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Abstract
Advances in mass spectrometry (MS) have enabled high-throughput analysis of proteomes in biological systems. The state-of-the-art MS data 
analysis relies on database search algorithms to quantify proteins by identifying peptide–spectrum matches (PSMs), which convert mass spec
tra to peptide sequences. Different database search algorithms use distinct search strategies and thus may identify unique PSMs. However, no 
existing approaches can aggregate all user-specified database search algorithms with a guaranteed increase in the number of identified pepti
des and a control on the false discovery rate (FDR). To fill in this gap, we proposed a statistical framework, Aggregation of Peptide Identification 
Results (APIR), that is universally compatible with all database search algorithms. Notably, under an FDR threshold, APIR is guaranteed to iden
tify at least as many, if not more, peptides as individual database search algorithms do. Evaluation of APIR on a complex proteomics standard 
dataset showed that APIR outpowers individual database search algorithms and empirically controls the FDR. Real data studies showed that 
APIR can identify disease-related proteins and post-translational modifications missed by some individual database search algorithms. The APIR 
framework is easily extendable to aggregating discoveries made by multiple algorithms in other high-throughput biomedical data analysis, e.g., 
differential gene expression analysis on RNA sequencing data. The APIR R package is available at https://github.com/yiling0210/APIR.
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Introduction
Proteomics studies have discovered essential roles of proteins 
in complex diseases such as neurodegenerative disease [1] 
and cancer [2,3]. These studies have demonstrated the poten
tial of using proteomics to identify clinical biomarkers for 
disease diagnosis and therapeutic targets for disease treat
ment. In recent years, proteomics analytical technologies, 
particularly tandem mass spectrometry (MS/MS)-based shot
gun proteomics, have advanced immensely, thus enabling 
high-throughput identification and quantification of proteins 
in biological samples. Compared to prior technologies, shot
gun proteomics has simplified sample preparation and pro
tein separation, reduced time and cost, and saved procedures 
that may result in sample degradation and loss [4]. In a typi
cal shotgun proteomics experiment, a protein mixture is first 
enzymatically digested into peptides, i.e., short amino acid 
chains up to approximately 40-residue long; the resulting 
peptide mixture is then separated and measured by MS/MS 
into tens of thousands of mass spectra. Each mass spectrum 
encodes the chemical composition of a peptide; thus, the 

spectrum can be used to identify the peptide’s amino acid se
quence and post-translational modifications, as well as to 
quantify the peptide’s abundance with additional weight in
formation (Figure 1A).

Since the development of shotgun proteomics, numerous 
database search algorithms have been developed to auto
matically convert mass spectra into peptide sequences. 
Popular database search algorithms include SEQUEST [5], 
Mascot [6], MaxQuant [7], Byonic [8], and MS-GFþ [9], 
among many others. A database search algorithm takes as 
input the mass spectra from a shotgun proteomics experi
ment and a protein database (called the “target database”) 
that contains known protein sequences (called “target 
sequences”). For each mass spectrum, the algorithm identi
fies the best matching peptide sequence, i.e., a subsequence 
of a protein sequence, from the database; we call this pro
cess “peptide identification”, whose result is a “peptide– 
spectrum match” (PSM). However, due to data imperfection 
(such as low-quality mass spectra, data processing mistakes, 
and protein database incompleteness), the identified PSMs 

Received: 16 May 2023; Revised: 26 February 2024; Accepted: 11 March 2024. 
# The Author(s) 2024. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / 
China National Center for Bioinformation and Genetics Society of China.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Genomics, Proteomics & Bioinformatics, 2024, 22(2), qzae042 
https://doi.org/10.1093/gpbjnl/qzae042 
Advance access publication: 3 June 2024 
Method 

D
ow

nloaded from
 https://academ

ic.oup.com
/gpb/article/22/2/qzae042/7687055 by guest on 15 June 2025

https://orcid.org/0000-0001-7259-2787
https://orcid.org/0000-0002-8229-5716
https://orcid.org/0000-0002-1005-9896
https://orcid.org/0000-0002-0866-0738
https://orcid.org/0000-0002-5445-3561
https://orcid.org/0000-0002-1521-7996
https://orcid.org/0000-0003-2086-1134
https://orcid.org/0000-0002-4955-3832
https://orcid.org/0000-0002-2945-9005
https://orcid.org/0000-0002-9288-5648
https://github.com/yiling0210/APIR


often consist of many false PSMs, causing issues in the 
downstream system-wide identification and quantification 
of proteins [10].

To ensure the accuracy of PSMs, the false discovery rate 
(FDR) has been used as the most popular statistical criterion 
[11–18]. Technically, the FDR is defined as the expected pro
portion of false PSMs among the identified PSMs; in other 
words, a small FDR indicates good accuracy of PSMs. To 
control the FDR, the standard approach is the target–decoy 

search, which utilizes a “decoy database” consisting of 
known, non-existent protein sequences (called “decoy 
sequences”) [10]. Two common strategies for target–decoy 
search are concatenated search and parallel search. The 
concatenated search strategy (Figure S1A) finds the best 
match of a mass spectrum in a concatenated database con
taining both target sequences and decoy sequences; hence, the 
match (i.e., PSM) corresponds to either a target sequence or a 
decoy sequence. In contrast, the parallel search strategy 
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Figure 1 The workflow of shotgun proteomics and benchmarking search algorithms on the CPS dataset 
A. The workflow of a typical shotgun proteomics experiment. The protein mixture is first enzymatically digested into peptides, i.e., short amino acid 
chains up to approximately 40-residue long; the resulting peptide mixture is then separated and measured by MS/MS into tens of thousands of mass 
spectra. Each mass spectrum encodes the chemical composition of a peptide. Then, a database search algorithm is used to identify the peptide’s amino 
acid sequence and post-translational modifications, as well as to quantify the peptide’s abundance. B. Venn diagrams showing the overlap of true PSMs 
identified by the five database search algorithms from the Pfu CPS dataset under the FDR threshold q¼ 1% (left) or q¼ 5% (right). C. The FDP and power 
of each database search algorithm on the Pfu CPS dataset at the FDR threshold q 2 f1%; . . . ;10%g. MS, mass spectrometry; MS/MS, tandem mass 
spectrometry; PSM, peptide–spectrum match; FDR, false discovery rate; FDP, false discovery proportion; Pfu, Pyrococcus furiosus; m/z, mass to charge 
ratio; APIR, Aggregation of Peptide Identification Results; CPS, complex proteomics standard.
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(Figure S1B) finds the best match of a mass spectrum in the 
target database and the decoy database separately; hence, the 
spectrum has two best matches, one with a target sequence 
(i.e., a target PSM) and the other with a decoy sequence (i.e., 
a decoy PSM). Based on the target–decoy search results 
(regardless of being concatenated or parallel) which include 
target PSMs and decoy PSMs with matching scores, multiple 
procedures that are P value-based or P value-free have been 
proposed to control the FDR of a database search algorithm’s 
identified target PSMs [14,19–21].

However, controlling the FDR is only one side of the story. 
Because shotgun proteomics experiments are costly, a com
mon goal of database search algorithms is to identify as many 
true PSMs as possible to maximize the experimental output, 
in other words, to maximize the identification power given a 
target, user-specified FDR threshold (e.g., 1% or 5%).

It has been observed that, with the same input mass spectra 
and FDR threshold, different database search algorithms of
ten find largely distinct sets of PSMs [22–26]. In this study, 
we confirmed this observation using our in-house dataset, the 
first publicly available complex proteomics standard (CPS) 
dataset from Pyrococcus furiosus (Pfu) that approximates the 
dynamic range of a typical proteomic experiment. We first 
benchmarked five popular database search algorithms — 
Byonic [8], Mascot [6], SEQUEST [5], MaxQuant [7], and 
MS-GFþ [9] — on the CPS dataset using an FDR assessment 
approach similar to that in [27]. Our results confirmed that 
these five algorithms were designed to capture unique sets of 
PSMs (see Results for details). Hence, it is reasonable to ag
gregate individual database search algorithms’ outputs to 
boost the power of identifying peptides from shotgun proteo
mics data.

