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Abstract
We introduce generalized Demazure operators for the equivariant oriented cohomology of
the flag variety, which have specializations to various Demazure operators and Demazure–
Lusztig operators in both equivariant cohomology and equivariant K-theory. In the context of
the geometric basis of the equivariant oriented cohomology given by certain Bott–Samelson
classes, we use these operators to obtain formulas for the structure constants arising in
different bases. Specializing to divided difference operators and Demazure operators in sin-
gular cohomology and K-theory, we recover the formulas for structure constants of Schubert
classes obtained in Goldin and Knutson (Pure Appl Math Q 17(4):1345–1385, 2021). Two
specific specializations result in formulas for the the structure constants for cohomological
and K-theoretic stable bases as well; as a corollary we reproduce a formula for the struc-
ture constants of the Segre–Schwartz–MacPherson basis previously obtained by Su (Math
Zeitschrift 298:193–213, 2021). Ourmethods involve the study of the formal affineDemazure
algebra, providing a purely algebraic proof of these results.
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1 Introduction

Flag varieties G/B are among the most studied varieties in topology and algebraic geometry.
They have a cellular decomposition by Schubert cells, whose closures are called Schu-
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bert varieties. Schubert varieties are invariant under a torus action and, consequently, their
torus-equivariant cohomology is spanned as a module by the Schubert classes. Throughout
this paper, “cohomology” (as opposed to “generalized cohomology”) refers to Borel-Moore
cohomology.

Other classes associated to Schubert varieties in the equivariant cohomology H∗
T and

equivariant K-theory KT of the flag variety G/B include Chern–Schwartz–MacPherson
(CSM) classes and Motivic Chern (mC) classes, studied in [1, 2, 17–20, 22]. These classes
coincidewith the corresponding stable bases ofMaulik-Okounkov [16] for H∗

T and KT , of the
Springer resolutions.Due to this fact,we always refer to theCSMclasses as the cohomological
stable basis, and to the mC classes as the K-theoretic stable basis. These classes behave
like Schubert classes in their corresponding theories. Roughly speaking, Schubert classes
in H∗

T (G/B) and KT (G/B) are constructed by Demazure operators (also called divided
difference operators), and elements of the stable bases are constructed byDemazure–Lusztig
operators. All these operators generate various Hecke-type algebras.

Structure constants of Schubert classes are central objects in Schubert calculus, appearing
in important questions of representation theory and combinatorics. In [11], the first author
and Knutson obtain formulas for the structure constants in H∗

T (G/B) and KT (G/B) using
geometric properties of Bott–Samelson resolutions of Schubert varieties. They pull-back the
Schubert classes to the equivariant cohomology (or equivariant K-theory) of Bott–Samelson
variety, apply the cup product in this variety, then push-forward back to G/B. In [21],
Su generalized this method to the so-called Segre–Schwartz–MacPherson (SSM) classes, a
variant form of CSM classes.

We are interested in generalized cohomology theories, called oriented cohomology the-
ories, defined by Levine and Morel [15]. These cohomologies are contravariant functors
defined on the category of smooth projective varieties over a field k of characteristic 0 to the
category of commutative rings, such that for proper maps, there is a push-forward map on
cohomology groups. Examples include Chow rings (cohomology), K-theory and algebraic
cobordism. Chern classes are defined for each oriented cohomology theory 𝕙, and there is an
associated formal group law F defined over R = 𝕙(pt). The machinery works equivariantly
as well, resulting in a cohomology theory 𝕙T with an associated formal group law F defined
over R = 𝕙T (pt).

For flag varieties, generalizing work of Kostant and Kumar [13, 14] on equivariant coho-
mology and equivariant K-theory of flag varieties, the ring 𝕙T (G/B) has a nice algebraic
model, constructed in Hoffmann et al. in [12], and studied in [5–7] by Calmès, Zainoulline,
and the second author. One can define the (formal) Demazure operators Xα associated to
each simple root α. These operators generate a non-commutative algebra, called the formal
affine Demazure algebraDF . It is a free left 𝕙T (pt)-module with basis {XIw |w ∈ W }, where
XIw is, roughly speaking, a product of the operators Xα , with Iw indicating a reduced word
expression for w.

The algebraDF is also a co-commutative co-algebra, where the coproduct comes from the
twisted Leibniz rule of the operator Xα . Taking the 𝕙T (pt)-dual, one obtains a commutative
ringD∗

F , a free 𝕙T (pt)-module isomorphic to 𝕙T (G/B), together with a dual basis {X∗
Iw |w ∈

W }. Indeed, for equivariant Chow group/cohomology/K-theory, X∗
Iw coincides, up to various

normalizations, to the Schubert class associated with w. Then H∗
T (G/B) and KT (G/B) are

achieved with the same module basis, and a restricted coefficient ring: a polynomial ring for
H∗
T (G/B) and Laurent polynomial ring for KT (G/B).
We notice that the product structure onD∗

F is obtained by dualizing the coproduct structure
ofDF . It follows that the structure constants of the basis X∗

Iw may be deduced from the twisted
Leibniz rule of the product Xβ1Xβ2 · · · Xβk for a reduced word sβ1 · · · sβk of w ∈ W . This
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is the main idea of the proof of Theorem 3.7, which implies the main result, Theorem 4.1.
Specializing𝕙T to equivariant cohomology and equivariantK-theory,we recover the formulas
of the first author and Knutson in [11].

In the case of H∗
T (G/B) and KT (G/B), replacing the Demazure operators Xα by the

Demazure–Lusztig operators Tα and τ−
α , one obtains the stable bases for H∗

T (G/B) and
KT (G/B), respectively. Both the cohomology stable basis and the K-theory stable basis
can be described in an analogous fashion to the story for Schubert classes. That is, the
Demazure–Lusztig operators generate a degenerate affine Hecke algebra (for equivariant
cohomology) and an affine Hecke algebra (for equivariant K-theory). The dual elements to
products of these operators are essentially the cohomological/K-theoretic stable bases, so
their respective twisted Leibniz rules result in a formula for the structure constants of stable
bases. For instance, for cohomology, we recover the formula of Su [21] (see Remark 6.6).

Towork with the Demazure operators Xα andDemazure–Lusztig operators Tα at the same
time, we define a general operator Zα (see Sect. 3) in a ring containing DF , which can be
specialized to Xα and Tα . Our main results are Theorems 4.1 and 6.3, which state a formula
for structure constants of the basis determined by Zα and apply it to the cohomological stable
basis.

The paper is organized as follows: In Sect. 2 we recall necessary notation introduced by
the second author in [5–7]. We recall the definition of a Demazure element, the formal affine
Demazure algebra, its dual, and relation with 𝕙T (G/B). In Sect. 3 we prove the twisted
Leibniz rule for the operator Zα , which is used to derive the structure constants of the basis
Z∗
Iw in Sect. 4. In Sect. 5, we specialize our result to Demazure operators in cohomology and

K-theory, and recover the formulas in [11]. In Sect. 6 we specialize our result to Demazure–
Lusztig operators in cohomology, which, as a by-product, recovers the formula due to Su in
[21]. In Sect. 7 we consider Demazure–Lusztig operators in K-theory and obtain a formula
for the structure constants of the K-theoretic stable basis. In Sect. 8, for equivariant oriented
cohomology, we generalize some results of Kostant-Kumar ([13, Proposition 4.32], [14,
Lemma 2.25]) by relating our formula for structure constants with a restriction formula of
Schubert classes.

2 Preliminary

We follow notation used in [5–7]. Let $ ↪→ &∨,α &→ α∨ be a semi-simple root datum of
rank n. That is,$ is the finite set of roots,& is the lattice and&∨ is its dual. Let {α1, . . . ,αn}
be the set of simple roots, $+ and $− be the set of positive and negative roots, respectively.

LetW be the Weyl group generated by the associated simple reflections si := sαi . Denote
by≤ the Bruhat order, and let ℓ(v) be the length of an element v ∈ W . Note thatW acts on&

since it preserves the root system. For each sequence I = (i1, . . . , ik) with i j ∈ [n], denote
the product si1 · · · sik ∈ W by

∏
I , in which we keep track both of the concatenated sequence

of simple reflections and the resulting element ofW . If
∏

I is a reduced word expression for
the resulting Weyl group element, we say that I is a reduced sequence. Following [11, Sect.
1], define the Demazure product

∏̃
I = si1 · · · sik

subject to the braid relations and s2i = si for all i . Observe that
∏

I = ∏̃
I when I is a

reduced sequence. When I is a reduced sequence for w, we may denote it by Iw and abuse
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notation by calling it a reduced word for w. Finally, let I rev denote the sequence obtained by
reversing the sequence I .

Let F be a formal group law over the coefficient ring R. Examples of formal group laws
include the additive formal group law Fa = x + y and the multiplicative formal group law
Fm = x + y − xy. Suppose the root datum together with the formal group law satisfy the
regularity condition of [5, Lemma 2.7]. This guarantees that all the properties that we use
from [5–7] hold. Indeed, the regularity condition guarantees that the elements xα,α ∈ &

defined in S below are non-zero-divisors. In particular, the Demazure operators Xα for simple
roots α are well defined.

Let G be a split semi-simple linear algebraic group with maximal torus T and a Borel
subgroup B. Let the associated root datum of G be$ ↪→ &∨, so& is the group of characters
of T .

