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Wildfire smoke reduces lake ecosystem
metabolic rates unequally across a trophic

gradient
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Wildfire smoke covers entire continents, depositing aerosols and reducing solar radiation fluxes to
millions of freshwater ecosystems, yet little is known about impacts on lakes. Here, we quantified
trends in the spatial extent of smoke cover in California, USA, and assessed responses of gross
primary production and ecosystem respiration to smoke in 10 lakes spanning a gradient in water clarity
and nutrient concentrations. From 2006 — 2022, the maximum extent of medium or high-density
smoke occurring between June-October increased by 300,000 km?. In the three smokiest years (2018,
2020, 2021), lakes experienced 23 — 45 medium or high-density smoke days, characterized by 20%

lower shortwave radiation fluxes and five-fold higher atmospheric fine particulate matter
concentrations. Ecosystem respiration generally declined during smoke cover, especially in low-
nutrient, cold lakes, whereas responses of primary production were more variable. Lake attributes and
seasonal timing of wildfires will mediate the effects of smoke on lakes.

Increasingly frequent and severe wildfires associated with climate change
release vast quantities of smoke into the atmosphere', generating plumes
that travel thousands of kilometers’ and expose millions of water bodies to
smoke for weeks to months’. Aerosols within smoke plumes absorb or
scatter solar radiation’, reducing total fluxes to terrestrial and aquatic eco-
systems and altering the spectral composition of light. Smoke aerosol par-
ticles also contain carbon and nutrients such as phosphorus (P) and
nitrogen (N), which can fertilize receiving ecosystems™’. Both reduced solar
radiation and particle deposition affect physical and biological processes in
aquatic ecosystems, for example, by reducing water temperature” or altering
rates of gross primary production (GPP) and ecosystem respiration (R)".
Changes in ecosystem metabolic rates can alter critical ecosystem processes
such as carbon and nutrient cycling, rates of carbon burial and greenhouse
gas emission, and food web structure’. Currently, little is known about how
ecosystem metabolic rates may respond to wildfire smoke in lakes spanning
gradients in size or productivity.

Smoke effects on ecosystem metabolic rates (i.e., GPP or R) have rarely
been measured, despite the increased exposure of ecosystems to high-
density smoke’. To date, studies of smoke impacts on ecosystems focus
primarily on the effects of altered radiation fluxes to forest or cropland
production'™"?, or on the effects of aerosol deposition on phytoplankton
growth in oligotrophic marine systems*'*'*. Existing studies of smoke effects
on inland waters are limited to single-site case studies (e.g., Castle Lake™"’;
Lake Tahoe'®) or focus on relatively few response variables (e.g., water
temperature’, cyanobacterial blooms"’). The influence of smoke cover on
freshwater ecosystems at spatial scales greater than single sites is not yet
understood but is of growing importance, as wildfires release smoke across
whole continents'. A lack of regional-scale studies limits understanding of
variability in lake responses or its causes. While the influence of smoke cover
on aquatic systems was first described decades ago'’, limnological research
has not kept pace as wildfire smoke becomes a global rather than local
phenomenon.
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While the effects of smoke on ecosystem rates of primary production
and respiration have rarely been explored, the roles of light, temperature,
and nutrients in regulating ecosystem metabolic rates have a strong theo-
retical underpinning and long history of empirical study'*”. Predicting
ecosystem responses to smoke relies on understanding how the relative
importance of different drivers varies across ecosystems or through time
within individual systems. For example, the same reduction in photo-
synthetically active radiation (PAR) due to smoke might reduce rates of
primary production in a eutrophic lake where phytoplankton are light-
limited but increase rates of production in an oligotrophic lake with high
water clarity where phytoplankton are photo-inhibited (Fig. 1a). Likewise,
the effect of aerosol deposition on ecosystem metabolic rates (i.e., the fer-
tilization effect) depends on the concentration and nutrient stoichiometry of
smoke particulates’, as well as on ambient nutrient concentrations within
lakes (Fig. 1c). In contrast, reduced water temperature due to smoke cover
should decrease ecosystem metabolic rates across all systems, dependent on
the temperature coefficient (Q;; Fig. 1b). The few existing studies of smoke
effects on ecosystem metabolic rates illustrate high variability in responses in
both terrestrial and aquatic systems. In a forest where smoke cover
decreased total PAR fluxes, GPP was reduced at the leaf scale but increased
at the canopy scale because smoke increased diffuse PAR and illuminated a
greater proportion of the canopy'’. Likewise, while GPP increased during
smoke cover in surface waters within a mesotrophic lake, it declined deeper
in the water column where phytoplankton were light-limited®. How indi-
vidual ecosystems respond to smoke will consequently depend on both how
smoke affects fundamental drivers (light, temperature, nutrients) and on
system-specific attributes such as water clarity and nutrient concentrations.

Here we present the first regional investigation of the effects of smoke
exposure on ecosystem metabolic rates in inland waters. First, we quantified
annual and seasonal trends in the spatial extent of medium and high-density
smoke cover (hereafter ‘med-high density’) in California, USA, over 18 years
(2006 — 2022) using remote sensing. We then asked the following broad
questions: (1) Are responses of ecosystem metabolism to smoke uniform
across different types of lakes? (2) Do smoke duration, density, or seasonal
timing influence how ecosystems respond?, and (3) to what extent are
responses in GPP and R to smoke coupled or decoupled?