In the proteomics field, existing aggregation methods in
clude Scaffold [25], MSblender [18], FDRAnalysis [28], 
iProphet [17], ConsensusID [16], PepArML [11], and a 
multi-stage method by Ning and his colleagues [29]. Except 
FDRAnalysis, which has been shown infeasible for high- 
throughput proteomics [22], the other six methods have at 
least one of the two major drawbacks: (1) limited compatibil
ity with database search algorithms and (2) lack of guarantee 
for identifying more peptides under the same FDR threshold. 
For the first drawback, except ConsensusID, the other five 
aggregation methods unanimously limit the choices of data
base search algorithms. As for the second drawback, al
though empirical evidence shows that, on some datasets, 
these aggregation methods, except the multi-stage method by 
Ning et al. [29], may identify more peptides than those identi
fied by individual database search algorithms, none of these 
aggregation methods is guaranteed to do so by algo
rithm design.

In addition to the aforementioned aggregation methods de
veloped for proteomics data, generic statistical methods de
veloped for aggregating rank lists are in theory applicable to 
aggregating the PSM lists output by database search algo
rithms. However, none of these generic methods have been 
developed into software packages compatible with database 
search algorithms, nor are they guaranteed to identify more 
peptides given an FDR threshold (many generic methods ag
gregate rank lists without FDR control). Therefore, the field 
calls for a robust, powerful, and flexible aggregation method 
that allows researchers to reap the benefits of the diverse and 
ever-growing database search algorithms.

Here, we proposed Aggregation of Peptide Identification 
Results (APIR), a statistical framework that aggregates pep
tide identification results from multiple database search algo
rithms with FDR control. Compared to the existing 
aggregation methods, APIR offers the following three advan
tages simultaneously: first, APIR is open-source and univer
sally adaptive to database search algorithms that output 
PSMs with matching scores [e.g., q-values or posterior error 
probabilities (PEPs)]; second, APIR is guaranteed to identify 
at least as many as, if not more, peptides than individual 
database search algorithms do; third, APIR empirically con
trols the FDR in simulation and real-data benchmark studies. 
Hence, APIR is a robust and flexible framework that enhan
ces the power while controlling the FDR of peptide identifica
tion from shotgun proteomics data.

Note that the framework of APIR could be easily extended 
to aggregate discoveries made by multiple algorithms in other 
high-throughput biomedical data analysis, such as differential 
gene expression analysis on RNA sequencing data.

Method
We propose APIR to aggregate the output PSMs of multiple 
database search algorithms. Designed to control the FDR of 
aggregated PSMs, APIR is a sequential framework applied to 
the output PSMs of individual database search algorithms. 
To benchmark APIR and existing database search algo
rithms, we also generate the first publicly available CPS data
set from Pfu to approximate the dynamic range of a typical 
proteomic experiment. Below we first introduce the method
ology of APIR, including APIR-FDR and the sequential 
framework for aggregating PSMs. Then, we introduce the ex
perimental details on how we generate the CPS dataset and 
use it for benchmarking purposes.

APIR methodology
Aside from a user-specified FDR threshold q (e.g., q ¼ 5%), 
APIR takes as input the target–decoy search results from the 
database search algorithms that users would like aggregate 
[10]. Specifically, APIR requires from each database search 
algorithm a list of target PSMs with matching scores and a 
list of decoy PSMs with matching scores. To maximize 
power, we recommend users to extract the entire lists of tar
get PSMs and decoy PSMs by setting the internal FDR of 
each database search algorithm to 100%. Note that the tar
get–decoy search strategy referred to herein does not include 
the FDR estimation procedure criticized by Gupta and col
leagues [19].

To facilitate downstream analysis, APIR also reports the 
master protein, the post-translational modifications, and the 
abundance of each identified PSM, if applicable. See File S1 
for details on these post-processing steps.

APIR-FDR: FDR control on any individual search algorithm
The core component of APIR is APIR-FDR, an umbrella 
FDR-control procedure for the identified target PSMs of each 
individual database search algorithm. APIR-FDR takes as in
put an FDR threshold q, a list of target PSMs with matching 
scores, and a list of decoy PSMs with matching scores. APIR- 
FDR then outputs the identified target PSMs. As an umbrella 
FDR-control procedure, APIR-FDR can be P value-based or 
P value-free, including all possible procedures that can con
trol the FDR for the identified target PSMs of an individual 
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database search algorithm. Below we describe three exemplar 
options for APIR-FDR: a P value-based option and two P 
value-free options.

To facilitate our discussion, we introduce some notations. 
Let m and n denote the numbers of target PSMs and decoy 
PSMs, respectively, outputted by a database search algo
rithm. We denote the matching scores of target PSMs and de
coy PSMs as T1; . . . ;Tm and D1; . . . ;Dn, respectively. Without 
loss of generality, we assume that the matching scores are 
positive, and a larger matching score indicates a higher 
chance for a PSM to be a true match. For instance, if the out
put of a database search algorithm contains PSMs with q-val
ues or E-values (whose smaller values indicate more likely 
true matches), then we would define the negative log- 
transformed q-values or E-values as matching scores.

First, a P value-based FDR-control procedure applies to 
both concatenated and parallel target–decoy search strategies 
[14]. It assumes that the matching scores of decoy PSMs and 
false target PSMs are independently and identically distrib
uted, and it constructs a null distribution by pooling the 
matching scores of decoy PSMs D1; . . . ;Dn. Then, it com
putes a P value for the i-th target PSM as the tail probability 
right of Ti, i.e., pi ¼

Pn
j¼1 I Dj ≥ Ti

� �
=n; i¼ 1; . . . ;m. Given 

the FDR threshold q and the P values p1; . . . ;pm, this proce
dure applies the Benjamini–Hochberg procedure [30] to set 
a P value threshold pthreðqÞ and outputs i¼ 1; . . . ;m :f

pi ≤ pthre qð Þg as the indices of the identified target PSMs.
Second, a P value-free FDR-control procedure (as a clarifi

cation, this procedure was referred to as the target–decoy 
search strategy in [31], different from the terminologies that 
we use) also applies to both concatenated and parallel search 
strategies. When used with concatenated search results, for a 
given matching score x, this procedure counts the numbers of 
target PSMs and decoy PSMs with matching scores at least x 
as NT xð Þ ¼

Pm
i¼1 I Ti ≥ xf g and ND xð Þ ¼

Pn
i¼1 I Di ≥ xf g, re

spectively. This procedure then estimates the FDR of target 
PSMs with matching scores at least x as dFDR xð Þ ¼ ND xð Þ

NT xð Þ :

When used with parallel search results, the procedure needs 
to estimate π0, the proportion of false PSMs among the target 
PSMs. This proportion is unknown but can be conservatively 
estimated. This is done by examining PSMs with scores near 
zero and then calculating the ratio of the number of decoy 
PSMs to the number of target PSMs in this subset of PSMs, as 
outlined in [14]. With the estimated bπ0, the procedure then 
estimates the FDR of target PSMs with matching scores at 
least x as dFDR xð Þ ¼ bπ0

ND xð Þ
NT xð Þ. Given the FDR threshold q, this 

procedure outputs i¼ 1; . . . ;m : dFDR Tið Þ≤ q
n o

as the indices 
of the identified target PSMs.

