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Abstract

Advances in mass spectrometry (MS) have enabled high-throughput analysis of proteomes in biological systems. The state-of-the-art MS data
analysis relies on database search algorithms to quantify proteins by identifying peptide—spectrum matches (PSMs), which convert mass spec-
tra to peptide sequences. Different database search algorithms use distinct search strategies and thus may identify uniqgue PSMs. However, no
existing approaches can aggregate all user-specified database search algorithms with a guaranteed increase in the number of identified pepti-
des and a control on the false discovery rate (FDR). To fill in this gap, we proposed a statistical framework, Aggregation of Peptide Identification
Results (APIR), that is universally compatible with all database search algorithms. Notably, under an FDR threshold, APIR is guaranteed to iden-
tify at least as many, if not more, peptides as individual database search algorithms do. Evaluation of APIR on a complex proteomics standard
dataset showed that APIR outpowers individual database search algorithms and empirically controls the FDR. Real data studies showed that
APIR can identify disease-related proteins and post-translational modifications missed by some individual database search algorithms. The APIR
framework is easily extendable to aggregating discoveries made by multiple algorithms in other high-throughput biomedical data analysis, e.g.,
differential gene expression analysis on RNA sequencing data. The APIR R package is available at https://github.com/yiling0210/APIR.

Key words: Shotgun proteomics; Peptide—spectrum match; Peptide identification; Aggregation of lists; FDR control.

spectrum can be used to identify the peptide’s amino acid se-
quence and post-translational modifications, as well as to
quantify the peptide’s abundance with additional weight in-
formation (Figure 1A).

Since the development of shotgun proteomics, numerous
database search algorithms have been developed to auto-
matically convert mass spectra into peptide sequences.
Popular database search algorithms include SEQUEST [5],
Mascot [6], MaxQuant [7], Byonic [8], and MS-GF+ [9],
among many others. A database search algorithm takes as
input the mass spectra from a shotgun proteomics experi-
ment and a protein database (called the “target database”)

Introduction

Proteomics studies have discovered essential roles of proteins
in complex diseases such as neurodegenerative disease [1]
and cancer [2,3]. These studies have demonstrated the poten-
tial of using proteomics to identify clinical biomarkers for
disease diagnosis and therapeutic targets for disease treat-
ment. In recent years, proteomics analytical technologies,
particularly tandem mass spectrometry (MS/MS)-based shot-
gun proteomics, have advanced immensely, thus enabling
high-throughput identification and quantification of proteins
in biological samples. Compared to prior technologies, shot-
gun proteomics has simplified sample preparation and pro-

tein separation, reduced time and cost, and saved procedures
that may result in sample degradation and loss [4]. In a typi-
cal shotgun proteomics experiment, a protein mixture is first
enzymatically digested into peptides, i.e., short amino acid
chains up to approximately 40-residue long; the resulting
peptide mixture is then separated and measured by MS/MS
into tens of thousands of mass spectra. Each mass spectrum
encodes the chemical composition of a peptide; thus, the

that contains known protein sequences (called “target
sequences”). For each mass spectrum, the algorithm identi-
fies the best matching peptide sequence, i.e., a subsequence
of a protein sequence, from the database; we call this pro-
cess “peptide identification”, whose result is a “peptide—
spectrum match” (PSM). However, due to data imperfection
(such as low-quality mass spectra, data processing mistakes,
and protein database incompleteness), the identified PSMs
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Figure 1 The workflow of shotgun proteomics and benchmarking search algorithms on the CPS dataset

A. The workflow of a typical shotgun proteomics experiment. The protein mixture is first enzymatically digested into peptides, i.e., short amino acid
chains up to approximately 40-residue long; the resulting peptide mixture is then separated and measured by MS/MS into tens of thousands of mass
spectra. Each mass spectrum encodes the chemical composition of a peptide. Then, a database search algorithm is used to identify the peptide’s amino
acid sequence and post-translational modifications, as well as to quantify the peptide’s abundance. B. Venn diagrams showing the overlap of true PSMs
identified by the five database search algorithms from the Pfu CPS dataset under the FDR threshold g = 1% (left) or g= 5% (right). C. The FDP and power
of each database search algorithm on the Pfu CPS dataset at the FDR threshold g€ {1%,...,10%}. MS, mass spectrometry; MS/MS, tandem mass
spectrometry; PSM, peptide—spectrum match; FDR, false discovery rate; FDP, false discovery proportion; Pfu, Pyrococcus furiosus; m/z, mass to charge
ratio; APIR, Aggregation of Peptide Identification Results; CPS, complex proteomics standard.

often consist of many false PSMs, causing issues in the
downstream system-wide identification and quantification
of proteins [10].

To ensure the accuracy of PSMs, the false discovery rate
(FDR) has been used as the most popular statistical criterion
[11-18]. Technically, the FDR is defined as the expected pro-
portion of false PSMs among the identified PSMs; in other
words, a small FDR indicates good accuracy of PSMs. To
control the FDR, the standard approach is the target—decoy

search, which utilizes a “decoy database” consisting of
known, non-existent protein sequences (called “decoy
sequences”) [10]. Two common strategies for target—decoy
search are concatenated search and parallel search. The
concatenated search strategy (Figure S1A) finds the best
match of a mass spectrum in a concatenated database con-
taining both target sequences and decoy sequences; hence, the
match (i.e., PSM) corresponds to either a target sequence or a
decoy sequence. In contrast, the parallel search strategy
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(Figure S1B) finds the best match of a mass spectrum in the
target database and the decoy database separately; hence, the
spectrum has two best matches, one with a target sequence
(i.e., a target PSM) and the other with a decoy sequence (i.e.,
a decoy PSM). Based on the target-decoy search results
(regardless of being concatenated or parallel) which include
target PSMs and decoy PSMs with matching scores, multiple
procedures that are P value-based or P value-free have been
proposed to control the FDR of a database search algorithm’s
identified target PSMs [14,19-21].

However, controlling the FDR is only one side of the story.
Because shotgun proteomics experiments are costly, a com-
mon goal of database search algorithms is to identify as many
true PSMs as possible to maximize the experimental output,
in other words, to maximize the identification power given a
target, user-specified FDR threshold (e.g., 1% or 5%).

It has been observed that, with the same input mass spectra
and FDR threshold, different database search algorithms of-
ten find largely distinct sets of PSMs [22-26]. In this study,
we confirmed this observation using our in-house dataset, the
first publicly available complex proteomics standard (CPS)
dataset from Pyrococcus furiosus (Pfu) that approximates the
dynamic range of a typical proteomic experiment. We first
benchmarked five popular database search algorithms —
Byonic [8], Mascot [6], SEQUEST [5], MaxQuant [7], and
MS-GF+ [9] — on the CPS dataset using an FDR assessment
approach similar to that in [27]. Our results confirmed that
these five algorithms were designed to capture unique sets of
PSMs (see Results for details). Hence, it is reasonable to ag-
gregate individual database search algorithms’ outputs to
boost the power of identifying peptides from shotgun proteo-
mics data.