Let 𝕙 be an oriented cohomology theory of Levine and Morel. Roughly speaking, it is
a contravariant functor from the category of smooth projective varieties to the category of
commutative rings such that there is a push-forward map for any proper map. The Chern
classes of vector bundles are defined. Associated to 𝕙, there is a formal group law is F
defined over R = 𝕙(pt). That is, the first Chern class of line bundles over a smooth projective
variety X satisfies

c𝕙1(L1 ⊗ L2) = F(c𝕙1(L1), c𝕙1(L2)).

For example, Fa (resp. Fm) is associated to the Chow group (or cohomology) (resp. K-
theory). Both can be extended to the torus equivariant setting. We assume the equivariant
oriented cohomology theory 𝕙T is Chern-complete over the point for T , that is, the ring
𝕙T (pt) is separated and complete with respect to the topology induced by the γ -filtration
[5, Definition 2.2]. In particular, this includes the completed equivariant Chow ring, the
completed equivariant K-theory and equivariant algebraic cobordism.

Let S be the formal group algebra defined in [4]:

S = R[[&]]F := R[[xλ|λ ∈ &]]/JF , (1)

where JF is the closure of the ideal generated by x0 and xλ+µ − F(xλ, xµ), for all
λ, µ ∈ &. Indeed, if {t1, . . . , tn} is a basis of &, then S is (non-canonically) isomorphic
to R[[xt1 , . . . , xtn ]]. According to [5, Sect. 3], S ∼= 𝕙T (pt) with xλ corresponding to c𝕙1(Lλ)

where Lλ is the line bundle associated to λ ∈ &. Since x−λ is the formal inverse of xλ, i.e.
F(xλ, x−λ) = 0 in S, we may write

x−λ = −xλ + higher degree terms ∈ S.

Define Q := S[ 1
xα
|α ∈ $]. We will frequently need the special element of Q given by

κλ := 1
xλ

+ 1
x−λ

. Note that κλ actually belongs to S. Note also that the action of W on &

induces an action of W on S.

Example 2.1 Two cases of the formal product appear widely in the literature [4, Sect. 2].
1. If F = Fa with R = Z, then 𝕙 is the cohomology/Chow groups, and S ∼= SymZ(&)∧ (

with xλ &→ λ) is the completion of the polynomial ring at the augmentation ideal. In this
case x−λ = −xλ and κλ = 0.

2. If F = Fm with R = Z, then 𝕙 is K-theory, and S ∼= Z[&]∧ (with xλ &→ 1 − e−λ) is
the completion of the Laurent polynomial ring at the augmentation ideal. In this case
x−λ = xλ

xλ−1 , and κλ = 1.

To obtain equivariant cohomology H∗
T (X) and equivariant K-theory KT (X), we restrict

the coefficient ring to Sa = Sym[&] and Sm = Z[&], respectively.
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2.1 The operator algebrasQW and DF

This paper is concerned with various divided difference operators acting on 𝕙T (G/B), the
equivariant oriented cohomology of G/B. To create an algebraic framework for these oper-
ators, following [6, 7] we localize S at {xα} to create an algebra out of this localization and
the Weyl group, as follows.

Let S be the ring described in (1), and let Q := S[ 1
xα
|α ∈ $]. Define QW := Q ! R[W ],

as a left Q-module with basis {δw}, w ∈ W .
We shall see that QW acts on its dual space Q∗

W , which is identified with Q⊗S 𝕙T (G/B),
the cohomlogy of G/B with inverted Chern classes.

We impose a product on QW by

(pδw)(p′δw′) = pw(p′)δww′ , for all p, p′ ∈ Q, and w,w′ ∈ W ,

using the naturalW action on Q induced from that on & and extending linearly. Note that Q
identified with Qδe is a subring of QW under this product, where e ∈ W denotes the identity
element of W . We routinely abuse notation and write δα for δsα , and use 1 = δe to denote
the identity element of QW . The ring QW acts on Q by

pδw · p′ = pw(p′), for all p, p′ ∈ Q.

The action of QW on Q induces a coproduct structure on QW as follows. Let η =∑
w∈W

qwδw ∈ QW . Then

η · (pq) =
∑

w

qww(pq) =
∑

w

qww(p)w(q) =
∑

w

qw(δw · p)(δw · q).

This action factors through the coproduct - : QW → QW ⊗Q QW

-(η) =
∑

w

qw-(δw) =
∑

w

qwδw ⊗ δw. (2)

In other words, the coproduct structure on QW is induced from the QW -action on Q.
For any simple root α we define the Demazure element Xα and the push-pull element Yα

in QW :

Xα = 1
xα

(1 − δα) and Yα = 1
x−α

+ 1
xα

δα.

We observe the relationship Yα = κα − Xα . In particular, if F = Fa (resp. F = Fm), then
Yα = −Xα (resp. Yα = 1 − Xα).

The way QW acts on Q implies that Xα acts in a fashion similar to the Demazure operator
defined in [8] (and there denoted Dα). In particular, Xα · S ⊂ S and, for any r ∈ R, Xα ·r = 0
and δα · r = sα(r) = r .

Let DF be the R-subalgebra of QW

DF = ⟨S, Xα1 , . . . , Xαn ⟩
generated by S and the elements Xα ∈ QW for simple roots α, and call it the formal affine
Demazure algebra. It is also generated by S and {Yα : α simple}. As a left S module, DF is
also free with basis {XIw }w∈W , or with basis {YIw }w∈W ; see [6, Proposition 7.7].

Let w = si1 · · · sik be a reduced word decomposition and Iw = (i1, . . . , ik) the corre-
sponding sequence of reflections. Define

XIw = Xαi1
· · · Xαik

and YIw = Yαi1
· · · Yαik

.
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In particular, X(i) = Xαi and Y(i) = Yαi , though we eliminate parentheses when there is no
confusion. We write Xe := 1 ∈ QW to indicate XI when I is the empty sequence.

The Demazure and push-pull elements have the following properties:

Lemma 2.2 [24, Proposition 3.2] Let α and β be simple roots. The following identities hold
in QW :

1. X2
α = καXα, Y 2

α = καYα .
2. Xα p = sα(p)Xα + Xα · p, p ∈ Q.
3. If (sαsβ)2 = e, then XαXβ = XβXα .
4. If (sαsβ)3 = e, then Xβ XαXβ − XαXβ Xα = καβ Xα − κβαXβ , where

καβ = 1
xα+β xβ

− 1
xα+β x−α

− 1
xαxβ

.

Furthermore, καβ ∈ S by [12, Lemma 6.7].
5. Suppose sαsβ has order m with m = 4 or 6, and Iw is a choice of reduced word for

w ∈ W. Then

XαXβXα · · ·︸ ︷︷ ︸
m

− XβXαXβ · · ·
︸ ︷︷ ︸

m

=
∑

v∈W
cIv XIv ,

where cIv = 0 if v " sαsβsα · · ·︸ ︷︷ ︸
m

. Moreover, cIv = 0 if ℓ(v) = m − 1 or v = e.

Lemma2.2 (4)–(5) imply that the operators Xα (and similarlyYα) do not satisfy braid relations
for general F . For F = Fa or F = Fm , they do; in these cases, the coefficients καβ and cIv
all vanish. In general, XIw and YIw depend on the choice of Iw due to this failure of braid
relations.

For the purposes of this paper, we fix a reduced sequence Iw of w for each w ∈ W .
While the specific coefficients and calculations regarding XIw and YIw depend on this choice,
statements regarding bases and ring phenomena do not.

By construction, {δv : v ∈ W } form a basis of QW as a module over Q. In [6], and
extended in [7], the second author proves that {XIv : v ∈ W } and {YIv : v ∈ W } also
form bases of QW as a module over Q, and that the change of basis matrix from {XIv } (or
from {YIv }) to {δv} consists of elements of S. In particular, {δv} are elements of DF . The
lower-triangularity of the change of bases matrices is expressed in the following lemma.

Lemma 2.3 [7, Lemma 3.2, Lemma 3.3] For each v ∈ W, choose a reduced decomposition
of v and let Iv be its corresponding sequence. There exist elements aX

Iw,v ∈ Q for v ∈ W,
and bXw,Iv ∈ S such that

X Iw =
∑

v≤w

aX
Iw,v δv, and δw =

∑

v≤w

bXw,Iv XIv .

Similarly, there exist aYIw,v ∈ Q and bYw,Iv ∈ S such that

YIw =
∑

v≤w

aYIw,v δv, and δw =
∑

v≤w

bYw,IvYIv .

Notice that nonzero coefficients bXw,Iv are elements of S with v ≤ w.
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Example 2.4 Consider the root datum A2, with

W = {e, s1, s2, s1s2, s2s1, w0},
where w0 is the longest element and si is the reflection corresponding to αi for i = 1, 2. We
fix the reduced sequence Iw0 = (1, 2, 1) for w0. For simplicity, let α13 = α1 + α2. By direct
computation,

δe = Xe δs1s2 = 1 − x1X(1) − xα13X(2) + xα1xα13X(1,2),

δ1 = 1 − xα1X(1) δs2s1 = 1 − xα2 X(2) − xα13X(1) + x2xα13X(2,1),

δ2 = 1 − xα2 X(2) δw0 = 1 − xα13X(2) − (xα1 + xα2 − κα1xα1xα2)X(1)

+ xα1xα13X(1,2) + xα2 xα13X(2,1) − xα1xα2 xα13XIw0 .