Third, an alternative P value-free FDR-control procedure 
is Clipper, which works for parallel search results by design 
(Clipper controls the FDR by contrasting two conditions, 
which correspond to a mass spectrum’s target match and de
coy match in parallel search) [10]. In parallel search results, 
we assume that the first s≤ min m;nð Þ target PSMs can be 
paired one-to-one with decoy PSMs. Then, we arrange the de
coy PSM indices in the way that the i-th decoy PSM shares 
the same mass spectrum with the i-th target PSM for 1 ≤ i ≤ s 
(note that s=m is close to 1 in most parallel search results). 
Clipper first constructs a contrast score Ci ¼ Ti � Di 
for i¼ 1; . . . ; s; note that the contrast score may be defined 
in other forms [32]. Then, given the FDR threshold q, 

Clipper finds a contrast score cutoff Cthre qð Þ ¼

min t 2 Cij j : Ci 6¼ 0f g :
i:Ci ≤ � tf gj jþ1

max i:Ci ≥ tf gj j; 1ð Þ
≤ q

n o
, and outputs 

i¼ 1; . . . ; s : Ci ≥ CthreðqÞ
� �

as the indices of the identified tar
get PSMs, where i : Ci ≤ � tf gj j indicates the number of 
C1; . . . ;Cs that are no greater than � t. For the i-th target PSM 
(i¼ 1; . . . ; s), Clipper estimates its FDR as dFDR Cið Þ ¼

minfq 2 0;1ð Þ : Ci ≥ CthreðqÞg. In comparison to the P value- 
free procedure outlined previously, Clipper is more conserva
tive (owing to the “þ1” in the numerator) and flexible. 
Notably, Clipper is similar to the aforementioned P value- 
free FDR-control procedure if the contrast score is defined as 
Ci ¼maxðTi;DiÞ. Compared to the P value-free FDR-control 
procedure outlined in the previous paragraph, Clipper has 
three advantages: (1) Clipper does not require the estimation 
of π0 in parallel search; (2) Clipper’s estimated FDR dFDR Cið Þ

monotonically decreases as the contrast score Ci increases, 
resulting in better power in numerous instances; (3) Clipper 
is more flexible because its contrast score Ci can be defined in 
various ways.

The FDR-control procedures described above are just three 
examples. Any other procedures that control the FDR can 
also be used as options for APIR-FDR.

APIR: a sequential framework for aggregating the identified 
target PSMs of multiple search algorithms with FDR control
Given the FDR threshold q and the outputs of multiple data
base search algorithms (including all target PSMs and decoy 
PSMs with matching scores), the sequential framework of 
APIR identifies target PSMs (with the FDR controlled under 
q) by combining the outputs of these database search algo
rithms based on a mathematical fact: if disjoint sets of discov
eries all have the false discovery proportion (FDP; also 
known as the empirical FDR) under q, then their union set 
also has the FDP under q. Hence, the sequential framework 
of APIR is designed to find disjoint sets of target PSMs from 
the outputs of multiple database search algorithms. The final 
output of APIR is the union of these disjoint sets, which is 
guaranteed to contain more unique peptides than what could 
be identified by a single database search algorithm.

Suppose we are interested in aggregating K algorithms. 
Accordingly, the sequential approach will consist of a maxi
mum of K rounds. Let Wk denote the set of target PSMs out
put by the k-th algorithm, k¼ 1; . . . ;K. In round 1, APIR 
applies APIR-FDR to each algorithm’s output with the FDR 
threshold q. Denote the identified target PSMs from the k-th 
algorithm by U1k �Wk. Define J1 2 1; . . . ;Kf g to be the algo
rithm index such that U1J1 contains the largest number of 
unique peptides among U11; . . . ;U1K. We use the number of 
unique peptides rather than the number of PSMs because 
peptides are more biologically relevant than PSMs. In round 
2, APIR first excludes all target PSMs output by algorithm J1, 
identified or unidentified in round 1, i.e., WJ1 , from the out
puts of the remaining database search algorithms, resulting in 
reduced sets of candidate target PSMs W1 nWJ1 ; . . . ;

WK nWJ1 : Then, APIR applies APIR-FDR with the FDR 
threshold q to these reduced sets except WJ1 nWJ1 ¼ ;. 
Denote the resulting sets of identified target PSMs by 
U2k � Wk nWJ1

� �
, k 2 1; . . . ;Kf g n fJ1g. Again, APIR finds 

algorithm J2 such that U2J2 contains the largest number of 
unique peptides. APIR repeats this procedure in the subse
quent rounds. Specifically, in round ‘ with ‘≥ 2, APIR first 
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excludes all target PSMs output by the selected ‘ � 1 
algorithm from the outputs of remaining database search algo
rithms and applies APIR-FDR. That is, APIR applies APIR- 
FDR with the FDR threshold q to identify a set of target PSMs 
U‘k from Wk n ðWJ1 [ � � � [WJ‘� 1Þ, the reduced candidate pool 
of algorithm k after the previous ‘ rounds, for algorithm 
k 2 1; . . . ;Kf g n fJ1; . . . ; J‘� 1g. Then, APIR finds the algorithm, 
which we denote by J‘, such that U‘J‘ contains the largest num
ber of unique peptides. Finally, APIR outputs U1J1 [ � � � [UKJK 

as the set of identified target PSMs. By adopting this sequential 
approach, APIR is guaranteed to identify at least as many, if not 
more, unique peptides as those identified by a single database 
search algorithm; under the assumption that APIR-FDR con
trols the FDR for each algorithm’s identified target PSMs, APIR 
can control the FDR of the identified target PSMs under q. See  
Figure 2 for an illustration of the sequential approach of APIR.

Notably, APIR specifically controls the FDR of identified 
target PSMs so it excludes the identified target PSMs, instead 

of spectra, of one algorithm in each step. In instances where 
different algorithms match the same spectrum to distinct pep
tides, APIR may identify both PSMs as valid discoveries. 
While at least one of these two PSMs is a false discovery, the 
overall FDR for the identified PSMs remains controlled under 
this framework.

CPS dataset generation
We described the experimental details of running the MS/MS 
analysis on a Pfu CPS sample (Catalog No. 400510, Agilent, 
Santa Clara, CA). The CPS sample contains soluble proteins 
extracted from the archaeon Pfu. All other reagents were pur
chased from Sigma Aldrich (Sigma Aldrich, St. Louis, MO). 
The fully sequenced genome of Pfu encodes approximately 
2000 proteins that cover a wide range of size, pI, concentra
tion level, hydrophobic/hydrophilic character, etc. CPS 
(500 μg of total protein) was dissolved in 100 μl solution con
taining 0.5 M triethylammonium bicarbonate (TEAB) and 
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Figure 2 Illustration of APIR for aggregating three database search algorithms 
We use S1�P1 to denote a PSM of mass spectrum S1 matched to peptide sequence P1. In the output of a database search algorithm, a PSM with a 
higher matching score is marked by a darker color. White boxes indicate PSMs missing from the output. APIR adopts a sequential approach to aggregate 
the three database search algorithms. In round 1, APIR applies APIR-FDR with an FDR threshold q to identify a set of target PSMs from the output of 
each database search algorithm. APIR then selects the algorithm whose identified PSMs contain the largest number of unique peptides, and the 
identified PSMs are considered identified by APIR. In this example, APIR identified the same number of PSMs from algorithms 1 and 3 but more unique 
peptides from algorithm 3; hence, APIR selects algorithm 3. In round 2, APIR excludes all PSMs, either identified or unidentified by the selected database 
search algorithm in round 1 (algorithm 3 in this example), from the output of the remaining database search algorithms. Then, APIR applies APIR-FDR 
with an FDR threshold q to find the algorithm whose identified PSMs contain the largest number of unique peptides (algorithm 1 in this example). APIR 
repeats round 2 in the subsequent rounds until all database search algorithms are selected. Finally, APIR outputs the union of the PSMs identified in 
each round.
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0.05% sodium dodecyl sulfate (SDS). The proteins were 
reduced by adding 4 μl of 50 mM tris(2-carboxyethyl)- 
phosphine hydrochloride (TCEP) to the protein mixture, fol
lowed by incubation at 60�C for 1 h. The proteins were fur
ther alkylated by adding 2 μl of 50 mM methyl 
methanethiosulfonate (MMTS) to the protein mixture, fol
lowed by incubation at room temperature for 15 min. Then, 
20 μg trypsin dissolved 1:1 in ultrapure water was added to 
the sample, and this was incubated overnight (16 h) in the 
dark at 37�C to enzymatically digest the proteins. The tryptic 
peptides were cleaned with C-18 tips (Catalog No. 87784, 
Thermo Fisher Scientific, Waltham, MA) following the man
ufacturer’s instructions. Peptides were liquid chromatogra
phy–tandem mass spectrometry (LC–MS/MS) analyzed using 
the UltiMate 3000 ultra-high-performance liquid chromatog
raphy (UHPLC) system (EASY-Spray column, Catalog No. 
ES803A, Thermo Fisher Scientific) hyphenated with the 
Orbitrap Fusion Lumos MS instrument (Thermo Fisher 
Scientific). Peptides were fragmented using low-energy colli
sion-induced dissociation (CID) and detected with the linear 
ion trap detector.