In the proteomics field, existing aggregation methods in-
clude Scaffold [25], MSblender [18], FDRAnalysis [28],
iProphet [17], ConsensusID [16], PepArML [11], and a
multi-stage method by Ning and his colleagues [29]. Except
FDRAnalysis, which has been shown infeasible for high-
throughput proteomics [22], the other six methods have at
least one of the two major drawbacks: (1) limited compatibil-
ity with database search algorithms and (2) lack of guarantee
for identifying more peptides under the same FDR threshold.
For the first drawback, except ConsensusID, the other five
aggregation methods unanimously limit the choices of data-
base search algorithms. As for the second drawback, al-
though empirical evidence shows that, on some datasets,
these aggregation methods, except the multi-stage method by
Ning et al. [29], may identify more peptides than those identi-
fied by individual database search algorithms, none of these
aggregation methods is guaranteed to do so by algo-
rithm design.

In addition to the aforementioned aggregation methods de-
veloped for proteomics data, generic statistical methods de-
veloped for aggregating rank lists are in theory applicable to
aggregating the PSM lists output by database search algo-
rithms. However, none of these generic methods have been
developed into software packages compatible with database
search algorithms, nor are they guaranteed to identify more
peptides given an FDR threshold (many generic methods ag-
gregate rank lists without FDR control). Therefore, the field
calls for a robust, powerful, and flexible aggregation method
that allows researchers to reap the benefits of the diverse and
ever-growing database search algorithms.

Here, we proposed Aggregation of Peptide Identification
Results (APIR), a statistical framework that aggregates pep-
tide identification results from multiple database search algo-
rithms with FDR control. Compared to the existing
aggregation methods, APIR offers the following three advan-
tages simultaneously: first, APIR is open-source and univer-
sally adaptive to database search algorithms that output
PSMs with matching scores [e.g., g-values or posterior error
probabilities (PEPs)]; second, APIR is guaranteed to identify
at least as many as, if not more, peptides than individual
database search algorithms doj third, APIR empirically con-
trols the FDR in simulation and real-data benchmark studies.
Hence, APIR is a robust and flexible framework that enhan-
ces the power while controlling the FDR of peptide identifica-
tion from shotgun proteomics data.

Note that the framework of APIR could be easily extended
to aggregate discoveries made by multiple algorithms in other
high-throughput biomedical data analysis, such as differential
gene expression analysis on RNA sequencing data.

Method

We propose APIR to aggregate the output PSMs of multiple
database search algorithms. Designed to control the FDR of
aggregated PSMs, APIR is a sequential framework applied to
the output PSMs of individual database search algorithms.
To benchmark APIR and existing database search algo-
rithms, we also generate the first publicly available CPS data-
set from Pfu to approximate the dynamic range of a typical
proteomic experiment. Below we first introduce the method-
ology of APIR, including APIR-FDR and the sequential
framework for aggregating PSMs. Then, we introduce the ex-
perimental details on how we generate the CPS dataset and
use it for benchmarking purposes.

APIR methodology

Aside from a user-specified FDR threshold g (e.g., g = 5%),
APIR takes as input the target-decoy search results from the
database search algorithms that users would like aggregate
[10]. Specifically, APIR requires from each database search
algorithm a list of target PSMs with matching scores and a
list of decoy PSMs with matching scores. To maximize
power, we recommend users to extract the entire lists of tar-
get PSMs and decoy PSMs by setting the internal FDR of
each database search algorithm to 100%. Note that the tar-
get—decoy search strategy referred to herein does not include
the FDR estimation procedure criticized by Gupta and col-
leagues [19].

To facilitate downstream analysis, APIR also reports the
master protein, the post-translational modifications, and the
abundance of each identified PSM, if applicable. See File S1
for details on these post-processing steps.

APIR-FDR: FDR control on any individual search algorithm

The core component of APIR is APIR-FDR, an umbrella
FDR-control procedure for the identified target PSMs of each
individual database search algorithm. APIR-FDR takes as in-
put an FDR threshold g, a list of target PSMs with matching
scores, and a list of decoy PSMs with matching scores. APIR-
FDR then outputs the identified target PSMs. As an umbrella
FDR-control procedure, APIR-FDR can be P value-based or
P value-free, including all possible procedures that can con-
trol the FDR for the identified target PSMs of an individual
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database search algorithm. Below we describe three exemplar
options for APIR-FDR: a P value-based option and two P
value-free options.

To facilitate our discussion, we introduce some notations.
Let m and »n denote the numbers of target PSMs and decoy
PSMs, respectively, outputted by a database search algo-
rithm. We denote the matching scores of target PSMs and de-
coy PSMs as Ty, ..., T,, and Dy, ..., D,, respectively. Without
loss of generality, we assume that the matching scores are
positive, and a larger matching score indicates a higher
chance for a PSM to be a true match. For instance, if the out-
put of a database search algorithm contains PSMs with g-val-
ues or E-values (whose smaller values indicate more likely
true matches), then we would define the negative log-
transformed g-values or E-values as matching scores.

First, a P value-based FDR-control procedure applies to
both concatenated and parallel target—decoy search strategies
[14]. It assumes that the matching scores of decoy PSMs and
false target PSMs are independently and identically distrib-
uted, and it constructs a null distribution by pooling the
matching scores of decoy PSMs Dy,...,D,. Then, it com-
putes a P value for the i-th target PSM as the tail probability
right of Tj, i.e., p;i=>"" | I{D;>Ti}/n, i=1,...,m. Given
the FDR threshold g and the P values p1,...,p,, this proce-
dure applies the Benjamini-Hochberg procedure [30] to set
a P value threshold py..(q) and outputs {i=1,...,m:
pi <Pure(q)} as the indices of the identified target PSMs.

Second, a P value-free FDR-control procedure (as a clarifi-
cation, this procedure was referred to as the target—-decoy
search strategy in [31], different from the terminologies that
we use) also applies to both concatenated and parallel search
strategies. When used with concatenated search results, for a
given matching score x, this procedure counts the numbers of
target PSMs and decoy PSMs with matching scores at least x
as Nr(x) =", I{T;>x} and Np(x)=>",I{D;>x}, re-
spectively. This procedure then estimates the FDR of target

PSMs with matching scores at least x as F/D\R(x) :ff;fg
When used with parallel search results, the procedure needs
to estimate 7g, the proportion of false PSMs among the target
PSMs. This proportion is unknown but can be conservatively
estimated. This is done by examining PSMs with scores near
zero and then calculating the ratio of the number of decoy
PSMs to the number of target PSMs in this subset of PSMs, as
outlined in [14]. With the estimated 7t¢, the procedure then
estimates the FDR of target PSMs with matching scores at

least x as FDR (x) = 7o Z’;g? Given the FDR threshold g, this

procedure outputs {i =1,....m: FT)\R(T,-) < q} as the indices
of the identified target PSMs.

Third, an alternative P value-free FDR-control procedure
is Clipper, which works for parallel search results by design
(Clipper controls the FDR by contrasting two conditions,
which correspond to a mass spectrum’s target match and de-
coy match in parallel search) [10]. In parallel search results,
we assume that the first s<min(m,n) target PSMs can be
paired one-to-one with decoy PSMs. Then, we arrange the de-
coy PSM indices in the way that the i-th decoy PSM shares
the same mass spectrum with the i-th target PSM for 1<i<s
(note that s/m is close to 1 in most parallel search results).
Clipper first constructs a contrast score C;=T;—D;
for i=1,...,s; note that the contrast score may be defined
in other forms [32]. Then, given the FDR threshold g,
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contrast score cutoff

Cihre (q) =
min{t e{|Ci|:C;#£0}: % Sq}, and outputs
{i=1,...,5: C;> Cupel(q)} as the indices of the identified tar-
get PSMs, where |{i:C;< —t}| indicates the number of
Cy,...,C that are no greater than —¢. For the i-th target PSM
(i=1,...,s), Clipper estimates its FDR as FT)\R(Ci) =
min{q € (0,1) : C;> Cyc(q) }- In comparison to the P value-
free procedure outlined previously, Clipper is more conserva-
tive (owing to the “+1” in the numerator) and flexible.
Notably, Clipper is similar to the aforementioned P value-
free FDR-control procedure if the contrast score is defined as
C; = max(T;,D;). Compared to the P value-free FDR-control
procedure outlined in the previous paragraph, Clipper has
three advantages: (1) Clipper does not require the estimation

of 7y in parallel search; (2) Clipper’s estimated FDR lﬁ{(Ci)
monotonically decreases as the contrast score C; increases,
resulting in better power in numerous instances; (3) Clipper
is more flexible because its contrast score C; can be defined in
various ways.

