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On positivity for the Peterson variety

Rebecca Goldin

Abstract. We aim in this manuscript to describe a specific notion of geomet-
ric positivity that manifests in cohomology rings associated to the flag variety
G/B and, in some cases, to subvarieties of G/B. We offer an exposition on the
the well-known geometric basis of the homology of G/B provided by Schubert
varieties, whose dual basis in cohomology has nonnegative structure constants.
In recent work [R. Goldin, L. Mihalcea, and R. Singh, Positivity of Peterson
Schubert Calculus, arXiv2106.10372] we showed that the equivariant cohomol-
ogy of Peterson varieties satisfies a positivity phenomenon similar to that for
Schubert calculus for G/B. Here we explain how this positivity extends to this
particular nilpotent Hessenberg variety, and offer some open questions about
the ingredients for extending positivity results to other Hessenberg varieties.

1. Introduction to Geometric Positivity for G/B and Other Varieties

The term positivity, which may sometimes be more appropriately termed “non-
negativity” can have many different manifestations and meanings in the context
of combinatorics and algebraic geometry. We aim in this manuscript to describe a
specific notion of geometric positivity that manifests in cohomology rings associated
to the flag variety G/B and, in some cases, to subvarieties of G/B. In Section 5
we review the well-known geometric basis of homology provided by Schubert va-
rieties, whose dual basis in cohomology has nonnegative structure constants. In
fact, these structure constants arise as the number of points occurring in a cer-
tain 0-dimensional transverse intersection of complex algebraic varieties. While the
structure constants are nonnegative, a combinatorially positive formula for them
is known only in some cases. The classical Littlewood-Richardson rule expresses
the Littlewood-Richardson coefficients as the number of Young tableaux that sat-
isfy certain properties; equivariant structure constants for the Grassmannian of
k-planes in Cn can be counted positively using Knutson-Tao puzzles. Schubert
calculus is concerned both with finding combinatorially positive formulas for these
structure constants (and their generalizations) as well as with proving that structure
constants are nonnegative (or have an analogous positivity property).

Positivity for the integral cohomology ring of G/B has a generalization in the T -
equivariant cohomology of G/B, given in Definition 5.1. We assume that we have
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a distinguished set of positive roots α1, . . . ,αd, or monomials in the equivariant
cohomology of a point, where d = dim T . For a T -invariant subvariety X of G/B,
a basis {xi} of H∗

T (X) as a module over H∗
T (pt) is considered Graham positive if

xixj =
∑

k

ak
ijxk

defines structure constants ak
ij ∈ H∗

T (pt) that are nonnegative linear combinations
of monomials in α1, . . . ,αd. A wonderful consequence of Graham positivity for
equivariantly formal spaces (a technical condition satisfied by G/B and Peterson
varieties) is that it implies positivity in the usual sense, as the constant part of
the polynomial in ak

ij are the coefficients that arise in the product of ordinary
cohomology classes (see Property 3.4).

The basis {xi} is the dual basis to a set of T -invariant varieties forming a basis
for the equivariant homology of X. When a basis {xi} is both Graham positive
and also the dual of homology classes associated to T -invariant subvarieties, we
say X satisfies geometric positivity. This phenomenon occurs for X = G/B, as the
Schubert classes {σw : w ∈ W} multiply with nonnegative structure constants, and
arise as the dual basis for {[Xw] : w ∈ W}.

The goals of this manuscript are to provide an exposition on the well-known
geometric positivity for equivariant cohomology for G/B that offers the ingredients
to apply it to certain subvarieties of G/B. We focus specifically on a subvariety P
called the Peterson variety (Definition 2.1). The Peterson variety was introduced
by Dale Peterson, but appeared in published work by Kostant [Ko96], and Rietch
[R01] [R03] on the quantum cohomology of flag varieties.

Peterson varieties arise as a special case of a large class of varieties called
Hessenberg varieties (Definition 2.2), which are themselves parameterized by an
element x in the Lie algebra g of G, and Borel-invariant subspace H of g.

Hessenberg varieties were first defined in generality by De Mari, Procesi and
Shayman [dMPS], who explored the geometry of regular semisimple Hessenberg
varieties. The cohomology rings of regular nilpotent Hessenberg varieties were stud-
ied in, for example [AHHM], while the Poincaré polynomials and geometric bases
were studied in [P18] and [EHNT]. In [Kl85], [Kl95] and [ABF], the authors
proved and exploited the structure of flat families of Hessenberg varieties. Other
important special cases occur when H is restricted: Springer varieties, whose ge-
ometry was explored in [GKM], arise as Hessenberg varieties when H = b, the
Lie algebra of the Borel B. Tymoczko [T] proved that all Hessenberg varieties
are paved by affines in Type A, while Precup [P13] extended these results for reg-
ular elements to other Lie types. Hessenberg varieties are also deeply connected
to combinatorics; a recent survey on many combinatorial aspects is [AH] and the
references therein.

The Peterson variety admits an action of a one-dimensional torus S ⊂ T with
finitely many fixed points. The subgroup S occurs as those elements of T that
stabilize a principal nilpotent element of g; in particular, αi|S is independent of i for
all positive simple roots αi. Harada, Horiguchi and Masuda proved a presentation
of H∗

S(P; Q) in [HHM] unrelated to Schubert calculus. In [HT] and [D], the
authors proved that there is a basis of the equivariant cohomology given by pulling
back to P a specific set of Schubert classes from H∗

S(G/B). They proved a positive
equivariant Monk formula for this basis, but did not provide a geometric basis.
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As we shall see, an essential ingredient to positivity for the equivariant coho-
mology of G/B is that it has a paving by B-invariant (or B-stable) affine cells. The
property of being paved by affines is enjoyed by regular Hessenberg varieties, in-
cluding the Peterson variety; however the B-invariance is not. Despite this missing
ingredient, we show here (originally proved by the author together with Mihalcea
and Singh, in [GMS]) that Peterson varieties have equivariant geometric positivity
using properties of G/B and the inclusion of the Peterson variety into G/B. More
specifically, we show that there exists a basis {pK}K⊂∆ of H∗

