
The Power of Abstract MAC Layer: A

Fault-tolerance Perspective

Qinzi Zhang #

Boston University, USA

Lewis Tseng #

UMass-Lowell, USA

Abstract

This paper studies the power of the “abstract MAC layer” model in a single-hop asynchronous

network. The model captures primitive properties of modern wireless MAC protocols. In this model,

Newport [PODC ’14] proves that it is impossible to achieve deterministic consensus when nodes may

crash. Subsequently, Newport and Robinson [DISC ’18] present randomized consensus algorithms

that terminate with O(n3 log n) expected broadcasts in a system of n nodes. We are not aware of

any results on other fault-tolerant distributed tasks in this model.

We first study the computability aspect of the abstract MAC layer. We present a wait-free

algorithm that implements an atomic register. Furthermore, we show that in general, k-set consensus

is impossible. Second, we aim to minimize storage complexity. Existing algorithms require Ω(n log n)

bits. We propose two wait-free approximate consensus and two wait-free randomized binary consensus

algorithms that only need constant storage complexity (except for the phase index). One randomized

algorithm terminates with O(n log n) expected broadcasts. All our algorithms are anonymous,

meaning that at the algorithm level, nodes do not need to have a unique identifier.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Abstract MAC Layer, Computation Power, Consensus

Funding Lewis Tseng: This material is based upon work partially supported by the National Science

Foundation under Grant CNS-2334021.

Acknowledgements The authors want to thank the anonymous reviewers for insightful comments.

The work was partially done when Lewis Tseng was affiliated with Boston College and Clark

University.

1 Introduction

This paper studies fault-tolerant primitives, with the focus on the aspect of wireless links in

a single-hop asynchronous network. We adopt the “abstract MAC layer” model [33, 34, 25],

which captures the basic properties guaranteed by existing wireless MAC (medium access

control) layers such as TDMA (time-division multiple access) or CSMA (carrier-sense multiple

access). Even though the abstraction does not model after any specific existing MAC protocol,

the abstract MAC layer still serves an important goal – the separation of high-level algorithm

design and low-level logic of handling the wireless medium and managing participating nodes.

This separation helps identify principles that fills the gap between theory and practice in

designing algorithms that can be readily deployed onto existing MAC protocols [33, 34].

In fact, recent works in the networking community propose approaches to implement the

abstract MAC layer in more realistic network conditions, e.g., dynamic systems [41], dynamic

SINR channels [40], and Rayleigh-Fading channels [39].

Consider an asynchronous network [10, 31] in which messages may suffer an arbitrary

delay. Compared to conventional message-passing models [10, 31], the abstract MAC layer

has two key characteristics (formal definition in Section 2):

2 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

Nodes use a broadcast primitive which sends a message to all nodes that have not crashed

yet, and triggers an acknowledgement upon the completion of the broadcast.

Nodes do not have a priori information on other participating nodes.

The second characteristic is inspired by the observation that in a practical large-scale

deployment, it is difficult to configure and manage all the connected devices so that they

have the necessary information about other nodes. This assumption makes it difficult to

port algorithms from conventional message-passing models to the abstract MAC layer, as

these algorithms typically require the knowledge of other nodes and/or the size of the system.

In fact, Newport and Robinson prove [33] that in message-passing models it is impossible

to solve deterministic and randomized consensus, even if there is no fault, and nodes are

assumed to have a constant-factor approximation of the network size.

In the abstract MAC layer model, Newport [34] proves that deterministic consensus

is impossible when nodes may crash. Subsequently, Newport and Robinson [33] propose

randomized consensus algorithms. We are not aware of any study on other fault-tolerant

primitives. This paper answers the following two fundamental problems:

Can we implement other fault-tolerant primitives?

How do we minimize storage complexity when designing fault-tolerant primitives?

First Contribution. In Herlihy’s wait-free hierarchy [23], the consensus number defines

the “power” of a shared object (or primitive). An object has a consensus number c, if it is

possible for f c nodes to achieve consensus using the object and atomic registers, and it is

not possible for c + 1 nodes to do so. For example, an atomic register has consensus number

1, whereas consensus and compare-and-swap have consensus number ∞. The proof in [34]

implies that any objects with consensus number g 2 cannot be implemented in the abstract

MAC layer. The natural next step is to understand whether objects with consensus number

1 can be implemented in the abstract MAC layer.

We first show that the abstract MAC layer is fundamentally related to the store-collect

object [7, 8] by presenting a simple wait-free algorithm to implement the object in the

abstract MAC layer. “Stacking” the constructions in [8] on top of our store-collect object

solves many well-known computation tasks, e.g., registers, counters, atomic snapshot objects,

and approximate, and randomized consensus. That is, we provide a wait-free approach to

implement some primitives with consensus number 1 in the abstract MAC layer.

Next, we identify that not all primitives with consensus number 1 can be implemented.

In particular, we prove that in a system of n nodes, (n − 1)-set consensus is impossible

to achieve in the abstract MAC layer model. This implies that other similar objects, like

write-and-read-next objects [16], cannot be implemented as well.

Second Contribution. From a more practical perspective, we study anonymous and

storage-efficient fault-tolerant primitives. First, anonymous algorithms do not assume unique

node identity, and thus lower efforts in device configuration and deployment. Second, most

wireless devices are made small; hence, naturally, they are not equipped with abundant

storage capacity, and storage-efficiency is an important factor in practical deployment.

Table 1 compares the state-of-the-art algorithm NR18 [33] and our algorithms. All the

randomized consensus algorithms work for binary inputs and all algorithms are wait-free. The

time complexity is measured as the expected number of broadcasts needed for all fault-free

nodes to output a value. For our algorithms, “values” can be implemented using an integer

or a float data type in practice. The exact size of the values will become clear later.

Due to space limits, we focus only on our randomized algorithms and present our

approximate agreement algorithms along with the full analysis in the technical report [42].

Qinzi Zhang and Lewis Tseng 3

consensus storage complexity note

NR18 [33] randomized Θ(n log n) bits O(n3 log n) expected broadcasts
MAC-RBC randomized 8 values, 4 Booleans O(2n) expected broadcasts
MAC-RBC2 randomized 12 values, 5 Booleans O(n log n) expected broadcasts
MAC-AC approximate 4 values, 1 Boolean convergence rate 1/2
MAC-AC2 approximate 2 values, 1 Boolean convergence rate 1− 2−n

Table 1 Consensus in abstract MAC layer.
• The bottom four rows present our algorithms, whereas NR18 is the algorithm from DISC ’18 [33].
• For approximate consensus, the convergence rate identifies the ratio that the range of fault-free nodes’
states decreases after each asynchronous round. The smaller the ratio, the faster the convergence.

2 Preliminary

Related Work. We first discuss prior works in the abstract MAC layer model. The model

is proposed by Kuhn, Lynch and Newport [25]. They present algorithms for multi-message

broadcast, in which multiple messages may be sent at different times and locations in a multi-

hop network communicating using the abstract MAC layer. Subsequent works [32, 24, 20]

focus on non-fault-tolerant tasks, including leader election and MIS.

The closest works are by Newport [34] and Newport and Robinson [33]. Newport presents

several impossibilities for achieving deterministic consensus when nodes may crash [34].

Newport and Robinson [33] present a randomized consensus algorithm that terminates

after O(n3 log n) broadcasts w.h.p. In their algorithm, nodes need to count the number

of acknowledgements received from unique nodes and determine when to safely output a

value. As a result, their algorithm requires storage space Θ(n log n) bits and the knowledge

of identities to keep track of unique messages. An accompanied (randomized) approach of

assigning node identities with high probability is also proposed in [33]. Tseng and Sardina [36]

present Byzantine consensus algorithms in the abstract MAC layer model, but they assume

the knowledge of an upper bound on n and unique identities. Our consensus algorithms do

not rely on identities; hence, fundamentally use different techniques.

Fault-tolerant consensus has been studied in various models that assume message-passing

communication links [10, 31]. We consider a different communication model; hence, the

techniques are quite different. An important distinction is that with asynchronous message-

passing, it is impossible to implement a wait-free algorithm [23]. Furthermore, nodes require

accurate information on the network size [33].

Di Luna et al. have a series of works on anonymous dynamic network [27, 28, 30, 29, 18, 17].

They do not assume any failures. A series of papers [21, 2, 13] study a related problem, called

consensus with unknown participants (CUPs), where nodes are only allowed to communicate

with other nodes whose identities have been provided by some external mechanism. Our

consensus algorithms do not need unique node identities. Failure detectors are used in

[1, 35, 12] to solve consensus with anonymous nodes. We do not assume a failure detector.

Model. We consider a static asynchronous system consisting of n nodes, i.e., we do not

consider node churn. Each node is assumed to have a unique identifier; hence, the set of nodes

is also denoted as the set of their identifiers, i.e., {1, . . . , n}. For brevity, we often denote

it by [n]. Our construction of store-collect requires identifiers due to its semantics. Our

approximate and randomized algorithms are anonymous, and do not assume node identifiers.