The FDR-control procedures described above are just three
examples. Any other procedures that control the FDR can
also be used as options for APIR-FDR.

Clipper finds a

APIR: a sequential framework for aggregating the identified
target PSMs of multiple search algorithms with FDR control
Given the FDR threshold g and the outputs of multiple data-
base search algorithms (including all target PSMs and decoy
PSMs with matching scores), the sequential framework of
APIR identifies target PSMs (with the FDR controlled under
q) by combining the outputs of these database search algo-
rithms based on a mathematical fact: if disjoint sets of discov-
eries all have the false discovery proportion (FDP; also
known as the empirical FDR) under g, then their union set
also has the FDP under g. Hence, the sequential framework
of APIR is designed to find disjoint sets of target PSMs from
the outputs of multiple database search algorithms. The final
output of APIR is the union of these disjoint sets, which is
guaranteed to contain more unique peptides than what could
be identified by a single database search algorithm.

Suppose we are interested in aggregating K algorithms.
Accordingly, the sequential approach will consist of a maxi-
mum of K rounds. Let W, denote the set of target PSMs out-
put by the k-th algorithm, k=1,...,K. In round 1, APIR
applies APIR-FDR to each algorithm’s output with the FDR
threshold g. Denote the identified target PSMs from the k-th
algorithm by Uy, C W,. Define J; € {1,...,K} to be the algo-
rithm index such that Uy;, contains the largest number of
unique peptides among Usy, ..., Ujx. We use the number of
unique peptides rather than the number of PSMs because
peptides are more biologically relevant than PSMs. In round
2, APIR first excludes all target PSMs output by algorithm ]y,
identified or unidentified in round 1, i.e., Wj,, from the out-
puts of the remaining database search algorithms, resulting in
reduced sets of candidate target PSMs W;\Wj,,...,
Wx \ Wj,. Then, APIR applies APIR-FDR with the FDR
threshold g to these reduced sets except W, \ W =0.
Denote the resulting sets of identified target PSMs by
Uy € (We\ W},), ke{1,...,K}\{J1}. Again, APIR finds
algorithm J, such that Uyj, contains the largest number of
unique peptides. APIR repeats this procedure in the subse-
quent rounds. Specifically, in round ¢ with £>2, APIR first
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excludes all target PSMs output by the selected ¢—1
algorithm from the outputs of remaining database search algo-
rithms and applies APIR-FDR. That is, APIR applies APIR-
FDR with the FDR threshold g to identify a set of target PSMs
Uy, from W, \ (W), U---UWj,_,), the reduced candidate pool
of algorithm k after the previous ¢ rounds, for algorithm
ke{l,...,K}\{J1,---,Je—1}. Then, APIR finds the algorithm,
which we denote by Jy, such that Uy, contains the largest num-
ber of unique peptides. Finally, APIR outputs Uyj, U--- U Ugj,
as the set of identified target PSMs. By adopting this sequential
approach, APIR is guaranteed to identify at least as many, if not
more, unique peptides as those identified by a single database
search algorithm; under the assumption that APIR-FDR con-
trols the FDR for each algorithm’s identified target PSMs, APIR
can control the FDR of the identified target PSMs under g. See
Figure 2 for an illustration of the sequential approach of APIR.
Notably, APIR specifically controls the FDR of identified
target PSMs so it excludes the identified target PSMs, instead

Round 1

Search engine
1

S1~P1
S2~P2
S3~P3
S4~P4
S5~P2
S6~P5

Exclude PSMs from
search engine 3

»

of spectra, of one algorithm in each step. In instances where
different algorithms match the same spectrum to distinct pep-
tides, APIR may identify both PSMs as valid discoveries.
While at least one of these two PSMs is a false discovery, the
overall FDR for the identified PSMs remains controlled under
this framework.

CPS dataset generation

We described the experimental details of running the MS/MS
analysis on a Pfu CPS sample (Catalog No. 400510, Agilent,
Santa Clara, CA). The CPS sample contains soluble proteins
extracted from the archaeon Pfu. All other reagents were pur-
chased from Sigma Aldrich (Sigma Aldrich, St. Louis, MO).
The fully sequenced genome of Pfu encodes approximately
2000 proteins that cover a wide range of size, pl, concentra-
tion level, hydrophobic/hydrophilic character, etc. CPS
(500 pg of total protein) was dissolved in 100 pl solution con-
taining 0.5 M triethylammonium bicarbonate (TEAB) and

Round 2
Search engine

Round 3

Search engine
1 2 3

Exclude PSMs from
search engine 1

»

»

S7~P6

»

X

S8~P7

S9~P8

>

S$10~P3

S11~P7

PSM 1 2 3

B
=

Apply APIR-FDR

S4~P4
S5~P2

!

Identified

S5~P2 |l S5~P2
S6~P5

Apply APIR-FDR Apply APIR-FDR

@

PSMs

No. of unique

peptides 4 2

Output:

Low

[] Missing from
the search result

Figure 2 lllustration of APIR for aggregating three database search algorithms

We use S1~P1 to denote a PSM of mass spectrum S1 matched to peptide sequence P1. In the output of a database search algorithm, a PSM with a
higher matching score is marked by a darker color. White boxes indicate PSMs missing from the output. APIR adopts a sequential approach to aggregate
the three database search algorithms. In round 1, APIR applies APIR-FDR with an FDR threshold g to identify a set of target PSMs from the output of
each database search algorithm. APIR then selects the algorithm whose identified PSMs contain the largest number of unique peptides, and the
identified PSMs are considered identified by APIR. In this example, APIR identified the same number of PSMs from algorithms 1 and 3 but more unique
peptides from algorithm 3; hence, APIR selects algorithm 3. In round 2, APIR excludes all PSMs, either identified or unidentified by the selected database

search algorithm in round 1 (algorithm 3 in this example), from the output

of the remaining database search algorithms. Then, APIR applies APIR-FDR

with an FDR threshold g to find the algorithm whose identified PSMs contain the largest number of unique peptides (algorithm 1 in this example). APIR

repeats round 2 in the subsequent rounds until all database search algorit|
each round.

hms are selected. Finally, APIR outputs the union of the PSMs identified in
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0.05% sodium dodecyl sulfate (SDS). The proteins were
reduced by adding 4 pl of 50 mM tris(2-carboxyethyl)-
phosphine hydrochloride (TCEP) to the protein mixture, fol-
lowed by incubation at 60°C for 1 h. The proteins were fur-
ther alkylated by adding 2 ul of 50 mM methyl
methanethiosulfonate (MMTS) to the protein mixture, fol-
lowed by incubation at room temperature for 15 min. Then,
20 pg trypsin dissolved 1:1 in ultrapure water was added to
the sample, and this was incubated overnight (16 h) in the
dark at 37°C to enzymatically digest the proteins. The tryptic
peptides were cleaned with C-18 tips (Catalog No. 87784,
Thermo Fisher Scientific, Waltham, MA) following the man-
ufacturer’s instructions. Peptides were liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) analyzed using
the UltiMate 3000 ultra-high-performance liquid chromatog-
raphy (UHPLC) system (EASY-Spray column, Catalog No.
ES803A, Thermo Fisher Scientific) hyphenated with the
Orbitrap Fusion Lumos MS instrument (Thermo Fisher
Scientific). Peptides were fragmented using low-energy colli-
sion-induced dissociation (CID) and detected with the linear
ion trap detector.