2.2 The dual operator algebras

The dual Q-module

Q∗
W = HomQ(QW , Q) ∼= Hom(W , Q),

contains a natural basis { fw}w∈W dual to {δw}w∈W , defined by

⟨ fw, δv⟩ =
{
1 if w = v;
0 otherwise.

One may think of Q∗
W as the T -equivariant oriented cohomology of W with the trivial T

action, tensored with Q. In particular,

Q∗
W = Q ⊗S 𝕙T (W ) = Q ⊗S 𝕙T (G/B).

The module Q∗
W forms a ring with product fw fv = 1 if an only if w = v, and 0 otherwise,

extended linearly to all elements of Q∗
W , and unity 1 =∑

w∈W fw . This product structure is
equivalent to the one induced from the coproduct structure (see Sect. 4 below).

The ring QW acts on Q∗
W by

⟨z · f , z′⟩ = ⟨ f , z′z⟩, for all z, z′ ∈ QW , f ∈ Q∗
W .

In the bases {δw} of QW and { fw} of Q∗
W , the action has explicit formulation

pδw · (q fv) = qvw−1(p) fvw−1 , for all p, q ∈ Q. (3)

Denote

ptw =
(
∏

α<0

xα

)

· fw = w

(
∏

α<0

xα

)

fw ∈ Q∗
W .

Let D∗
F := HomS(DF , S) ⊂ Q∗

W be the dual S-module to DF . It is proved in [7, Lemma
10.3] that ptw ∈ D∗

F . Let

ζ X
Iw = XI revw

· pte, and
ζ Y
Iw = YI revw

· pte .

Then {ζ X
Iw } forms a basis of D∗

F over S, as does {ζ Y
Iw }.

Finally, let {X∗
Iw }, (respectively {Y ∗

Iw }) be the bases dual to {XIw } (resp. {YIw }) in D∗
F ,

which are also Q-basis of Q∗
W .
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The classes X∗
Iv for each v ∈ W are determined by duality. Under the dual pairing,

⟨X∗
Iv , δw⟩ =

〈

X∗
Iv ,

∑

u∈W
bXw,Iu X Iu

〉

= bXw,Iv .

Set X∗
Iv =

∑
u∈W mIv,u fu, which implies

⟨X∗
Iv , δw⟩ =

〈
∑

u∈W
mIv,u fu, δw

〉

= mIv,w,

and thus X∗
Iv =

∑
w∈W bXw,Iv fw .

Example 2.5 Consider the root datum A2, with W = {e, s1, s2, s1s2, s2s1, w0}. Fix the
reduced sequence w0 = s1s2s1. The calculations from Example 2.4 imply

X∗
e = 1 =

∑

w∈W
fw, X∗

(1,2) = xα1xα13( fs1s2 + fw0)

X∗
(1) = −xα1( fs1 + fs1s2) − xα13 fs2s1 − y fw0 , X∗

(2,1) = xα2 xα13( fs2s1 + fw0)

X∗
(2) = −xα2( fs2 + fs2s1) − xα13( fs1s2 + fw0), X∗

Iw0
= −xα1xα2 xα13 fw0 ,

where y = xα1 + xα2 − κα1xα1xα2 . In case F = Fa or Fm , we have y = xα13 .

The following proposition explains the relationship between the algebraic construction above
and equivariant oriented cohomology of G/B.

For each reduced sequence Iw , letXIw → G/B denote the Bott–Samelson resolution. The
push-forward in 𝕙T of the fundamental class along this resolution is called theBott–Samelson
class of Iw , which we denote by ηIw . Define a map

/ : D∗
F −→ 𝕙T (G/B)

given by /(ζ Y
Iw ) = ηIw and /(1) = [G/B], the fundamental class of G/B, and extended as

a module over S.

Proposition 2.6 The isomorphism / satisfies the following properties:

1. [5, Theorem 8.2, Lemma 8.8] The map / is a functorial isomorphism.
2. [7, Theorem 14.7] The basis {/(X∗

Iw ) : w ∈ W } (resp. {/(Y ∗
Iw )) : w ∈ W }) is

dual to /(ζ X
Iw ) (resp. /(ζ Y

Iw )) via the nondegenerate dual pairing on 𝕙T (G/B) given by
multiplying and pushing forward to a point.

3. [5, Corollary 6.4] Let iw : wB ↪→ G/B be the inclusion of the T -fixed point corre-
sponding to w ∈ W, and (iw)∗ : 𝕙T (wB) → 𝕙T (G/B) be the pushforward map. Then
/(ptw) = (iw)∗(1).

4. There is a commutative diagram

D∗
F

∼=

Q∗
W

∼=

𝕙T (G/B)

⊕

w∈W
i∗w

Q ⊗S 𝕙T (W ),

where the top horizontal map is the embedding of the S-module into the Q-module Q∗
W .
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By specializing the formal group law to Fa or Fm , respectively, and restricting S to R[&]/JF ,
we obtain a map /H : D∗

F → H∗
T (G/B) or /K : D∗

F → KT (G/B) to the equivariant coho-
mology or equivariant K-theory. The map remains an isomorphism over the corresponding
module. From now on we will not distinguish between D∗

F and 𝕙T (G/B).

Example 2.7 Let X(w) = BwB/B be the Schubert variety and Y (w) = B−wB/B be the
opposite Schubert variety. For H∗

T (G/B) (with F = Fa) or KT (G/B) (with F = Fm), we
write w for Iw since XIw and YIw are independent of the reduced sequence.

1. [11, Sect. 1.2] For H∗
T (G/B), ζ Y

w = [X(w)], and ζ X
w = (−1)ℓ(w)[X(w)], where each

homology class is identified with its dual cohomology class. Then Y ∗
w = [Y (w)] and

similarly X∗
w = (−1)ℓ(w)[Y (w)].

2. [3, Sect. 3] For KT (G/B), ζ Y
w = [OX(w)] is the class of the structure sheaf of X(w),Y ∗

w =
[OY (w)(−∂Y (w))], ζ X

w = (−1)ℓ(w)[OX(w)(−∂X(w))], and X∗
w = (−1)ℓ(w)[OY (w)].

3 Generalized Demazure operators and the generalized Leibniz rule

In this section, we generalize the operators XIv and YIv on 𝕙T (G/B) to a more general class
of elements of QW , and prove the generalized Leibniz rule for DF acting on Q. We use this
result to compute the coproduct structure in QW , and then the product structure in Q∗

W .
Let {aα, bα ∈ Q : α ∈ $} be a set of elements with the property that, for all w ∈ W ,

w(aα) = aw(α), w(bα) = bw(α), and bα are all invertible in Q.

For any simple root α, define operators Zα ∈ QW by

Zα = aα + bαδα .

Clearly Xα and Yα result from Zα as special cases of aα and bα . For any sequence I =
(i1, . . . , ik), define ZI ∈ QW by

ZI = Zαi1
Zαi2

· · · Zαik
.

We call ZI generalized Demazure operators.
As before, we choose a reduced word expression Iv for each v ∈ W .

Lemma 3.1 The set of generalized Demazure operators {ZIv } forms a basis of QW as a
module over Q.

Proof This follows from the fact that bα ∈ Q is invertible for all simple roots α (hence, for
all roots α). ⊓⊔
Remark 3.2 Note that Zα ∈ DF if and only it satisfies the residue condition [23, Definition
3.7]. If this is satisfied, then ZIv ∈ D and equivalently, Z∗

Iv ∈ D∗
F . Moreover, ZIv forms a

basis of DF if and only if 1
bα

∈ S for all α. For example, this holds for Xα, Yα , but fails for
Tα considered in Sects. 6 and 7. This is precisely why the stable basis is only a basis after
localization.

Lemma 3.3 For any sequence J , define coefficients cJ ,Iw ∈ Q by

Z J =
∑

w∈W
cJ ,Iw ZIw , (4)

Then cJ ,Iw = 0 unless w ≤ ∏̃
J .
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Proof Clearly Zα = aα + bαδα has support on {w : w ≤ sα}. An immediate observation of
the product in QW shows inductively that Z J may be expressed as a Q-linear combination
of δv for v ≤ ∏̃

J .
For any v ∈ W and reduced sequence Iv = (i1, . . . , ik), let γ j = αi j for j = 1, . . . , k.

The coefficient of δv in ZIv is

bγ1sγ1(bγ2)sγ1sγ2(bγ3) . . . sγ1 . . . sγk−1(bγk ).

In particular, since bγ j is invertible, so isw(bγ j ) for any Weyl group elementw, and thus the
coefficient of δv in ZIv is nonzero.

Let A = {w ∈ W : cJ ,Iw ̸= 0 and w "
∏̃

J }, and assume A is nonempty. Pick v ∈ A to
be a maximal element of A in the Bruhat order. By support considerations, the only terms
contributing to the coefficient of δv in (4) is cJ ,Iv ZIv . Since the coefficient of δv in ZIv is a
unit, we conclude cJ ,Iv = 0, contrary to assumption. ⊓⊔

The structure constants cJ ,Iw reflect geometric properties in some special cases (see
Sect. 5). When Zα = Xα for all α or Zα = Yα for all α, and F = Fa , the coefficients
in the sum (4) vanish unless J is a reduced word for w, in which case cJ ,Iw = 1; this reflects
the property that the pushforward map in homology sends the orientation class [BSJ ] to
the Schubert variety X(w) when J is a reduced word for w. When Zα = Xα for all α or
Zα = Yα for all α, and F = Fm , coefficients vanish except when the Demazure product
of J is w, which occurs exactly once and results in cJ ,Iw = 1. In this case, the K-theoretic
pushforward of [OBSJ ] is the structure sheaf of X(w)whenw = ∏̃

J . More generally, Z J is
an (equivariant) operator whose dual has support only on those fixed points in the Schubert
variety X(w), where w = ∏̃

J .
We have the following lemma describing the action of Zα on a product.