To address these questions, we quantified changes in daily shortwave
radiation (SW), atmospheric fine particulate matter concentrations
(PM2.5), water temperature, and ecosystem metabolism during periods of
med-high density smoke cover in 9 freshwater lakes and one freshwater tidal
slough in California (hereafter referred to as ‘lakes’; Fig. 2a, Table 1), where
wildfire extent has increased 5-fold since the 1970s”. We measured
responses to smoke in 2018, 2020, and 2021, the three worst fire seasons on
record in California”. We estimated rates of ecosystem metabolism from
hourly dissolved oxygen (DO) measurements in both pelagic (open-water)
and littoral (near-shore) environments within study sites (total = 22 data-
sets). Study sites spanned wide ranges in nutrient availability and water
clarity, from ultra-oligotrophic (e.g., Lake Tahoe) to hyper-eutrophic (e.g.,
Clear Lake).

We hypothesized that ecosystem metabolic responses to smoke would
vary primarily in relation to water clarity and nutrient or organic matter
availability, with GPP and R tending to increase in the surface waters of
oligotrophic systems but decrease in meso- or eutrophic-systems. We
expected to see greater changes in metabolism during high-density, pro-
longed smoke cover compared to low-density or intermittent smoke events.
Finally, we expected the magnitude of change in GPP and R to be coupled in
oligotrophic systems, where available carbon pools are lower and respiration
is primarily fueled by recent autochthonous production”. However, we
expected GPP and R would be decoupled in more productive systems, where
high organic matter and nutrient concentrations fuel respiration by het-
erotrophs irrespective of changes in GPP*.

Results

Increased spatial extent and duration of medium-high density
smoke in California since 2006

Averaged over the last 18 years (2006—2022), the months July, August, and
September had the greatest maximum spatial extent of med-high density
smoke cover in California (maximum coverage >40%; Fig. 2b), followed by
June (30%) and October (18%). Two of the main study years (2020, 2021)
were outliers in the seasonal timing of smoke cover: the maximum extent of
med-high density smoke exceeded 70% of California in September and
October in both years (Fig. 2b red points in boxplot; Supplementary Fig. 1).
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Fig. 1 | Smoke can affect aquatic ecosystem metabolism through multiple
mechanisms. a Smoke events (black horizontal arrow) reduce light (PAR) within
the water column. Whether a smoke event increases (green-colored region) or
decreases GPP (brown-colored regions) depends on the pre-smoke PAR level and
on the magnitude of PAR reduction (e.g., smoke density). In this example, a smoke
event reduces GPP because primary producers shift from light-saturated to light-

limited conditions. b Smoke events (black arrow) can reduce water temperature by
scattering or absorbing incoming solar radiation, which should decrease metabolic
rates (both GPP and R). ¢ The degree to which nutrient fertilization from smoke
particle deposition stimulates GPP depends on ambient nutrient availability within
a water body.
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Fig. 2 | Spatial and temporal patterns in med-high density smoke cover in
California (CA) and at study sites between 2006 and 2022. a Maps showing study
sites (colored dots) and the annual number of days with med-high density smoke
cover from 2018 to 2021 (red color gradient). Sites that are close together (ex. 5 lakes
and ponds in Sequoia NP, multiple locations within the same lake) are represented
by a single point. b Boxplots show the maximum spatial extent of med-high density
smoke observed in each month (percentage of CA’s area; 2006—2022). Horizontal
lines in boxplots show medians, box extents show the interquartile range (IQR),
whiskers extend to the greatest or smallest values within 1.5 times the IQR, and data

outside this range are shown as points (outliers). Smoke cover extent in September
and October of 2020 and 2021 (red labeled points) were outliers. ¢ Time series of the
maximum spatial extent of med-high density smoke (averaged across months June-
October; points connected with solid black lines). Study years are shown as red
points. The dashed line shows a significant linear trend in maximum spatial extent
through time (Sen’s slope). d Time series of the total annual days with med-high
density smoke cover at study sites (points connected by solid lines, colors correspond
to study sites), from 2006 to 2022. Data from study sites in close spatial proximity are
not shown.

From 2006 to 2022, the maximum extent of med-high density smoke
increased significantly in every month between June and October. Max-
imum smoke extent increased the fastest in August (23,360 km® year ' or
5.5% of California’s area year’l, Kendall’'s $=68, p=0.005, n=18) and
September (20,392 km” or 4.8% year™', S= 80, p =0.001, n = 18), followed
by July (16,704 km® or 3.9% year™', S=67, p=0.006, n=18). Averaged
across the predominant smoke season (June - October), the maximum
extent of med-high density smoke cover has increased by ~300,000 km?, or
70% of California’s area, over the last 18 years (S =83, p =0.0007, n = 18;
dashed line in Fig. 2¢). Our study years (2018, 2020, 2021) had the greatest
maximum spatial extent of med-high density smoke since 2006 (Fig. 2c).

The duration of med-high density smoke cover at the 10 study sites was
highly variable among years but increased dramatically during the study
years (Fig. 2d). From 2006 — 2022, sites experienced an average of 15 med-
high density smoke days per year (range 0-69 days). There were regional
differences in smoke duration between the study years (2018 - 2021; Fig. 2a),
likely related to proximity to wildfires and prevailing wind patterns. For
example, in 2021 smoke affected the northern Sierra Nevada mountains,

Klamath mountains, and Sacramento Delta more than the southern Sierra
Nevada mountains.