The identifiers are used only for analysis.

We consider the crash fault model in which any number of nodes may fail. A faulty node

may crash and stop execution at any point of time. The adversary may control faulty

behaviors and the message delays. Nodes that are not faulty are called fault-free nodes.

In a single-hop network with abstract MAC layer [25, 34, 33], nodes communicate using

the mac-broadcast primitive, which eventually delivers the message to all the nodes that

4 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

have not crashed yet, including i itself. Moreover, at some point after the mac-broadcast

has succeeded in delivering the message, the broadcaster receives an acknowledgement,

representing that the mac-broadcast is complete. The broadcaster cannot infer any other

information from the acknowledgment, not the system size n, nor the identities of other

nodes. A crash may occur during the mac-broadcast, which leads to inconsistency. That is,

if a broadcaster crashes, then some nodes might receive the message while others do not.

The key difference between message-passing and abstract MAC layer models is that in

the message-passing model, sender requires explicit responses, which is the main reason

that this model does not support wait-free algorithms and requires a priori information on

participating nodes. In other words, abstract MAC layer allows us to design primitives with

stronger properties due to the implication from the acknowledgement. This paper is the first

to identify how to use its “power” to implement (some) primitives with consensus number 1.

For our store-collect and approximate consensus algorithms, the adversary may enforce

an arbitrary schedule for message delivery and crashes. For our randomized algorithms, we

assume the message oblivious (or value oblivious) adversary as in [33]. That is, the adversary

does not know the private states of each node (process states or message content).

Algorithm Presentation and Message Processing. Each node is assumed to take steps

sequentially (a single-thread process). Each line of the pseudo-code is executed atomically,

except when calling mac-broadcast, since this primitive is handled by the underlying abstract

MAC layer. Each algorithm also has a message handler that processes incoming messages.

Our algorithms assume that (i) the message handler is triggered whenever the underlying

layer receives a message and sends an interrupt; (ii) there is only one message handler thread,

which processes messages one by one, i.e., the underlying layer has a queue of pending

messages; and (iii) the handler has a priority over the execution of the main thread. The

third assumption implies the following observation, which is important for ensuring the

correctness of our algorithms:

▶ Remark 1. At the point of time when the main thread starts executing a line of the

pseudo-code, there is no pending message to be processed by the handler.1

It is possible that during the execution of a line in the main thread, the underlying layer

sends an interrupt. The message handler will process these messages after the completion of

that particular line of code due to the assumption of atomic execution. The only exception is

the call to mac-broadcast. Messages can still be received and processed when a broadcaster

is waiting for the acknowledgement from the abstract MAC layer.

3 Abstract MAC Layer: Computability

From the perspective of computability, asynchronous point-to-point message-passing model

is fundamentally related to linearizable shared objects [22]. However, it was pointed out that

register simulation in conventional point-to-point models like ABD [6] is “thwarted” [33]. In

other words, this observation indicated that the computability of the abstract MAC layer

remained an open problem. We fill the gap by presenting a framework of implementing some

linearizable shared objects with consensus number 1.

1 This assumption is not needed in prior works [34, 33], because their algorithm design is fundamentally
different from ours. On a high-level, their algorithms proceed in an atomic block, whereas our algorithms
have shared variables between the main thread and multiple message handlers. The assumption captures
the subtle interaction between them.

Qinzi Zhang and Lewis Tseng 5

Our Insight. In the point-to-point model, ABD requires the communication among a quorum,

because “information kept by a quorum” ensures that the information is durable and timely

in quorum-based fault-tolerant designs. Durable information means that the information is

not lost, even after node crashes. Timely information means that the information satisfies

the real-time constraint, i.e., after the communication with a quorum is completed, others

can learn the information by contacting any quorum of nodes.

Our important observation is that the mac-broadcast achieves both goals upon learning

the acknowledgement. That is, after the broadcaster learns that the broadcast is completed,

it can infer that the message is both durable and timely.

Durability and timeliness are indeed sufficient for ensuring “regularity,” which can then

be used to implement linearizable shared objects (as will be seen in Theorem 3). We next

present a construction of store-collect objects.

Store-Collect Object. A store-collect object [7, 8] provides two operations (or interfaces)

at node i: (i) Storei(v): store value v into the object; and (ii) Collecti(): collect the set

of “most recent” values (of the object) from each node. The returned value is a view V –

a set of (vj , j) tuples where j is a node identity and vj is its most recent stored value. For

each j, there is at most one tuple of (∗, j) in V . With a slight abuse of notation, V (j) = vj

if (vj , j) ∈ V ; otherwise, V (j) =§.

To formally define store-collect, we first discuss a useful notion. A history is an execution

of the store-collect object, which can be represented using a partially ordered set (H, <H).

Here, H is the set of invocation (inv) and response (resp) events of the Store and Collect

operations, and <H is an irreflexive transitive relation that captures the real-time “occur-

before” relation of events in H. Formally, for any two events e and f , we say e <H f if e

occurs before f in the execution. For two operations op1 and op2, we say that op1 precedes

op2 if resp(op1) <H inv(op2).

Every value in Store is assumed to be unique (this can be achieved using sequence

numbers and node identifiers). A node can have at most one pending operation. Given views

V1 and V2 returned by two Collect operations, we denote V1 ¯ V2, if for every (v1, j) ∈ V1,

there exists a v2 such that (i) (v2, j) ∈ V2; and (ii) either v1 = v2 or the invocation of

Storej(v2) occurs after the response of Storej(v1). That is, from the perspective of node

j, v2 is more recent than v1. We then say that a history σ satisfies regularity if:

For each Collect() c ∈ σ that returns V and for each node j, (i) if V (j) =§, then no

Store by j precedes c in σ; and (ii) if V (j) = v, then Storej(v)’s invocation precedes

c’s response, and there does not exist Storej(v′) such that v′ ≠ v, and Storej(v′)’s

response occurs after Storej(v)’s response and before c’s invocation.

Consider any pair of two Collect’s in history σ, c1 and c2, which return views V1 and

V2, respectively. If c1 precedes c2, then V1 ¯ V2.

▶ Definition 2 (Store-Collect). An algorithm correctly implements the store-collect object if

every execution of the algorithm results into a history that satisfies regularity.

Our Wait-free Construction of Store-Collect. To achieve regularity, each stored

value has to be durable and timely. If a value is not durable, then the first condition for

regularity may be violated. If a value is not timely, then the second condition may be

violated. Moreover, any current information needs to be known by subsequent Collect’s,

potentially at other nodes. These observations together with the aforementioned insight

of the mac-broadcast primitive give us a surprisingly straightforward construction. Our

algorithm MAC-SC is presented in Algorithm 1.

6 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

Each node i keeps a local variable viewi, which is a set of values – one value for each

node (that is known to node i so far). With a slight abuse of terminology, we use C = A ∪ B

to denote the merge operation of two views A and B, which returns a view C that contains

the newer value from each node. Since each node can have at most one pending operation

and each value is unique, the notion of “newer” is well-defined. For brevity, the sequence

number is omitted in the notation.

For Storei(v), node i first adds the value v to form a new view, and uses mac-broadcast

to inform others about the new view. Because this information is both durable and timely

upon the completion of the broadcast, regularity is satisfied. Since the broadcast delivers the

message to the broadcaster as well, (v, i) is added to viewi at line 8. For Collecti(), it is

similar except that the broadcast view is the current local view at node i. Upon receiving a

new view (from the incoming message with the Store tag), i simply merges the new view

and its local view viewi.

Algorithm 1 MAC-SC: Steps at each node i

Local Variable: /* It can be accessed by any thread at i. */
viewi ▷view, initialized to ∅

When Storei(v) is invoked:
1: currentV iewi ← viewi ∪ {(v, i)}
2: mac-broadcast(STORE, currentV iewi)
3: return ACK ▷Store is completed

When Collecti() is invoked:
4: currentV iew ← viewi

5: mac-broadcast(STORE, currentV iew)
6: return currentV iew

// Background message handler
7: Upon receive(STORE, view) do
8: viewi ← viewi ∪ view

▶ Theorem 3. MAC-SC implements the store-collect object.

Proof Sketch. Property I : Consider a Collecti() operation c that returns V . For each

node j, consider two cases:

V (j) =§: this means that node i has not received any message from j’s mac-broadcast.

This implies that either mac-broadcast by j is not yet completed, or node j has not

invoked any mac-broadcast. In both cases, no Store by j precedes c.

V (j) = v: by construction, v is in V (j) because Storej(v) is invoked before c completes.

Next we show that there is no other Store by node j that completes between two events:

the response event of Storej(v) and the invocation of c. Assume by way of contradiction

that Storej(v′) completes between these two events. Now observe that: (i) By definition,

Storej(v) precedes Storej(v′), so v′ is more recent than v from the perspective of node

j; and (ii) By the assumption of the abstract MAC layer, when Storej(v′) completes,

node i must have received the value v′. These two observations together imply that node

i will add v′ into its view at line 8 before the invocation of c. Consequently, V (j) = v′ in

the view returned by c, a contradiction.