Lemma 3.4 For a simple root α, and p, q ∈ Q, we have

Zα · (pq) = aα(aα + bα)

bα
pq − aα

bα
[(Zα · p) q + p(Zα · q)]+ 1

bα
(Zα · p)(Zα · q).

Proof One just has to plug in Zα = aα + bαδsα and use the definition of the action δsα · p =
sα(p). A comparison of both sides yields the identity. ⊓⊔

The coefficients occurring in Lemma 3.4 may be generalized to the case of the action of
ZI on a product pq .

Definition 3.5 For each simple root α, let Zα = aα+bαδα with aα, bα ∈ Q and bα invertible.
Let I = (i1, . . . , ik) be a sequence of indices of simple roots, with γ j := αi j corresponding
to the j th entry of I . For E, F ⊂ {1, . . . k}, define the Leibniz coefficients CI

E,F ∈ Q by

CI
E,F = (BZ

1 BZ
2 · · · BZ

k ) · 1, (5)

where the operators BZ
j ∈ QW are given by

BZ
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
bγ j

δγ j , if j ∈ E ∩ F,

− aγ j
bγ j

δγ j , if j ∈ E or F, but not both,

aγ j +
a2γ j
bγ j

δγ j , if j /∈ E ∪ F .

(6)
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Example 3.6 Let γ j = αi j indicate the j th root listed in the sequence I . If Z = X , then using
the specific choice of coefficients for the Demazure operator yields

BX
j =

⎧
⎪⎪⎨

⎪⎪⎩

−xγ j δγ j , if j ∈ E ∩ F,

δγ j , if j ∈ E or F, but not both,
Xγ j , if j /∈ E ∪ F .

Similarly, if Z = Y indicate the push-pull operators,

BY
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xγ j δγ j , if j ∈ E ∩ F,
xγ j
x−γ j

δγ j , if j ∈ E or F, but not both,

1
x−γ j

+ xγ j

(x−γ j )
2 δγ j , if j /∈ E ∪ F .

Now we prove the main technical result of this paper, generalizing [6, Lemma 4.8].

Theorem 3.7 (Generalized Leibniz Rule) Let Z I be a generalized Demazure operator for
I = (i1, . . . , ik), and let γ j = αi j denote the j th simple root in the list. Then for any
p, q ∈ Q,

Z I · (pq) =
∑

E,F⊂[k]
CI

E,F (ZE · p)(ZF · q),

where CI
E,F are the Leibniz coefficients defined in (5)

Proof For any simple root α, observe the following two identities:

aα(1 − δα)+
aα(aα + bα)

bα
δα = aα + a2α

bα
δα = aα

bα
Zαδα, (7)

Zα · (pq) = aα(p − sα(p))q + sα(p)(Zα · q). (8)

We prove the theorem by induction on k. If k = 1, the theorem holds by Lemma 3.4.
Now assume it holds for all I with ℓ(I ) < k, and let I = (i1, . . . , ik). Let J = (i2, . . . , ik)

and let α = αi1 . We have

ZI · (pq) = (ZαZ J ) · (pq) = Zα · (Z J · (pq))

= Zα ·

⎡

⎣
∑

E,F⊂{2,...,k}
CJ

E,F (ZE · p)(ZF · q)

⎤

⎦

=
∑

E,F⊂{2,...,k}
aα

[
CJ

E,F − sα(CJ
E,F )

]
(ZE · p)(ZF · q)

+
∑

E,F⊂{2,...,k}
sα(CJ

E,F )Zα · [(ZE · p)(ZF · q)] by Equation (8)

=
∑

E,F⊂{2,...,k}
aα

[
CJ

E,F − sα(CJ
E,F )

]
(ZE · p)(ZF · q)

+
∑

E,F⊂{2,...,k}
sα(CJ

E,F )
aα(aα + bα)

bα
(ZE · p)(ZF · q)
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−
∑

E,F⊂{2,...,k}
sα(CJ

E,F )
aα

bα
[(ZαZE · p)](ZF · q)+ (ZE · p)(ZαZF · q)]

+
∑

E,F⊂{2,...,k}
sα(CJ

E,F )
1
bα

(ZαZE · p)(ZαZF · q) by Lemma 3.4

=
∑

E,F⊂{2,...,k}

[(
aα + a2α

bα
δα

)
· CJ

E,F

]
(ZE · p)(ZF · q)

−
∑

E,F⊂{2,...,k}

(
aα

bα
δα · CJ

E,F

)
[(ZαZE · p)(ZF · q)+ (ZE · p)(ZαZF · q)]

+
∑

E,F⊂{2,...,k}

(
1
bα

δα · CJ
E,F

)
(ZαZE · p)(ZαZF · q) by Equation (7).

Comparing the coefficients with BZ
1 · (CJ

E,F ) from (6), we see that they coincide. The proof
then follows by induction. ⊓⊔

The following corollary follows immediately.We see in Sect. 8 that theLeibniz coefficients
CI
[k],E arise as factors in summands of specific structure constants in Schubert calculus,

justifying the name. Here [k] = {1, 2, . . . , k}.
Corollary 3.8 (Generalized Billey’s Formula) Let I = (i1, . . . , ik) be a sequence of indices of
simple roots, and denotem j = si1si2 · · · si j−1(ai j ) and n j = si1si2 · · · si j−1(bi j ). For E ⊂ [k],
we have

CI
[k],E = CI

E,[k] = (−1)k−|E | ∏

j∈[k]\E
m j

∏

j∈[k]
n−1
j .

As a consequence of Theorem 3.7, [6, Proposition 9.5] and the coproduct defined in Eq.
(2), we obtain the following theorem.

Theorem 3.9 Let Zα = aα + bαδα ∈ QW with bα invertible, then for any I = (i1, . . . , ik),
we have

△(ZI ) =
∑

E,F⊂[k]
CI

E,F ZE ⊗ ZF ,

where CI
E,F are defined in Definition 3.5.

We specialize Theorem 3.7 to the elements XI and YI . For any index j , the operators BX
j

and BY
j preserve S under the action of QW on Q, and thus BX

j , B
Y
j ∈ DF (see [6, Remark

7.8]). The first statement in the next corollary is the result [6, Proposition 9.5].

Corollary 3.10 For the Demazure elements Xα , and I = (i1, . . . , ik), we have

X I · (pq) =
∑

E,F⊂[k]
AI

E,F (XE · p)(XF · q),

where AI
E,F = (BX

1 BX
2 · · · BX

k ) · 1 with BX
j ∈ DF defined in Example 3.6. Similarly, for the

push-pull elements Yα and I = (i1, . . . , ik), we have

YI · (pq) =
∑

E,F⊂[k]
BI
E,F (YE · p)(YF · q),

where BI
E,F = (BY

1 BY
2 · · · BY

k ) · 1, and BY
j ∈ DF is defined in Example 3.6.
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4 The structure constants of equivariant oriented cohomology of flag
varieties

In this section we prove the main result, i.e., the formulas of structure constants of Z∗
Iw in

𝕙T (G/B), with resulting formulas for the structure constants of X∗
Iw and of Y ∗

Iw .
Let {Z∗

Iw } be the basis of Q∗
W (as a module over Q) dual to the basis {ZIw } of QW

introduced in Sect. 3.

Theorem 4.1 For any u, v ∈ W, the product Z∗
Iu Z∗

Iv is given by

Z∗
Iu Z∗

Iv =
∑

w≥u,v

cIwIu ,Iv Z
∗
Iw ,

where

cIwIu ,Iv =
∑

E,F⊂[ℓ(w)]
CIw

E,FcE,Iu cF,Iv ∈ Q,

CIw
E,F ∈ Q are the Leibniz coefficients given in Definition 3.5. As before, the Q elements

cE,Iu and cF,Iv are defined as constants appearing in the expansion

Z J =
∑

w∈W
cJ ,Iw ZIw . (9)

Example 4.2 Consider the A3-case. Consider Iu = (2, 3, 1, 2, 1), Iv = (1, 2, 3, 2, 1), then
cIwIu ,Iv = 0 unless w = w0 is the longest element. Fix Iw0 = (1, 2, 3, 1, 2, 1), in which case
we have

C
Iw0
{2,3,4,5,6},{1,2,3,5,6} = BZ

1 BZ
2 BZ

3 BZ
4 BZ

5 BZ
6 · 1

= aα1aα2

bα1bα2bα1+α2bα2+α3bα1+α2+α3

,

and c{2,3,4,5,6},Iu = c{1,2,3,5,6},Iv = 1. Therefore,

Z∗
Iu · Z

∗
Iv =

aα1aα2

bα1bα2bα1+α2bα2+α3bα1+α2+α3

Z∗
Iw0

.