Variable lake exposure to smoke (2018, 2020, 2021)

Across all site-year combinations where independent meteorological data
were available, daily mean SW radiation fluxes on smoke days were sig-
nificantly less than those on non-smoke days (n = 394 smoke days, n = 694
non-smoke days; 205 versus 254 W m™% two-tailed t= —11.613, p<22
%1076, df = 888.97; Fig. 3a), a reduction of 20% relative to clear-sky esti-
mates (SWir=mean reduction 57 W m™?). Atmospheric PM2.5 con-
centrations were elevated on smoke days compared with non-smoke days
(n =283 smoke days, 593 non-smoke days; 52 versus 10 pg m > ¢ = 12.007,
p<22x107'; Fig. 3b).

Exposure to smoke varied in duration, intermittence, and intensity
across the 9 meteorological datasets (Table 2). During the three study years
(2018, 2020, 2021) study sites experienced an average of 33 smoke days
between July 1 and Oct 1 (n =9; range 23-45 days; Table 2). The timing of
smoke events varied among sites and years, but in general August and
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N. Sierra Nevada
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(Tahoe)

Names of groups of lakes corresponding to names shown in Fig. 2 are included in parentheses. For Clear Lake, data are shown for the Lower Arm (LA) and Oaks Arm (OA).

September had more smoke days than July (mean of 14 days versus 3 days),
matching the results from the 18-year smoke time series (Fig. 2b). The mean
length of smoke events (consecutive smoke days; n =287 smoke events)
ranged from 3-8 days, but there was large variation in the maximum length
of smoke events across the datasets (4-21 days; Table 2). The cumulative
seasonal deficit in SW fluxes due to smoke (e.g., smoke intensity; 10°J m™?)
varied three-fold among lake-years, with the greatest SW deficits at Emerald
Lake (2020, 2021) and Lake Tahoe (2021) and the least at Castle Lake in 2018
(Table 2 and Fig. 3¢, d).

Responses of ecosystem metabolism to smoke

Rates of ecosystem metabolism were highly variable among the 10 sites and
were temporally and spatially variable within lakes (Supplementary Table 1
and Supplementary Figs. 2 and 3). Volumetric rates of GPP in pelagic
habitats ranged from 0.11 +0.09 mg DO L™ d" in oligotrophic Emerald
Lake to 1.43 + 1.26 mg DO L' d™" in hyper-eutrophic Clear Lake. Littoral
habitats and shallow ponds tended to have higher volumetric rates of GPP
than pelagic sites or deeper lakes, ranging from 0.59 + 0.16 mg DOL'd ' in
TOK 11 Pond to 1.62 + 0.30 mg DO L™" d™ in Dulzura Lake. In Castle and
Dulzura, where we estimated metabolism in both pelagic and littoral
habitats, mean rates of GPP in littoral areas were >3 times the corresponding
rates in mid-lake surface water (Supplementary Table 1). Sites with warmer
water temperatures and higher chlorophyll-a (chla), total dissolved N
(TDN), and total dissolved P (TDP) concentrations had higher rates of GPP
(see Supplementary Table 2 for water chemistry summary; Supplementary
Table 3 for correlation matrix). Respiration rates were strongly correlated
with GPP overall (Pearson’s r = 0.94, n = 1772 metabolism days), though the
strength of this correlation varied considerably among datasets (0.34-0.96;
Supplementary Table 1). R was highest in warm lakes with higher
chlorophyll-a (chla) and nutrient concentrations (e.g., Delta and Clear
Lake). Mean NEP was negative in 18 out of 22 datasets; only 3 littoral sites
(Castle Lake, Dulzura Lake, and Lake Tahoe) and one pelagic site (Castle
Lake) had positive mean NEP.

Rates of GPP (z-scored) were significantly lower on smoke days
(n=726) than on non-smoke days (n = 1046; GAMM model parametric
effect of smoke = —0.22 + 0.05 (SE), p = 1.76 x 10~; Fig. 4a). Though GPP
declined seasonally in the absence of smoke, smoke cover further reduced
rates relative to the seasonal decline (Fig. 4d). Median GPP was lower during
smoke days in most of the datasets (negative AGPP; Fig. 4g), decreasing by
up to 70% in Clear Lake (OA) in 2020. However, median GPP was higher in
certain sites and years, increasing by up to 40% in the littoral zone of Lake
Tahoe in 2021 (Supplementary Fig. 3 and Supplementary Table 1).
Respiration rates were lower on smoke days (smoke effect = —0.24 + 0.05,
p=7.02x10"7, n=1772, Fig. 4b), and smoke cover accelerated seasonal
declines in R (Fig. 4¢). Median rates of R were up to 52% lower during smoke
days (EML Pond 1 in 2021). Only mesotrophic or eutrophic sites showed
higher median rates of R during smoke days (positive AR; Fig. 4h),
increasing by up to 53 % in Clear Lake (OA) in 2021. Unlike GPP and R,
NEP was not significantly different between smoke and non-smoke days
across all the datasets (smoke effect = 0.03 + 0.06, p = 0.62; Fig. 4c, ). NEP
tended to be more positive on smoke days in oligotrophic sites and more
negative in mesotrophic or eutrophic sites (Fig. 4i).