Property II : Suppose c1 and c2 are two Collect’s such that c1 returns view V1, c2 returns

view V2, and c1 precedes c2. By assumption, when mac-broadcast completes, all the nodes

that have not crashed yet have received the broadcast message. Therefore, V1 ¯ V2. ◀

From Store-Collect to Linearizable Objects. Constructions of several linearizable

shared objects over store-collect are presented in [8]. These constructions only use Store

and Collect without relying on other assumptions; hence, can be directly applied on top

of MAC-SC. More concretely, Attiya et al. [8] consider a dynamic message-passing system,

Qinzi Zhang and Lewis Tseng 7

where nodes continually enter and leave. Similar to our model, their constructions do not

assume any information on other participating nodes. All the necessary coordination is

through the store-collect object.

This stacked approach sheds light on the computability of the abstract MAC layer. We can

use the approach in [8] to implement an atomic register on top of MAC-SC in abstract MAC

layer in a wait-free manner. Consequently, MAC-SC opens the door for the implementation

of many shared objects with consensus number 1. In particular, any implementation on

atomic register that does not require a priori information on participating nodes can be

immediately applied, e.g., linearizable abort flags, sets, and max registers [26, 8].

Interestingly, despite the strong guarantee, not all objects with consensus number 1 can

be implemented in the abstract MAC layer. In particular, we prove that (n−1)-set consensus

is impossible to achieve in our technical report [42]. Our proof follows the structure of the

counting-based argument developed by Attiya and Paz (for the shared memory model) [9].

4 Anonymous Storage-Efficient Randomized Binary Consensus

While general, the stacked approach comes with two drawbacks in practice – assumption of

unique identities and high storage complexity. Stacking prior shared-memory algorithms on

top of MAC-SC requires Ω(n log n) due to the usage of store-collect. Prior message-passing

algorithms (e.g., [19, 38, 11]) usually require the assumption of unique identities.

This section considers anonymous storage-efficient randomized binary consensus. Recall

that deterministic consensus is impossible under our assumptions [34], so the randomized

version is the best we can achieve. As shown in Table 1, the state-of-the-art algorithm NR18

[33] requires O(n3 log n) time complexity w.h.p. and Θ(n log n) storage complexity. We

present two anonymous wait-free algorithms using only constant storage complexity.

Our Techniques. Our algorithms are inspired by Aspnes’s framework [3] of alternating

adopt-commit objects and conciliator objects. The framework is designed for the shared

memory model, requiring both node identity and the knowledge of n. Moreover, it requires

O(log n) atomic multi-writer registers in expectation.

To address these limitations, we have two key technical contributions. First, we replace

atomic multi-writer registers by mac-broadcast, while using only constant storage complexity.

Second, we integrate the “doubling technique,” for estimating the system size n, with the

framework and present an accompanied analysis to bound the expected round complexity.

More concretely, we combine the technique from [37] and Aspnes’s framework to avoid

using new objects in a new phase. More precisely, we borrow the “jump” technique from [37],

which allows nodes to skip phases (and related messages), to reduce storage complexity. This

comes with two technical challenges. First, our proofs are quite different from the one in

[37], because nodes progress in a different dynamic due to the characteristics of the abstract

MAC layer. In particular, we need to carefully analyze which broadcast message has been

processed to ensure that the nodes are in the right phase in our proof. This is also where

we need to rely on Remark 1, which is usually not needed in the proofs for point-to-point

message-passing models. Second, compared to [3], our proofs are more subtle in the sense

that we need to make sure that concurrent broadcast events and “jumps” do not affect the

probability analysis. The proof in [3] mainly relies on the atomicity of the underlying shared

memory, whereas our proofs need to carefully analyze the timing of broadcast events. (Recall

that we choose not to use MAC-SC, since it requires nodes to have unique identities.)

Prior solutions rely on the knowledge of network size n [14, 15, 3] or an estimation of n

[33] to improve time complexity. For anonymous storage-efficient algorithms, nodes do not

8 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

Algorithm 2 MAC-AdoptCommit Algorithm: Steps at each node i with input vi

Local Variables: /* These can be accessed by any thread at i. */
seeni[0] ▷Boolean, initialized to false
seeni[1] ▷Boolean, initialized to false
proposali ▷value, initialized to §

1: mac-broadcast(VALUE, vi)
2: if proposali ̸=§ then
3: vi ← proposali
4: mac-broadcast(PROPOSAL, vi)
5: if seeni[−vi] = false then
6: return (commit, vi)
7: else
8: return (adopt, vi)

// Background message handler
9: Upon receive(VALUE, v) do

10: seeni[v]← true

11: Upon receive(PROPOSAL, v) do
12: proposali ← v

know n, and there is no unique node identity. The solution for estimating the network size in

the abstract MAC layer in [33] only works correctly with a large n (i.e., with high probability).

We integrate a “doubling technique” to locally estimate n which does not require any message

exchange. For our second randomized binary consensus algorithm MAC-RBC2, nodes double

the estimated system size n′ every c phases for some constant c, if they have not terminated

yet. We identify a proper value of c so that n′ is within a constant factor of n, and nodes

achieve agreement using O(n log n) broadcasts on expectation.

Randomized Binary Consensus and Adopt-Commit.

▶ Definition 4 (Randomized Binary Consensus). A correct randomized binary consensus

algorithm satisfies: (i) Probabilistic Termination: Each fault-free node decides an output

value with probability 1 in the limit; (ii) Validity: Each output is some input value; and

(iii) Agreement: The outputs are identical.

▶ Definition 5 (Adopt-Commit Object). A correct adopt-commit algorithm satisfies: (i)

Termination: Each fault-free node outputs either (commit, v) or (adopt, v) within a finite

amount of time; (ii) Validity: The v in the output tuple must be an input value; (iii) Co-

herence: If a node outputs (commit, v), then any output is either (adopt, v) or (commit, v);

and (iv) Convergence: If all inputs are v, then all fault-free nodes output (commit, v).

4.1 Algorithm MAC-AdoptCommit

We present MAC-AdoptCommit, which implements a wait-free adopt-commit object for

binary inputs in the abstract MAC layer model. The pseudo-code is presented in Algorithm

2, and the algorithm is inspired by the construction in shared memory [4]. Following the

convention, we will use −v to denote the opposite (or complement) value of value v.

Each node i has two Booleans, seeni[0] and seeni[1], and a value proposali. The former

variables are initialized to false, and used to denote whether a node i has seen input value 0

and 1, respectively. The last variable proposali is initialized to §, and used to record the

“proposed” output from some node. The algorithm has two types of messages:

A VALUE type message (VALUE, vi) that is used to exchange input values.

A PROPOSAL type message (PROPOSAL, vi) that is to announce a proposed value.

Upon receiving the message (VALUE, v), node i updates seeni[v] to true (line 11), denoting

that it has seen the value v. Upon receiving the message (PROPOSAL, v), i updates proposali
to v (line 13), denoting that it has recorded the proposed value, by either itself or another

node. Due to concurrency and asynchrony, it is possible that there are multiple proposal

messages; thus, node i may overwrite existing value in proposali with an opposite value.

Qinzi Zhang and Lewis Tseng 9

Node i first broadcasts input vi. After mac-broadcast completes (line 1), i checks

whether it has received any PROPOSAL message. If so, it updates its state vi to the value (line

5). Otherwise, it becomes a proposer and broadcast PROPOSAL message with its own input

vi (line 3). After Line 5, the state vi could be i’s original input, or a state copied from the

proposed value (from another node). Finally, if node i has not observed any VALUE message

with the opposite state (−vi), then it outputs (commit, vi); otherwise, it outputs (adopt, vi).

Correctness. Validity, termination and convergence are obvious. To see how MAC-

AdoptCommit achieves coherence, first observe that it is impossible for some node to

output (commit, v), and the others to output (commit, −v). It is due to the property of

mac-broadcast: if some node outputs (commit, v), then every node must observe seen[v] =

true when executing line 6. Second, if a node outputs (commit, v), then it must be the case

that there has already been a proposer that has broadcast both message (VALUE, v) and

message (PROPOSAL, v). Therefore, it is impossible for a node to output (adopt, −v). For

completeness, we present the proof of correctness in Appendix A.