Proof of Theorem 4.1 The coproduct structure- on QW (Eq. (2)) naturally induces a product
on Q∗

W . For all f , g ∈ Q∗
W and

∑
w∈W qwδw ∈ QW ,

〈

f g,
∑

w∈W
qwδw

〉

= ⟨ f ⊗ g,-(
∑

w∈W
qwδw)⟩

= ⟨ f ⊗ g,
∑

w∈W
qwδw ⊗ δw⟩

=
∑

w∈W
qw⟨ f , δw⟩⟨g, δw⟩.
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Note that this product corresponds to the product on Q∗
W introduced at the beginning of

Sect. 2.2 since

⟨ fu fv,
∑

w∈W
qwδw⟩ =

{
⟨ fu,

∑
qwδw⟩ =∑

w qw⟨ fu, δw⟩, if u = v;
0, otherwise,

=
{
qu, if u = v;
0, otherwise.

From Theorem 3.9 we have

△(ZIw ) =
∑

E,F⊂[ℓ(w)]
CIw

E,F ZE ⊗ ZF

=
∑

E,F⊂[ℓ(w)]
CIw

E,F

[(
∑

u∈W
cE,Iu Z Iu

)

⊗
(
∑

v∈W
cF,Iv ZIv

)]

=
∑

u,v∈W

⎡

⎣
∑

E,F⊂[ℓ(w)]
CIw

E,FcE,Iu cF,Iv

⎤

⎦ ZIu ⊗ ZIv

=
∑

u,v∈W
cIwIu ,Iv ZIu ⊗ ZIv .

Finally we obtain the coefficient by calculating the pairing:

⟨Z∗
Iu Z∗

Iv , ZIw ⟩ = ⟨Z∗
Iu ⊗ Z∗

Iv ,-(ZIw )⟩ = cIwIu ,Iv .

Let Iw|E be the subsequence obtained from restricting Iw to E . Sincew = ∏̃
Iw ≥ ∏̃

(Iw|E )
for any E ⊂ [ℓ(w)], by Lemma 3.3, cIwIu ,Iv = 0 unless u ≤ w and v ≤ w. ⊓⊔

The coproduct structure on the left Q-module QW restricts to a coproduct structure on
the left S-module DF [6, Theorem 9.2]. Consequently, the embedding D∗

F ⊂ Q∗
W is an

embedding of subrings. So the structure constants of the S-bases {X∗
Iw } and {Y

∗
Iw } in D

∗
F are

precisely those of the Q-bases {X∗
Iw } and {Y

∗
Iw } in Q∗

W .
Specializing Theorem 4.1 to the X -operators, we have

X∗
Iu X∗

Iv =
∑

w≥v,w≥u

aIwIu ,Iv X
∗
Iw ,

with

aIwIu ,Iv =
∑

E,F⊂[ℓ(w)]
AIw

E,FcIw |E ,Iu cIw |F ,Iv , (10)

where cI ,Iv are the coefficients that occur in the expansion XI = ∑
v cI ,Iv XIv . It follows

from [6, Theorem 9.2 and Proposition 7.7] that AIw
E,F ∈ S, that cI ,Iw ∈ S, so aIwIu ,Iv ∈ S.

Similarly, specializing to the Y -operators, the structure constants for Y ∗
Iw are denoted by

bIw
Iv,Iu and can be expressed as

bIw
Iu ,Iv =

∑

E,F⊂[ℓ(w)]
BIw
E,FcIw |E ,Iu cIw |F ,Iv ,

where now the coefficients cI ,Iv are those appearing in the expansion of YI . As before,
BIw
E,F ∈ S and cI ,Iw ∈ S, so bIw

Iu ,Iv ∈ S. In Sect. 5 we show that these coefficients simplify in
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the case that F = Fa or F = Fm , resulting in Theorem 1 from [11]. It is worth noting that
the formula (10) can be used to prove the Leray-Hirsch Theorem for flag varieties (see [9]).

Example 4.3 Assume the root datum is of type A1, then W = {e, s1}. We calculate the basis
change explicitly:

X∗
e = fe + fs1 , X∗

(1) = −xα1 fs1 ,

and then we may obtain the products directly:

X∗
e X∗

e = X∗
e , X∗

e X∗
(1) = X∗

(1), X∗
(1) X

∗
(1) = −xα1X

∗
(1),

and note that it agrees with Theorem 4.1 with Z = X .

Example 4.4 Consider the root datum A2,withW = {e, s1, s2, s1s2, s2s1, w0}. For the longest
element w0, we fix the reduced sequence Iw0 = s1s2s1.

We use the calculation in Example 2.5, and the product structure on Q∗
W to obtain the

multiplication table for {XIv }. Recall that fu fv = 1 if u = v and 0 otherwise, and that
X∗
e = fe + fs1 + fs2 + fs1s2 + fs2s1 + fw0 . If Xw =∑

u au fu , we have

X∗
wX

∗
e =

(
∑

u

au fu

)(
∑

v

fv

)

=
∑

u

au fu = X∗
w

for all w ∈ W . Similarly,

X∗
Iw0

X∗
(1,2) = (−xα1xα2 xα13 fw0)

(
xα1xα13( fs1s2 + fw0)

)

= −x2α1xα2 x
2
α13

fw0

= xα1xα13X
∗
Iw0

.

The other products are as follows:

X∗
Iw0

X∗
Iw0

= −x1x2xα13 X
∗
Iw0

X∗
Iw0

X∗
(2,1) = x2xα13 X

∗
Iw0

X∗
(1) X

∗
(2) = X∗

(1,2) + X∗
(2,1) + κ1X∗

Iw0
X∗
Iw0

X∗
(2) = −xα13 X

∗
Iw0

X∗
(2) X

∗
(2) = xα13−x2

x1
X∗
(1,2) − x2X∗

(2), X∗
(2,1) X

∗
(2,1) = x2xα13 X

∗
(2,1)

X∗
(2,1) X

∗
(2) = xα13−x2

x1
X∗
Iw0

− x2X∗
(2,1), X∗

Iw0
X∗
(1) = −yX∗

Iw0

X∗
(1) X

∗
(1) = −x1X∗

(1) +
xα13−x1

x2
X∗
(2,1) X∗

(1,2) X
∗
(1,2) = x1xα13 X

∗
(1,2)

+ x1 y+x2α13−x1xα13−y2

x1x2xα13
X∗
Iw0

.

Here y was defined in Example 2.5.
One can check that the above coefficients aIwIu ,Iv agree with the formula (10). Note that

when computing a
Iw0
1,1 , one needs to compute the following coefficients:

A
Iw0
{3},{3}, A

Iw0
{1,3},{3}, A

Iw0
{3},{1,3}, A

Iw0
{1,3},{1,3}.
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As an application, we consider the case of a partial flag variety. Let K be a subset of
[n]. Let PK be the standard parabolic subgroup, WK < W the corresponding subgroup, and
WK ⊂ W be the set of minimal length representatives of W/WK . We say a set of reduced
sequences Iw is K -compatible if for eachw = uv, u ∈ WK , v ∈ WK , we have Iw = Iu ∪ Iv ,
i.e., Iw is the concatenation of Iu with Iv .

Theorem 4.5 Suppose the set {Iw} is K -compatible. Then for any v, u ∈ WK , we have

X∗
Iu X∗

Iv =
∑

w∈WK ,w≥v,w≥u

aIwIu ,Iv X
∗
Iw .

Proof It follows from [7, Corollary 8.4] that X∗
Iu , u ∈ WK is a basis of (Q∗

W )WK . Moreover,
from Lemma 4.3 of loc.it., we know δw · ( f f ′) = (δw · f )(δw · f ′). Therefore, X∗

Iu X∗
Iv ∈

(Q∗
W )WK , so is a linear combination of X∗

Iw ,w ∈ WK . ⊓⊔
Geometrically, under the assumption of this theorem, it follows from [7, Corollary 8.4]

that {X∗
Iw }w∈WK is a basis of (D∗

F )
WK ∼= 𝕙T (G/PK ). So the product X∗

Iu X∗
Iv , u, v ∈ WK is

a linear combination of X∗
Iw ,w ∈ WK .

Corollary 4.6 Let F = Fa or Fm, and suppose u ∈ W satisfies that u ∈ WK for some K
and u is the longest element in W K . Then for any v ∈ WK , awu,v = 0 for any w ∈ W, unless
w = u.

Proof In these cases, the braid relations are satisfied, so the structure constants do not depend
on the choice of reduced sequences. In other words, fixing u and K , we can assume we have
chosen K -compatible reduced sequences. Then Theorem 4.5 applies, which implies that for
any v ∈ WK , w ∈ W , we have aIwu,v = 0 unless w ∈ WK and w ≥ u. Since u is maximal in
WK , so w = u. ⊓⊔

5 Structure constants in cohomology and K-theory

We restrict our attention to H∗
T (G/B) and KT (G/B) to recover formulas in [11] of structure

constants of Schubert classes for cohomology (F = Fa) and K-theory (F = Fm). We first
simplify the coefficients cXI ,Iw and cYI ,Iw in these two cases. Recall that, when the formal
group law is F = Fa or F = Fm , the braid relations are satisfied for Zα = Xα and
Zα = Yα . We consider the equivariant oriented cohomology together with either the additive
or multiplicative formal group law, and restrict the coefficient ring to Sa or Sm .