After running MS/MS analysis, we obtained the Pfu CPS 
dataset of 49,303 mass spectra. We then adopted an ap
proach similar to that in [27] for benchmarking database 
search algorithms and aggregation methods. Specifically, we 
first constructed a target database by concatenating the Pfu 
database, the UniProt human database [33], and two contam
inant databases: the CRAPome database [34] and the con
taminant database from MaxQuant. In the target database 
construction, we removed human proteins that contain Pfu 
peptides (via in silico trypsin digestion). Contaminant data
bases consist of sequences commonly identified as contami
nants in MS experiments. Given that PSMs resulting from 
unintended sources, such as contamination, are unavoidable 
in MS experiments, PSMs originating from both the Pfu data
base and the two contaminant databases are considered as 
true PSMs. Conversely, PSMs from the human database, after 
excluding all Pfu proteins, are considered as false PSMs. 
Finally, we input the 49,303 mass spectra and the target data
base into database search algorithms. To evaluate a database 
search algorithm or an aggregation method, we consider its 
output PSMs, peptides, and proteins as true if and only if 
they belong to either Pfu or the two contaminant databases. 
The in silico digestion was done to take out any human pro
teins that contain peptides that could also be derived from 
Pfu. The in silico digestion was performed in Python using 
the pyteomics.parser function from Pyteomics with the fol
lowing settings: trypsin digestion, two allowed missed clea
vages, and a minimum peptide length of six amino acid 
residues [35,36].

Results
To verify the motivation and demonstrate the advantages of 
APIR, we conducted simulation and real data studies. First, 
we benchmarked five popular database search algorithms — 
Byonic, Mascot, SEQUEST, MaxQuant, and MS-GFþ — 
coupled with APIR-FDR options (P value-based or 
P value-free) on our Pfu CPS dataset. Second, we designed 
simulation studies to benchmark APIR against two naïve ag
gregation approaches: intersection and union of the PSM sets 
of identified by different database search algorithms. Third, 
to demonstrate the power of APIR, we applied APIR to five 

real datasets, including our CPS dataset, three acute myeloid 
leukemia (AML) datasets, and a triple-negative breast cancer 
(TNBC) dataset. Notably, we generated two of the three 
AML datasets from bone marrow samples of AML patients 
with either enriched or depleted leukemia stem cells (LSCs) 
for studying the disease mechanisms of AML. Finally, we in
vestigated and verified additional proteins found by APIR 
and performed differentially expressed peptide analysis on 
the APIR results.

Although we focused on five database search algorithms, 
APIR is universally applicable to other database search algo
rithms such as MSFragger [37] and Open-pFind [38]. Because 
nearly all database search algorithms output q-values or PEPs 
of PSMs, we used −log10-transformed PEPs from MaxQuant 
and −log10-transformed q-values from the other four database 
search algorithms as the matching scores of PSMs to demon
strate the wide applicability of APIR.

Benchmarking five database search algorithms on 
the Pfu CPS dataset
We first benchmarked five popular database search algo
rithms — Byonic, Mascot, SEQUEST, MaxQuant, and 
MS-GFþ— on the Pfu CPS dataset. Our evaluation results in  
Figure 1B showed that the five individual database search 
algorithms indeed captured unique true PSMs in this CPS 
dataset at FDR thresholds of q¼ 1% and q ¼ 5%. Notably, 
at q¼ 1%, the number of true PSMs only identified by 
Byonic (n ¼ 2720) was nearly four times that identified by all 
five algorithms (n ¼ 727). At q¼ 5%, Byonic again identified 
more unique true PSMs (n ¼ 1903) than that identified by all 
five algorithms (n ¼ 1416). Moreover, MaxQuant and MS- 
GFþ also demonstrated distinctive advantages: MaxQuant 
identified 147 and 520 unique true PSMs, while MS-GFþ
identified 153 and 218 unique true PSMs at q¼ 1% and 5%, 
respectively. In contrast, SEQUEST and Mascot showed little 
advantage in the presence of Byonic: their identified true 
PSMs were nearly all identified by Byonic (Figure S2). Our 
results confirm that these five database search algorithms 
have distinctive advantages in identifying unique PSMs, an 
observation that aligns well with existing literature 
[22–26,39].

In terms of FDR control, four database search algorithms — 
Byonic, Mascot, SEQUEST, and MS-GFþ— demonstrated ro
bust FDR control as they kept the FDPs on the benchmark data 
under the FDR thresholds of q 2 f1%; . . . ;10%g. In contrast, 
except at small values of q such as 1% or 2%, MaxQuant failed 
the FDR control by a large margin (Figure 1C).

To evaluate the effect of FDR-control procedures on each 
database search algorithm, we benchmarked two APIR-FDR 
options, one P value-based and the other P value-free, used 
with each database search algorithm. Specifically, as an ex
ploration, if a database search algorithm uses P value-based 
FDR control by default, we used Clipper as an alternative 
P value-free option; otherwise, if the algorithm’s default 
FDR-control procedure is P value-free, we used the P value- 
based option as an alternative.

On the Pfu CPS dataset, we examined the FDPs and power 
of the five database search algorithms with two APIR-FDR 
options for a range of FDR thresholds: q 2 f1%; . . . ;10%g. 
Our results in Figure 1C showed that both P value-based and 
P value-free APIR-FDR options achieved the FDR control 
and similar power when applied to the outputs of Byonic, 
Mascot, SEQUEST, and MS-GFþ. However, for MaxQuant, 
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the default P value-free FDR-control procedure (outlined in 
the Method section) failed to control the FDR under the tar
get by a large margin. In contrast, the alternative P value- 
based FDR-control procedure we applied alleviated the FDR 
control issue of MaxQuant, with FDPs controlled under q 
when q>5%. Regarding the phenomenon that both the num
ber of true PSMs and the FDP of MaxQuant (with P value- 
based FDR control) stayed unchanged as the FDR threshold 
q increased from 1% to 10% (Figure 1C), we provided a de
tailed explanation in File S1 and Figure S3.

We also compared the performance of the five database 
search algorithms with two APIR-FDR options (P value- 
based and P value-free) on the CPS dataset after excluding 
the 1416 shared true PSMs (identified by all five algorithms 
at the FDR threshold q¼ 5%) from the output of each data
base search algorithm. Theoretically, FDR control procedures 
no longer guarantee to control the FDR after a subset of 
PSMs is removed (see Figure S4 for a counterexample). Our 
results in Figure S5 showed that that default P value-free 
FDR-control procedure of MS-GFþ no longer controlled 
the FDR.