S(P), where the in-
dexing set is the set of subsets of the simple positive roots, making H∗

S(P) Graham
positive. In particular,

pIpJ =
∑

K

bK
IJpK

for monomials bK
IJ ∈ H∗

S(pt) that are nonnegative multiples of a power of t := αi|S .
Furthermore, this basis occurs as a dual basis to a set of S-invariant subvarieties
PK whose homology classes are a basis for the equivariant homology of P. In type
A, the author and Gorbutt [GG] proved positivity combinatorially, i.e. they found
a manifestly positive formula for the structure constants bK

IJ .
In this manuscript we focus on the positivity emerging from the product struc-

ture of a specially chosen basis of cohomology. We establish notation and basic
definitions in Section 2, followed by a brief explanation of key properties satisfied
by the equivariant cohomology of G/B in Section 3, including an alternate notion
of positivity obtained through localization. We recall some geometric properties of
Hessenberg varieties in Section 4, and explain the reasons behind geometric positiv-
ity for G/B in Section 5, for both ordinary and equivariant cohomology. Section 6
explores the geometry of P and demonstrates that Peterson Schubert calculus sat-
isfies geometric positivity. Finally, in Section 7 we share some open questions about
whether the analogous cohomology basis for other nilpotent Hessenberg varieties
have the same positivity property.

The author thanks the referee for useful suggestions. This work was partially
supported by NSF Grant #2152312.

2. Notation and Definitions

For the purposes of this manuscript, we let G be a complex semi-simple Lie
group, B a Borel subgroup, and B− an opposite Borel. Denote by g the Lie algebra
of G, and b the Lie algebra of B. Let T = B ∩ B− be the maximal torus obtained
by the intersection, and h = Lie(T ) its Lie algebra. We let W = N(T )/T denote
the Weyl group for G, ∆ the set of simple positive roots, and φ+ the set of positive
roots. There is a length function ℓ : W → N sending each Weyl group element to the
minimal number of reflections over simple roots required to describe that element;
there is a unique longest-length element of W , which we denote by w0.

We call G/B the flag manifold. Observe that T acts on G/B the left by group
multiplication, which is well-defined on the level of cosets; the fixed points of this
action are isolated, and we denote the set of them by (G/B)T . We will frequently
identify them with the Weyl group, via the identification

ṽB ↔ v ∈ W,

where ṽ is any lift of v in N(T ). Since the coset doesn’t depend on the lift, we
abuse notation and call the coset vB.

Licensed to AMS.



150 REBECCA GOLDIN

For each v ∈ W , the closure of the B orbit on vB is given by Xv = BvB/B.
These are called the Schubert varieties indexed by v ∈ W . Similarly, Xv =
B−vB/B are the closures of the B− orbit on vB, and are called opposite Schu-
bert varieties.

Our initial focus is on a specific regular, nilpotent case, given as follows. Let
e ∈

⊕
α∈∆ gα be a principal nilpotent element, where gα is the weight space of the

simple positive root α in g. Let Ge be the centralizer of e in G.

Definition 2.1. The Peterson variety

(2.1) P : = Ge.w0B ↪→ G/B,

is the closure of the Ge-orbit of w0B inside the flag manifold G/B.

An alternate definition of Peterson varieties is provided as a special case of
a larger class of varieties called Hessenberg varieties, parameterized by an element
x ∈ g and certain subspaces of g. A Hessenberg space is a subspace H ⊆ g satisfying
b ⊆ H and [b, H] ⊆ H.

Definition 2.2. The Hessenberg variety associated with x ∈ g, and a Hessen-
berg space H is

(2.2) Hess(x, H) = {gB ∈ G/B : g−1 · x ∈ H},

where g−1 · x indicates the adjoint action.

We refer to regular, semisimple, or nilpotent Hessenberg varieties when x is
a regular, semisimple or nilpotent element, respectively, of g. Observe that when
H = g, Hess(x, H) = G/B, independent of x. Similarly when x = 0, Hess(x, H) =
G/B.

Definition 2.3. The Peterson variety is a regular nilpotent Hessenberg arising
when x = e as above, and

H = H0 := b ⊕
⊕

α∈∆

g−α.

A proof that P = Hess(e, H0) is given in [GMS].

Example 2.4. Let G = Sl(2, C), B upper triangular matrices, B− lower tri-
angular matrices, and T = B ∩B− the diagonal matrices. Then g = H0 = b⊕g−α,
as there is only one simple positive root α. Therefore, P = Sl(2, C)/B.

Example 2.5. For G = Sl(n, C), there is an equivalent formulation for the
Peterson variety. Let gi denote the ith column vector of the matrix g ∈ G, and let
Vi = ⟨g1, . . . , gi⟩ denote the span of the first i columns of g. Choose e to be the
element of sl(n, C) with 1s above the diagonal, and 0s elsewhere, i.e.

e =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 · · · 0 0
...

...
. . .

. . .
...

...
0 0 · · · 0 1 0
0 0 · · · 0 0 1
0 0 · · · 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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Then gB ∈ Hess(x, H0) if and only if eVi ⊆ Vi+1 for i = 1, . . . , n − 1. For n = 3,
the elements gB satisfying these conditions can be represented by matrices g of any
of the forms⎛

⎝
a b 1
b 1 0
1 0 0

⎞

⎠ ,

⎛

⎝
c 1 0
1 0 0
0 0 1

⎞

⎠ ,

⎛

⎝
1 0 0
0 d 1
0 1 0

⎞

⎠ ,

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ,

for a, b, c, d any complex numbers.

The cocharacter h of T satisfying α(h) = 2 for all α ∈ ∆ determines a one
dimensional subtorus S ⊂ T satisfying α|S = α′|S for any α,α′ ∈ ∆. Set t := α|S
for α ∈ ∆; then t ∈ H∗

S(pt).