Because GPP and R were coupled in most sites, responses of GPP and R
to smoke (AGPP, AR) were also positively correlated (Fig. 5a; linear
regression coefficient = 0.56 + 0.16, R* =0.28, p=0.003, n =22). However,
no lake attribute or smoke variable explained GPP responses to smoke.
AGPP was not related to log-TDP (Fig. 5b; p = 0.43), log-TDN (p = 0.37),
log-chla (p = 0.69), mean summer water temperature (p = 0.36), or to smoke
variables (Supplementary Table 3). In contrast, AR was positively correlated
with lake variables such as mean summer water temperature (effect = 0.09

+0.02, R =0.36; p = 0.002), log-TDP (Fig. 5¢; effect 0.19 +0.05, R* = 0.39,
p=0.001), log-TDN (effect 0.45 +0.13, R*=0.31, p =0.003), and log-chla
(effect 0.22 +0.06, R*=0.37, p=0.001); respiration rates were lower on
smoke days in cold, low-nutrient lakes. R was also reduced in sites that
experienced more prolonged smoke cover (number of smoke days;
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Fig. 3 | Changes in SW radiation fluxes and PM2.5 concentration during
smoke cover. a Density plot of daily average SW radiation and (b) daily average
PM2.5 concentration on non-smoke (1 = 694; blue) and smoke (n = 349; gray) days.
Dashed horizontal lines show median values across 9 unique meteorological data-
sets. ¢, d The cumulative deficit of SW radiation due to smoke cover (solid colored
lines) from July 1 (doy 183) to Nov 1 (doy 306) in 2020 and 2021 at our study sites

(line color corresponds with study site). Horizontal sections of the lines represent
non-smoke days, vertical sections represent smoke events. Datasets that are spatially
proximate have been omitted from panels ¢, d. Castle Lake’s cumulative SW deficit is
not shown because only data from 2018 were available. Data were not collected from
the Delta site in 2021.

Table 2 | Attributes of smoke exposure for selected study sites

Site Year # Smoke days # Consecutive Mean Mean Cum. SW deficit
smoke days PM2.5 (ugm?) SWyirr (Wm?) (10°Jm?
Tot Jul Aug Sept Mean Max

Lake Tahoe 2021 45 9 23 13 3 10 51 67 260.57
Emerald Lake 2021 38 4 13 20 4 20 85 79 259.62
Emerald Lake 2020 39 0 10 28 8 21 NA 59 199.59
Dulzura Lake 2021 36 9 20 7 3 9 44 55 169.73
Clear Lake 2020 30 0 12 17 3 7 40 60 154.38
Delta 2020 34 1 13 19 4 12 47 50 145.53
Lake Tahoe 2020 28 1 12 15 3 9 28 59 143.30
Clear Lake 2021 23 1 16 6 3 5 68 50 99.35
Castle Lake 2018 26 6 12 8 3 4 34 44 97.87

Smoke attributes were calculated for the period between June 1-October 1 because some datasets were incomplete outside this date range. Mean PM2.5 and SW i refer to average values on smoke days
only. Sites in close spatial proximity (e.g., small lakes and ponds in Sequoia National Park) are not shown because they lacked unique meteorological datasets.

effect = —0.04 + 0.016, R*=0.26, p=0.008), higher smoke density (mean
SW reduction on smoke days, W m™ effect=—0.03 +0.008, R>=0.36,
p=0.002), and greater smoke intensity (cumulative SW deficit on smoke
days, 10°J m™% effect = —0.0005 + 0.0001, R*=0.38, p =0.001). However,
because the oligotrophic lakes in the Tahoe basin and Sequoia National Park

were also exposed to more prolonged and high-density smoke than the
mesotrophic and eutrophic sites (Table 2 and Fig. 3¢, d), we were not able to
robustly distinguish the effects of smoke exposure attributes and lake
variables on metabolic responses. Though littoral and pelagic habitats
within the same water bodies responded differently to smoke cover, across
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Fig. 4 | Responses of aquatic ecosystem metabolism to smoke cover. a-c Density
plots of daily z-scored GPP, R, and NEP on non-smoke (blue) and smoke (gray) days
(n =1772). Dashed horizontal lines show the median values across all 22 metabolism
datasets. d—f Prediction lines from the GAMM model smooth terms fit to day-of-
year (gray and blue solid lines) showing how smoke cover alters seasonal trends in
GPP, R, and NEP. Blue and gray shaded areas show one standard error from the
predicted lines. Metabolism estimates used in GAMMs were z-scored to facilitate

comparison across datasets. g—i The difference between median GPP, R, or NEP on
smoke days versus non-smoke days (AGPP, R, NEP) for each dataset (n = 22),
ordered from most positive to most negative along the x-axis. Circles represent
pelagic sites; diamonds represent littoral sites. Points and segments are colored by
lake trophic status (oligotrophic = blue, mesotrophic = turquoise, eutrophic =
yellow-green).

sites there were no consistent differences in metabolic responses between the
two habitat types.

Discussion

Overview

Our study of the impact of wildfire smoke on inland waters found highly
variable responses in both GPP and R. On average, GPP and R were sig-
nificantly lower on smoke days, but the magnitude and direction of
responses varied considerably among and within sites. Median differences
in GPP between non-smoke and smoke days ranged from +0.5 to —0.9 mg
DO L™ d™". Responses in R also varied but were more clearly linked to site
characteristics such as nutrient concentrations and water temperature. The
maximum spatial extent of med-high density smoke occurring between
June-October has increased by over 50% of California’s area since 2006, and
smoke is associated with significant reductions in SW radiation and 4 to
5-fold increases in atmospheric PM2.5, suggesting widespread impacts to
California’s thousands of lakes, ponds, and tidal freshwaters®. These find-
ings establish that metabolic responses of inland waters to smoke, both in
the western U.S. and globally, will be highly dependent on spatial and

seasonal context of smoke coverage as well as physical and chemical attri-
butes of individual ecosystems.