Based on the benchmark results above, we chose the P 
value-based APIR-FDR option for MaxQuant and MS-GFþ, 
because the default P value-free FDR-control procedure of 
these two algorithms failed to guarantee the FDR control. 
For Byonic, Mascot, and SEQUEST, both the P value-based 
and P value-free APIR-FDR options can be used. See Table 
S1 for details of the APIR-FDR options used with the five 
database search algorithms in each analysis.

Set union and intersection operations do not 
guarantee to control the FDR
In data analysis, there exists a common intuition: if multiple 
algorithms designed for the same purpose are applied to the 
same dataset to make discoveries, and all algorithms have 
their FDRs under q, then the intersection of their discoveries 
(i.e., the discoveries found by all algorithms) should have the 
FDR under q [11]. However, this intuition does not hold in 
general. The reason is that if all algorithms find different true 
discoveries, then their common discoveries (i.e., the intersec
tion) could be enriched with false discoveries and thus have 
the FDR larger than q. To demonstrate this, we designed a 
simulation study called the shared-false-PSMs scenario, 
where the set intersection operation fails to control the FDR. 
Although intuition says that the set union operation may not 
control the FDR, we designed another simulation study called 
the shared-true-PSMs scenario, where the set union operation 
fails to control the FDR, for completeness.

Under the shared-true-PSMs scenario, we designed three 
toy database search algorithms that tend to identify overlap
ping true PSMs but non-overlapping false PSMs (Figure 3A). 
In contrast, under the shared-false-PSMs scenario, we 
designed another three toy database search algorithms that 
tend to identify overlapping false PSMs but non-overlapping 
true PSMs (Figure 3B; see File S1 for the detailed designs of 
the two scenarios). Under both scenarios, we first applied 
APIR-FDR to the output of each toy database search algo
rithm. Then, we aggregated identified PSMs from the three 
algorithms under each scenario using set intersection, set 
union, or APIR, and evaluated the FDR of each aggregated 
PSM set. The results showed that while set union failed to 
control the FDR in the shared-true-PSMs scenario and set 

intersection failed in the shared-false-PSMs scenario, APIR 
controlled the FDR in both scenarios (Figure 3C and D).

These two scenarios serve as counterexamples, demonstrat
ing that neither set union nor set intersection can control the 
FDR of identified target PSMs. In contrast, APIR has the the
oretical FDR control.

APIR verifies FDR control and outpowers Scaffold 
and ConsensusID
To demonstrate that APIR controls the FDR by aggregating 
individual search algorithms on the Pfu CPS dataset, we 
benchmarked APIR against two existing aggregation meth
ods, Scaffold and ConsensusID, because they are the only 
two aggregation methods compatible with the five database 
search algorithms that we used: Byonic, Mascot, 
SEQUEST, MaxQuant, and MS-GFþ. Since database 
search algorithms are time-consuming to run, we first fo
cused on the 20 combinations consisting of no more than 
three of the five algorithms, including 10 combinations of 
any two algorithms and 10 combinations of any 
three algorithms.

Because of the trade-off between FDR and power, power 
comparison is valid only when FDR is controlled. Hence, for 
the three aggregation methods, APIR, Scaffold, and 
ConsensusID, we compared them in terms of both their FDPs 
and power on the Pfu CPS dataset. Regarding the power in
crease of each aggregation method over individual database 
search algorithms, we computed the percentage increases in 
the aggregated true PSMs, peptides, and proteins by treating 
as baselines the maximal numbers of true PSMs, peptides, 
and proteins identified by the five database search algo
rithms. For example, to aggregate Byonic and MaxQuant, 
based on our benchmarking results in Figure 1C, we applied 
Byonic (with the default P value-free FDR-control procedure) 
and MaxQuant (with P value-based FDR control) to identify 
PSMs in round 1. We calculated the percentage increase in 
the identified true PSMs by treating the larger of two num
bers: the numbers of true PSMs identified by Byonic and 
MaxQuant as the baselines.

As shown in Figure 4 and Figure S6, at both FDR thresh
olds of q¼ 5% and q ¼ 1%, APIR achieved consistent FDR 
control and power improvement over individual database 
search algorithms. In contrast, Scaffold controlled the FDR 
but showed highly inconsistent power improvement, while 
ConsensusID neither controlled the FDR nor had power im
provement. Specifically, the FDPs of ConsensusID exceeded 
the FDR threshold q¼ 5% by a large margin: they 
rised above 15% in 10 out of 20 combinations. In summary, 
only APIR consistently achieves power increase over individ
ual database search algorithms across the 20 algorithm com
binations, an advantage that neither Scaffold nor 
ConsensusID offers.

A technical note is that Scaffold cannot control the FDR of 
aggregated PSMs; instead, it controls the FDRs of aggregated 
peptides and proteins, and it requires the FDR thresholds to 
be input for both. Hence, strictly speaking, Scaffold is not di
rectly comparable with APIR in terms of FDR control be
cause APIR controls the FDR of aggregated PSMs. For a fair 
comparison, we implemented a variant of Scaffold, which, 
compared with the default Scaffold, has an advantage in 
power at the cost of an inflated FDR (File S1). Our results 
showed that this Scaffold variant demonstrated a slightly in
flated FDP in 7 combinations at q¼ 5% (FDP > 5.5% in 
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Figure S7A) and 12 combinations at q¼ 1% (FDP > 1.1% in 
Figure S8A). In terms of power, this Scaffold variant still 
failed to outperform the most powerful individual database 
search algorithm in 8 combinations at q¼ 5% (Figure S7B) 
and 10 combinations at q¼ 1% (Figure S8B).

Moreover, we had the results of APIR combining four and 
five database search algorithms in Figures S9 and S10, which 
again confirmed the FDR control and power advantage of 
APIR. In addition, we examined whether APIR might inflate 
the peptide-level FDRs by selecting the set of identified PSMs 
containing the largest number of unique peptides in each 
round. As shown in Figure S11, among the 52 cases [all 26 
algorithm combinations × 2 PSM-level FDR thresholds (1%

and 5%)], APIR either lowered or maintained the maximum 
peptide-level FDP achieved by an individual search algo
rithm. In other words, APIR does not inflate the peptide- 
level FDP.

APIR empowers peptide identification on the AML 
and TNBC datasets
We next applied APIR with the aforementioned 20 combina
tions of two and three algorithms to four real datasets: two 
in-house phospho-proteomics (explained below) AML 

datasets (“phospho AML-C1” and “phospho AML-C2”) 
that we collected from two cohorts of AML patients (which 
were not randomly assigned and thus not biological repli
cates) for studying the properties of LSCs; a published 
nonphospho-proteomics AML dataset (“nonphospho AML”) 
that also compares the stem cells with non-stem cells in AML 
patients [40]; and a published phospho-proteomics TNBC 
dataset that studies the effect of drug genistein on breast can
cer [41]. Phospho-proteomics is a branch of proteomics; 
while traditional proteomics aims to capture all peptides in a 
sample, phospho-proteomics focuses on phosphorylated pep
tides, also called phosphopeptides, because phosphorylation 
regulates essentially all cellular processes [42]. See File S1 for 
the details on how we generated “phospho AML-C1” and 
“phospho AML-C2”.