After running MS/MS analysis, we obtained the Pfu CPS
dataset of 49,303 mass spectra. We then adopted an ap-
proach similar to that in [27] for benchmarking database
search algorithms and aggregation methods. Specifically, we
first constructed a target database by concatenating the Pfu
database, the UniProt human database [33], and two contam-
inant databases: the CRAPome database [34] and the con-
taminant database from MaxQuant. In the target database
construction, we removed human proteins that contain Pfu
peptides (via in silico trypsin digestion). Contaminant data-
bases consist of sequences commonly identified as contami-
nants in MS experiments. Given that PSMs resulting from
unintended sources, such as contamination, are unavoidable
in MS experiments, PSMs originating from both the Pfu data-
base and the two contaminant databases are considered as
true PSMs. Conversely, PSMs from the human database, after
excluding all Pfu proteins, are considered as false PSMs.
Finally, we input the 49,303 mass spectra and the target data-
base into database search algorithms. To evaluate a database
search algorithm or an aggregation method, we consider its
output PSMs, peptides, and proteins as true if and only if
they belong to either Pfu or the two contaminant databases.
The in silico digestion was done to take out any human pro-
teins that contain peptides that could also be derived from
Pfu. The in silico digestion was performed in Python using
the pyteomics.parser function from Pyteomics with the fol-
lowing settings: trypsin digestion, two allowed missed clea-
vages, and a minimum peptide length of six amino acid
residues [35,36].

Results

To verify the motivation and demonstrate the advantages of
APIR, we conducted simulation and real data studies. First,
we benchmarked five popular database search algorithms —
Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+ —
coupled with APIR-FDR options (P value-based or
P value-free) on our Pfu CPS dataset. Second, we designed
simulation studies to benchmark APIR against two naive ag-
gregation approaches: intersection and union of the PSM sets
of identified by different database search algorithms. Third,
to demonstrate the power of APIR, we applied APIR to five
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real datasets, including our CPS dataset, three acute myeloid
leukemia (AML) datasets, and a triple-negative breast cancer
(TNBC) dataset. Notably, we generated two of the three
AML datasets from bone marrow samples of AML patients
with either enriched or depleted leukemia stem cells (LSCs)
for studying the disease mechanisms of AML. Finally, we in-
vestigated and verified additional proteins found by APIR
and performed differentially expressed peptide analysis on
the APIR results.

Although we focused on five database search algorithms,
APIR is universally applicable to other database search algo-
rithms such as MSFragger [37] and Open-pFind [38]. Because
nearly all database search algorithms output g-values or PEPs
of PSMs, we used —logg-transformed PEPs from MaxQuant
and —log;o-transformed g-values from the other four database
search algorithms as the matching scores of PSMs to demon-
strate the wide applicability of APIR.

Benchmarking five database search algorithms on
the Pfu CPS dataset

We first benchmarked five popular database search algo-
rithms — Byonic, Mascot, SEQUEST, MaxQuant, and
MS-GF+ — on the Pfu CPS dataset. Our evaluation results in
Figure 1B showed that the five individual database search
algorithms indeed captured unique true PSMs in this CPS
dataset at FDR thresholds of g =1% and g = 5%. Notably,
at g =1%, the number of true PSMs only identified by
Byonic (n = 2720) was nearly four times that identified by all
five algorithms (n = 727). At g = 5%, Byonic again identified
more unique true PSMs (7 = 1903) than that identified by all
five algorithms (7 = 1416). Moreover, MaxQuant and MS-
GF+ also demonstrated distinctive advantages: MaxQuant
identified 147 and 520 unique true PSMs, while MS-GF+
identified 153 and 218 unique true PSMs at g = 1% and 5%,
respectively. In contrast, SEQUEST and Mascot showed little
advantage in the presence of Byonic: their identified true
PSMs were nearly all identified by Byonic (Figure S2). Our
results confirm that these five database search algorithms
have distinctive advantages in identifying unique PSMs, an
observation that aligns well with existing literature
[22-26,39].

In terms of FDR control, four database search algorithms —
Byonic, Mascot, SEQUEST, and MS-GF+ — demonstrated ro-
bust FDR control as they kept the FDPs on the benchmark data
under the FDR thresholds of g € {1%,...,10%}. In contrast,
except at small values of g such as 1% or 2%, MaxQuant failed
the FDR control by a large margin (Figure 1C).

To evaluate the effect of FDR-control procedures on each
database search algorithm, we benchmarked two APIR-FDR
options, one P value-based and the other P value-free, used
with each database search algorithm. Specifically, as an ex-
ploration, if a database search algorithm uses P value-based
FDR control by default, we used Clipper as an alternative
P value-free option; otherwise, if the algorithm’s default
FDR-control procedure is P value-free, we used the P value-
based option as an alternative.

On the Pfu CPS dataset, we examined the FDPs and power
of the five database search algorithms with two APIR-FDR
options for a range of FDR thresholds: q € {1%,...,10%}.
Our results in Figure 1C showed that both P value-based and
P value-free APIR-FDR options achieved the FDR control
and similar power when applied to the outputs of Byonic,
Mascot, SEQUEST, and MS-GF+. However, for MaxQuant,
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the default P value-free FDR-control procedure (outlined in
the Method section) failed to control the FDR under the tar-
get by a large margin. In contrast, the alternative P value-
based FDR-control procedure we applied alleviated the FDR
control issue of MaxQuant, with FDPs controlled under g
when g > 5%. Regarding the phenomenon that both the num-
ber of true PSMs and the FDP of MaxQuant (with P value-
based FDR control) stayed unchanged as the FDR threshold
q increased from 1% to 10% (Figure 1C), we provided a de-
tailed explanation in File S1 and Figure S3.

We also compared the performance of the five database
search algorithms with two APIR-FDR options (P value-
based and P value-free) on the CPS dataset after excluding
the 1416 shared true PSMs (identified by all five algorithms
at the FDR threshold ¢ = 5%) from the output of each data-
base search algorithm. Theoretically, FDR control procedures
no longer guarantee to control the FDR after a subset of
PSMs is removed (see Figure S4 for a counterexample). Our
results in Figure S5 showed that that default P value-free
FDR-control procedure of MS-GF+ no longer controlled
the FDR.

Based on the benchmark results above, we chose the P
value-based APIR-FDR option for MaxQuant and MS-GF+,
because the default P value-free FDR-control procedure of
these two algorithms failed to guarantee the FDR control.
For Byonic, Mascot, and SEQUEST, both the P value-based
and P value-free APIR-FDR options can be used. See Table
S1 for details of the APIR-FDR options used with the five
database search algorithms in each analysis.