Multiple mechanisms drive lake metabolic responses to

wildfire smoke

We identify several potential mechanisms responsible for the variation in
responses of ecosystem metabolic rates to wildfire smoke. All sites were
exposed to multiple weeks of high-density smoke cover and reduced SW
radiation fluxes (Table 2), yet GPP responses often differed in magnitude
and direction, even within the same site, underscoring the need to better
understand how changes in light affect aquatic primary producers in dif-
ferent habitats. In many of our datasets, GPP did not change substantially
during smoky periods, suggesting that primary producers were neither
strongly light-limited nor strongly photo-inhibited (Fig. 1a). Lack of strong
light-limitation in our datasets is not surprising given that we only estimated
GPP in the surface mixed layer—Scordo et al.® found that smoke cover
increased GPP in surface waters but inhibited GPP in deeper waters and
prevented the seasonal formation of a deep chlorophyll maximum®. In
oligotrophic water bodies with deep chlorophyll maxima, smoke cover may
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circles represent pelagic sites; diamonds represent littoral sites. In all panels, points
are colored by lake trophic status (oligotrophic = blue, mesotrophic = turquoise,
eutrophic = yellow-green). b AGPP (z-score) plotted against mean total dissolved P

(log TP; uL™"). ¢ AR (z-score) plotted against log TP. The solid black line shows a
significant linear relationship (R* = 0.41, p < 0.001).

substantially reduce whole-lake GPP. However, we were surprised by the
variable responses in littoral habitats, where we expected minimal responses
due to structural and physiological adaptations by benthic algae to high-
light (PAR and UV) conditions™. The sensitivity of aquatic primary pro-
ducers to photo-inhibition has been shown to be highly taxon-specific”’,
thus better characterization of algal community composition may be
required to understand smoke responses in shallow or near-shore aquatic
habitats.

Nutrient fertilization from smoke aerosol deposition can stimulate
aquatic primary production, especially in oligotrophic systems (Fig. 1c)".
Phosphorus, a critical and often limiting nutrient in freshwater ecosystems,
is present in significantly higher concentrations in ash compared to the
unburned vegetation from which it originates®. However, there are few
studies examining the fate of smoke particles in lakes and results are often
ambiguous. Alpine lakes in proximity to biomass burning exhibited
increased P concentrations and subsequently N-limitation™. Cyanobacterial
blooms were detected via remote-sensing 2-7 days after western U.S. lakes
were exposed to elevated atmospheric P concentrations from wildfire smoke
smoke"”. In ultra-oligotrophic Lake Tahoe, the addition of ash from smoke
increased primary productivity relative to a control treatment, yet no sig-
nificant differences were found in time series of nitrate, ammonium, or
phosphate concentrations, leading the researchers to conclude that trace
metals in ash, rather than N or P, increased production'®. Scordo et al.* found
that smoke increased particulate N and C in a mesotrophic lake, but smoke
did not change the type and level of macronutrient limitation in bioassays.

We did not measure nutrient concentrations at temporal resolution suffi-
cient to test hypotheses related to nutrient fertilization, but in lakes where
GPP was elevated during smoke cover, it is plausible that nutrient fertili-
zation from particulate deposition may have stimulated primary produc-
tion. However, given the importance of precipitation for mobilizing
constituents from watersheds to lakes™, it is possible that smoke exposure
during California’s dry summers may not lead to nutrient fertilization until
the onset of autumn and winter rainstorms. Current understanding of the
mechanisms and timescales of smoke-derived nutrient fertilization to lakes
and their watersheds is limited’ but an important topic for future research.

Changes in light (e.g., UV radiation) and nutrients alter ecosystem
respiration rates in oligotrophic waters more so than productive waters’. R
decreased during smoke cover in all the oligotrophic study lakes, even when
GPP increased (Fig. 4g, h). Reductions in UV radiation during smoke cover
should have greater effects on R in oligotrophic systems for two reasons.
First, UV irradiance is higher in clear-water oligotrophic waters and imposes
substantial energetic costs on aquatic organisms to repair cellular damage™,
thus UV reduction during smoke cover should decrease ecosystem
respiration rates by decreasing energetic costs. Second, reducing UV
improves the quality (e.g., nutrient stoichiometry) of organic matter fixed by
autotrophs™, increasing bacterial growth efficiency and decreasing ecosys-
tem respiration rates in oligotrophic systems®**, where bacterioplankton
account for the majority of respiration’’. Moreover, though our study did
not quantify changes in nutrient concentrations associated with ash
deposition, even mild fertilization in oligotrophic surface waters can
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increase C:N and C:P ratios in autotrophic biomass, increasing bacterial
growth efficiency and reducing R. Impacts of prolonged smoke cover on
carbon cycling and emissions from inland waters may depend equally on the
responses of primary producers and heterotrophs.