3. Properties of T -equivariant cohomology for G/B

We use equivariant cohomology and equivariant Borel-Moore homology over Z.
We collect some useful facts about the T -equivariant cohomology of G/B, without
proof or explanation. The reader may refer to [F98] (Ch 19), [F97] (Appendix B),
[CG] (§2.6) for additional details about cohomology and Borel-Moore homology,
and [G] for the equivariant versions.

Property 3.1. The equivariant cohomology of a point is

H∗
T (pt) = S(h∗) ∼= Z[x1, . . . , xn]

where S(h∗) is the symmetric algebra in the dual of the Lie algebra of T , and
dim T = n. If one chooses a splitting of T , we may alternatively use polynomials
of h. Here xi are degree 2 monomials.

Property 3.2. The cohomology of the fixed point set (G/B)T is

H∗
T ((G/B)T ) =

⊕

v∈W

H∗
T (vB/B) =

⊕

v∈W

Z[x1, . . . , xn]

Property 3.3. The inclusion map (G/B)T ↪→ G/B induces an inclusion

H∗
T (G/B) ↪→ H∗

T ((G/B)T ),

called the localization map.

Property 3.4. By using the ordinary cohomology on the Borel construction,
the inclusion of G/B as a fiber into the total space G/B×T ET induces a surjection

H∗
T (G/B) ! H∗(G/B),

called the forgetful map. This property is sometimes called equivariant formality.

Property 3.5. H∗
T (G/B) is a free module over H∗

T (pt).

Property 3.6. A basis for the module H∗
T (G/B) over H∗

T (pt) is the collection
of equivariant Schubert classes

{σv ∈ H∗
T (G/B) : v ∈ W}.

Property 3.7. The set of Schubert varieties {[Xv]}v∈W is a basis for the
ordinary homology H∗(G/B) as a module over its coefficient ring Z. An equivalent
basis is given by the set of opposite Schubert varieties {[Xv]}v∈W . In ordinary
homology, [Xv] = [Xw0v].
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Property 3.8. The set of Schubert varieties {[Xv]}v∈W is a basis for the
equivariant homology HT

∗ (G/B) as a module over the equivariant cohomology of a
point. Another basis is given by the set of opposite Schubert varieties {[Xv]}v∈W .
In equivariant homology, [Xv] ̸= [Xw0v].

Each class σv is dual to an opposite Schubert varieties in a specific sense: when
Xv is smooth, or more generally at the smooth locus, the corresponding Schubert
class is the Euler class of the normal bundle to Xv. While σv is often called the
Poincaré dual class to Xv, one should not confuse this duality with the Poincaré
dual basis. Indeed, the Poincaré dual basis of {σv}v∈W is given by {[Xv]}v∈W ,
the equivariant homology classes corresponding to the Schubert varieties, not the
opposite Schubert varieties.

This behavior between the bases {σv}v∈W and {[Xv]}v∈W of equivariant coho-
mology and equivariant homology, respectively, is formalized using the well-known
pairing of classes on the manifold G/B.

Property 3.9. Let

⟨·, ·⟩ : H∗
T (G/B) ⊗ HT

∗ (G/B) → H∗
T (pt)

be defined by ⟨a, b⟩ =
∫

b a. Then for all v, w ∈ W ,

⟨σv, Xw⟩ = δv,w.

Example 3.10. Let G = Gl(3, C), with T the diagonal matrices. Consider
the Schubert class σv associated to v = [231], obtained as the Poincaré dual class
to the opposite Schubert variety Xv. By Proposition 3.3, σv is determined by its
restriction to the fixed point set. The restrictions can be found using [Bi]:

σv|[123] = 0, σv|[213] = 0, σv|[132] = 0

σv|[231] = α1α3 σv|[312] = 0, σv|[321] = α1α3.

Here α1 and α2 are the standard positive simple roots, and α3 = α1 + α2.

4. Paving by Affines

Recall the following definition:

Definition 4.1. A variety X is said to be paved by affine spaces or paved by
affines if there is a sequence of closed subvarieties

Y0 ⊂ Y1 ⊂ · · · ⊂ Yn = X

such that Yi − Yi−1 is a finite, disjoint union of affine spaces.1 We say that X =⊔
Yi − Yi−1 is a paving by affines.

The flag variety G/B has a paving by affines, as we show in the following
example.

Example 4.2. Consider the flag variety G/B and Bruhat cells X0
w = BwB/B

for w ∈ W . Bruhat cells are pairwise disjoint and cover all of G/B. Furthermore,
each Bruhat cell X0

w is isomorphic to the affine space Aℓ(w). It is well known that
Xw = X0

w satisfies:

Xw =
⊔

u∈W,u≤w

X0
u,

1Here we follow the definition provided by [P13], which does not restrict the dimension of
the affine spaces occurring in Yi − Yi−1.
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Let Yi =
⋃

w∈W,ℓ(w)=i Xw be the union of those Schubert varieties of dimension i.

Then Yi − Yi−1 =
⊔

w∈W,ℓ(w)=i X0
w is a union of disjoint affine cells, and G/B =⊔

w∈W X0
w is a paving by affines.

De Concini, Lusztig and Procesi proved that Springer fibers are paved by affines
[dCLP]. Tymoczko showed that all Hessenberg varieties in type A have an affine
paving [T]. Precup generalized the result in [P13] to all Lie types for regular Hes-
senberg varieties as well as a subset of operators whose nilpotent part are regular
in a Levi subalgebra of g; we state her result here.

Theorem 4.3 (Precup). Fix a Hessenberg space H with respect to b.

(1) Suppose x ∈ g has Jordan decomposition s + n with s semisimple and n
regular in some Levi subalgebra of the Lie algebra of the centralizer ZG(s).
Then Hess(x, H) has a paving by affines.

(2) If x is nilpotent and regular in a Levi subalgebra of g. Then, there is an
affine paving of Hess(x, H) given by the intersection of each Schubert cell
in G/B with Hess(x, H).