Set union and intersection operations do not
guarantee to control the FDR

In data analysis, there exists a common intuition: if multiple
algorithms designed for the same purpose are applied to the
same dataset to make discoveries, and all algorithms have
their FDRs under g, then the intersection of their discoveries
(i.e., the discoveries found by all algorithms) should have the
FDR under g [11]. However, this intuition does not hold in
general. The reason is that if all algorithms find different true
discoveries, then their common discoveries (i.e., the intersec-
tion) could be enriched with false discoveries and thus have
the FDR larger than gq. To demonstrate this, we designed a
simulation study called the shared-false-PSMs scenario,
where the set intersection operation fails to control the FDR.
Although intuition says that the set union operation may not
control the FDR, we designed another simulation study called
the shared-true-PSMs scenario, where the set union operation
fails to control the FDR, for completeness.

Under the shared-true-PSMs scenario, we designed three
toy database search algorithms that tend to identify overlap-
ping true PSMs but non-overlapping false PSMs (Figure 3A).
In contrast, under the shared-false-PSMs scenario, we
designed another three toy database search algorithms that
tend to identify overlapping false PSMs but non-overlapping
true PSMs (Figure 3B; see File S1 for the detailed designs of
the two scenarios). Under both scenarios, we first applied
APIR-FDR to the output of each toy database search algo-
rithm. Then, we aggregated identified PSMs from the three
algorithms under each scenario using set intersection, set
union, or APIR, and evaluated the FDR of each aggregated
PSM set. The results showed that while set union failed to
control the FDR in the shared-true-PSMs scenario and set

intersection failed in the shared-false-PSMs scenario, APIR
controlled the FDR in both scenarios (Figure 3C and D).

These two scenarios serve as counterexamples, demonstrat-
ing that neither set union nor set intersection can control the
FDR of identified target PSMs. In contrast, APIR has the the-
oretical FDR control.

APIR verifies FDR control and outpowers Scaffold
and ConsensusID

To demonstrate that APIR controls the FDR by aggregating
individual search algorithms on the Pfu CPS dataset, we
benchmarked APIR against two existing aggregation meth-
ods, Scaffold and ConsensusID, because they are the only
two aggregation methods compatible with the five database
search algorithms that we wused: Byonic, Mascot,
SEQUEST, MaxQuant, and MS-GF+. Since database
search algorithms are time-consuming to run, we first fo-
cused on the 20 combinations consisting of no more than
three of the five algorithms, including 10 combinations of
any two algorithms and 10 combinations of any
three algorithms.

Because of the trade-off between FDR and power, power
comparison is valid only when FDR is controlled. Hence, for
the three aggregation methods, APIR, Scaffold, and
ConsensusID, we compared them in terms of both their FDPs
and power on the Pfu CPS dataset. Regarding the power in-
crease of each aggregation method over individual database
search algorithms, we computed the percentage increases in
the aggregated true PSMs, peptides, and proteins by treating
as baselines the maximal numbers of true PSMs, peptides,
and proteins identified by the five database search algo-
rithms. For example, to aggregate Byonic and MaxQuant,
based on our benchmarking results in Figure 1C, we applied
Byonic (with the default P value-free FDR-control procedure)
and MaxQuant (with P value-based FDR control) to identify
PSMs in round 1. We calculated the percentage increase in
the identified true PSMs by treating the larger of two num-
bers: the numbers of true PSMs identified by Byonic and
MaxQuant as the baselines.

As shown in Figure 4 and Figure S6, at both FDR thresh-
olds of g =35% and g = 1%, APIR achieved consistent FDR
control and power improvement over individual database
search algorithms. In contrast, Scaffold controlled the FDR
but showed highly inconsistent power improvement, while
ConsensusID neither controlled the FDR nor had power im-
provement. Specifically, the FDPs of ConsensusID exceeded
the FDR threshold g=35% by a large margin: they
rised above 15% in 10 out of 20 combinations. In summary,
only APIR consistently achieves power increase over individ-
ual database search algorithms across the 20 algorithm com-
binations, an advantage that neither Scaffold nor
ConsensusID offers.

A technical note is that Scaffold cannot control the FDR of
aggregated PSMs; instead, it controls the FDRs of aggregated
peptides and proteins, and it requires the FDR thresholds to
be input for both. Hence, strictly speaking, Scaffold is not di-
rectly comparable with APIR in terms of FDR control be-
cause APIR controls the FDR of aggregated PSMs. For a fair
comparison, we implemented a variant of Scaffold, which,
compared with the default Scaffold, has an advantage in
power at the cost of an inflated FDR (File S1). Our results
showed that this Scaffold variant demonstrated a slightly in-
flated FDP in 7 combinations at g =5% (FDP > 5.5% in
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Figure 3 Simulation studies showing that neither intersection nor union of discovery sets (with controlled FDR) controls FDR

FDR control comparison of APIR, intersection, and union for aggregating three toy database search algorithms using simulated data. Two scenarios are
considered: the shared-true-PSMs scenario and the shared-false-PSMs scenario. A. and B. Venn diagrams of true PSMs and false PSMs (identified at the
FDR threshold g=5%) on one simulation dataset under the shared-true-PSMs scenario (A) and the shared-false-PSMs scenario (B). C. and D. The FDRs
of the three database search algorithms and three aggregation methods (union, intersection, and APIR) under the shared-true-PSMs scenario (C) and the
shared-false-PSMs scenario (D). Note that the FDR of each database search algorithm or each aggregation method is computed as the average of FDPs

on 200 simulated datasets under each scenario.

Figure S7A) and 12 combinations at ¢ = 1% (FDP > 1.1% in
Figure S8A). In terms of power, this Scaffold variant still
failed to outperform the most powerful individual database
search algorithm in 8 combinations at g = 5% (Figure S7B)
and 10 combinations at ¢ = 1% (Figure S8B).

Moreover, we had the results of APIR combining four and
five database search algorithms in Figures S9 and S10, which
again confirmed the FDR control and power advantage of
APIR. In addition, we examined whether APIR might inflate
the peptide-level FDRs by selecting the set of identified PSMs
containing the largest number of unique peptides in each
round. As shown in Figure S11, among the 52 cases [all 26
algorithm combinations X 2 PSM-level FDR thresholds (1%
and 5%)], APIR either lowered or maintained the maximum
peptide-level FDP achieved by an individual search algo-
rithm. In other words, APIR does not inflate the peptide-
level FDP.

APIR empowers peptide identification on the AML
and TNBC datasets

We next applied APIR with the aforementioned 20 combina-
tions of two and three algorithms to four real datasets: two
in-house phospho-proteomics (explained below) AML

datasets (“phospho AML-C1” and “phospho AML-C2”)
that we collected from two cohorts of AML patients (which
were not randomly assigned and thus not biological repli-
cates) for studying the properties of LSCs; a published
nonphospho-proteomics AML dataset (“nonphospho AML”)
that also compares the stem cells with non-stem cells in AML
patients [40]; and a published phospho-proteomics TNBC
dataset that studies the effect of drug genistein on breast can-
cer [41]. Phospho-proteomics is a branch of proteomics;
while traditional proteomics aims to capture all peptides in a
sample, phospho-proteomics focuses on phosphorylated pep-
tides, also called phosphopeptides, because phosphorylation
regulates essentially all cellular processes [42]. See File S1 for
the details on how we generated “phospho AML-C1” and
“phospho AML-C2”.