Role of seasonal timing on metabolic responses to smoke

The seasonal timing of wildfire smoke cover is another important factor that
can mediate lake ecosystem responses, particularly for GPP. The effects of
PAR and UV reduction from smoke should vary seasonally- smoke cover in
early summer, when solar radiation inputs are at their annual maximum,
could stimulate GPP if phytoplankton are photo-inhibited, whereas smoke
cover in autumn, when PAR is declining, may further reduce GPP (Fig. 1a).
The effects of nutrient fertilization from smoke should also vary seasonally
in water bodies with strong seasonal changes in nutrient limitation. For
example, phytoplankton may be less nutrient-limited in autumn when
mixing and thermocline deepening replenish nutrient concentrations in
surface waters”. Two of our study years (2020, 2021) had late-season smoke
cover, with high-density smoke persisting through October (Fig. 2b), which
may have contributed to the overall reductions in GPP with smoke cover
that we observed in our datasets. In contrast, sites where GPP increased
during smoke cover (Castle Lake pelagic in 2018, Lake Tahoe littoral sites in
2021) had earlier exposure to smoke, with a greater number of smoke days in
July (Table 2). Though our study took place during years with relatively late-
season smoke cover, this pattern is not necessarily representative of smoke
exposure in California or elsewhere. Smoke covered at least 50% of Cali-
fornia’s area during June in 7 out of 17 years (Supplementary Fig. 1). The
record-breaking 2023 Canadian wildfires began in May and early June,
when solar radiation fluxes were highest, and covered extensive, lake-rich
regions in smoke for weeks®. The high degree of variation in seasonal timing
of smoke cover implies that lake responses could change from year-to-year
depending on the timing of wildfire ignitions.

Conclusions and opportunities

Predicting the impacts of worsening wildfire smoke on inland waters at
regional to continental scales requires understanding how lake and water-
shed attributes mediate lake responses. In North America over a million
lakes were exposed to smoke for over 30 days per year (2019-2021)°,
encompassing biomes from arctic to subtropical, and subsequently an
enormous range in water temperature, clarity, and nutrient concentrations.
Our study sites ranged from ultra-oligotrophic to hypereutrophic, and we
observed correspondingly variable responses of lake GPP and R to smoke
cover. Respiration rates responded differently in warm, eutrophic lakes than
in cold, oligotrophic lakes (Figs. 4h and 5c), whereas GPP responses were
not related to lake trophic status. The small, oligotrophic mountain lakes in
Sequoia National Park, which are representative of a majority of California’s
lakes™, experienced the greatest relative declines in R during smoke cover
and often increased NEP (Supplementary Table 1 and Supplementary
Fig. 3), suggesting that smoke may have regionally significant impacts on
aquatic carbon cycling. In other lake regions where eutrophication or high
organic matter concentrations are prevalent, smoke cover may lead to
reduced NEP and greater CO, fluxes from lakes if GPP decreases but
respiration rates remain high.

Our results highlight the need for targeted research of smoke impacts
on freshwaters, as a key set of basic questions remain unresolved: (1) How do
lake attributes such as water clarity, trophic status, or lake size and depth
mediate metabolic responses to smoke? (2) Do the mechanistic relation-
ships that determine responses of GPP and R to smoke cover vary among
different communities of autotrophs and heterotrophs? (3) How do attri-
butes of smoke exposure mediate lake responses?, and (4) Does prolonged,
high-density smoke affect aquatic carbon cycling at regional or global scales?
We were unable to clearly distinguish the roles of smoke exposure attributes
and lake attributes in mediating metabolic responses to smoke, due to
covariation in these factors and the limited number of datasets in our study.
Understanding lake responses to smoke will require extensive data collec-
tion across different hydroclimatic conditions, environmental gradients

(geomorphology, vegetation, land use), and gradients in smoke exposure.
Additional experimental, empirical, and modeling studies are also needed to
understand the predominant mechanisms underlying whole-ecosystem
metabolic responses to smoke. Even small impacts on ecosystem metabolic
rates may have important implications for global carbon cycling given the
large number of lakes affected by smoke globally’. Quantifying impacts of
smoke on aquatic carbon cycling at regional to continental scales will require
collaborative research within and across regions. Global-scale, opportunistic
data collection by lake sensor networks such as the Global Lake Ecological
Observatory Network (GLEON; https://gleon.org/) could be used to test
hypotheses and broaden our understanding of this increasing global phe-
nomenon, as wildfires and smoke cover increase in frequency, intensity, and
spatial extent.

Methods

Study sites and in-situ data collection

We collected continuous hourly DO and water temperature data from 10
water bodies distributed across the northern two-thirds of California, USA,
from June to October in 2018, 2020, and 2021 (Table 1 and Fig. 2). Study
sites are located in several of the major mountain ranges in California,
including the southern Sierra Nevada (5 sites; ‘Sequoia lakes’), northern
Sierra Nevada (2 sites; Lake Tahoe and Dulzura Lake; ‘Tahoe lakes’), Kla-
math Mountains (1 site; Castle Lake), and northern Coast Range mountains
(1 site; Clear Lake), as well as within the Sacramento-San Joaquin River
Delta (1 site; Delta). Sites were selected to represent a large gradient in water
clarity (kq 0.09 - 1.58 m™") and lake trophic status (ultra-oligotrophic -
hypereutrophic; Table 1). Sites also varied substantially in elevation
(0-3200 m.a.sl) and size (0.2-49624 ha).