In particular, a variety with an affine paving has a cellular decomposition with
only even-dimensional cells, and thus only even-dimensional homology. The closure
of the affine cells form a basis for the homology; if the paving is T -invariant, then
they form a basis for the T -equivariant homology. Dually we shall see (Theorem 5.5)
that one obtains a basis for the (equivariant or ordinary) cohomology ring.

Recall that e is regular nilpotent, so Precup’s result implies that P has an affine
paving. We make this explicit in the case of Peterson varieties in Section 6. Peterson
varieties are not smooth, so one cannot immediately extract a cohomological basis;
Theorem 6.3 states that there is nonetheless a dual basis.

5. Positivity for G/B

5.1. Ordinary cohomology. The ordinary cohomology ring H∗(G/B) ex-
hibits positive structure constants with a direct geometric interpretation. Recall
that each Schubert class σv occurs as the Poincaré dual class to the variety [Xv].
As the Schubert classes form a basis for H∗(G/B), we define structure constants
cw
u,v ∈ H∗(pt) = Z by the equation

(5.1) σuσv =
∑

w∈W

cw
u,vσw.

We can identify the coefficients by pairing both sides with Schubert varieties. For
any q ∈ W ,

⟨σuσv, [Xq]⟩ = ⟨
∑

w∈W

cw
u,vσw, [Xq]⟩

=
∑

w∈W

cw
u,v⟨σw, [Xq]⟩ = cq

u,v.

On the other hand, we can obtain a geometric meaning to this product, by observing
that the pairing counts intersection points. The product σuσv in cohomology is the
algebraic representation of the intersection Xu ∩ gXv, for g ∈ G generic. As long
as Xu ∩gXv and Xq intersect transversally and in a finite set of points, the pairing
of the cohomology class σuσv and the homology class [Xq] is the number of points,
counted with multiplicity and sign, in the triple intersection Xu ∩ gXv ∩ Xq. The
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intersection Xu ∩ Xq is known to be transverse [Ke74], and the intersection Xu ∩
gXv ∩Xq is transverse for generic g. The intersection is 0-dimensional when ℓ(u)+
ℓ(v) = ℓ(q). Finally we observe that G acts on G/B transitively, and preserving its
complex structure. Thus all intersection points are positively oriented. It follows
that

cq
u,v = |Xu ∩ gXv ∩ Xq| ≥ 0

for g in a dense open subset of G. In general, it’s difficult to calculate intersection
numbers of Schubert varieties using geometry and algebraic equations alone, though
it can be done in small cases. The calculations are distinctly easier when using
localization techniques.

5.2. Equivariant cohomology. While positivity in the ordinary cohomology
of Schubert calculus describes intersections, the equivariant version has additional
subtleties, reflecting properties of the choice of Borel subgroup.

Furthermore, equivariant positivity for Schubert calculus on G/B (or G/P )
generalizes ordinary cohomology, as we shall see.

The essential ingredients to positivity for the equivariant cohomology of G/B
may be parsed as coming from the following properties:

• Paving by Affines. G/B has a paving by affine spaces. While there are
many such paving, we use the one given by Schubert cells BwB/B for
w ∈ W , as in Example 4.2.

• B-Invariance of Paving. The chosen affine cells paving G/B are B-
invariant. Their closures are the Schubert varieties Xw for w ∈ W , and
they constitute the effective basis guaranteed to exist by Theorem 5.2.

• Positivity for Equivariant Homology. There is a set of B-invariant
subvarieties in G/B that provide an effective basis for its T -equivariant
homology, with positive coefficients for any T -invariant subvariety. This
property holds for any scheme X with a B action, and is stated in Theo-
rem 5.2.

We first make explicit what we mean by positive. Let B be a choice of Borel
in a complex reductive Lie group G, with unipotent radical N ; let T ⊆ B be a
maximal torus. Then T acts on n = Lie(N) with weights α1, . . . ,αd. These are the
positive roots associated with the choice of (B, T ).

Definition 5.1 (Graham positivity for equivariant cohomology). We say that
a T -invariant scheme X enjoys Graham positivity if there exists a choice of positive
roots α1, . . . ,αd and a basis {σi} of H∗

T (X) as a H∗
T (pt)-module such that

σiσj =
∑

k

ck
ijσk,

with ck
ij a linear combination of monomials in α1, . . . ,αd with nonnegative coeffi-

cients. We call the coefficients ck
ij Graham positive.

Positivity for the equivariant homology of G/B is stated in the following theo-
rem due to Graham [G].

Theorem 5.2 (Graham). Let B′ be a connected solvable group with unipotent
radical N ′, and let T ′ ⊂ B′ be a maximal torus, so that B′ = T ′N ′. Let α1, . . . ,αd

be the weights of T ′ acting on Lie(N ′). Let X be a scheme with a B′-action,
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and Y a T ′-invariant subvariety of X. Then there exist B′-invariant subvarieties
D1, . . . , Dk of X such that in the equivariant homology HT ′

∗ (X),

[Y ] =
∑

i

fi[Di],

where each fi ∈ H∗
T (pt) is a linear combination of monomials in α1, . . . ,αd with

nonnegative, integer coefficients.

We apply the theorem to the case that X = G/B and B′ = B, and note
that {Xw}w∈W are the set of B-invariant varieties, and thus must be the indi-
cated varieties Di. The weights of the T action on Lie(N ′) are the positive roots
{α1, . . . ,αd} determined by our choice of Borel B, where dim N ′ = d, and naturally
live in H∗

T (pt).
The theorem is fundamentally geometric in nature, in that it says that the

homology class associated with an invariant subvariety of G/B can be expressed as
a Graham positive linear combination of homology classes associated to Schubert
varieties.

Corollary 5.3. Let Y be a T -invariant subvariety of G/B. Then in HT
∗ (G/B),

[Y ]T =
∑

w∈W

fw[Xw]T

where Xw are Schubert varieties and fw are nonnegative linear combinations of
monomials in α1, . . . ,αd for all w ∈ W .