On each dataset, we applied APIR at two FDR thresholds 
of q¼ 1% and q ¼ 5%, and examined the percentage 
increases at four levels: PSM, peptide, peptide with modifica
tions, and protein; we calculated the percentage increases in 
the same way as what we did for the CPS dataset. Our results 
in Figure 5 (q¼ 5%) and Figure S12 (q¼ 1%) showed that 
APIR led to positive percentage increases at two levels (PSM 
and peptide) on all four datasets, confirming APIR’s 

A  Shared-true-PSMs scenario
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C  Shared-true-PSMs scenario

D  Shared-false-PSMs scenario
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Figure 3 Simulation studies showing that neither intersection nor union of discovery sets (with controlled FDR) controls FDR 
FDR control comparison of APIR, intersection, and union for aggregating three toy database search algorithms using simulated data. Two scenarios are 
considered: the shared-true-PSMs scenario and the shared-false-PSMs scenario. A. and B. Venn diagrams of true PSMs and false PSMs (identified at the 
FDR threshold q¼ 5%) on one simulation dataset under the shared-true-PSMs scenario (A) and the shared-false-PSMs scenario (B). C. and D. The FDRs 
of the three database search algorithms and three aggregation methods (union, intersection, and APIR) under the shared-true-PSMs scenario (C) and the 
shared-false-PSMs scenario (D). Note that the FDR of each database search algorithm or each aggregation method is computed as the average of FDPs 
on 200 simulated datasets under each scenario.
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guarantee for identifying more peptides than individual algo
rithms do. At the peptide with modification level, APIR also 
achieved positive percentage increases across 20 combinations 
on all four datasets with only one exception: APIR fell short 
by a negligible 0:1% when aggregating the outputs of Byonic, 
Mascot, and SEQUEST on the TNBC dataset at q¼ 1%

(Figure S12). At the protein level, APIR still managed to outper
form individual database search algorithms for all 20 combina
tions on both phospho-proteomics AML datasets and for more 
than half of the combinations on the TNBC and nonphospho- 
proteomics AML datasets. Our results demonstrate that APIR 
can boost the usage efficiency of shotgun proteomics data.
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Figure 4 Comparison of APIR, Scaffold, and ConsensusID on the CPS dataset at the FDR threshold q 5 5% 
We set both the peptide threshold and the protein threshold of Scaffold to be 5% FDR. The FDPs (first column), the percentage increases in true PSMs 
(second column), the percentage increases in true peptides (third column), and the percentage increases in true proteins (fourth column) were computed 
after aggregating two or three database search algorithms out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GFþ). The percentage 
increase in true PSMs/peptides/proteins was computed by treating as the baseline the maximal number of correctly identified PSMs/peptides/proteins by 
individual database search algorithms in round 1 of APIR. Based on the benchmarking results in Figure 1C, in round 1 of APIR, we applied P value-free 
APIR-FDR to Byonic, Mascot, SEQUEST, and MS-GFþ, and P value-based APIR-FDR to MaxQuant. In later rounds of APIR, we used P value-based 
APIR-FDR for FDR control.
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Figure 5 Power improvement of APIR over individual database search algorithms at the FDR threshold q 5 5% 
The percentage increases in PSMs (first column), the percentage increases in peptides (second column), the percentage increases in peptides with 
modifications (third column), and the percentage increases in true proteins (fourth column) of APIR after aggregating two or three database search 
algorithms out of the five (Byonic, Mascot, SEQUEST, MaxQuant, and MS-GFþ) at the FDR threshold q¼ 5% on the phospho AML-C1 dataset (A), the 
phospho AML-C2 dataset (B), the TNBC dataset (C), and the nonphospho AML dataset (D). The percentage increase in PSMs/peptides/peptides with 
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We also applied APIR to combining four and five database 
search algorithms, which again confirm the power advantage 
of APIR (Figures S13 and S14).

APIR identifies biologically meaningful proteins 
from the AML and TNBC datasets
Next, we investigated the biological functions of the proteins 
missed by individual database search algorithms but recov
ered by APIR from the phospho-proteomics AML and TNBC 
datasets. We also performed additional analyses to confirm 
the existence of these biologically relevant proteins. 
Specifically, APIR adopted individual search algorithms’ 
mappings from PSMs to proteins. That is, APIR aggregated 
PSMs and mapped them to proteins based on the PSM–pro
tein mappings output by individual search algorithms. If a 
PSM is assigned to more than one protein by different search 
algorithms, APIR outputs a master protein by majority voting 
(see File S1 for details).

In the phospho AML-C1 and phospho AML-C2 datasets, 
which contain patient samples with enriched or depleted 
LSCs, APIR identified biologically relevant proteins that were 
missed by individual database search algorithms. Specifically, 
in the phospho AML-C1 dataset, APIR identified 80 and 121 
additional proteins (the union of the additional proteins that 
APIR identified from the combinations) at the FDR thresh
olds of q ¼ 1% and q ¼ 5%, respectively, from the 20 combi
nations (of two and three algorithms). These two sets of 
additional proteins recovered by APIR include some well- 
known proteins, such as transcription intermediary factor 
1-alpha (TIF1α), phosphatidylinositol 4,5-bisphosphate 
5-phosphatase A (PIB5PA), homeobox protein B5 (HOXB5), 
small ubiquitin-related modifier 2 (SUMO-2), transcription 
factor JUND, glypican 2 (GPC2), DnaJ homolog subfamily C 
member 21 (DNAJC21), and messenger RNA (mRNA) decay 
activator protein ZFP36L2. Here, we summarized the tumor- 
related functions of these well-known proteins. High levels of 
TIF1α are associated with oncogenesis and disease progres
sion in a variety of cancer lineages such as AML [43–49]. 
PIB5PA has a tumor-suppressive role in human melanoma 
[50]; its high expression is correlated with limited tumor pro
gression and better prognosis in breast cancer patients [51]. 
HOXB5 is among the most affected transcription factors by 
the genetic mutations that initiate AML [52–54]. SUMO-2 
plays a key role in regulating CBX2, which is overexpressed 
in several human tumors (e.g., leukemia) and whose expres
sion is correlated with lower overall survival [55]. JUND 
plays a central role in the oncogenic process leading to adult 
T-cell leukemia [56]. GPC2 is an oncoprotein and a candidate 
immunotherapeutic target in high-risk neuroblastoma [57]. 
DNAJC21 mutations are linked to cancer-prone bone mar
row failure syndrome [58]. ZFP36L2 induces AML cell apo
ptosis and inhibits cell proliferation [59]; its mutation is 
associated with the pathogenesis of acute leukemia [60]. 
Moreover, in the phospho AML-C2 dataset, APIR identified 
62 additional proteins at the FDR threshold q ¼ 1% and 19 
additional proteins at the FDR threshold q ¼ 5%, including 

JUND and myeloperoxidase (MPO). MPO is expressed in he
matopoietic progenitor cells in prenatal bone marrow, which 
is considered the initial target for the development of leuke
mia [61–63].

In the TNBC dataset, APIR identified 92 additional pro
teins missed by individual database search algorithms at the 
FDR threshold q¼ 1% and 69 additional proteins at the FDR 
threshold q¼ 5%. In particular, at q¼ 1%, APIR uniquely 
identified breast cancer type 2 susceptibility protein (BRCA2) 
and Fanconi anemia complementation group E (FANCE). 
BRCA2 is a well-known breast cancer susceptibility gene; an 
inherited genetic mutation inactivating the BRCA2 gene is 
found in TNBC patients [64–69]. The FANC–BRCA path
way, including FANCE and BRCA2, is known for its roles in 
DNA damage response. Inactivation of the FANC–BRCA 
pathway is identified in ovarian cancer cell lines and sporadic 
primary tumor tissues [70,71]. Additionally, at both q¼ 1%

and q ¼ 5%, APIR identified JUND and roundabout guid
ance receptor 4 (ROBO4); the latter regulates tumor growth 
and metastasis in multiple types of cancer, including breast 
cancer [72–75]. We summarized the biological relevance of 
these proteins in Table 1.