Water bodies were instrumented with continuous in situ DO and
temperature sensors at 1-2 locations per site (14 total sensor locations). In
7 sites (Sequoia lakes, Clear Lake, and Delta), DO and temperature were
measured only in pelagic (mid-lake) habitats. In two lakes (Castle, Dulzura),
DO and temperature were measured in both pelagic and littoral habitats. In
Lake Tahoe, DO and temperature were only measured in two littoral sites.
For all lakes, DO and temperature data were only available for a subset of the
three study years (Table 1). In addition to hourly sensor data, for each lake
and year we obtained water chemistry data collected from lake surface
waters (0- 3 m depth) between June 1 and November 1, for the following
constituents: chlorophyll-a concentration (chla; pgL™"), total dissolved
phosphorus (TDP; pugL™"), and total dissolved nitrogen (TDN; pugL™).
Water chemistry data were used to classify lake trophic status but were not
collected at sufficient temporal resolution to evaluate changes associated
with particulate deposition from smoke. Vertical profiles for photo-
synthetically active radiation (PAR) were collected 1-11 times per season in
each lake to estimate attenuation coefficients (kg).

Meteorological data corresponding to time periods of in-situ sensor
data collection were obtained for each lake from the nearest available
weather station (SW radiation, W m % wind speed, m sl air temperature,
°C). We also obtained mean daily atmospheric fine particulate matter
concentrations (<2.5um in diameter; PM2.5; ugm™>) from the nearest
PurpleAir or EPA sensor. PM2.5 concentrations from PurpleAir sensors
were adjusted using the linear correction in Barkjohn et al.” to account for
bias. No PM2.5 data are available for the Sequoia Lakes in 2020. In total, we
compiled 22 hourly DO and water temperature datasets, 9 corresponding
hourly meteorological datasets, 8 daily PM2.5 datasets, and 19 water
chemistry datasets. Detailed site and dataset descriptions can be found in
Supplementary Methods.

Quantifying patterns and trends in California smoke cover

We used the smoke plume product from the NOAA/NESDIS Satellite
Analysis Branch’s Hazard Mapping System (HMS)*, to quantify the spatial
and temporal patterns of smoke cover in California from 2006 to 2022. This
product provides a daily smoke plume density polygon over North America
at a 4km resolution by integrating near real-time polar-orbiting and
geostationary satellite imagery from Geostationary Operational
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Environmental Satellite Program (GOES), Moderate Resolution Imaging
Spectroradiometer (MODIS), and Advanced Very High Resolution
Radiometer (AVHRR). This remote sensing product classified smoke
plumes into three categories: low, medium, and high density, based on the
estimated smoke concentrations of 5, 16, and 27 pg m ™, respectively.

To quantify the spatial extent and duration of smoke cover in Cali-
fornia for each year, we made an annual composite map of smoke cover by
intersecting daily smoke plume polygons with each intersecting polygon
recording the number of smoke days for a given year. All areas exposed to
smoke for at least one day were then summarized to quantify the annual
spatial extent of smoke cover. This process was repeated for each month to
evaluate the seasonal and interannual patterns of smoke cover extent in
California, for each smoke density. In further analyses, we focused on
medium and high-density smoke cover (hereafter ‘med-high density’)
rather than low density smoke cover because we assumed more dense smoke
cover would be of greater ecological relevance (e.g., more likely to reduce SW
radiation fluxes and deposit particulates into lakes).

We assessed time series of the maximum extent of med-high density
smoke cover in the months June-October, as well as annual and seasonal
means, for monotonic trends by computing Sen’s slopes and applying the
Mann-Kendall test using the ‘wql’ package in R*.

In addition to quantifying smoke cover throughout California, we
generated a daily smoke density sequence over each study lake from 2006 —
2022. First, we obtained lake shapefiles from the California Lake database
maintained by California Department of Fish and Wildlife (CDFW)*. For
study sites that were not included in the California Lake database (e.g., small
ponds in Sequoia National Park), we used a 100 meter buffer around the
central point in the lake as an approximation of the lake surface. We then
assigned a daily smoke density value to each lake by comparing spatial
relationships between smoke plume polygons and lake surfaces. If a smoke
plume intersected a lake’s surface area, we assigned the corresponding
smoke density to the lake based on the date. If multiple smoke densities were
assigned to the same lake on the same date, only the highest smoke density
was assigned.

Characterizing lake exposure to smoke during study period

We identified periods of smoke cover for each lake during the study years
(2018, 2020, 2021) using a combination of the daily smoke density value
(described in previous section), SW radiation measurements from local
weather stations, PM2.5 concentrations, and visual inspection of Sentinel
satellite images to confirm the presence of smoke plumes.

At each lake, we used both the remote sensing-derived smoke density
values and local meteorological data to conservatively classify each day as
‘smoke’ or ‘non-smoke’. We modeled theoretical ‘clear-sky’ SW radiation
(SWlearsky) for each day using a statistical clear sky algorithm®. We then
subtracted the measured daily mean SW (SWies) from SWeiearsiy
(SWaier = SW dear.sky—S Wineas)- We calculated the median value of SW i on
days with smoke density of zero across all 9 meteorological datasets (median
SW gigr= 20 W m ™). Days were then classified as smoke days if they met two
conditions: (1) daily mean SW radiation was reduced by more than
20 W m~, and (2) smoke density was medium or high.