Example 5.4. Let G = Gl(3, C), B upper-triangular matrices in G, and T

diagonal matrices of the form

⎛

⎝
r1eix1 0 0

0 r2eix2 0
0 0 r3eix3

⎞

⎠, with nonzero real numbers

r1, r2, r3. The unipotent matrices U are upper triangular invertible matrices; T acts
on its Lie algebra u with weights

α1 = x1 − x2, α2 = x2 − x3, α3 = x1 − x3.

The B-invariant basis of the homology of G/B is given by the six Schubert varieties:
X[123] = (id)B/B is a single point; X[213] and X[132] are both two-dimensional
spheres; X[312] and X[231] are both Hirzebruch surfaces (CP 1 bundles over CP 1)
and X[321] = G/B.

Consider the T -invariant subvariety Y in G/B isomorphic to CP 1 and given
by the closure of the cell ⎛

⎝
0 ∗ 1
1 0 0
0 1 0

⎞

⎠B.

By Corollary 5.3, the class [Y ]T may be expressed as a sum of positive polynomials
in α1,α2 times Schubert varieties. There are multiply ways to find this relation-
ship. Consider the dual class γ to [Y ]T , which is described by the restrictions
γ|[213] = −α1α2, γ|[231] = −α1α2, and γ|w = 0 otherwise. Let PD[Xw]T indicate
the equivariant Poincaré dual class to Xw. A check on the restrictions to fixed
points affirms that

γ = α1PD[X[231]]T + PD[X[132]]T ,

Licensed to AMS.



156 REBECCA GOLDIN

as the restrictions to fixed points are the same for both the left and right sides of
the equation. Taking the dual, we obtain the equation in equivariant homology:

(5.2) [Y ]T = α1[X[231]]T + [X[132]]T .

Observe that the coefficients are nonnegative in α1,α2,α3.
Alternatively, using the dual basis of Schubert classes, the restriction to fixed

points results in the equation

γ = −α2σ[213] + σ[312].

The equivariant pushforward of γσw is the coefficient of [Xw]T in the expansion; its
calculation may be done using the Atiyah-Bott Berline-Vergne formula (see [AB]).
For example,

∫

G/B
γσ231 =

∫

G/B
−α2σ[213]σ[231] + σ[312]σ[231] = −α2 + α3 = α1.

accounting for the coefficient of α1 in front of X[231] in (5.2). The other coefficients
are found similarly.

The duality between equivariant homology and equivariant cohomology stems
from the paving by affines. The following theorem is proved by Arabia in [A],
and restated in [G]. It requires only that the paving be T -invariant, rather than
B-invariant.

Theorem 5.5 (Arabia). Suppose the T -variety X has a paving by T -invariant
affines X0

i . Then

(1) HT
∗ (X) is a free H∗

T -module with basis {[Xi]T }.
(2) Suppose in addition that X is complete and that H∗

T (X) is torsion-free.
Then there exist classes xi (of degree dim Xi) in H∗

T (X) which form a
basis for H∗

T (X) as an H∗
T -module, such that the bases {[Xi]T } and {xi}

are dual in the sense that
∫

Xi
xj = δij.

Note that Theorem 5.5 implies that there is a geometric basis for the cohomol-
ogy when X has a paving by affines, but it does not guarantee that the multipli-
cation is Graham positive. In particular, it does not imply geometric positivity for
varieties with affine pavings.

Applied to X = G/B and affines X0
w = BwB/B, Theorem 5.5(1) implies

Property 3.8, whereas Theorem 5.2 only implies that {[Xw]T | w ∈ W} form a
spanning set of HT

∗ (G/B). Furthermore, the duality of Theorem 5.5(2) implies the
existence of the basis {σw}w∈W of H∗

T (G/B) stated in Property 3.6, together with
the pairing described in Property 3.9.

We put these statements into two easy-to-reference corollaries:

Corollary 5.6. The set {[Xw]T }w∈W is a basis for HT
∗ (G/B) as a (free)

module over H∗
T (pt).

Corollary 5.7. The pairing
∫

Xu
σv = δuv defines a dual basis {σw}w∈W for

H∗
T (G/B) as a module over H∗

T (pt).

The cohomology classes {σw}w∈W are called Schubert classes. We now show
that the positivity in homology, together with Property 3.9, implies positivity in
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cohomology, following Graham’s original argument in [G]. In particular, if cw
uv are

defined by the equations σuσv =
∑

cw
uvσw, then as with the nonequivariant case,

⟨σuσv, [Xw]T ⟩ = ⟨
∑

w′

cw′

uvσw′ , [Xw]T ⟩

=
∑

w′

cw′

uv⟨σw′ , [Xw]T ⟩ = cw
uv,

by duality. On the other hand, if δ : X ↪→ X × X is the diagonal map, with pro-
jection maps pr1, pr2 : X ×X −→ X onto the first and second factors, respectively,
then

⟨σuσv, [Xw]T ⟩ = ⟨δ∗ (pr∗1σu) δ∗ (pr∗2σv) , [Xw]T ⟩
= ⟨δ∗ (pr∗1σu · pr∗2σv) , [Xw]T ⟩
= ⟨pr∗1σu · pr∗2σv, δ∗ ([Xw]T )⟩

by the push-pull formula. We apply Graham’s theorem to the homology class
δ∗ ([Xw]T ) ∈ HT

∗ (G/B × G/B). Let X = G/B × G/B, with B′ = T · N × N ,
and observe that the B′-invariant subvarieties of G/B × G/B are Xu × Xv for
u, v ∈ W . The homology classes {[Xu × Xv]}u,v∈W form a basis for the homology
HT

∗ (G/B × G/B) as a module over H∗
T (pt). Therefore the equation

(5.3) δ∗ ([Xw]T ) =
∑

u′,v′

au′,v′

w [Xu′ × Xv′ ]

uniquely determines the coefficients au′,v′

w ∈ H∗
T (pt). Thus

⟨σuσv, [Xw]T ⟩ = ⟨pr∗1σu · pr∗2σv, δ∗ ([Xw]T )⟩

=
∑

u′,v′

au′,v′

w ⟨pr∗1σu · pr∗2σv, [Xu′ × Xv′ ]⟩

=
∑

u′,v′

au′,v′

w ⟨σu, [Xu′ ]T ⟩ · ⟨σv, [Xv′ ]T ⟩

where the last equality follows from the Künneth theorem and a careful analysis of
the fibers of the maps (see [G] for details). Finally, we observe that each summand
is 1 if and only if both u = u′ and v = v′, and is 0 otherwise, so that

cw
uv = ⟨σuσv, [Xw]T ⟩ = au,v

w .