On each dataset, we applied APIR at two FDR thresholds
of g=1% and g = 5%, and examined the percentage
increases at four levels: PSM, peptide, peptide with modifica-
tions, and protein; we calculated the percentage increases in
the same way as what we did for the CPS dataset. Our results
in Figure 5 (¢ = 5%) and Figure S12 (g = 1%) showed that
APIR led to positive percentage increases at two levels (PSM
and peptide) on all four datasets, confirming APIR’s
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Figure 4 Comparison of APIR, Scaffold, and ConsensusID on the CPS dataset at the FDR threshold g = 5%

We set both the peptide threshold and the protein threshold of Scaffold to be 5% FDR. The FDPs (first column), the percentage increases in true PSMs
(second column), the percentage increases in true peptides (third column), and the percentage increases in true proteins (fourth column) were computed
after aggregating two or three database search algorithms out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+). The percentage
increase in true PSMs/peptides/proteins was computed by treating as the baseline the maximal number of correctly identified PSMs/peptides/proteins by
individual database search algorithms in round 1 of APIR. Based on the benchmarking results in Figure 1C, in round 1 of APIR, we applied P value-free
APIR-FDR to Byonic, Mascot, SEQUEST, and MS-GF+, and P value-based APIR-FDR to MaxQuant. In later rounds of APIR, we used P value-based

APIR-FDR for FDR control.

guarantee for identifying more peptides than individual algo-
rithms do. At the peptide with modification level, APIR also
achieved positive percentage increases across 20 combinations
on all four datasets with only one exception: APIR fell short
by a negligible 0.1% when aggregating the outputs of Byonic,
Mascot, and SEQUEST on the TNBC dataset at ¢ =1%

(Figure S12). At the protein level, APIR still managed to outper-
form individual database search algorithms for all 20 combina-
tions on both phospho-proteomics AML datasets and for more
than half of the combinations on the TNBC and nonphospho-
proteomics AML datasets. Our results demonstrate that APIR
can boost the usage efficiency of shotgun proteomics data.
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Figure 5 Power improvement of APIR over individual database search algorithms at the FDR threshold g = 5%

The percentage increases in PSMs (first column), the percentage increases in peptides (second column), the percentage increases in peptides with
modifications (third column), and the percentage increases in true proteins (fourth column) of APIR after aggregating two or three database search
algorithms out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GF+) at the FDR threshold g = 5% on the phospho AML-C1 dataset (A), the
phospho AML-C2 dataset (B), the TNBC dataset (C), and the nonphospho AML dataset (D). The percentage increase in PSMs/peptides/peptides with
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We also applied APIR to combining four and five database
search algorithms, which again confirm the power advantage
of APIR (Figures S13 and S14).

APIR identifies biologically meaningful proteins
from the AML and TNBC datasets

Next, we investigated the biological functions of the proteins
missed by individual database search algorithms but recov-
ered by APIR from the phospho-proteomics AML and TNBC
datasets. We also performed additional analyses to confirm
the existence of these biologically relevant proteins.
Specifically, APIR adopted individual search algorithms’
mappings from PSMs to proteins. That is, APIR aggregated
PSMs and mapped them to proteins based on the PSM—pro-
tein mappings output by individual search algorithms. If a
PSM is assigned to more than one protein by different search
algorithms, APIR outputs a master protein by majority voting
(see File S1 for details).

In the phospho AML-C1 and phospho AML-C2 datasets,
which contain patient samples with enriched or depleted
LSCs, APIR identified biologically relevant proteins that were
missed by individual database search algorithms. Specifically,
in the phospho AML-C1 dataset, APIR identified 80 and 121
additional proteins (the union of the additional proteins that
APIR identified from the combinations) at the FDR thresh-
olds of g = 1% and g = 5%, respectively, from the 20 combi-
nations (of two and three algorithms). These two sets of
additional proteins recovered by APIR include some well-
known proteins, such as transcription intermediary factor
l-alpha (TIFla), phosphatidylinositol 4,5-bisphosphate
5-phosphatase A (PIBSPA), homeobox protein BS (HOXBS),
small ubiquitin-related modifier 2 (SUMO-2), transcription
factor JUND, glypican 2 (GPC2), Dna] homolog subfamily C
member 21 (DNAJC21), and messenger RNA (mRNA) decay
activator protein ZFP36L2. Here, we summarized the tumor-
related functions of these well-known proteins. High levels of
TIFla are associated with oncogenesis and disease progres-
sion in a variety of cancer lineages such as AML [43-49].
PIBSPA has a tumor-suppressive role in human melanoma
[50]; its high expression is correlated with limited tumor pro-
gression and better prognosis in breast cancer patients [51].
HOXBS is among the most affected transcription factors by
the genetic mutations that initiate AML [52-54]. SUMO-2
plays a key role in regulating CBX2, which is overexpressed
in several human tumors (e.g., leukemia) and whose expres-
sion is correlated with lower overall survival [55]. JUND
plays a central role in the oncogenic process leading to adult
T-cell leukemia [56]. GPC2 is an oncoprotein and a candidate
immunotherapeutic target in high-risk neuroblastoma [57].
DNAJC21 mutations are linked to cancer-prone bone mar-
row failure syndrome [58]. ZFP361.2 induces AML cell apo-
ptosis and inhibits cell proliferation [59]; its mutation is
associated with the pathogenesis of acute leukemia [60].
Moreover, in the phospho AML-C2 dataset, APIR identified
62 additional proteins at the FDR threshold ¢ = 1% and 19
additional proteins at the FDR threshold g = 5%, including

Figure 5 Continued

1

JUND and myeloperoxidase (MPO). MPO is expressed in he-
matopoietic progenitor cells in prenatal bone marrow, which
is considered the initial target for the development of leuke-
mia [61-63].

In the TNBC dataset, APIR identified 92 additional pro-
teins missed by individual database search algorithms at the
FDR threshold ¢ = 1% and 69 additional proteins at the FDR
threshold g = 5%. In particular, at ¢ = 1%, APIR uniquely
identified breast cancer type 2 susceptibility protein (BRCA2)
and Fanconi anemia complementation group E (FANCE).
BRCA2 is a well-known breast cancer susceptibility gene; an
inherited genetic mutation inactivating the BRCA2 gene is
found in TNBC patients [64-69]. The FANC-BRCA path-
way, including FANCE and BRCA2, is known for its roles in
DNA damage response. Inactivation of the FANC-BRCA
pathway is identified in ovarian cancer cell lines and sporadic
primary tumor tissues [70,71]. Additionally, at both ¢ = 1%
and g = 5%, APIR identified JUND and roundabout guid-
ance receptor 4 (ROBO4); the latter regulates tumor growth
and metastasis in multiple types of cancer, including breast
cancer [72-75]. We summarized the biological relevance of
these proteins in Table 1.

To further evaluate the existence of the aforementioned
known proteins, we performed two analyses. First, we exam-
ined the MS/MS spectra of the PSMs corresponding to these
proteins identified from the phospho-proteomics AML data-
sets. The results showed that the PSMs rescued by APIR are
likely true positives (Table S2; File S2). The rescued PSMs fell
broadly into three categories: (1) high-likelihood identifica-
tions with both accurate precursor mass and numerous frag-
ment ions (40%), (2) identifications with accurate precursor
mass and few (30%) or no fragment ions (10%), and (3) chi-
meric spectra (20%). Second, we examined the PSMs corre-
sponding to these proteins identified from the phospho-
proteomics AML datasets and the TNBC dataset (Tables S3—
S5), and we found that these proteins all corresponded to at
least one target PSM with a high matching score (from at
least one database search algorithm). These results, combined
with the constituent nature and biological relevance of these
proteins (Table 1), suggest the likely existence of these pro-
teins and demonstrate APIR’s potential in identifying novel
disease-related proteins.