4.2 Algorithm MAC-RBC

Algorithm 3 MAC-RBC Algorithm: Steps at each node i with input xi

Local Variables: /* These variables can be accessed and modified by any thread at node i. */
seeni[0] ▷(Boolean, phase), initialized to (false, 0)
seeni[1] ▷(Boolean, phase), initialized to (false, 0)
seen2

i [0] ▷(Boolean, phase), initialized to (false, 0)
seen2

i [1] ▷(Boolean, phase), initialized to (false, 0)
vi ▷state, initialized to xi, the input at node i
pi ▷phase, initialized to 0
proposali ▷(value, phase), initialized to (§, 0)

1: while true do
2: pold ← pi

3: mac-broadcast(VALUE, vi, pi)
4: if proposali.phase g pi then
5: (vi, pi)← proposali
6: mac-broadcast(PROPOSAL, vi, pi)
7: if pold ̸= pi then
8: go to line 2 in pi ▷“Jump” to pi

9: else if seeni[−vi].phase < pi then
10: output vi

11: else
12: mac-broadcast(VALUE2, vi, pi)
13: if seen2

i [−vi].phase > pi then

14: (vi, pi)← seen2
i [−vi]

15: go to line 2 in pi ▷“Jump” to pi

16: else if seen2
i [−vi] = (true, pi) then

17: vi ←FlipLocalCoin()

18: pi ← pi + 1 ▷“Move” to pi

// Background message handler
19: Upon receive(VALUE, v, p) do
20: if p g pi then
21: seeni[v]← (true, p)

22: Upon receive(VALUE2, v, p) do
23: if p g pi then
24: seen2

i [v]← (true, p)

25: Upon receive(PROPOSAL, v, p) do
26: if p g pi then
27: proposali ← (v, p)

We present MAC-RBC in Algorithm 3. The algorithm uses a sequence of adopt-commit

and conciliator objects. A conciliator object helps nodes to reach the same state, and an

adopt-commit is used to determine whether it is safe to output a value, and choose a value

for the next phase when one cannot “commit” to an output. We adapt MAC-AdoptCommit

to store phase index, which allows nodes to jump to a higher phase. Effectively, any adopt-

commit object with a phase < p can be interpreted as having § in phase p. This also allows

us to “reuse” the object. For the conciliator object, we use Ben-Or’s local coin [11], which

achieves expected exponential time complexity.

10 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

In Algorithm 3, line 3 to line 10 effectively implement a reusable adopt-commit object

using VALUE and PROPOSAL messages. Line 12 to line 17 implement a conciliator object using

the VALUE
2 message. The seen variables store both a Boolean and a phase index. Nodes only

update these variables when receiving a corresponding message from the same or a higher

phase. A node i flips a local coin to decide the state for the next phase at line 17 only if it

can safely infer that both 0 and 1 are some node’s state at the beginning of the phase, i.e., it

flips a coin when it has not seen a VALUE
2 message from a higher phase (line 13), and it has

observed a VALUE
2 message with value −vi from the same phase (line 16).

Correctness Proof. It is straightforward to see that MAC-RBC satisfies validity, since

the state is either one’s input or a value learned from received messages (which must be an

input value) and there is no Byzantine fault. We then prove the agreement property.

▶ Lemma 6. Suppose node i is the first node that makes an output and it outputs v in phase

p, then all the other nodes either output v in phase p or phase p + 1.

Proof. Suppose node i outputs v in phase p at time T3. Then it must have seeni[−v].phase <

p. Assume this holds true at time T2. Furthermore, assume line 6 was executed at time T1

by node i at time T1 such that T1 < T2 < T3.

We first make the observation, namely Obs1, no node with −v in phase p′ g p has

completed line 3 at time f T2. Suppose node j has state −v in some phase p′ g p. By

assumption (in Section 2), before node i starts to execute line 9 at time T2, its message handler

has processed all the messages received by the abstract MAC layer. Therefore, the fact that

seeni[−v].phase < pi at time T2 implies that node i has not receive any message of the form

(VALUE, −v, p′) at time T2. Consequently, node j has not completed mac-broadcast(VALUE,

−v, p′) (line 1) at time T2.

Consider the time T when the first mac-broadcast(VALUE, −v, p) is completed (if there

is any). At time T , there are two cases for node k that has not crashed yet:

Node k has not moved beyond phase p:

k must have already received (PROPOSAL, v) at some earlier time than T , because (i)

Obs1 implies that T > T2; and (ii) by time T , node i has already completed line 6 (which

occurred at time T1). Consider two scenarios: (s1) k executes line 4 after receiving

(PROPOSAL, v): k sets proposalk to value v before executing line 6 (potentially at some

later point than T); and (s2) k executes line 4 before receiving (PROPOSAL, v): in this case:

k’s input at phase p must be v; otherwise, T cannot be the first mac-broadcast(VALUE,

−v, p′) that is completed. (Observe that by assumption of this case, k executes line 4

before node i completes its line 6 at time T1.)

Node k has moved beyond phase p:

By assumption, time T is the time that the first mac-broadcast(VALUE, −v, p) is com-

pleted. Thus, it is impossible for node k to have set (vk, pk) to (−v, p′) for some p′ g p.

In both cases, right before executing line 6, node k can only mac-broadcast(PROPOSAL, v, p′),

for p′ g p, i.e., no mac-broadcast(PROPOSAL, −v, p′) is possible. Consequently, the lemma

then follows by a simple induction on the order of nodes moving to phase p + 1. ◀

Since we assume a message oblivious adversary, the termination and exponential time

complexity follow the standard argument of using local coins [11]. In particular, we have the

following Theorem, which implies that MAC-RBC requires, on expectation, an exponential

number of broadcasts. The proof is deferred to Appendix B.

▶ Theorem 7. For any δ ∈ (0, 1), let p = +2n−1 ln(1/δ),. Then with probability at least 1 − δ,

MAC-RBC terminates within p phases. (In other words, all nodes have phase f p.)

Qinzi Zhang and Lewis Tseng 11

Algorithm 4 MAC-FirstMover Algorithm: Steps at each node i with input vi

Local Variables: /* These variables can be accessed by any thread at node i. */
coini ▷value, initialized to §

Input: n′ ▷estimated system size, given as an input to MAC-FirstMover

1: k ← 0
2: while coini =§ do

3: if a local random number < 2k

2n′ then
4: mac-broadcast(COIN, vi)
5: else
6: mac-broadcast(DUMMY)

7: k ← k + 1
8: mac-broadcast(COIN, coini)
9: return coini

// Background message handler
10: Upon receive(COIN, v) do
11: if coini =§ then
12: coini ← v

13: Upon receive(DUMMY) do
14: do nothing

4.3 MAC-RBC2: Improving Time Complexity

There are several solutions for an efficient conciliator object, such as a shared coin [5] and

the “first-mover-win” strategy [14, 15, 3]. The first-mover-win strategy was developed for a

single multi-writer register in shared memory such that agreement is achieved when only one

winning node (the first mover) successfully writes to the register. If there are concurrent

operations, then agreement might be violated. On a high-level, this strategy translates to

the “first-broadcaster-win” design in the abstract MAC layer. One challenge in our analysis

is the lack of the atomicity of the register. We need to ensure that even in the presence of

concurrent broadcast and failure events, there is still a constant probability for achieving

agreement, after nodes have a “good enough” estimated system size n′.

Conciliator and Integration. Our conciliator object is presented in Algorithm 4, which

is inspired by the ImpatientFirstMover strategy [3]. The key difference from [3] is that

MAC-FirstMover uses an estimated size n′, instead of the actual network size n (as in [3]),

which makes the analysis more complicated, as our analysis depends on both n and n′.

Algorithm 4 presents a standalone conciliator implementation. We will later describe how to

integrate it with Algorithm 3 by adding the field of phase index and extra message handlers.

In our design, each node proceeds in rounds and increases the probability of revealing

their coin-flip after each round k, if it has not learned any coin flip at line 2. To prevent

the message adversary from scheduling concurrent messages with conflicting values, nodes

have two types of messages: COIN and DUMMY. The first message is used to reveal node’s

input vi, whereas the second is used as a “decoy” that has no real effect. At line 3, node i

draws a local random number between [0, 1) to decide which message to broadcast. Since

the adversary is oblivious, it cannot choose its scheduling based on the message type.

MAC-RBC2 can be obtained by integrating Alg. 4 (MAC-FirstMover) with Alg. 3

(MAC-RBC) with the changes below. The complete algorithm is presented in Appendix C.

FlipLocalCoin() is replaced by MAC-FirstMover(2+
pi
c

,n0), where c is a constant to

be defined later and n0 is a constant that denotes the initial guess of the system size. All

nodes have an identical information of c and n0 in advance. Therefore, nodes in the same

phase call MAC-FirstMover with the same estimated system size n′. Recall that pi is the

phase index local at node i. Hence, effectively in our design, each node i is doubling the

estimated size n′ every c phases.

To save space, coini consists of two fields (value, phase), and is used in a fashion similar

to how proposali is used in MAC-RBC. That is, if coini has a phase field lower than the

current phase pi, then the value field is treated as §.

12 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

The messages by node i are tagged with its current phase pi. That is, the two messages

in Algorithm 4 have the following form: (COIN, v, pi) and (DUMMY, pi).

MAC-RBC2 needs to have two extra message handlers to process DUMMY and COIN

messages. The COIN message handler only considers messages with phase f pi.