Lemma 5.1 Let J be a word in the Weyl group. As in Lemma 3.3, define coefficients cJ ,Iw by

Z J =
∑

w∈W
cJ ,Iw ZIw .

1. Let F = Fa. If Zα = Xα or Zα = Yα , then

cJ ,Iw =
{
1, if J is a reduced word forw;
0, else.

2. Let F = Fm. If Zα = Xα or Zα = Yα , then

cJ ,Iw =
{
1, if w = ∏̃

J ;
0, else.
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Proof When F = Fa or F = Fm , it is well-known that the braid relations are satisfied. We
write cJ ,w for the coefficient cJ ,Iw . When F = Fa , Z2

α = 0, so if J is not reduced, Z J = 0.
If J is reduced and

∏
J = w, then Z J = Zw , so cJ ,w = 1 and cJ ,v = 0 for v ̸= w.

When F = Fm , we have Z2
α = Zα and thus Z J = Zw where w := ∏̃

J . It follows that
cJ ,w = 1 and cJ ,v = 0 for v ̸= w. ⊓⊔

Example 5.2 For H∗(G/B) and F = Fa , as described in Example 2.7 and Proposition 2.7,
the element ζ X

w in D∗
F corresponds under a natural isomorphism

D∗
Fa −→ 𝕙T (G/B)

to the equivariant cohomology class Poincaré dual to [X(w)], where [X(w)] is the homology
class of the Schubert variety. Furthermore, the first Chern classes of the corresponding line
bundles are xα = α for all simple roots α.

For each w ∈ W , fix a reduced sequence Iw . From the specialization of Theorem 4.1, we
have defining relations

Y ∗
u Y ∗

v =
∑

w≥u,w≥v

bIw
v,uY

∗
w

for bIw
v,u . Then

bIw
u,v =

∑

E,F⊂[ℓ(w)]
BIw
E,Fc

Y
E,Iu c

Y
F,Iv by Theorem 4.1,

=
∑

E,F reduced
for u,v

BIw
E,F , by Lemma 5.1(1)

where the second sum is over E, F whose corresponding products of reflections are reduced
and equal to u, v respectively. Recall that

BIw
E,F = (BY

1 BY
2 · · · BY

ℓ(w)) · 1,

with

BY
j =

⎧
⎨

⎩

xβ j δβ j , if j ∈ E ∩ F,
δβ j , if j ∈ E or F, but not both,
Yβ j , if j /∈ E ∪ F .

with β j = αi j .

The coefficients bIw
u,v coincide with the structure constants cwuv in [11, Theorem 1]. Note

that in this case, Yα = −Xα , so ζ Y
w = (−1)ℓ(w)ζ X

w , and thus X∗
w = (−1)ℓ(w)Y ∗

w. Therefore,

aIwu,v = (−1)ℓ(w)+ℓ(u)+ℓ(v)bIw
u,v.

Example 5.3 For KT (G/B) (and F = Fm), we have xα = 1 − e−α . The action of Xα (resp.
Y−α) on KT (pt) corresponds to the action of the ordinary (resp. isobaric) Demazure operator
in [11].

Fixing a reduced sequence Iw for each w, we have

X∗
u X∗

v =
∑

w≥u,w≥v

aIwu,vX
∗
w =

∑

w≥v,w≥u

∑

E,F

AIw
E,F X

∗
w,
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where by Lemma 5.1(2), the second sum is over all E, F ⊂ [ℓ(w)] such that
∏̃

E = u and∏̃
F = v. Here, we have

BX
j =

⎧
⎨

⎩

−(1 − e−β j )δβ j , if j ∈ E ∩ F,
δβ j , if j ∈ E or F, but not both,
Xβ j , if j /∈ E ∪ F,

where β j = αi j .
The classes {ξw : w ∈ W } in [11] are defined as the dual basis to [OX(w)(−∂X(w))]

under the pairing obtained by taking the equivariant cap product and pushing forward to a
point. Each ξw coincides with the Poincaré dual class to [OY (w)]. In Example 2.7 we note
that X∗

w = (−1)ℓ(w)[OY (w)], and thus ξw = (−1)ℓ(w)X∗
w . Therefore,

ξu ξv = (−1)ℓ(u)+ℓ(v)+ℓ(w)
∑

w≥u,v

aIwu,vξw.

It follows that the coefficients (−1)ℓ(u)+ℓ(v)+ℓ(w)aIwu,v coincide with awuv in [11], as is clear
from the formula.

With the observation that the classes {ξ̊w : w ∈ W } defined in [11] satisfy ξ̊w = Y ∗
w, a

similar argument implies that bw
u,v coincide with the structure constants å

w
u,v defined in [11].

Example 5.4 Let F = Fa . Consider the A2 case. If Iw = s1s2s1, u = s1, v = s1s2, then

bs1s2s1
s1,s1s2 = Bs1s2s1

{1},{1,2} + Bs1s2s1
{3},{1,2} =

(
α1δ1 δ2 Y1
+δ1 δ2 δ1

)
· 1 = 0+ 1 = 1.

Similarly,

bs1s2s1
s1,s2s1 = Bs1s2s1

{1},{2,3} + Bs1s2s1
{3},{2,3} =

(
δ1 δ2 δ1
+Y1 δ2 α1δ1

)
· 1 = 1 − 1 = 0.

For the A3 case, one can also compute

bs1s2s3s1s2
s2s3s2,s1s2s1 = Bs1s2s3s1s2

{2,3,5},{1,2,4} + Bs1s2s3s1s2
{2,3,5},{2,4,5}

=
(

δ1 α2δ2 δ3 δ1 δ2
+Y1 α2δ2 δ3 δ1 α2δ2

)
· 1

= (α1 + α2)+ α3.

Example 5.5 Let F = Fm . Consider the A3 case, with Iw = s1s2s3s1s2, u = s2s3s2, v =
s1s2s1. We have

as1s2s3s1s2s2s3s2,s1s2s1 = As1s2s3s1s2
{2,3,5},{1,2,4} + As1s2s3s1s2

{2,3,5},{2,4,5} + As1s2s3s1s2
{2,3,5},{1,2,4,5}

=

⎛

⎝
δ1 −x2δ2 δ3 δ1 δ2

+X1 −x2δ2 δ3 δ1 −x2δ2
+δ1 −x2δ2 δ3 δ1 −x2δ2

⎞

⎠ · 1

= −x1+2 +
x1+2+3x2 − x2+3x1+2

x1
+ x2+3x1+2

= xα2 − xα1+2α2+α3 .

123



Structure constants in equivariant oriented cohomology. . . Page 19 of 27 42

6 Structure constants of cohomological stable bases

In this section, we let F = Fa and R = Ra = Z[h]. We recall the definition of the cohomo-
logical stable basis of Maulik-Okounkov, and generalize Su’s formula of structure constants
for Segre–Schwartz–MacPherson classes (Theorem 6.3). We use the twisted group algebra
language for cohomology, whose K -theory version was given in [22]. As the framework and
proofs are very similar to earlier sections, we will only review essential properties. Some of
the notation introduced below is restricted to this section only.

Let Ra = Z[h], Sa = SymRa (&) and Qa = Frac(Sa). Define

Qa
W = Qa !Ra Ra[W ]

with Qa-basis δw,w ∈ W . For simplicity we introduce the following notation:

α̂ = h − α, αw0 =
∏

α>0

α, α̂w0 =
∏

α>0

(h − α).

Finally, for any simple root α, define an operator associated to this root by

Tα = −h
1
α
(1 − δα) − δα = − h

α
+ α̂

α
δα ∈ Qa

W .

By direct computation, the set {Tα}α∈{α1,...,αn} satisfies the braid relations, and T 2
α = 1.

Indeed, the algebra generated by {Tα} is called the degenerate (or graded) Hecke algebra.
Note that Tα is a special case of Zα , occurring over R = Ra .

For any sequence I = (i1, . . . , iℓ) (not necessarily reduced), we define the Demazure–
Lusztig operator

TI = Tαi1
. . . Tαiℓ

in cohomology to be the product of the operators indicated in the list I . It follows from the
relations that, if I and I ′ are two sequences with w := ∏

I = ∏
I ′, then TI = TI ′ , and we

denote it Tw . The set {Tw| w ∈ W } is a basis of Qa
W .

Let (Qa
W )∗ be the Qa-dual of Qa

W , and let {T ∗
w} ⊆ (Qa

W )∗ be the dual basis. Denote the
basis of (Qa

W )∗ dual to {δw ∈ Qa
W } by { fw}, as in Sect. 2. The identity of the ring (Qa

W )∗ is
denoted by 1 =∑

w∈W fw. The ring Qa
W acts on (Qa

W )∗ via the ·-action, given as before by
⟨z · q∗, z′⟩ = ⟨q∗, z′z⟩ for z, z′ ∈ Qa

W , q∗ ∈ (Qa
W )∗.

It induces aW -action on (Qa
W )∗ via the embeddingW ⊂ Qa

W . Let ((Qa
W )∗)W denote the

Weyl-invariant subgroup of (Qa
W )∗.

In this section only, denote by Ŷ ∈ Qa
W the element

∑

w∈W
δw

1
αw0 α̂w0

=
∑

w∈W
δw

1∏
α>0 α(h − α)

.