Since δ∗ ([Xw]T ) = [δ(Xw)]T , the left hand side of (5.3) represents a T -invariant
subvariety of X ×X. By Theorem 5.2, each coefficient au,v

w is a linear combination
of monomials in the weights of the action of T on Lie(N ×N). The list of distinct
weights is the same as the weights of the action on Lie(N), mainly the positive
roots α1, . . . ,αd, so au,v

w are Graham positive. We state the theorem from [G] in
full for completeness.

Theorem 5.8 (Graham). Let B be a connected solvable group with unipotent
radical N and Levi decomposition B = TN . Let α1, . . . ,αd denote the weights of
the T -action on Lie(N). Let X be a complete B-variety on which N acts with
finitely many orbits X0

1 , . . . , X0
n. These are a paving of X by B-stable affines;

let X1, . . . , Xn denote the closures, so {[X1]T , . . . , [Xn]T } is a basis for HT
∗ (X).
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Let {x1, . . . , xn} denote the dual basis of H∗
T (X). Write xixj =

∑
k ak

ijxk with

ak
ij ∈ H∗

T (pt). Then each ak
ijcan be written as a sum of monomials αi1

1 · · ·αid
d with

nonnegative integer coefficients.

For ease of reference, we state as a corollary the positivity for the equivariant
cohomology of G/B.

Corollary 5.9. Let {σw}w∈W be the basis of H∗
T (G/B) consisting of Schubert

classes. Then

σuσv =
∑

w∈W

cw
uvσw

defines structure constants cw
uv that are Graham positive.

Example 5.10. In type A, the product σ2
[213] = α1σ[213] + σ[312]. To check the

equality, one may evaluate both sides at each fixed point, and use Property 3.3.

Remark 5.11 (Natuality). For any subtorus S ⊂ T , there is a natural projec-
tion of the dual to the Lie algebras, t∗ → s∗. This induces a map π : H∗

T (G/B) →
H∗

S(G/B), that retains some positivity properties with respect to the restricted
weights. In particular, the set {π(σw)}w∈W of π(σw) ∈ H∗

S(G/B) form a basis of
H∗

S(G/B) over H∗
S(pt). The product π(σu)π(σv) results in structure constants that

are themselves Graham positive in the weights π(α1), . . . ,π(αd). These coefficients
are, by abuse of notation, also called cw

uv.
When S is the trivial torus, π(αi) = 0 for all i, and the coefficients cw

uv are the
ordinary structure constants defined by (5.1): Graham positivity reduces to the
statement that cw

uv are nonnegative numbers.

5.3. Localization. Another notion of positivity is obtained by examining the
localization map mentioned in Property 3.3. For any w ∈ W , let ι∗w denote the
composition

ι∗w : H∗
T (G/B) −→ H∗

T ((G/B)T ) =
⊕

v∈W

H∗
T (vB) −→ H∗

T (wB).

The image ι∗w(σv) of a Schubert class σv is called the restriction of σv to w, or the
localization of σv at w. Observe that its value is in the equivariant cohomology of
the point wB, and hence is a polynomial.

Theorem 5.12 (Billey [Bi], AJS [AJS]). For all v, w ∈ W The localization
ι∗w(σv) is Graham positive.

Example 5.13. Consider the class σ[312], which is nonzero on fixed points
[312]B and [321]B and zero elsewhere. The restriction to either fixed point is α2α3,
which is clearly Graham positive.

6. Positivity for Peterson varieties

We show that Peterson varieties enjoy positivity properties similar to G/B, and
in particular whether there’s a geometric basis for its homology that translates into
a positive product formula in cohomology. We noted in Section 2 that P supports a
C∗ action by a one-dimensional subgroup S ⊂ T . The Peterson variety P does have
a paving by S-invariant affine cells, which allows us to use Thereom 5.5 at liberty.
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We are limited in our application of Theorem 5.8, however as P is not B-invariant.
Instead we use the S-invariant inclusion map P ↪→ G/B to leverage positivity in
G/B for P.

We begin by describing an affine paving for P.

Definition 6.1. Let K ⊂ ∆ be a subset of simple roots. Let WK be the Weyl
group associated to those simple roots, and wK ∈ WK the longest word in WK .
The Peterson Schubert cells (or simply Peterson cells) are given by

P◦
K := P ∩ BwKB/B.

Define the Peterson Schubert varieties by PK = P◦
K .

Bălibanu proved that P◦
K ⊂ XwK is an affine space of dimension |K| (see [Ba]

and, for details, [GMS]); PK is consequently an irreducible subvariety of XwK .
The Schubert cells restricted to P result in an S-stable affine paving on each

PK :

PK =
⊔

J⊆K

P◦
J .

By Theorem 5.5(1) HS
∗ (P) is a free module over H∗

S(pt) with basis given by
{[PK ]}K⊆∆. Furthermore, while P is not B invariant, it is an S-invariant subvari-
ety of G/B where we may consider G/B as a B′-stable variety for some Borel B′

containing S as a maximal torus. Thus we may apply Theorem 5.2, with X = G/B,
Y = P and T ′ = S to obtain the following corollary. Recall that π(αi) = t for all
i = 1, . . . , d since S stabilizes the principle nilpotent.