For each lake-year combination, we characterized the following attri-
butes of smoke exposure: (1) the total number of smoke days between July 1-
Oct 1; (2) the intermittence of smoke cover, defined as the mean, median,
and maximum number of consecutive smoke days that occurred in each
dataset; and (3) the cumulative reduction in SW radiation relative to clear
sky values on smoke days (‘cumulative SW deficit’). We calculated cumu-
lative SW deficit by summing SW 4 on all smoke days between July 1 and
October 1. Attributes of smoke cover were only quantified between July 1 -
October 1 because some datasets were incomplete outside this seasonal
window.

Estimating aquatic ecosystem metabolic rates
We modeled daily rates of gross primary production (GPP;mg DOL ™' d ™),
ecosystem respiration (R), and net ecosystem production (NEP = GPP - R)

in the surface mixed layer of our study sites using hourly DO (mg L"), water
temperature (° C), SW radiation (W m™), and wind speed (m s™') data using
the Lake Metabolizer R package*’. The metabolism models in Lake Meta-
bolizer have been used in diverse lake types (ex. arctic, alpine®, forested,
agricultural®), and are described in detail in Winslow et al.*. A metabolism
model was fitted to each DO time series using the following equation:

DO,,, = DO, + GPP — R+ F 4 ¢ (1)

F is the flux of oxygen between the lake and atmosphere, and ¢ is the
process error associated with vertical or horizontal mixing. We used the
‘metab’ function and bayesian model to estimate daily parameters for GPP
and R as well as associated uncertainty in each estimate (expressed as a
standard deviation; reported in Supplementary Table 1). In the bayesian
model, PAR (umol m ™ s™") and water temperature are covariates used to
model rates of GPP and R, respectively. In addition to hourly DO, water
temperature, SW radiation, and wind speed, the following model inputs
were used: depth of the surface mixed layer at each time step (z;; m), the
attenuation coefficient for PAR (kg m™"), and lake surface area (m?).

For pelagic sites in lakes that stratified seasonally or periodically
(Emerald Lake, Topaz Lake, Castle Lake, Clear Lake) we estimated meta-
bolic rates in the surface mixed layer. We calculated mixed layer depth
(Znix) using depth-distributed water temperature measurements from fixed
depth sensors or vertical profiles using LakeAnalyzer in R. For littoral sites
within stratified lakes (Castle Lake, Dulzura Lake, Lake Tahoe), and in small,
shallow water bodies that did not stratify (TOK 11 Pond, EML Pond 1,
Topaz Pond), Z,,;x was set to lake depth at the location of the DO sensor. In
the tidally-influenced Delta, Z,,; was set to the mean depth of the channel
within the range of the tidal excursion.

To estimate oxygen fluxes across the air-water interface (F), we used a
wind-based gas exchange model that accounted for lake surface area™. We
set gas exchange to zero during periods when the DO sensor was below the
diel or seasonal thermocline. We estimated average PAR within the surface
mixed layer by converting shortwave radiation measurements from weather
stations to surface PAR and then using the attenuation coefficient for PAR
(kgs m™"; Table 1; Supplementary Fig. 4) and Z,,; to estimate mean water
column PAR as in Staehr et al.*’. Days with unrealistic metabolism estimates
(negative GPP, positive R) were excluded from results. Additional details on
datasets and metabolism models can be found in the Supplementary
Methods.

Quantifying effects of smoke cover on ecosystem
metabolic rates
We quantified ecosystem metabolic responses to smoke cover (e.g., com-
pared GPP, R, and NEP between smoke and non-smoke days) by fitting
generalized additive mixed models (GAMMs) to the daily metabolism
estimates using the ‘mgcv’ R package™. We combined the datasets to fit a
single GAMM each for GPP, R, and NEP. To facilitate comparisons across
sites spanning from hyper-eutrophic (Clear Lake) to ultra-oligotrophic
(Lake Tahoe), we standardized metabolism time series by mean and var-
iance (z-score) before combining datasets. We modeled daily metabolic
estimates as a function of smoke cover (categorical: smoke or non-smoke)
and day of year (doy; smooth term). We included an interaction between
doy and smoke (e.g., estimated separate seasonal smooths terms for non-
smoke and smoke days) to visualize the effect of smoke cover on seasonal
patterns in metabolism. We included a random effect for site in each model
to account for the non-independence of repeated measurements in each
lake. As an example using R pseudocode, the model formulation for GPP is:
GPP ~ re(site) + smoke + s(DOY, by = smoke), where re() is a random
effect, smoke is a parametric term, and s() indicates a smooth term with an
interaction. We used default thin plate regression splines for the smooth
terms. GAMMSs were fitted using restricted maximum likelihood
estimation.

To quantify how lake and smoke attributes mediated metabolic
responses to smoke cover, we calculated the median difference in
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standardized metabolic rates between smoke and non-smoke days for each
dataset (‘metabolic response’; AGPP, AR), and then fitted linear regressions
between metabolic responses and lake or smoke variables. Lake variables
included log-TDN, log-TDP, log-chla, and mean summer water tempera-
ture. Smoke variables included the total number of smoke days (duration),
the mean SW reduction on smoke days (metric of smoke density; W m?)
and the cumulative SW reduction on smoke days (10°J m™?), a metric of
smoke intensity that incorporates both duration and density.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

Daily metabolic rate estimates, meteorological data, and smoke data are
available on the Environmental Data Initiative repository (https://doi.org/
10.6073/pasta/440£79a43d9b23229daf0cb33a295¢5d)™.

Code availability
All code used in this paper is available from published packages cited in the
references.
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