The map Ŷ · _ : (Qa
W )∗ → ((Qa

W )∗)W = Qa1 is the algebraic analogue of the composition
of the map

Qa ⊗Sa H∗
T×C∗(T ∗G/B) ∼= Qa ⊗Sa H∗

T×C∗(G/B) → Qa ⊗Sa H∗
T×C∗(pt),

where the last map is the equivariant pushforward of cohomology class on G/B to a point on
the second term. The proofs in [7, Lemma 7.1] and [22, Lemma 5.1] easily extend to show
that, for any f , g ∈ (Qa

W )∗,

Ŷ · ((Tα · f ) · g) = Ŷ · ( f · (Tα · g)).
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Definition 6.1 We define two bases of (Qa
W )∗ as a module over Qa . Let

stab+w = Tw−1 · (αw0 fe), and

stab−
w = (−1)ℓ(w0)Tw−1w0

· (αw0 fw0).

Then {stab+w : w ∈ W } and {stab−
w : w ∈ W } each form a basis for (Qa

W )∗ as a module over
Qa . We call these bases the cohomological stable bases. See [20] for more details.

It is immediate from the definition that stab+w has support on { fv : v ≤ w} and stab−
w has

support on { fv : v ≥ w}.
The following lemma is the analogue of Theorem 5.7 and Lemma 5.6 in [22]. The first

identity was due to Maulik-Okounkov originally.

Lemma 6.2 We have

Ŷ ·
[
stab+v · stab−

u
]
= (−1)ℓ(w0)δv,u1, Ŷ ·

[
stab+v ·̂αw0T

∗
u
]
= δv,u1.

Define structure constants twu,v ∈ Qa by the equation

stab−
u · stab−

v =
∑

w∈W
twu,v stab

−
w .

We now present the main result about the stable basis {stab−
w}.

Theorem 6.3 The classes stab−
w and the coefficients twu,v satisfy the following properties:

1. We have stab−
w = (−1)ℓ(w0)α̂w0T

∗
w .

2. For each w ∈ W, fix a reduced sequence Iw . Then

twu,v =
∑

E, F ⊂ [ℓ(w)]∏
(Iw |E ) = u,

∏
(Iw |F ) = v

α̂2
w0
t IwE,F ,

where t IwE,F = (BT
1 BT

2 · · · BT
k ) · 1 with

BT
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi j
α̂i j

δi j , if j ∈ E ∩ F,
h

α̂i j
δi j , if j ∈ E or F, but not both,

− h
αi j

+ h2
αi j α̂i j

δi j , if j /∈ E ∪ F .

Proof (1). This follows from Lemma 6.2 above.
(2). For each w ∈ W , we fix a reduced decomposition. We have

stab−
u · stab−

v = (−1)ℓ(w0)α̂w0T
∗
u · (−1)ℓ(w0)α̂w0T

∗
v = α̂2

w0
T ∗
u · T ∗

v .

Therefore, it suffices to consider the structure constants for T ∗
u . But the elements Tu are an

instantiation of ZIu with the coefficient ring Ra , with aαi j
= −h/αi j and bαi j

= α̂i j /αi j .
Thus Theorem 4.1 indicates how to multiply the corresponding dual elements, resulting in
BT
j defined as above. ⊓⊔

When h = −1, the Demazure Lusztig operator Tα specializes to the operator considered
by Su in [21], allowing us to recover his formula for the structure constants from the SSM
classes from Theorem 6.3.
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Example 6.4 Consider the A2-case. If Iw = s1s2s1, u = v = s1, then

ts1s2s1s1,s1 = α̂1α̂2α̂13(t121{1},{3} + t121{3},{1} + t121{1},{1} + t121{3},{3})

= α̂1α̂2α̂13

⎛

⎜⎜⎜⎜⎝

h
α̂1

δ1 − h
α2

+ h2
α2α̂2

δ2
h
α̂1

δ1
h
α̂1

δ1 − h
α2

+ h2
α2α̂2

δ2
h
α̂1

δ1
α1
α̂1

δ1 − h
α2

+ h2
α2α̂2

δ2 − h
α1

+ h2
α1α̂1

δ1

− h
α1

+ h2
α1α̂1

δ1 − h
α2

+ h2
α2α̂2

δ2
α1
α̂1

δ1

⎞

⎟⎟⎟⎟⎠
· 1

= h2(h + α1).

If Iw = s1s2s1, u = s1, v = s1s2, then

ts1s2s1s1,s1s2 = α̂1α̂2α̂13(t121{1},{1,2} + t121{3},{1,2})

= α̂1α̂2α̂13

(
α1
α̂1

δ1
h
α̂2

δ2 − h
α1

+ h2
α1α̂1

δ1
h
α̂1

δ1
h
α̂2

δ2
h
α̂1

δ1

)

· 1 = h2(h + α1).

Similarly, for v′ = s2s1, we have

ts1s2s1s1,s2s1 = α̂2
w0
(ts1s2s1{1},{2,3} + ts1s2s1{3},{2,3})

= α̂1α̂2α̂13

(
h
α̂1

δ1
h
α̂2

δ2
h
α̂1

δ1

− h
α1

+ h2
α1α̂1

δ1
h
α̂2

δ2
α1
α̂1

δ1

)

· 1

= h3 − h2α̂13 = h2(α1 + α2).

Example 6.5 Consider the A3 case. For Iw = s1s2s3s1s2, u = s2s3s2, v = s1s2s1, with
αi j = αi + · · · + α j−1 for 1 ≤ i < j ≤ 4, we have

ts1s2s3s1s2s2s3s2,s1s2s1 = α̂w0(t
s1s2s3s1s2
{2,3,5},{1,2,4} + ts1s2s3s1s2{2,3,5},{2,4,5})

= α̂w0

(
h
α̂1

δ1
α2
α̂2

δ2
h
α̂3

δ3
h
α̂1

δ1
h
α̂2

δ2

− h
α1

+ h2
α1α̂1

δ1
α2
α̂2

δ2
h
α̂3

δ3
h
α̂1

δ1
α2
α̂2

δ2

)

· 1

= h4α̂3(α1 + α2)+ h3α̂3(hα3 + α1α2 + α2
2 + α2α3)

= h3α̂3(h + α2)(α1 + α2 + α3).

t12312232,1 = α̂w0(t
12312
{2,3,5},{1} + t12312{2,3,5},{4})

= h5(̂α2 + 2α̂3).

t12312232,2 = α̂w2(t
12312
{2,3,5},{2} + t12312{2,3,5},{5})

= h4(3h2 + hα2 + (α24)̂α14).

Remark 6.6 In [21, Theorem 1.1], the authors find a formula for the structure constants of
σ ∗
w ∈ (Qa

W )∗, where

σi =
1+ αi

αi
δi − 1

αi
∈ Qa

W .

This is equal to our −Tα with # = −1.
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7 Structure constants for K-theoretic stable bases

In this section, we give a formula of the structure constants of the K-theory stable basis.
Similar to our strategy in Sect. 6, we use the twisted group algebra method. This method was
introduced by Su, Zhao and the second author in [22]; we only recall the definitions below.
Here we use F = Fm and R = Rm = Z[q1/2, q−1/2].

Let Sm = Rm[&]. We use the following notation in this section:

x±α = 1 − e∓α, x̂α = 1 − qe−α, x̂w =
∏

α>0,w−1α<0

x̂α, qw = qℓ(w).

Let Qm = Frac(Sm) and apply the twisted group algebra construction to obtain the module

Qm
W = Qm !Rm Rm[W ].

Define the operator τ−
α by

τ−
α = q − 1

1 − eα
+ 1 − qe−α

1 − eα
δα ∈ Qm

W .

Observe that τ−
α is a special case of Zα when Q = Qm .

A simple calculation shows that (τ−
α )2 = (q − 1)τ−

α + q , and that {τα} satisfies the braid
relations. It follows that theK-theoreticDemazure–Lusztig operator τ−

w , given by the product

τ−
w = τ−

αi1
τ−
αi2

· · · τ−
αiℓ

,

is independent of choice of reduced word si1si2 · · · siℓ for w. The set {τ−
w ,w ∈ W } is a Qm-

basis of Qm
W .

For each not-necessarily reduced sequence I = (i1, . . . , iℓ), let τ−
I be the concatenation

τ−
αi1

· · · τ−
αiℓ

, and define the structure constants cτ−
I ,w ∈ Rm by the equations

τ−
I =

∑

w∈W
cτ−
I ,wτ−

w . (11)

Lemma 7.1 The coefficients cτ−
I ,w ∈ Rm in (11) satisfy the following:

1. For all w ∈ W and sequences I , cτ−
I ,w = 0 unless w ≤ ∏̃

I .
2. If I is reduced, then

cτ−
I ,w =

{
0 if w ̸=∏

I
1 if w =∏

I .

Proof Statement (1) follows from the quadratic relation (τ−
α )2 = (q − 1)τ−

α + q .
Statement (2) follows from the braid relations satisfied by the τ−

α . ⊓⊔

The analogous statement to Theorem 3.7 is the following proposition.

Proposition 7.2 (K-Stable Leibniz Rule) If I = (i1, . . . , ik), we have

τ−
I · (pq) =

∑

E,F⊂[k]
P I
E,F (τI |E · p)(τI |F · q), p, q ∈ Q.
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where P I
E,F = (Bτ−

1 Bτ−
2 · · · Bτ−

k ) · 1 with Bτ−
j ∈ Qm

W defined by

Bτ−
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1−e
αi j

1−qe
−αi j

δi j , if j ∈ E ∩ F,
1−q

1−qe
−αi j

δi j , if j ∈ E or F, but not both,
q−1

1−qe
−αi j

τ−
αi j

δi j , if j /∈ E ∪ F .