APIR empowers the identification of differentially
expressed peptides

An important use of proteomics data is the differential ex-
pression analysis, which aims to identify proteins whose ex-
pression levels change between two conditions. Protein is the
ideal unit of measurement; however, due to the difficulties in
quantifying protein levels from MS/MS data, an alternative
approach has been proposed and used, which first identifies
differentially expressed (DE) peptides and then investigates
their corresponding proteins along with modifications.
Because it is less error-prone to quantify peptides than pro-
teins, doing so would dramatically reduce errors in the differ-
ential expression analysis.

modifications/proteins was computed by treating as the baseline the maximal number of PSMs/peptides/peptides and modifications/proteins by an
individual database search algorithm in round 1 of APIR. Phospho AML-C1, phospho-proteomics acute myeloid leukemia-patient cohort 1; phospho AML-
C2, phospho-proteomics acute myeloid leukemia-patient cohort 2; TNBC, triple-negative breast cancer; nonphospho AML, nonphospho-proteomics acute

myeloid leukemia.
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Table 1 A summary of biologically relevant proteins recovered by APIR from the AML and TNBC datasets

Dataset Protein Biological relevance Refs.
Phospho AML-C1 and phospho AML-C2 TIFla High levels of TIF1a are associated with oncogenesis and [43-49]
disease progression in a variety of cancer lineages such as AML
PIBSPA PIBSPA has a tumor-suppressive role in human melanomay; its high [50,51]
expression has been correlated with limited tumor progression and
better prognosis in breast cancer patients
HOXBS HOXBS is among the most affected transcription factors by the ge- [52-54]
netic mutations that initiate AML
SUMO-2 SUMO-2 plays a key role in regulating CBX2, which is [55]
overexpressed in several human tumors (e.g., leukemia) and whose
expression is correlated with lower overall survival
JUND JUND plays a central role in the oncogenic process leading to adult [56]

T-cell leukemia
GPC2 GPC2 has been identified as an oncoprotein and a candidate [57]
immunotherapeutic target in high-risk neuroblastoma

DNAJC21

DNAJC21 mutations have been linked to cancer-prone bone marrow [58]

failure syndrome

ZFP36L2

ZFP36L2 induces AML cell apoptosis and inhibits cell

[59,60]

proliferation; its mutation is associated with the pathogenesis of acute

leukemia
MPO MPO is expressed in hematopoietic progenitor cells in prenatal bone

[61-63]

marrow, which are considered the initial target for the
development of leukemia

TNBC BRCA2

BRCA2 is a well-known breast cancer susceptibility gene; an inher-

[64-69]

ited genetic mutation inactivating the BRCA2 gene can be found in
people with TNBC

FANCE

Inactivation of the FANC-BRCA pathway has been identified in

[70,71]

ovarian cancer cell lines and sporadic primary tumor tissues

ROBO4

ROBO4 regulates tumor growth and metastasis in multiple types of

[72-75]

cancer, including breast cancer

Note: This table lists the biologically relevant proteins missed by individual database search algorithms but recovered by APIR from the AML and TNBC
datasets. APIR, Aggregation of Peptide Identification Results; AML, acute myeloid leukemia; phospho AML-C1, phospho-proteomics acute myeloid
leukemia-patient cohort 1; phospho AML-C2, phospho-proteomics acute myeloid leukemia-patient cohort 2; TNBC, triple-negative breast cancer; TIFla,
transcription intermediary factor 1-alpha; PIBSPA, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A; HOXBS, homeobox protein BS; SUMO-2, small
ubiquitin-related modifier 2; GPC2, glypican 2; DNAJC21, Dna] homolog subfamily C member 21; ZFP36L2, mRNA decay activator protein; mRNA,
messenger RNA; MPO, myeloperoxidase; BRCA2, breast cancer type 2 susceptibility proteiny FANCE, Fanconi anemia complementation group E; ROBO4,

roundabout guidance receptor 4.

We compared APIR with MaxQuant and MS-GF+ by per-
forming differential expression analysis on the phospho
AML-C1 dataset. We focused on this dataset instead of the
TNBC dataset or the nonphospho AML dataset because the
phospho-proteomics AML datasets were generated for our
in-house study and thus may yield new discoveries. This
analysis was conducted to demonstrate that APIR could im-
prove the identification power by aggregating dissimilar algo-
rithms. Since MaxQuant and MS-GF+ have identified
drastically different PSMs on our real datasets (Figure S15)
and are widely-used, open-source tools, we selected them as
two example algorithms.

The phospho AML-C1 dataset contains six bone marrow
samples: three enriched with LSCs, two depleted of LSCs,
and one control. To simplify our differential expression
analysis, we selected two pairs of enriched and depleted sam-
ples. Specifically, we first applied APIR to aggregate the out-
puts of MaxQuant and MS-GF+ on the phospho AML-C1
dataset using all six samples. Then, we applied DESeq2 [76]
to identify DE peptides from the aggregated peptides of
APIR, MaxQuant, and MS-GF+ using the four selected sam-
ples. As shown in Figure 6, at the FDR threshold g = 5%, we
identified 318 DE peptides from 224 proteins based on APIR,
251 DE peptides from 180 proteins based on MaxQuant,
and 242 DE peptides from 190 proteins based on MS-GF+,
respectively. In particular, APIR identified 6 leukemia-related

proteins: promyelocytic leukemia zinc finger (PLZF), serine/
threonine-protein kinase BRAF, signal transducer and activa-
tor of transcription 5B (STATS5B), promyelocytic leukemia
protein (PML), cyclin-dependent kinase inhibitor 1B
(CDKN1B), and retinoblastoma-associated protein (RB1), all
of which belong to the AML Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway or the chronic myeloid leuke-
mia KEGG pathway [77-79]. In particular, PLZF and
CDKN1B were uniquely identified from the APIR aggregated
result but not by either MaxQuant or MS-GF+.

We next investigated the phosphorylation of the identified
DE peptides of PLZF or CDKN1B. With regard to PLZF,
APIR identified phosphorylation at Thr282, which is known
to activate cyclin A2 [80], a core cell cycle regulator of which
the deregulation seems to be closely related to chromosomal
instability and tumor proliferation [8§1-83]. As for CDKN1B,
APIR identified phosphorylation at Ser140. Previous studies
have revealed that ataxia-telangiectasia mutated (ATM)
phosphorylation of CDKN1B at Ser140 is important for sta-
bilization and enforcement of the CDKN1B-mediated G1
checkpoint in response to DNA damage [84]. A recent study
has shown that inability to phosphorylate CDKN1B at Serine
140 is associated with enhanced cellular proliferation and
colony formation [85]. Our results, summarized in Table 2,
demonstrate that APIR can assist in discovering interesting
proteins and relevant post-translational modifications.
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APIR aggregating MaxQuant and MS-GF+
(224 DE proteins)

PLZF
CDKN1B

17

74
BRAF

STATSB

42 31
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(180 DE proteins)
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(190 DE proteins)

Figure 6 Comparison of APIR with MaxQuant and MS-GF+ by
differential expression analysis on the phospho AML-C1 dataset
Venn diagram of DE proteins based on the identified peptides by APIR
aggregating MaxQuant and MS-GF+, MaxQuant, and MS-GF+ in the
phospho AML-C1 dataset. Six leukemia-related proteins were found as
DE proteins based on APIR: PLZF, BRAF, STAT5B, PML, CDKN1B, and
RB1. Notably, the phospho AML-C1 dataset contains six bone marrow
samples from two patients: P5337 and P5340. From P5337, one LSC-
enriched sample and one LSC-depleted sample were taken. From P5340,
two LSC-enriched samples and one LSC-depleted sample were taken. In
our differential expression analysis, we compared two LSC-enriched
samples (one per patient) against two LSC-depleted samples (one per
patient). DE, differentially expressed; LSC, leukemia stem cell.