In MAC-RBC2, nodes jump to a higher phase upon receiving a coin broadcast. More

precisely, if a node i receives a coin broadcast m from a phase p > pi, then i updates vi

to the value in m and jumps to phase p + 1.

Correctness and Time Complexity. Correctness follows from the prior correctness proof,

as MAC-FirstMover is a valid conciliator object that returns only 0 or 1. To analyze time

complexity, we start with several useful notions.

▶ Definition 8 (Active Nodes). We say a node is an active node in phase p if it ever executes

MAC-FirstMover in phase p. Let Ap denote the set of all active nodes in phase p.

Due to asynchrony, different nodes might execute MAC-FirstMover in phase p at different

times. Moreover, nodes may “jump” to a higher phase in our design. Consequently, not all

nodes would execute MAC-FirstMover in phase p for every p.

▶ Definition 9 (Broadcast). We distinguish different types of broadcasts, which will later be

useful for our probability analysis:

A broadcast is a phase-p broadcast if it is tagged with phase p. By definition, only active

nodes in phase p (i.e., nodes in Ap) make phase-p broadcasts.

A broadcast made in MAC-FirstMover (Algorithm 4) is a coin broadcast if its message

has the COIN tag; otherwise, it is a dummy broadcast.

A broadcast is an original broadcast if it is made in the while loop (Line 4 and Line 6

in Algorithm 4). It is a follow-up broadcast if it is made after coini becomes non-empty

(line 8 of Algorithm 4). By design, a follow-up broadcast must be a coin broadcast.

Consider an original broadcast m = (COIN, v, p) by node i. The broadcast is said to be

successful in phase p if there exists a node j that completes a follow-up broadcast with

coinj = v in phase p, i.e., node j receives the acknowledgement for its broadcast at line

8 of Algorithm 4. Note that i may not equal to j, and both i and j might be faulty

(potentially crash at a future point of time).

Recall that we define a broadcast to be “completed” if a node making the broadcast

receives the acknowledge from the abstract MAC layer. This notion should not be confused

with the notion of “successful.” In particular, we have (i) a broadcast might be completed, but

not successful – this is possible if there are multiple original coin broadcasts with different v;

(ii) a broadcast might be successful, but not completed – this is possible if a node j receives

an original coin broadcast by a faulty node and node j completes the follow-up broadcast.

We will apply the following important observation in our proofs. The observation directly

follows from our definition of different broadcasts.

▶ Remark 10. If there is a completed original coin broadcast in phase p, then there must be

at least one successful original coin broadcast in phase p.

▶ Definition 11. A node completes MAC-FirstMover of phase p if it receives a coin broadcast

of the form (COIN, ∗, p′) with p′ g p.2 Let Cp denote the set of all nodes that complete

MAC-FirstMover of phase p.

2 This coin broadcast can be an original or a follow-up coin broadcast.

Qinzi Zhang and Lewis Tseng 13

By definition, a node not in Ap can still complete MAC-FirstMover of phase p, if it receives

a coin broadcast from a higher phase.

We first bound the number of expected original broadcasts in order for nodes to complete

MAC-FirstMover. Recall that k in Algorithm 4 denotes the round index. In our analysis

below, we only bound the number of broadcasts made by fault-free nodes.

▶ Lemma 12. With probability g 1 − δ, all fault-free nodes complete MAC-FirstMover in

phase p, after f 2n′ ln(1/δ) original broadcasts are made by fault-free nodes in phase p.

Proof. We begin with the following claim. It follows from the definition of successful coin

broadcasts. For completeness, we include the proof in Appendix D.

▷ Claim 13. All fault-free nodes complete MAC-FirstMover of phase p if there exists

at least one successful coin broadcast in phase p.

Every broadcast in phase p has probability g 1
2n′

to be a coin broadcast (by line 3 of

Algorithm 4). Since we only care about the number of original broadcasts made by fault-free

nodes, all these broadcasts must be eventually completed. Consequently, for all the fault-free

nodes in Ap, we have the probability that first t completed broadcasts by any fault-free node

in Ap are all dummy, denoted by P , bounded by

P f

t
∏

i=1

(

1 −
1

2n′

)

f exp

(

−
t

2n′

)

.

Equivalently, for any t g 2n′ ln(1/δ), with probability at least 1 − δ, there exists at least one

completed coin broadcast among the first t completed broadcasts in phase p, which further

implies the existence of at least one successful broadcast by Remark 10. This, together with

Claim 13, conclude the proof. (Note that there could be a successful coin broadcast by a

faulty node in Ap, but this does not affect the lower bound we derived.) ◀

▶ Lemma 14. Consider the case when all active nodes in phase p (i.e., nodes in Ap) execute

MAC-FirstMover of phase p with parameter n′ g n. With probability g 0.05, each node

j ∈ Cp must reach the same state vj in either phase p or phase p + 1.

Proof. We begin with the following claim. The proof is presented in Appendix E.

▷ Claim 15. If there is exactly one successful original coin broadcast in phase p, then all

nodes in Cp must achieve the same state in either phase p or phase p + 1.

The analysis below aims to identify the lower bound on the probability of the event that

there exists exactly one successful original coin broadcast in phase p.

Consider any message scheduling by the adversary. Since we assume it is oblivious, we

can define ri as the probability that the i-th completed original broadcast in phase p, across

the entire set of nodes in Ap, is a coin broadcast given this unknown message scheduling.

That is, since the schedule by the adversary is chosen a priori, ri is a fixed number. Next,

we introduce two variables:

Let T − 1 denote the number of completed original dummy broadcasts in phase p before

the first completed original coin broadcasts in phase p, given the message scheduling; and

Let kj denote the number of completed original dummy broadcasts by a node j ∈ A,

among these T − 1 broadcasts. Note that only kj is defined with respect to a single node.

14 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

The first definition implies that the T -th completed original broadcast is a coin broadcast.

Without loss of generality, assume that in the given schedule, the i-th completed original

broadcasts across the entire set of nodes in Ap is the k-th completed original broadcast made

by node j. Then by Line 3 of Algorithm 4, we can quantify ri as follows:

ri =
2k−1

2n′
(1)

Observe that if some node j ∈ Ap fails to complete an original broadcast, then it cannot

make any further broadcasts. This is because if j is not able to complete a broadcast, then it

must be a faulty node. Consequently, the k-th “completed” original broadcast made by node

j must also be the k-th original broadcast by j. Hence, Equation (1) still holds for a faulty j.

Define t∗ = min{t :
∑t

i=1 ri g 1
4 }. Then we have

P{T > t∗} =
t∗

∏

i=1

(1 − ri) f exp

(

−
t∗

∑

i=1

ri

)

f exp(−1/4). (2)

Define A′
p as the nodes in Ap that have completed at least one original dummy broadcast

among the first T − 1 completed original dummy broadcasts in phase p. In other words,

j ∈ A′
p iff kj g 1. Then we can derive the following equality, based on the nodes that have

made the completed original broadcast(s):

T −1
∑

i=1

ri =
∑

j∈A′

p

kj
∑

k=1

2k−1

2n′
=
∑

j∈A′

p

2kj − 1

2n′
. (3)

The first equality follows from the definition that the first T − 1 broadcasts are all

dummy, and thus ri must “correspond” to the k-th completed original broadcast (for some

1 f k f kj) by some node j, whose prior broadcasts are all dummy as well. Furthermore, the

kj-th completed original dummy broadcast is the last one by node j (among the first T − 1

broadcasts across the system). Note that by definition, ri is a constant for all i. However,

the summation
∑T −1

i=1 ri is indeed a random variable whose randomness comes from each

coin flip. This explains why the first equality is valid.

Next, we upper bound the probability that there are multiple original coin broadcasts in

one phase. Note that every active node in Ap can make at most one original coin broadcast in

phase p because a node that makes a original coin broadcast must receive that coin broadcast

from itself and thus terminate Algorithm 4. Since by definition, the T -th completed original

broadcast is the first completed original coin broadcast in the entire system, any original

coin broadcast made by some node j ∈ Ap must be the (kj + 1)-th original broadcast by

node j. Equation (1) implies that the probability of the (kj + 1)-th original broadcast being

a coin broadcast is 2kj

2n′
.

Let Ep denote the event that there are strictly more than one original coin broadcast

in phase p – these coin broadcasts may or may not be successful. Let Ec
p denote its comple-

ment. By union bound, we have

P{Ep} f
∑

j∈Ap

P{node j makes an original coin broadcast} =
∑

j∈Ap

2kj

2n′
.