Corollary 6.2. Let K ⊆ ∆ be a subset of the simple roots. Consider the
subvariety PK ↪→ G/B and its expansion in terms of Schubert varieties:

(6.1) [PK ]S =
∑

w∈W

cw
K [Xw]S .

The coefficients cw
K ∈ H∗

S(pt) are polynomials in t with nonnegative coefficients.

As the notation may suggest, it turns out that PK are themselves Peterson va-
rieties for a smaller group, providing a stability property much like the one Schubert
varieties Xw exhibit for inclusions of flag varieties.2

Our first result is that there is a pairing between homology and cohomology of
the Peterson variety that mimics the behavior of G/B. Consider the pairing

⟨·, ·⟩ : H∗
S(P) ⊗ HS

∗ (P) → H∗
S(pt)

of equivariant cohomology and equivariant homology defined by ⟨a, b⟩ =
∫

b a. Let
ι∗ : H∗

S(G/B) → H∗
S(P) be the pullback in equivariant cohomology. For each K ⊆

∆, a Coxeter element for K is a permutation vK whose reduced word expression
contains exactly one reflection for each element of K. The following theorem is
proved in [GMS].

2One has to take care in this statement, however, due to the action by S. Depending on the
choice of an ambient flag variety G′/B′, the map PK ↪→ G′/B′ ↪→ G/B map not be S-invariant.
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Theorem 6.3 (Duality Theorem). Let I, J be subsets of the set of simple roots
∆ and let vI ∈ W be any Coxeter element for I. Define pI = ι∗σvI . Then

⟨pI , [PJ ]S⟩ = m(vI)δI,J ,

where m(vI) is the multiplicity of the (unique) intersection point of XvI ∩ PI . In
particular, the pairing is nonnegative and nondegenerate.

The theorem is an algebraic consequence of the fact that the varieties XvI and
PI intersect at a unique point, namely wI , the longest element in the subgroup
WI determined by I. Its proof exploits the poset structure of the affine paving
by Peterson cells, along with the duality of Schubert classes in G/B. It may be
valuable to keep in mind that Theorem 5.5 guarantees a dual basis to {PK}; the
main contribution of the Duality Theorem (Theorem 6.3) is that each of the dual
classes is a positive fraction of a pullback of a Schubert class. As a consequence, P
enjoys geometric positivity.

The Duality Theorem has several consequences. It implies that the equivari-
ant push forward ι∗ : HS

∗ (P) → HS
∗ (G/B) is injective. Injectivity for ordinary

(non-equivariant) homology was proved in [IT]. It is also the key ingredient for
the equivariant positivity of Peterson Schubert calculus, meaning the coefficients
obtained by the product of elements pK in H∗

S(P) are nonnegative (equivariant)
structure constants, the same way that Schubert classes are for H∗

T (G/B).

Corollary 6.4. Choose a Coxeter element vK for each subset K ⊆ ∆, and

define pK := ι∗σvK ∈ H2|K|
S (P). The classes

{
pK

m(vK)

}

K⊆∆

form a H∗
S(pt)-basis of H∗

S(P).

Proof. Divide by m(vK) and use the linearity of the pairing. "

Corollary 6.4 implies that the expansion

(6.2) ι∗(σw) =
∑

K⊆∆

bK
w pK

uniquely defines structure constants {bK
w }, since {pK}K⊆∆ forms a H∗

S(pt)-basis of
H∗

S(P) ⊗ Q.

Corollary 6.5. The coefficients bK
w in Equation (6.2) are monomials in t with

nonnegative coefficients.

Proof. We pair Equation (6.2) with [PL]S to obtain

⟨ι∗(σw), [PL]S⟩ = ⟨
∑

K⊆∆

bK
w pK , [PL]S⟩

=
∑

K⊆∆

bK
w ⟨pK , [PL]S⟩

=
∑

K⊆∆

bK
w m(vK)δK,L = bL

wm(vL),
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where the last line is due to the Duality Theorem (Theorem 6.3). On the other
hand, using the push-pull formula

⟨ι∗(σw), [PL]S⟩ = ⟨σw, ι∗([PL]S)⟩

= ⟨σw,
∑

u∈W

cu
L[Xu]S⟩

=
∑

u∈W

cu
L⟨σw, [Xu]S⟩ = cw

L ,

where the last equality is due to the duality in H∗
S(G/B) of the bases {[Xu]} and

{σu}. Thus cw
L = bL

wm(vL). In particular, since cw
L is a nonnegative polynomial

by Corollary 6.2, and m(vL) is a nonnegative integer, bL
w is also a nonnegative

polynomial. "

Theorem 6.6 (Equivariant Positivity). Let I, J, K be subsets of ∆. The struc-
ture constants of multiplication, cK

I,J ∈ H∗
S(pt), given by

(6.3) pIpJ =
∑

K

cK
I,JpK

are polynomials in t with nonnegative coefficients.

Proof. Observe that

pIpJ = ι∗σvI ι
∗σvJ

= ι∗(σvI · σvJ )

= ι∗
(

∑

w∈W

cw
vI ,vJ

σw

)

=
∑

w∈W

cw
vI ,vJ

ι∗(σw),

where cw
vI ,vJ

have the desired positivity properties, because these are structure
constants occurring in the equivariant Schubert calculus of G/B (Corollary 5.9).
Together with Equation (6.2), we obtain

pIpJ =
∑

w∈W

cw
vI ,vJ

∑

K⊆∆

bK
w pK

=
∑

w∈W

∑

K⊆∆

(
cw
vI ,vJ

bK
w

)
pK .

In particular, the structure constants occurring in Equation (6.3) are

cK
I,J =

∑

w∈W

cw
vI ,vJ

bK
w .