Similar to Sect. 6, we take the dual (Qm
W )∗, and Qm

W acts on (Qm
W )∗ via the ·-action.

Indeed, we have

(Qm
W )∗ ∼= Qm ⊗Sm KC∗×T (G/B) ∼= Qm ⊗Sm KC∗×T (T ∗G/B).

Definition 7.3 [22, Definition 5.3, Theorem 5.4] The K-theoretic stable basis elements are
defined by

stab−
w = qw0q

−1/2
w (τ−

w0w
)−1 · (

∏

α>0

(1 − eα) fw0) ∈ (Qm
W )∗.

Moreover, by [22, Theorem 5.4, Theorem 6.5], we have

stab−
w = q1/2w x̂w0(τ

−
w )∗.

The following theorem gives a formula for the structure constants of the K-theory stable
basis:

Theorem 7.4 Let {stab−
w | w ∈ W } denote the K-theory stable basis of (Qm

W )∗. Define coef-
ficients pwu,v ∈ Qm by the equation

stab−
u · stab−

v =
∑

w≥u,w≥v

pwu,v stab
−
w .

Then

pwu,v = q
1
2 (ℓ(u)+ℓ(v)−ℓ(w)) x̂w0

∑
P Iw
E,Fc

τ−
Iw |E ,uc

τ−
Iw |F ,v,

where the sum is over all E, F ⊂ [ℓ(w)] such that
∏̃
(Iw|E ) ≥ u and

∏̃
(Iw|F ) ≥ v, and

coefficients cτ
Iw |F ,v are given in Lemma 7.1

Proof The proof follows a similar argument as that of Theorem 6.3. ⊓⊔

Remark 7.5 Due to the quadratic relation (τ−
α )2 = (q−1)τ−

α +q , it is difficult to express the
sum in terms of formulas in Sects. 5 and 6. Indeed, this is also the reason why it is difficult to
express the restriction formula of stab−

w in [22] in terms of an AJS-Billey-Graham-Willems
type formula.

8 The restriction formula

In this section we relate the structure constants of Z∗
Iw with its restriction coefficients. This

generalizes such relations in cohomology and K-theory due to Kostant and Kumar in [13,
Proposition 4.32] and [14, Lemma 2.25].
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Let Zα be given in Definition 3.5. Following Lemma 2.3, we obtain coefficients bZu,Iw ∈ Q
using the defining relations

δu =
∑

w∈W
bZu,Iw ZIw ,

Then Z∗
Iv = ∑

u b
Z
u,Iv fu , i.e., Z

∗
Iv (δu) = bZu,Iv . We call bZu,Iv the restriction coefficients of

Z∗
Iv .

Theorem 8.1 For any w ∈ W, define the matrix pZw with pZw(u, v) = cIvIw,Iu , the matrix b
Z

with bZ (u, v) = bZv,Iu , and the matrix bZw with bZw(u, v) = δu,vbZu,Iw . Then

pZw = bZ · bZw · (bZ )−1.

Proof We have

(pZw · bZ )(u, v) =
∑

z∈W
pZw(u, z)b

Z (z, v) =
∑

z∈W
cIzIw,Iu b

Z
v,Iz

=
∑

z∈W
cIzIw,Iu Z

∗
Iz (δv) = (Z∗

Iu · Z
∗
Iw )(δv)

= Z∗
Iu (δv) · Z

∗
Iw(δv) = bZv,Iu b

Z
v,Iw

=
∑

z∈W
bZz,Iu δz,vb

Z
z,Iw =

∑

z∈W
bZ (u, z)bZw(z, v)

= (bZ · bZw)(u, v).

⊓⊔

Corollary 8.2 For any v,w ∈ W, we have

cIvIw,Iv = bZv,Iw .

In particular, cIvIw,Iv does not depend on the choice of Iv .

Proof Denote ZIw =∑
v≤w aZ

Iw,vδv . Then the matrix aZ with aZ (u, v) = aZ
Iv,u is the inverse

of bZ . Theorem 8.1 implies that

cIvIw,Iv = pZw(v, v)

=
∑

z1,z2∈W
bZ (v, z1)bZw(z1, z2)a

Z (z2, v)

=
∑

z1≥v,z2≤v

bZz1,Ivδz1,z2b
Z
z1,Iwa

Z
Iv,z2

=
∑

v≤z1≤v

bZz1,Ivb
Z
z1,Iwa

Z
Iv,z1

= bZv,vb
Z
v,Iwa

Z
v,v = bZv,Iw = Z∗

Iw (δv).

⊓⊔
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Remark 8.3 Corollary 8.2 can also be proved with the following argument: since Z∗
Iw (δu) =

bZu,Iw = 0 unless u ≥ w,

(Z∗
Iu · Z

∗
Iv )(δu) =

(
∑

w≥u,w≥v

cIwIu ,Iv Z
∗
Iw

)

(δu)

= cIuIu ,Iv Z
∗
Iu (δu) = cIuIu ,Ivb

Z
u,Iu .

On the other hand,

(Z∗
Iu · Z

∗
Iv )(δu) = Z∗

Iu (δu)Z
∗
Iv (δu) = bZu,Iu b

Z
u,Iv .

Therefore, cIuIu ,Iv = bZu,Iv .

Remark 8.4 As mentioned in [11], specializing Corollary 8.2 and Examples 5.2 and 5.3 to
cohomology or K-theory, and Zα to the Xα and Yα-operators, one recovers the AJS/Billey
formula and Graham-Willems formula of restriction coefficients of Schubert classes, which
are obtained by using root polynomials.

Example 8.5 Consider the A2-case with w = s1, v = s1s2s1. We compute bXv,w = X∗
Iw (δv).

For AIv
[3],E , we only need to consider the following three:

AIv
[3],{1} = −x1, AIv

[3],{3} = −x2, AIv
[3],{1,3} = x1x2.

On the other hand, cXIv |E ,Iw = 1 when E = {1}, {3}, and X1X1 = κ1X1. So cXIv |{1,3},s1 = κ1.
Therefore,

bXw,Iv = −x1 − x2 + κ1x1x2.

In particular, if F = Fa , then bXw,Iv = −x1 − x2, and if F = Fm , then bXw,Iv = −x1 − x2 +
x1x2 = −x1+2, with x1+2 = xα1+α2 .

Example 8.6 Let w = s1s2, v = s1s2s3s1s2. Let us compute bXv,Iw = X∗
Iw (δv). We write

Xi jk··· for Xi X j Xk · · · , x±i± j = x±αi±α j and κ±i,± j = κ±αi ,±α j . To compute AIv
[6],E , we

only need to consider

AIv
[6],{1,2} = x1x1+2, AIv

[6],{1,5} = x1x2+3,

AIv
[6],{4,5} = x2x2+3, AIv

[6],{1,2,5} = −x1x1+2x2+3,

AIv
[6],{1,4,5} = −x1x2x2+3, AIv

[6],{1,2,4,5} = x1x1+2x2x2+3.

On the other hand, cXIv |E ,Iw = 1 when E = {1, 2}, {1, 5}, {4, 5}. Concerning XIw |{1,2,5} =
X122, since

X1X2X2 = X1κ2X2 = s1(κ2)X12 + -1(κ2)X2 = κ1+2X12 + -1(κ2)X2,

so

cXIv |{1,2,5},Iw = κ1+2.

For XIw |{1,4,5} = X112, from X1X1X2 = κ1X1X2, we get

cXIv |{1,4,5},Iw = κ1.
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Lastly, for XIw |{1,2,4,5} = X1122, from Lemma 2.2 we know

X1212 = X1(X121 + κ12X1 − κ21X2)

= κ1X121 + X1κ12X1 − X1κ21X2

= κ1X121 + s1(κ12)X2
1 + -1(κ12)X1 − s1(κ21)X12 − -1(κ21)X2

= κ1X121 + κ−1,1+2κ1X1 + -1(κ1)X1 − κ1+2,−1X12 − -1(κ21)X2,

so

cXIv |{1,2,4,5},Iw = s1(κ21) = −κ1+2,−1.

Therefore,

bXs1s2,s1s2s3s1s2
= AIv

[6],{1,2} + AIv
[6],{1,5} + AIv

[6],{4,5}

+ AIv
[6],{1,2,5}κ1+2 + AIv

[6],{1,4,5}κ1 + AIv
[6],{1,2,4,5}(−κ1+2,−1)

= x1x1+2 + x1x2+3 + x2x2+3 − x1x1+2x2+3κ1+2 − x1x2x2+3κ1 − x1x1+2x2+3κ1+2,−1

= x1x1+2 + x1x2+3 + x2x2+3 − x2+3(x1 + x2 +
x1
x−1

x1+2).

In particular, if F = Fa , then

bXs1s2,s1s2s3s1s2 = α1(α1 + α2)+ α1(α2 + α3)+ α2(α2 + α3).

If F = Fm , then

bXs1s2,s1s2s3s1s2 = x1x1+2 + x1x2+3 + x2x2+3 − x1x2+3(x1+2 + x2).

These agree with the result computed by using root polynomials.
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