.5. Following Lemma 2.3, we obtain coefficients bi 1, € (0]
using the defining relations

_ V4
8” - Z bu,lu,le’

weW

Then Z’I“U =>. bi I fu, i€, Z}kv 6,) = bf.lu' We call bMZJU the restriction coefficients of
zZy.

Theorem 8.1 For any w € W, define the matrix pi with pf}(u, V) = ci”wylu, the matrix b%
with 6% (u, v) = bglu’ and the matrix bi with bi(u, V) = SM,UbE.Iw. Then

pZ =% . bZ . (b7~
Proof We have

(0% 65w, v) = Y phu. 6% (@ v) = Y of bl

zeW zeW
I,
= Z e 1, Z1.60) = (Z7, - Z7,)(8v)
zeW
Z,l((S ) - Z,u(fS )_bv Iubv I

=Y b7 8.0b7 ), =Y b7, )bl (2, v)

zeW zeW
= (b7 - bZ)(u, v).

Corollary 8.2 For any v, w € W, we have

Iy 7z
<, = bug,

In particular, @51, I, does not depend on the choice of I,.

VA

Proof Denote Z;, = Zv<w ap. ,6v. Then the matrix a? witha? (u,v) = a 1, 1s the inverse

of bZ. Theorem 8.1 implies that

v —pZ
Crp 1, = pu)(vs v)
= Y 0% z)bf (21, 22)0% (22, v)
z71,226W
— VA VA A
- Z bZl,IUSZI’Z2bzlqlu'alu,12
2120,22=<Vv
= Z bm Ival Iwalv 21
v=<z1 =V
V4 *
=0y ,by ar, =074, = 25, (6).
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Remark 8.3 Corollary 8.2 can also be proved with the following argument: since Z ;“w 6y) =
buZ’,w = Ounlessu > w,

(z;;-z;;xau):( Yoo ;;,)osu)
LU>M w>v

udy

_c, IUZI,,((S )_a:I ,Ub
On the other hand,
(Z},- Z7)6u) = Z},(8,) Z], (8) = b, b, .
1,
Therefore, ¢ L, = bu L

Remark 8.4 As mentioned in [11], specializing Corollary 8.2 and Examples 5.2 and 5.3 to
cohomology or K-theory, and Z, to the X, and Yy-operators, one recovers the AJS/Billey
formula and Graham-Willems formula of restriction coefficients of Schubert classes, which
are obtained by using root polynomials.

Example 8.5 Consider the Aj-case with w = 51, v = s1s5251. We compute bfiw = XZ, (8y).

For A{g 1L.E>» Ve only need to consider the following three:
Iy _ Iy _ I —
ALy =780 A ey = 02 AR s = Y.

On the other hand, chlelw = 1 when E = {1}, {3}, and X1 X| = «1X1. So Cfvl(] s = K-
Therefore, v

X
bw,lv = —X] — X2 + K1X1X2.
In particular, if ' = F,, then bfj L, = —X1— X2, and if F = F,,, then bif , = X1 —x2+
X1X2 = —X142, with X142 = Xgj+ay-

Example 8.6 Let w = 5155, v = s152535152. Let us compute bX 1, = Xj (8y). We write

I
Xijk... for X; X jXp -+, Xgjxj = X ta; and k4 +j = Kto;,+a;- TO compute A[g]’E, we
only need to cons1der

Al = XX Al = xix
[61,{1,2) = X1X14+2, Ay 11 51 = X1X2+3,
I, _ I, B

A6 4.5) = X2X2+43, A[ﬁ],{],z,s} = —X1X142X2+43,

I, _ I, _
Al (145) = ~X1X02%243, Aggy 10,45} = X1X142X2X243.

On the other hand, C;fxlEslw = 1 when E = {1, 2}, {1, 5}, {4, 5}. Concerning Xlwl(1,2,5)
X122, since

X1 XX = X2 Xo = s1(2) X12 + A1 (,2) X2 = k142X 12 + A1 (2) X2,

SO

X _
Chlpasy, Ty = K142-

For X145 = X112, from X1 X1 X2 = «1X1X>, we get
X —
C1v|(1.4,5)s1w =K1
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Lastly, for X’w|{l,2,4<5) = X122, from Lemma 2.2 we know
X112 = X1(X121 + k12X1 — k21 X2)
= k1 X121 + X1k12X1 — X621 X2
=Kk1X121 + 51 (KIZ)X% + A1(k12) X1 — s1(k21) X12 — A1 (k21) X2
=K1 X121 + k114261 X1 + A1) X1 — k142,-1X12 — A1(k21) X2,

SO

X j— [—
hlpoasdw = s1(k21) = —K142,-1-
Therefore,

bX
$152,51525385152
I

N L
= Agg111.2 T AGLLs) T Ag)L.)

I, I, I,
T AEGL0.2.5K142 T ARG (145K T ARG (12,45 (FK1+2,-1)
= X1X142 + X1X243 + X2X243 — X1 X[42X243K142 — X[ X2X243K] — X1 X142X243K142,—1

X
= X1X142 + X1X243 + X2X243 — X243(X1 + X2 + —Xx142).

In particular, if F = F,, then
bl e, sisasasisy = @1(@1 + o) + a1 (0 + @3) + aa(ar + a3).

If F = F,,, then

X
b5 sy 5150535180 = X1X142 F X1X243 + X2x243 — X1x243(x142 + x2).
These agree with the result computed by using root polynomials.
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