To further evaluate the existence of the aforementioned 
known proteins, we performed two analyses. First, we exam
ined the MS/MS spectra of the PSMs corresponding to these 
proteins identified from the phospho-proteomics AML data
sets. The results showed that the PSMs rescued by APIR are 
likely true positives (Table S2; File S2). The rescued PSMs fell 
broadly into three categories: (1) high-likelihood identifica
tions with both accurate precursor mass and numerous frag
ment ions (40%), (2) identifications with accurate precursor 
mass and few (30%) or no fragment ions (10%), and (3) chi
meric spectra (20%). Second, we examined the PSMs corre
sponding to these proteins identified from the phospho- 
proteomics AML datasets and the TNBC dataset (Tables S3– 
S5), and we found that these proteins all corresponded to at 
least one target PSM with a high matching score (from at 
least one database search algorithm). These results, combined 
with the constituent nature and biological relevance of these 
proteins (Table 1), suggest the likely existence of these pro
teins and demonstrate APIR’s potential in identifying novel 
disease-related proteins.

APIR empowers the identification of differentially 
expressed peptides
An important use of proteomics data is the differential ex
pression analysis, which aims to identify proteins whose ex
pression levels change between two conditions. Protein is the 
ideal unit of measurement; however, due to the difficulties in 
quantifying protein levels from MS/MS data, an alternative 
approach has been proposed and used, which first identifies 
differentially expressed (DE) peptides and then investigates 
their corresponding proteins along with modifications. 
Because it is less error-prone to quantify peptides than pro
teins, doing so would dramatically reduce errors in the differ
ential expression analysis.

Figure 5 Continued 

modifications/proteins was computed by treating as the baseline the maximal number of PSMs/peptides/peptides and modifications/proteins by an 
individual database search algorithm in round 1 of APIR. Phospho AML-C1, phospho-proteomics acute myeloid leukemia-patient cohort 1; phospho AML- 
C2, phospho-proteomics acute myeloid leukemia-patient cohort 2; TNBC, triple-negative breast cancer; nonphospho AML, nonphospho-proteomics acute 
myeloid leukemia.
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We compared APIR with MaxQuant and MS-GFþ by per
forming differential expression analysis on the phospho 
AML-C1 dataset. We focused on this dataset instead of the 
TNBC dataset or the nonphospho AML dataset because the 
phospho-proteomics AML datasets were generated for our 
in-house study and thus may yield new discoveries. This 
analysis was conducted to demonstrate that APIR could im
prove the identification power by aggregating dissimilar algo
rithms. Since MaxQuant and MS-GFþ have identified 
drastically different PSMs on our real datasets (Figure S15) 
and are widely-used, open-source tools, we selected them as 
two example algorithms.

The phospho AML-C1 dataset contains six bone marrow 
samples: three enriched with LSCs, two depleted of LSCs, 
and one control. To simplify our differential expression 
analysis, we selected two pairs of enriched and depleted sam
ples. Specifically, we first applied APIR to aggregate the out
puts of MaxQuant and MS-GFþ on the phospho AML-C1 
dataset using all six samples. Then, we applied DESeq2 [76] 
to identify DE peptides from the aggregated peptides of 
APIR, MaxQuant, and MS-GFþ using the four selected sam
ples. As shown in Figure 6, at the FDR threshold q¼ 5%, we 
identified 318 DE peptides from 224 proteins based on APIR, 
251 DE peptides from 180 proteins based on MaxQuant, 
and 242 DE peptides from 190 proteins based on MS-GFþ, 
respectively. In particular, APIR identified 6 leukemia-related 

proteins: promyelocytic leukemia zinc finger (PLZF), serine/ 
threonine-protein kinase BRAF, signal transducer and activa
tor of transcription 5B (STAT5B), promyelocytic leukemia 
protein (PML), cyclin-dependent kinase inhibitor 1B 
(CDKN1B), and retinoblastoma-associated protein (RB1), all 
of which belong to the AML Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway or the chronic myeloid leuke
mia KEGG pathway [77–79]. In particular, PLZF and 
CDKN1B were uniquely identified from the APIR aggregated 
result but not by either MaxQuant or MS-GFþ.

We next investigated the phosphorylation of the identified 
DE peptides of PLZF or CDKN1B. With regard to PLZF, 
APIR identified phosphorylation at Thr282, which is known 
to activate cyclin A2 [80], a core cell cycle regulator of which 
the deregulation seems to be closely related to chromosomal 
instability and tumor proliferation [81–83]. As for CDKN1B, 
APIR identified phosphorylation at Ser140. Previous studies 
have revealed that ataxia-telangiectasia mutated (ATM) 
phosphorylation of CDKN1B at Ser140 is important for sta
bilization and enforcement of the CDKN1B-mediated G1 
checkpoint in response to DNA damage [84]. A recent study 
has shown that inability to phosphorylate CDKN1B at Serine 
140 is associated with enhanced cellular proliferation and 
colony formation [85]. Our results, summarized in Table 2, 
demonstrate that APIR can assist in discovering interesting 
proteins and relevant post-translational modifications.

Table 1 A summary of biologically relevant proteins recovered by APIR from the AML and TNBC datasets

Dataset Protein Biological relevance Refs.

Phospho AML-C1 and phospho AML-C2 TIF1α High levels of TIF1α are associated with oncogenesis and 
disease progression in a variety of cancer lineages such as AML

[43–49]

PIB5PA PIB5PA has a tumor-suppressive role in human melanoma; its high 
expression has been correlated with limited tumor progression and 
better prognosis in breast cancer patients

[50,51]

HOXB5 HOXB5 is among the most affected transcription factors by the ge
netic mutations that initiate AML

[52–54]

SUMO-2 SUMO-2 plays a key role in regulating CBX2, which is 
overexpressed in several human tumors (e.g., leukemia) and whose 
expression is correlated with lower overall survival

[55]

JUND JUND plays a central role in the oncogenic process leading to adult 
T-cell leukemia

[56]

GPC2 GPC2 has been identified as an oncoprotein and a candidate 
immunotherapeutic target in high-risk neuroblastoma

[57]

DNAJC21 DNAJC21 mutations have been linked to cancer-prone bone marrow 
failure syndrome

[58]

ZFP36L2 ZFP36L2 induces AML cell apoptosis and inhibits cell 
proliferation; its mutation is associated with the pathogenesis of acute 
leukemia

[59,60]

MPO MPO is expressed in hematopoietic progenitor cells in prenatal bone 
marrow, which are considered the initial target for the 
development of leukemia

[61–63]

TNBC BRCA2 BRCA2 is a well-known breast cancer susceptibility gene; an inher
ited genetic mutation inactivating the BRCA2 gene can be found in 
people with TNBC

[64–69]

FANCE Inactivation of the FANC–BRCA pathway has been identified in 
ovarian cancer cell lines and sporadic primary tumor tissues

[70,71]

ROBO4 ROBO4 regulates tumor growth and metastasis in multiple types of 
cancer, including breast cancer

[72–75]

Note: This table lists the biologically relevant proteins missed by individual database search algorithms but recovered by APIR from the AML and TNBC 
datasets. APIR, Aggregation of Peptide Identification Results; AML, acute myeloid leukemia; phospho AML-C1, phospho-proteomics acute myeloid 
leukemia-patient cohort 1; phospho AML-C2, phospho-proteomics acute myeloid leukemia-patient cohort 2; TNBC, triple-negative breast cancer; TIF1α, 
transcription intermediary factor 1-alpha; PIB5PA, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A; HOXB5, homeobox protein B5; SUMO-2, small 
ubiquitin-related modifier 2; GPC2, glypican 2; DNAJC21, DnaJ homolog subfamily C member 21; ZFP36L2, mRNA decay activator protein; mRNA, 
messenger RNA; MPO, myeloperoxidase; BRCA2, breast cancer type 2 susceptibility protein; FANCE, Fanconi anemia complementation group E; ROBO4, 
roundabout guidance receptor 4.
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Discussion
In this study, we developed a statistical framework APIR to 
combine the power of distinct database search algorithms by 
aggregating their identified PSMs from shotgun proteomics 
data with FDR control. The core component of APIR is 

APIR-FDR, an FDR-control method that reidentifies PSMs 
from the output of a single database search algorithm with
out restrictive distribution assumptions. APIR offers a great 
advantage of flexibility: APIR is compatible with any data
base search algorithms. The reason lies in that APIR is a se
quential approach based on a mathematical fact: given 
multiple disjoint sets of discoveries, when each has the FDP 
smaller than or equal to q, their union also has the FDP 
smaller than or equal to q. This sequential approach not only 
allows APIR to circumvent the need to impose restrictive dis
tribution assumptions on the output of each database search 
algorithm, but also ensures that APIR would identify at least 
as many, if not more, unique peptides as a single database 
search algorithm does.