Table 2 A summary of biologically relevant phosphorylation sites in
the DE peptides of PLZF and CDKN1B

Protein ~ Phosphorylation Biological relevance Refs.

site

PLZF Thr282 Phosphorylation at Thr282
activates cyclin-A2, a core cell
cycle regulator of which the de-
regulation seems to be closely
related to chromosomal insta-
bility and tumor proliferation
Phosphorylation of CDKN1B
at Ser140 is important for sta-
bilization and enforcement of
the CDKN1B-mediated G1
checkpoint in response to DNA
damage; inability to phosphor-
ylate CDKN1B at Ser140 is as-
sociated with enhanced cellular

proliferation and colony

[80-83]

CDKN1B Ser140 [84,85]

Note: The DE peptides of PLZF and CDKN1B were identified by DESeq2
[76] from the aggregated peptides by APIR from the outputs of MaxQuant
and MS-GF+ in the phospho AML-C1 dataset. DE, differentially
expressed; PLZF, promyelocytic leukemia zinc finger; CDKN1B, cyclin-
dependent kinase inhibitor 1B.

Discussion

In this study, we developed a statistical framework APIR to
combine the power of distinct database search algorithms by
aggregating their identified PSMs from shotgun proteomics
data with FDR control. The core component of APIR is
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APIR-FDR, an FDR-control method that reidentifies PSMs
from the output of a single database search algorithm with-
out restrictive distribution assumptions. APIR offers a great
advantage of flexibility: APIR is compatible with any data-
base search algorithms. The reason lies in that APIR is a se-
quential approach based on a mathematical fact: given
multiple disjoint sets of discoveries, when each has the FDP
smaller than or equal to g, their union also has the FDP
smaller than or equal to g. This sequential approach not only
allows APIR to circumvent the need to impose restrictive dis-
tribution assumptions on the output of each database search
algorithm, but also ensures that APIR would identify at least
as many, if not more, unique peptides as a single database
search algorithm does.

By assessing APIR on the first publicly available CPS data-
set that we generated, we verified that APIR consistently
improves the power of peptide identification with the FDR
controlled on the identified PSMs. Our extensive studies on
AML and TNBC data suggest that APIR can discover addi-
tional disease-relevant peptides and proteins that are other-
wise missed by individual database search algorithms.

We note that Ning et al. [29] developed a multi-stage
method to combine PSMs identified by multiple database
search algorithms, a seemingly similar framework. However,
three major differences exist between APIR and the multi-
stage method in [29]. First, APIR is an open-source and
platform-agnostic framework that is universally compatible
with all database search algorithms. In contrast, the multi-
stage method is restricted to three database search algo-
rithms: X!Tandem [86], InsPecT [87], and SpectraST [88].
Second, APIR adopts a data-driven approach to determine
the combination order of database search algorithms
(Figure 2). In contrast, the multi-stage method pre-
determines the combination order of its three database search
algorithms based on domain knowledge, making its generali-
zation to other database search algorithms non-trivial. In par-
ticular, Ning and colleagues [29] say, “We note, however,
that routine application of iterative strategies such as the one
utilized in this work, especially in a high throughput environ-
ment, will require further substantial work on the develop-
ment of statistical FDR estimation methods applicable to a
wide range of peptide identification approaches, including
subset database searching, blind PTM analysis, and genomic
searches.” Hence, APIR makes contribution to the future
work mentioned by Ning and colleagues [29].

The current implementation of APIR controls the FDR at
the PSM level. However, in shotgun proteomics experiments,
PSMs serve merely as an intermediate to identify peptides
and then proteins, the real molecules of biological interest;
thus, an ideal FDR control should occur at the protein level.
A fact is that FDR control at the PSM level does not entail
FDR control at the protein level, because multiple PSMs may
correspond to the same peptide sequence and multiple pepti-
des may correspond to the same protein. To realize the FDR
control on the identified proteins, APIR-FDR needs to be
carefully modified. A possible modification would be to con-
struct a matching score for each protein from the matching
scores of the PSMs that correspond to this protein’s peptides.
Future studies are needed to explore possible ways of
constructing proteins’ matching scores. Once we modify
APIR-FDR to control the FDR at the protein level, the cur-
rent sequential approach of APIR still applies: applying the
modified APIR-FDR to sequentially identify disjoint sets of
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proteins from the outputs of individual database search algo-
rithms; outputting the union of these disjoint sets as
discoveries.

Notably, APIR adopts a statistical inference framework as
opposed to a machine learning prediction framework for
PSM aggregation. Hence, APIR is unlike existing machine
learning methods (such as PepArML [11]), which could be
categorized into two types. Methods of the first type require
an external benchmark proteomics dataset, which contains
known true PSMs and false PSMs, as the training data to
train a classifier. Then, they apply the trained classifier to a
new proteomics dataset to predict whether a target PSM is
true or false. Their underlying assumption is that the classifier
trained on the benchmark dataset is generalizable to the new
dataset. However, when this generalizability does not hold (a
likely scenario given the vast diversity of biological samples),
their predicted target PSMs would become questionable.
Methods of the second type do not rely on an external bench-
mark dataset but have to label a subset of target PSMs as pos-
itive or negative for training a classifier. This labeling step
requires multiple arbitrary thresholds, which would affect the
classifier’s prediction accuracy. In contrast, APIR requires no
external training data or arbitrary labeling.

Although the applications in this work are based on MS/
MS data collected by data-dependent acquisition (DDA),
APIR is also applicable to MS/MS data collected by data-
independent acquisition (DIA), as long as the database search
algorithms use the target—-decoy search strategy. Moreover,
although APIR is designed for proteomics data, its frame-
work is general and extendable to aggregating discoveries in
other popular high-throughput biomedical data analyses, in-
cluding peak calling from chromatin immunoprecipitation
followed by sequencing (ChIP-seq) data, differential gene ex-
pression analysis from bulk or single-cell RNA sequencing
data, and differentially interacting chromatin region identifi-
cation from high-throughput chromosome conformation cap-
ture sequencing (Hi-C) data [32]. For example, an extended
APIR may aggregate discoveries made by popular differential
gene expression analysis methods, such as DESeq2 [76],
edgeR [89], and limma [90], to strengthen FDR control [91]
and meanwhile increase the power.

Code availability

The APIR R package is available at https://github.com/
yiling0210/APIR  or https://ngdc.cncb.ac.cn/biocode/tools/
BT007298. The code and preprocessed data for reproducing
the figures are available at https:/doi.org/10.5281/zen
0d0.5202768.

Data availability

The Pfu MS data have been deposited in the PRoteomics
IDEntifications Database [92] (PRIDE: PXD028558), which
are publicly accessible at https://www.ebi.ac.uk/pride/.
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