Consequently, by Equation (3), the definition of t∗ such that
∑t

i=1 ri < 1
4 for all t < t∗, and

Qinzi Zhang and Lewis Tseng 15

the assumption that n′ g n g |Ap|, we have

P{Ep | T f t∗} f
∑

j∈Ap

2kj

2n′
=
∑

j∈A′

p

2kj

2n′
+

∑

j∈Ap−A′

p

1

2n′
(kj = 0 for j /∈ A′

p)

=





∑

j∈A′

p

2kj − 1

2n′
+
∑

j∈A′

p

1

2n′



+
∑

j∈Ap−A′

p

1

2n′

=

T −1
∑

i=1

ri +
∑

j∈Ap

1

2n′
=

T −1
∑

i=1

ri +
|Ap|

2n′
f

3

4
.

By Remark 10, T f t∗, which denotes the event that there is at least one completed original

coin broadcast in the first t∗ completed original broadcasts, implies that there is at least one

successful original broadcast in the first t∗ completed original broadcasts. Therefore, the fact

that T f t∗ together with Ec
p is a subset of the events that there is exactly one successful

original coin broadcast in phase p. Consequently, together with Equation (2), we have

P{exactly one successful original coin broadcast in phase p}

g P{Ec
p, T f t∗} g (1 − exp(−1/4))(1 − 3/4) g 0.05.

This combined with Claim 15 prove the lemma. ◀

Define the constant c as follows: c = ln(2/δ)
0.05 . Using c in MAC-FirstMover (Algorithm 4),

we can derive the following theorem. The full proof is presented in Appendix F. Roughly

speaking, nodes need O(log n) phases to have a large enough estimated system size n′. After

that, nodes need a constant number of phases to reach agreement and terminate, due to

Lemma 14. Next, Lemma 12 states that each phase needs O(n) broadcasts on expectation.

These give us the desired result.

▶ Theorem 16. With probability g 1 − δ, MAC-RBC2 terminates and achieves agreement

using O(n log n) total broadcasts across the entire system.

References

1 Mohssen Abboud, Carole Delporte-Gallet, and Hugues Fauconnier. Agreement without

knowing everybody: a first step to dynamicity. In Djamal Benslimane and Aris M. Ouksel,

editors, Proceedings of the 8th international conference on New technologies in distributed

systems, NOTERE ’08, Lyon, France, June 23-27, 2008, pages 49:1–49:5. ACM, 2008. doi:

10.1145/1416729.1416792.

2 Eduardo Adílio Pelinson Alchieri, Alysson Neves Bessani, Joni da Silva Fraga, and Fabíola

Greve. Byzantine consensus with unknown participants. In Theodore P. Baker, Alain Bui, and

Sébastien Tixeuil, editors, Principles of Distributed Systems, 12th International Conference,

OPODIS 2008, Luxor, Egypt, December 15-18, 2008. Proceedings, volume 5401 of Lecture

Notes in Computer Science, pages 22–40. Springer, 2008. doi:10.1007/978-3-540-92221-6\

_4.

3 James Aspnes. A modular approach to shared-memory consensus, with applications to

the probabilistic-write model. Distributed Comput., 25(2):179–188, 2012. doi:10.1007/

s00446-011-0134-8.

4 James Aspnes and Faith Ellen. Tight bounds for anonymous adopt-commit objects. In

Rajmohan Rajaraman and Friedhelm Meyer auf der Heide, editors, SPAA 2011: Proceedings

of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures, San

Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011), pages 317–324. ACM, 2011.

doi:10.1145/1989493.1989548.

16 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

5 James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous pram

model. In Proceedings of the second annual ACM symposium on Parallel algorithms and

architectures, pages 340–349, 1990.

6 Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing

systems. J. ACM, 42(1):124–142, 1995. doi:10.1145/200836.200869.

7 Hagit Attiya, Arie Fouren, and Eli Gafni. An adaptive collect algorithm with applications.

Distributed Comput., 15(2):87–96, 2002. doi:10.1007/s004460100067.

8 Hagit Attiya, Sweta Kumari, Archit Somani, and Jennifer L. Welch. Store-collect in the presence

of continuous churn with application to snapshots and lattice agreement. In Stéphane Devismes

and Neeraj Mittal, editors, Stabilization, Safety, and Security of Distributed Systems - 22nd

International Symposium, SSS 2020, Austin, TX, USA, November 18-21, 2020, Proceedings,

volume 12514 of Lecture Notes in Computer Science, pages 1–15. Springer, 2020. doi:10.

1007/978-3-030-64348-5_1.

9 Hagit Attiya and Ami Paz. Counting-based impossibility proofs for renaming and set agreement.

In Marcos K. Aguilera, editor, Distributed Computing - 26th International Symposium, DISC

2012, Salvador, Brazil, October 16-18, 2012. Proceedings, volume 7611 of Lecture Notes in

Computer Science, pages 356–370. Springer, 2012. doi:10.1007/978-3-642-33651-5_25.

10 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and

Advanced Topics. Wiley Series on Parallel and Distributed Computing, 2004.

11 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-

chronous agreement protocols. In Proceedings of the Second Annual ACM Symposium on

Principles of Distributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983.

ACM. URL: http://doi.acm.org/10.1145/800221.806707, doi:10.1145/800221.806707.

12 François Bonnet and Michel Raynal. Anonymous asynchronous systems: the case of failure

detectors. Distributed Comput., 26(3):141–158, 2013. doi:10.1007/s00446-012-0169-5.

13 David Cavin, Yoav Sasson, and André Schiper. Consensus with unknown participants or funda-

mental self-organization. In Ioanis Nikolaidis, Michel Barbeau, and Evangelos Kranakis, editors,

Ad-Hoc, Mobile, and Wireless Networks: Third International Conference, ADHOC-NOW

2004, Vancouver, Canada, July 22-24, 2004. Proceedings, volume 3158 of Lecture Notes in

Computer Science, pages 135–148. Springer, 2004. doi:10.1007/978-3-540-28634-9_11.

14 Ling Cheung. Randomized wait-free consensus using an atomicity assumption. In James H.

Anderson, Giuseppe Prencipe, and Roger Wattenhofer, editors, Principles of Distributed

Systems, 9th International Conference, OPODIS 2005, Pisa, Italy, December 12-14, 2005,

Revised Selected Papers, volume 3974 of Lecture Notes in Computer Science, pages 47–60.

Springer, 2005. doi:10.1007/11795490_6.

15 Benny Chor, Amos Israeli, and Ming Li. Wait-free consensus using asynchronous hardware.

SIAM J. Comput., 23(4):701–712, 1994. doi:10.1137/S0097539790192635.

16 Eli Daian, Giuliano Losa, Yehuda Afek, and Eli Gafni. A wealth of sub-consensus deterministic

objects. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on

Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume

121 of LIPIcs, pages 17:1–17:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL:

https://doi.org/10.4230/LIPIcs.DISC.2018.17, doi:10.4230/LIPICS.DISC.2018.17.

17 Giuseppe Di Luna and Roberto Baldoni. Non Trivial Computations in Anonymous Dy-

namic Networks. In Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru,

editors, 19th International Conference on Principles of Distributed Systems (OPODIS

2015), volume 46 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–

33:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2015.33,

doi:10.4230/LIPIcs.OPODIS.2015.33.

18 Giuseppe Antonio Di Luna and Roberto Baldoni. Brief announcement: Investigating the

cost of anonymity on dynamic networks. In Proceedings of the 2015 ACM Symposium on

Qinzi Zhang and Lewis Tseng 17

Principles of Distributed Computing, PODC ’15, page 339–341, New York, NY, USA, 2015.

Association for Computing Machinery. doi:10.1145/2767386.2767442.

19 Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.

Reaching approximate agreement in the presence of faults. J. ACM, 33:499–516, May

1986. URL: http://doi.acm.org/10.1145/5925.5931, doi:http://doi.acm.org/10.1145/

5925.5931.

20 Mohsen Ghaffari, Erez Kantor, Nancy A. Lynch, and Calvin C. Newport. Multi-message

broadcast with abstract MAC layers and unreliable links. In Magnús M. Halldórsson and

Shlomi Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC ’14,

Paris, France, July 15-18, 2014, pages 56–65. ACM, 2014. doi:10.1145/2611462.2611492.

21 Fabíola Greve and Sébastien Tixeuil. Knowledge connectivity vs. synchrony requirements for

fault-tolerant agreement in unknown networks. In The 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007, Edinburgh,

UK, Proceedings, pages 82–91. IEEE Computer Society, 2007. doi:10.1109/DSN.2007.61.

22 D. Hendler, F. Fich, and N. Shavit. Linear lower bounds on real-world implementations of

concurrent objects. In Proc. 46th Annual IEEE Symposium on Foundations of Computer

Science, 2005.

23 M. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1), January 1991.

24 Majid Khabbazian, Dariusz R. Kowalski, Fabian Kuhn, and Nancy A. Lynch. Decomposing

broadcast algorithms using abstract MAC layers. Ad Hoc Networks, 12:219–242, 2014. doi:

10.1016/j.adhoc.2011.12.001.

25 Fabian Kuhn, Nancy A. Lynch, and Calvin C. Newport. The abstract MAC layer. Distributed

Comput., 24(3-4):187–206, 2011. doi:10.1007/s00446-010-0118-0.