Nonnegativity of the coefficients appearing on the left hand side now follows from
the fact that both factors in each summand are polynomials with nonnegative
coefficients (Corollaries 5.9 and 6.5). "

While we have described why the coefficients are nonnegative, we have not pro-
vided a formula for their product. Many formulas - including manifestly positive
ones - exist for some of these structure constants. Harada and Tymoczko found an
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equivariant Monk rule in type A [HT]. A formulation of the results for ordinary
cohomology was described using left-right diagrams in [AHKZ]. Drellich general-
ized the equivariant Monk formula to all types, while the current author and Singh
found Chevalley and Giambelli formulas in all types [GS].

The current author and Gorbutt in [GG] generalized the Harada-Tymoczko
rule to a positive combinatorial formula for all Peterson Schubert products in type
A. To give a flavor, we provide the formula found in [GG] for cK

I,J for I, J , and K
nonempty consecutive sequences in {1, . . . , n−1}, with K ⊇ I∪J and |K| ≤ |I|+|J |.
Denote the largest element of the consecutive set J by HJ and the smallest element
by TJ . Then

cK
I,J = a!

(
HI − TJ + 1

a, TI − TK , HK − HJ

)(
HJ − TI + 1

a, TJ − TK , HK − HI

)
ta

where a = |I| + |J | − |K|. Observe that the formula is manifestly nonnegative.

7. Positivity for Regular Hessenberg varieties?

The Peterson variety is but a single example of a regular Hessenberg vari-
ety Hess(n, H), and all such Hessenberg varieties have been shown to support a
paving by affine cells [P13]. Given the powerful results that may be derived from
the paving by affines, one may wonder whether the resulting basis for the homol-
ogy exhibits positivity. Indeed, Theorem 5.5 shows that the closure of the affines
forms a basis for the homology, and by duality, the cohomology. One can alterna-
tively ask whether the cohomology classes multiply in a positive way, i.e. whether
the dual basis specified by Theorem 5.5 leads to positivity for the cohomology of
Hess(x, H). Suppose Hess(x, H) has a paving by affines, with {βa} the basis for
H∗(Hess(x, H)) guaranteed by Theorem 5.5. The product structure in this basis
is what we call Hessenberg Schubert calculus.

Question 7.1. Suppose Hess(x, H) has a paving by affines. Is Hessenberg
Schubert calculus positive for Hess(x, H)?

There are circumstances in which one might expect to leverage the positivity
for G/B. Let n ∈ g be a regular nilpotent element. The natural map

(7.1) H∗(G/B) → H∗(Hess(n, H))

induced by the inclusion Hess(n, H) → G/B is a surjection [AHMMS]. In con-
trast, when x is not nilpotent, the map H∗(G/B) → H∗(Hess(x, H)) is generally
not a surjection, evidenced by very large Betti numbers in low degree.

It follows from (7.1) that a Q basis of H∗(Hess(n, H)) can be obtained by
pulling back Schubert classes from G/B. Positivity of Schubert calculus for G/B
does not immediately imply the same for Hess(n, H), however there is additional
structure to exploit. Under the dual pairing, the map on homology groups is in-
jective. Since a basis of H∗(Hess(n, H)) is provided by the affine paving, one can
push forward these classes to G/B, do some footwork in G/B and then pullback
to Hess(n, H) to obtain positivity. Indeed, this is the strategy we followed for the
Peterson variety.

Licensed to AMS.



ON POSITIVITY FOR THE PETERSON VARIETY 163

The magic for Peterson varieties is that elements of the dual basis to {[PK ]} are
positive combinations of pullbacks of Schubert classes (divided by a multiplicity).
This leads one to the following refinement of the first question:

Question 7.2. Let n be a regular nilpotent element of g. Are elements βa ∈
H∗(Hess(n, H)) of the dual basis to the paving by affines of Hess(n, H) pullbacks
of sums of positive coefficients times Schubert classes?

The proof that (7.1) is surjective requires identifying H∗(Hess(n, H)) as a W -
invariant subalgebra of H∗(Hess(s, H)) for s semisimple; the proof does not show
that there is a geometric representative of the basis dual to the basis obtained by
paving Hess(n, H).

Nonequivariantly, Insko, Tymoczko and Woo showed that the cohomology class
(and K-theory class) of a regular Hessenberg variety in type A is represented by
a certain Schubert polynomial (Grothendieck polynomial). Combined with results
due to [EHNT] showing that an additive basis in the nilpotent case can be achieved
with smaller Hessenberg varieties, one may be able to see rather explicitly Graham
positivity for the homology. The dual basis has not been described with Schubert
polynomials.

If Hess(n, H) and its paving are invariant under a subtorus S of T , one would
expect an equivariant inclusion on homology in this case as well, resulting in a
surjection H∗

S(G/B) → H∗
S(Hess(n, H)) of equivariant cohomology. As before,

one can restrict the positive weights αi to S to obtain the right notion of “positive”
and then ask Question 7.2 equivariantly.

Question 7.3. Is equivariant Hessenberg Schubert calculus for regular nilpotent
Hessenberg varieties positive?

In type A, the surjection in cohomology extends to Springer fibers (H = b), even
when the nilpotent element n is not regular; [KP] shows this holds equivariantly
as well.

Question 7.4. Is equivariant Hessenberg Schubert calculus for nonregular nilpo-
tent Springer fibers positive?

Another nilpotent case in which the cohomology is known to be surjective is
the type A case in which n is the matrix with 1 in the top right corner entry of the
matrix; in this case, the Hessenberg varieties are unions of Schubert varieties [AC].

In all these cases, the surjection in cohomology implies an injection

HS
∗ (Hess(x, H)) → HS

∗ (G/B)

where Theorem 5.2 applies and to leads to positivity for homology. if we could
realize each of the dual classes βa as a Poincaré dual class to a specific subvariety
of G/B restricted to Hess(x, H), we may be able to attain proof of positivity of
the product in cohomology. Thus we close with the following question:

Question 7.5. For which nonregular nilpotent elements n ∈ g is there an
equivariant surjection

H∗
S(G/B) → H∗

S(Hess(n, H))?
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