By assessing APIR on the first publicly available CPS data
set that we generated, we verified that APIR consistently 
improves the power of peptide identification with the FDR 
controlled on the identified PSMs. Our extensive studies on 
AML and TNBC data suggest that APIR can discover addi
tional disease-relevant peptides and proteins that are other
wise missed by individual database search algorithms.

We note that Ning et al. [29] developed a multi-stage 
method to combine PSMs identified by multiple database 
search algorithms, a seemingly similar framework. However, 
three major differences exist between APIR and the multi- 
stage method in [29]. First, APIR is an open-source and 
platform-agnostic framework that is universally compatible 
with all database search algorithms. In contrast, the multi- 
stage method is restricted to three database search algo
rithms: X!Tandem [86], InsPecT [87], and SpectraST [88]. 
Second, APIR adopts a data-driven approach to determine 
the combination order of database search algorithms 
(Figure 2). In contrast, the multi-stage method pre- 
determines the combination order of its three database search 
algorithms based on domain knowledge, making its generali
zation to other database search algorithms non-trivial. In par
ticular, Ning and colleagues [29] say, “We note, however, 
that routine application of iterative strategies such as the one 
utilized in this work, especially in a high throughput environ
ment, will require further substantial work on the develop
ment of statistical FDR estimation methods applicable to a 
wide range of peptide identification approaches, including 
subset database searching, blind PTM analysis, and genomic 
searches.” Hence, APIR makes contribution to the future 
work mentioned by Ning and colleagues [29].

The current implementation of APIR controls the FDR at 
the PSM level. However, in shotgun proteomics experiments, 
PSMs serve merely as an intermediate to identify peptides 
and then proteins, the real molecules of biological interest; 
thus, an ideal FDR control should occur at the protein level. 
A fact is that FDR control at the PSM level does not entail 
FDR control at the protein level, because multiple PSMs may 
correspond to the same peptide sequence and multiple pepti
des may correspond to the same protein. To realize the FDR 
control on the identified proteins, APIR-FDR needs to be 
carefully modified. A possible modification would be to con
struct a matching score for each protein from the matching 
scores of the PSMs that correspond to this protein’s peptides. 
Future studies are needed to explore possible ways of 
constructing proteins’ matching scores. Once we modify 
APIR-FDR to control the FDR at the protein level, the cur
rent sequential approach of APIR still applies: applying the 
modified APIR-FDR to sequentially identify disjoint sets of 

Table 2 A summary of biologically relevant phosphorylation sites in 
the DE peptides of PLZF and CDKN1B

Protein Phosphorylation  
site

Biological relevance Refs.

PLZF Thr282 Phosphorylation at Thr282 
activates cyclin-A2, a core cell 
cycle regulator of which the de
regulation seems to be closely 
related to chromosomal insta
bility and tumor proliferation

[80–83]

CDKN1B Ser140 Phosphorylation of CDKN1B 
at Ser140 is important for sta
bilization and enforcement of 
the CDKN1B-mediated G1 
checkpoint in response to DNA 
damage; inability to phosphor
ylate CDKN1B at Ser140 is as
sociated with enhanced cellular 
proliferation and colony

[84,85]

Note: The DE peptides of PLZF and CDKN1B were identified by DESeq2 
[76] from the aggregated peptides by APIR from the outputs of MaxQuant 
and MS-GFþ in the phospho AML-C1 dataset. DE, differentially 
expressed; PLZF, promyelocytic leukemia zinc finger; CDKN1B, cyclin- 
dependent kinase inhibitor 1B.

APIR aggregating MaxQuant and MS-GF+ 
(224 DE proteins)

17

53
80

74

42
5

31

PLZF
CDKN1B

BRAF
STAT5BPML

RB1

MaxQuant
(180 DE proteins) 

MS-GF+
(190 DE proteins)

Figure 6 Comparison of APIR with MaxQuant and MS-GF1 by 
differential expression analysis on the phospho AML-C1 dataset 
Venn diagram of DE proteins based on the identified peptides by APIR 
aggregating MaxQuant and MS-GFþ, MaxQuant, and MS-GFþ in the 
phospho AML-C1 dataset. Six leukemia-related proteins were found as 
DE proteins based on APIR: PLZF, BRAF, STAT5B, PML, CDKN1B, and 
RB1. Notably, the phospho AML-C1 dataset contains six bone marrow 
samples from two patients: P5337 and P5340. From P5337, one LSC- 
enriched sample and one LSC-depleted sample were taken. From P5340, 
two LSC-enriched samples and one LSC-depleted sample were taken. In 
our differential expression analysis, we compared two LSC-enriched 
samples (one per patient) against two LSC-depleted samples (one per 
patient). DE, differentially expressed; LSC, leukemia stem cell.
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proteins from the outputs of individual database search algo
rithms; outputting the union of these disjoint sets as 
discoveries.

Notably, APIR adopts a statistical inference framework as 
opposed to a machine learning prediction framework for 
PSM aggregation. Hence, APIR is unlike existing machine 
learning methods (such as PepArML [11]), which could be 
categorized into two types. Methods of the first type require 
an external benchmark proteomics dataset, which contains 
known true PSMs and false PSMs, as the training data to 
train a classifier. Then, they apply the trained classifier to a 
new proteomics dataset to predict whether a target PSM is 
true or false. Their underlying assumption is that the classifier 
trained on the benchmark dataset is generalizable to the new 
dataset. However, when this generalizability does not hold (a 
likely scenario given the vast diversity of biological samples), 
their predicted target PSMs would become questionable. 
Methods of the second type do not rely on an external bench
mark dataset but have to label a subset of target PSMs as pos
itive or negative for training a classifier. This labeling step 
requires multiple arbitrary thresholds, which would affect the 
classifier’s prediction accuracy. In contrast, APIR requires no 
external training data or arbitrary labeling.

Although the applications in this work are based on MS/ 
MS data collected by data-dependent acquisition (DDA), 
APIR is also applicable to MS/MS data collected by data- 
independent acquisition (DIA), as long as the database search 
algorithms use the target–decoy search strategy. Moreover, 
although APIR is designed for proteomics data, its frame
work is general and extendable to aggregating discoveries in 
other popular high-throughput biomedical data analyses, in
cluding peak calling from chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) data, differential gene ex
pression analysis from bulk or single-cell RNA sequencing 
data, and differentially interacting chromatin region identifi
cation from high-throughput chromosome conformation cap
ture sequencing (Hi-C) data [32]. For example, an extended 
APIR may aggregate discoveries made by popular differential 
gene expression analysis methods, such as DESeq2 [76], 
edgeR [89], and limma [90], to strengthen FDR control [91] 
and meanwhile increase the power.

Code availability
The APIR R package is available at https://github.com/ 
yiling0210/APIR or https://ngdc.cncb.ac.cn/biocode/tools/ 
BT007298. The code and preprocessed data for reproducing 
the figures are available at https://doi.org/10.5281/zen 
odo.5202768.
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