26 Petr Kuznetsov, Thibault Rieutord, and Sara Tucci Piergiovanni. Reconfigurable lattice

agreement and applications. In Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller,

editors, 23rd International Conference on Principles of Distributed Systems, OPODIS 2019,

December 17-19, 2019, Neuchâtel, Switzerland, volume 153 of LIPIcs, pages 31:1–31:17. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.OPODIS.2019.31.

27 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigiannakis.

Conscious and unconscious counting on anonymous dynamic networks. In Mainak Chatterjee,

Jiannong Cao, Kishore Kothapalli, and Sergio Rajsbaum, editors, Distributed Computing

and Networking - 15th International Conference, ICDCN 2014, Coimbatore, India, January

4-7, 2014. Proceedings, volume 8314 of Lecture Notes in Computer Science, pages 257–271.

Springer, 2014. doi:10.1007/978-3-642-45249-9_17.

28 Giuseppe Antonio Di Luna, Roberto Baldoni, Silvia Bonomi, and Ioannis Chatzigian-

nakis. Counting in anonymous dynamic networks under worst-case adversary. In IEEE

34th International Conference on Distributed Computing Systems, ICDCS 2014, Madrid,

Spain, June 30 - July 3, 2014, pages 338–347. IEEE Computer Society, 2014. doi:

10.1109/ICDCS.2014.42.

29 Giuseppe Antonio Di Luna and Giovanni Viglietta. Brief announcement: Efficient compu-

tation in congested anonymous dynamic networks. In Rotem Oshman, Alexandre Nolin,

Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings of the 2023 ACM Symposium

on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023,

pages 176–179. ACM, 2023. doi:10.1145/3583668.3594590.

30 Giuseppe Antonio Di Luna and Giovanni Viglietta. Optimal computation in leaderless

and multi-leader disconnected anonymous dynamic networks. In Rotem Oshman, editor,

37th International Symposium on Distributed Computing, DISC 2023, October 10-12, 2023,

L’Aquila, Italy, volume 281 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.DISC.2023.18, doi:10.4230/

LIPICS.DISC.2023.18.

31 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

18 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

32 Nancy A. Lynch, Tsvetomira Radeva, and Srikanth Sastry. Asynchronous leader election

and MIS using abstract MAC layer. In Fabian Kuhn and Calvin C. Newport, editors,

FOMC’12, The Eighth ACM International Workshop on Foundations of Mobile Computing

(part of PODC 2012), Funchal, Portugal, July 19, 2012, Proceedings, page 3. ACM, 2012.

doi:10.1145/2335470.2335473.

33 Calvin Newport and Peter Robinson. Fault-tolerant consensus with an abstract MAC layer.

In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on Distributed

Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs,

pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/

LIPIcs.DISC.2018.38.

34 Calvin C. Newport. Consensus with an abstract MAC layer. In Magnús M. Halldórsson and

Shlomi Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC ’14,

Paris, France, July 15-18, 2014, pages 66–75. ACM, 2014. doi:10.1145/2611462.2611479.

35 Eric Ruppert. The anonymous consensus hierarchy and naming problems. In Eduardo

Tovar, Philippas Tsigas, and Hacène Fouchal, editors, Principles of Distributed Systems,

11th International Conference, OPODIS 2007, Guadeloupe, French West Indies, December

17-20, 2007. Proceedings, volume 4878 of Lecture Notes in Computer Science, pages 386–400.

Springer, 2007. doi:10.1007/978-3-540-77096-1_28.

36 Lewis Tseng and Callie Sardina. Byzantine Consensus in Abstract MAC Layer. In

Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi,

editors, 27th International Conference on Principles of Distributed Systems (OPODIS 2023),

volume 286 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:16,

Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https:

//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.9, doi:10.4230/

LIPIcs.OPODIS.2023.9.

37 Lewis Tseng, Qinzi Zhang, and Yifan Zhang. Brief announcement: Reaching approximate

consensus when everyone may crash. In Hagit Attiya, editor, 34th International Symposium

on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume

179 of LIPIcs, pages 53:1–53:3. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

doi:10.4230/LIPIcs.DISC.2020.53.

38 Nitin H. Vaidya, Lewis Tseng, and Guanfeng Liang. Iterative approximate Byzantine consensus

in arbitrary directed graphs. In Proceedings of the thirty-first annual ACM symposium on

Principles of distributed computing, PODC ’12. ACM, 2012.

39 Dongxiao Yu, Yifei Zou, Yuexuan Wang, Jiguo Yu, Xiuzhen Cheng, and Francis C. M. Lau.

Implementing the abstract MAC layer via inductive coloring under the rayleigh-fading model.

IEEE Trans. Wirel. Commun., 20(9):6167–6178, 2021. doi:10.1109/TWC.2021.3072236.

40 Dongxiao Yu, Yifei Zou, Jiguo Yu, Yong Zhang, Feng Li, Xiuzhen Cheng, Falko Dressler, and

Francis C. M. Lau. Implementing the abstract MAC layer in dynamic networks. IEEE Trans.

Mob. Comput., 20(5):1832–1845, 2021. doi:10.1109/TMC.2020.2971599.

41 Dongxiao Yu, Yifei Zou, Yong Zhang, Hao Sheng, Weifeng Lv, and Xiuzhen Cheng. An

exact implementation of the abstract MAC layer via carrier sensing in dynamic networks.

IEEE/ACM Trans. Netw., 29(3):994–1007, 2021. doi:10.1109/TNET.2021.3057890.

42 Qinzi Zhang and Lewis Tseng. The power of abstract mac layer: A fault-tolerance perspective,

2024. URL: https://arxiv.org/abs/2408.10779, arXiv:2408.10779.

Qinzi Zhang and Lewis Tseng 19

A Correctness Proof of MAC-AdoptCommit

▶ Theorem 17. MAC-AdoptCommit is correct for binary inputs.

Proof. MAC-AdoptCommit satisfies validity, because vi is either an input at node i or a

value from proposali, which must be an input from another node.

MAC-AdoptCommit satisfies termination, because all the steps are non-blocking.

MAC-AdoptCommit satisfies coherence. Suppose node i outputs (commit, v) at time T3,

and completes line 5 at T2, and line 4 at T1 such that T1 < T2 < T3.

We first make the following observation, namely Obs1, no node with input −v has

completed line 1 at any time f T2. Suppose node j has input −v. By Remark 1 in Section

2, before node i starts to execute line 5, its message handler has processed all the messages

received by the abstract MAC layer. Therefore, the fact that seeni[−v] = false at time

T2 implies that node i has not receive any message of the form (VALUE, −v) at time T2.

Consequently, node j has not completed mac-broadcast(VALUE, −v) (line 1) at time T2.

Consider the time T when the first mac-broadcast(VALUE, −v) is completed (if there is

any). At time T , any node k that has not crashed yet must have already received (PROPOSAL,

v) at some earlier time than T , because (i) Obs1 implies that T > T2; and (ii) by time T ,

node i has already completed line 4 (which occurred at time T1). Consider two cases:

k executes line 2 after receiving (PROPOSAL, v): in this case, k sets proposalk to value v

before executing line 3 (potentially at some later point that T).

k executes line 2 before receiving (PROPOSAL, v): in this case: k’s input must be v;

otherwise, T cannot be the first mac-broadcast(VALUE, −v) that is completed. (Observe

that by assumption of this case, k executes line 2 before node i completes its line 4 at

time T1.)

In both cases, at line 4, node k can only mac-broadcast(PROPOSAL, v). That is, no

mac-broadcast(PROPOSAL, −v) is possible. Consequently, coherence is satisfied.

MAC-AdoptCommit satisfies convergence. If all the inputs are v, then the only value that

can appear in proposali is v for each node i. Moreover, none of the nodes would broadcast −v;

hence, seeni[−v] will always be false. Consequently, all nodes would output (commit, v). ◀

B Proof of Theorem 7

Proof. Recall that we assume the message oblivious adversary; hence, termination proof

is more straightforward. This is because if no node outputs a value, then all nodes rely

on the conciliator (flipping a local coin) to reach the same states for the next phase. By

construction, nodes may (i) jump to a higher phase with a copied state, (ii) obtain a state

that is equivalent to the proposed value from a PROPOSAL message, or (iii) choose its new

state randomly. Therefore, there is a non-zero probability that all of these random choices

equal to the unique state value obtained using approach (i) or (ii). The reason that these

obtained states are identical is due to the coherence property of the adopt-commit object (as

proved in Appendix A).

In the worst case, all nodes “move in sync,” i.e., they enter the same phase concurrently

without using the jump, and have their states randomly generated. Otherwise if there is

some “fast” node that is in a higher phase, it may force all other nodes to jump to its state

after it becomes the “proposer” at line 6. We denote the probability that all states are equal

after flipping a local coin by r∗. Clearly, r∗ = 2−(n−1) > 0. Let P be the random variable

that denotes the termination phase of MAC-RBC, and note that P > p only if the states are

20 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

not equal in the first p rounds. Therefore, P{P > p} f (1 − r∗)p. Finally, we conclude the

proof by showing that for all p g ln(1/δ)/r∗ = 2n−1 ln(1/δ),

(1 − r∗)p f (1 − r∗)ln(1/δ)/r∗

f exp(− ln(1/δ)) = δ.

The inequality follows from the identity that 1 − x f exp(−x) for all x > 0. ◀

C MAC-RBC2

Algorithm 5 MAC-RBC2 Algorithm: Steps at each node i with input xi

Local Variables: /* These variables can be accessed and modified by any thread at node i. */
seeni[0] ▷(Boolean, phase), initialized to (false, 0)
seeni[1] ▷(Boolean, phase), initialized to (false, 0)
seen2

i [0] ▷(Boolean, phase), initialized to (false, 0)
seen2

i [1] ▷(Boolean, phase), initialized to (false, 0)
vi ▷state, initialized to xi, the input at node i
pi ▷phase, initialized to 0
proposali ▷(value, phase), initialized to (§, 0)
n0 ▷an initial guess of system size, initialized to some constant natural number
n′ ▷estimated system size, initialized to 1

c ▷a constant defined as c = ln(2/δ)
0.05

coini ▷(Boolean, phase), initialized to (§,−1)

1: mac-broadcast(ID, i)
2: while true do
3: pold ← pi

4: mac-broadcast(VALUE, vi, pi)
5: if proposali.phase g pi then
6: (vi, pi)← proposali
7: mac-broadcast(PROPOSAL, vi, pi)
8: if pold ̸= pi then
9: go to line 2 ▷“Jump” to pi

10: else if seeni[−vi].phase < pi then
11: output vi

12: mac-broadcast(VALUE2, vi, pi)
13: if seen2

i [−vi].phase > pi then

14: (vi, pi)← (−vi, seen2
i [−vi].phase)

15: go to line 2 ▷“Jump” to pi

16: else if seen2
i [−vi] = (true, pi) then

17: // MAC-FirstMover

18: n′ ← 2+
pi
c

,n0

19: k ← 0
20: while coini.phase < pi do

21: if a local random number < 2k

2n′

then
22: mac-broadcast(COIN, vi, pi)
23: else
24: mac-broadcast(DUMMY)

25: k ← k + 1
26: mac-broadcast(COIN, v, p)
27: (vi, pi)← coini

28: pi ← pi + 1 ▷“Move” to pi

// Background message handlers
29: Upon receive(VALUE, v, p) do
30: if p g seeni[v].phase then
31: seeni[v]← (true, p)

32: Upon receive(VALUE2, v, p) do

33: if p g seen2
i [v].phase then

34: seen2
i [v]← (true, p)

35: Upon receive(PROPOSAL, v, p) do
36: if p g proposali.phase then
37: proposali ← (v, p)

// Message handlers for MAC-FirstMover
38: Upon receive(COIN, v, p) do
39: if p = pi and p > coini.phase then
40: coini ← (v, p)
41: else if p > pi then
42: (vi, pi)← (v, p + 1)
43: go to line 2 ▷“Jump” to pi

44: Upon receive(DUMMY) do
45: do nothing

We can get rid of the coin variable and directly use vi and pi. However, we choose to

reserve the variable so that it is more obvious how MAC-RBC2 utilizes MAC-FirstMover.

The reasons that we need to have the condition p > coini.phase are: (i) coini.phase may

be decoupled from pi; and (ii) each node i has at most two coin broadcasts for a phase p.

Qinzi Zhang and Lewis Tseng 21

D Proof of Claim 13

Proof of Claim 13. Let m = (COIN, v, p) be a successful coin broadcast in phase p. Recall

that m is successful because there exists a node j that completes the follow-up broadcast

with (COIN, v, p) at some time t. Now, consider three groups of nodes:

For any node i that was in Ap before time t: i completes MAC-FirstMover for phase p

after receiving and processing m or j’s follow-up broadcast.

For any node i that has not executed MAC-FirstMover of phase p by time t: i would

“jump” to phase p after receiving and processing m or j’s follow-up broadcast.

For any node i that has already completed MAC-FirstMover of phase p before time t:

this is trivial. Note that this is possible if i processes message(s) faster than j does, or

there is a coin broadcast other than m. ◀

E Proof of Claim 15

Proof of Claim 15. In the framework of [3], if every node that has not crashed obtains the

same output from the conciliator object, then all the fault-free nodes are guaranteed to

terminate in the next phase. This design, the definition of a successful coin broadcast, and

the ability to jump to a higher phase in MAC-RBC2 imply the claim. This is because for

all nodes that update its state vi in phase p, they must use the same outcome from the

conciliator object (the value field of the successful coin broadcast). For the other nodes that

jump to phase p + 1 (from a phase < p), they must either receive phase-p coin broadcast(s)

or receive the messages from the adopt-commit object in phase p + 1. These messages and

phase-p coin broadcasts (both the one and only original coin broadcast and follow-up coin

broadcasts) must contain exactly the same value. ◀

F Proof of Theorem 16

Proof. First, we can decompose the total number of broadcasts by all fault-free nodes,

denoted by N , into three components N = NRBC + NO + NF , where (i) NRBC denotes the

number of broadcasts required by the part of adopt-commit (i.e., all the communication in

Algorithm 3); (ii) NO denotes the number of original broadcasts used in MAC-FirstMover for

all phases; and (iii) NF denotes the number of follow-up broadcasts used in MAC-FirstMover

for all phases.

Let P denote the random variable of the first phase index in which the agreement is

achieved, i.e., all nodes that have not crashed begin with same v in this phase.

First observe that in each phase, each node makes O(1) broadcasts for adopt-commit and

one follow-up broadcast in for MAC-FirstMover. Therefore, NRBC + NF = O(nP). The

rest of the proof focuses on bounding NO.

Let n′
p = 2+p/c,n0 denote the input to MAC-FirstMover, namely the estimated system

size in phase p. Then n′
p g n for all p g c(1 + log2(n/n0)). Therefore, Lemma 14 implies

that the event Ep of no agreement in phase p has bounded probability P{Ep} f 1 − 0.05 for

all p g c(1 + log2(n/n0)). Consequently,

P{P > c(1 + log2(n/n0)) + q} f

q
∏

i=1

P{E+c(1+log
2
(n/n0),+i} f

q
∏

i=1

(1 − 0.05) f exp(−0.05q).

22 The Power of Abstract MAC Layer: A Fault-tolerance Perspective

Consequently, let p∗ = c(1 + log2(n/n0)) + ln(2/δ)
0.05 . Upon substituting q = ln(2/δ)

0.05 into the

previous bound, we have

P {P > p∗} f δ/2. (4)

Note that with c = ln(2/δ)
0.05 , p∗ = ln(2/δ)

0.05 (2 + log2(n/n0)) = O(ln(n) ln(1/δ)).

Let NO
p denote the number of original broadcasts made byfault-free nodes in MAC-

FirstMover of phase p. Lemma 12 implies that with probability g 1 − δ, NO
p f 2n′

p ln(1/δ).

Therefore, upon applying union bound, we have with probability g 1 − δ/2,

p∗

∑

p=1

NO
p f

p∗

∑

p=1

2n′
p ln(2p∗/δ) (recall that n′

p = 2+p/c,n0)

f 2cn0 ln(2p∗/δ)

+p∗/c,
∑

q=1

2p

f 4cn0 ln(2p∗/δ)2+p∗/c, (substitute definition of p∗)

= 4n0
ln(2/δ)

0.05
ln

(

2 ln(2/δ)(2 + log2(n/n0))

0.05δ

)

exp2 (2 + log2(n/n0))

= 320n ln(2/δ) ln

(

2 ln(2/δ)(2 + log2(n/n0))

0.05δ

)

= O

(

n ln(1/δ) ln

(

ln(n) ln(1/δ)

δ

))

.

Equivalently, we have

P







p∗

∑

p=1

NO
p > 320n ln(2/δ) ln

(

2 ln(2/δ)(2 + log2(n/n0))

0.05δ

)







f δ/2. (5)

Upon combining Equations (4), (5) and applying union bound, we have with probability

g 1 − δ, MAC-RBC2 achieves agreement (and thus termination) with

N = NRBC + NO + NF = O (n ln(n) ln(1/δ)) ◀

	1 Introduction
	2 Preliminary
	3 Abstract MAC Layer: Computability
	4 Anonymous Storage-Efficient Randomized Binary Consensus
	4.1 Algorithm MAC-AdoptCommit
	4.2 Algorithm MAC-RBC
	4.3 MAC-RBC2: Improving Time Complexity

	A Correctness Proof of MAC-AdoptCommit
	B Proof of Theorem 7
	C MAC-RBC2
	D Proof of Claim 13
	E Proof of Claim 15
	F Proof of Theorem 16

